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Automatic identification and restriction of the
cointegration space

Pieter Omtzigt∗

October 18, 2002

Abstract

We automate the process of finding the cointegration relations in a cointegrated VAR.
There is a rigorous separation between the theory part (search directions must be
defined, a final model chosen) and the automated search. The decision rules are
set in such a way that a theoretical upper limit can be given to the asymptotic size
of recovering all overidentifying restrictions. A Monte Carlo study shows that the
algorithm works well, but that the properties of the asymptotic tests are rather poor
at times. The software (in Matlab) to execute the algorithm is available.

1 Introduction

The introduction of the concept to cointegration (Engle and Granger, 1987) has led to the
development of a wide variety of methods to analyze cointegrated systems. The method
of Johansen (1988, 1991) is frequently applied as part of a wider General-to-Specific
Modelling strategy which is advocated by the LSE-school in econometrics.

The process of arriving at the specific model is often long and arduous, especially in
a VAR with more than 3 variables. Many sequential decisions are taken in the modelling
process: which dummy should be included? which accepted restrictions on the cointegra-
tion parameters should be tested jointly? Criticism against the LSE methodology often
targets these procedures as leaving too many options for the individual researcher and
turning the process into an art form instead of science. From the LSE practitioner point
of view, the process is tedious and indeed difficult to replicate. Starting with a particular
data set once analyzed, one does not necessarily take the same decisions again and it is
quite hard to exactly replicate the analysis.

After the article by Lovell (1983) , data mining and automated model selection were
seen in a bad light. Recently Hoover and Perez (1999) and Hendry and Krolzig (2003)
reran the original experiment, changed the decision rules and found that it was possible
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to recover the original DGP with a very high probability. The last article also contains an
exhaustive justification of automated modelling and the LSE-framework.

Whereas the three cited articles in the last paragraph are concerned with selecting the
right variables in a single equation regression, Brüggeman and L̈utkepohl (2000) consider
lag length selection in a vector autoregressive model. Davidson (1998a) automates finding
the zero-restrictions1 in the cointegration space. His aim is very close to the one pursued
in this paper. Yet his method differs from ours in a number of key elements, which will
be fully discussed in section 5.4.

In this chapter we will consider the cointegrated VAR-model and automate the search
for any within-equation restrictions in the cointegration space.

In the next section I will outline the model, show how identification and restriction are
intimately connected and describe the standard modelling strategy employed. In section
3 the algorithm is stated. A worked-out example, a Monte Carlo simulation and an appli-
cation to UK money demand data then amply illustrate its use. Extensive comments on
the uses of the procedure are given before the concluding remarks in the last section.

2 The cointegrated VAR model

The p-dimensional cointegrated VAR model is given by:

∆Xt = αβ′




Xt−1

Yt−1

Dt


 + Γ0∆Yt +

k−1∑
i=1

Γi




∆Xt−i

∆Yt−i

∆Dt−i


 + Φdt + εt (1)

εt ∼ iidN(0, Ω)

whereα is of dimensionp × r andβ is of dimensionq × r, Yt is a vector of exoge-
nous variables andDt a vector with deterministic variables, which are included in the
cointegration space. The lagged differences variables inside the cointegration space are
explicitly included outside the cointegration space. Some authors and computer pack-
ages take this convention (CATS in RATS,Hansen and Juselius 1994), whereas others do
not include∆Dt−i, the lagged differenced deterministic variables, outside the cointegra-
tion space (like PcFiml, Doornik and Hendry 1997). Thedt contains other dummies like
seasonal and blip2 dummies.

Neitherα nor β is identified, but only their productΠ = αβ′ is. The likelihood does
not change if we takeα∗ = ακ andβ

′∗ = κ−1β′ for an arbitrary invertible matrixκ. We
assume that all the identifying restrictions are put onβ and that there are either no restric-
tions onα or only restrictions of the kindα = Ha. The last kind of restrictions, which
corresponds to weak exogeneity ofH ′

⊥Xt for α andβ, does not bring any identification
onto the system.

Forβ we consider only within-equation restrictions:

β = (H1ϕ1, ψ) (2)

1That is he finds overidentifying restrictions in the cointegration space, but only exclusion-restriction.
2They take value 1 in one (or two) periods and are zero elsewhere.

2



or
β = (H1ϕ1, . . . , Hrϕr) (3)

whereHi areq × si matrices,si ≤ q + 1− r.

2.1 Identification and restriction

Identification and restriction are so intimately related, that it is impossible to separate them
out completely. Let’s take the following cointegration space in a DGP as an example:

β′DGP =

[
1 b 0
0 0 1

]

If we decide to identify the space by putting an identity matrix in the top ofβ:

β′M1 =

[
1 0 a
0 1 c

]

then by successive testing whethera = 0 and orc = 0 we are unable to recover the DGP.
If we had started with the following identification scheme however:

β′M2 =

[
1 d 0
0 e 1

]

we would have been able to recover the DGP. As it is impossible to know the DGP before
hand, we shall have to treat the problem of identification and restriction contemporane-
ously in the algorithm.

The algorithm we propose shall mimic the strategy which Juselius (2002) explicitly
employs in her papers. First she finds which restrictions of the kind (2) are accepted. She
then combines the accepted restrictions to (over)-identify the whole parameter space (3)
and reports the final combination which is supported by the data. Usually she will test
a great many of these combinations, but for lack of space it is normally only possible to
report one or two final models. We shall systematically search for such combinations.

2.2 Modelling Strategy

This paragraph gives a short overview as how a small cointegrated VAR is often modelled
in an LSE-type fashion. This is no definite guide, but more an attempt to describe current
practice. We refer once again to the work of Juselius as an example. The modelling
process can graphically be represented as in figure 1.

1. The selection of variables is based on the theories to be tested or the part of the
economy to be modelled. If money demand and monetary transmission mecha-
nisms are the object of study, then logically money, an interest rate, income and
prices/inflation should be part of the data vector to get a meaningful model: these
variables are dictated by the standard textbook theories on money. Money demand
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Figure 1: Modelling a cointegrated VAR
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can for instance depend on inflation, total income and the relevant opportunity cost,
which is measured by means of an interest rate. Often many measures of money
(and income) are available. When abstract theories do not offer a convincing choice,
data quality often does. Series may contain breaks in the form of changes of def-
inition, changes of bank concerned etcetera. Long series of high quality are often
hard to find.
An additional problem is possible I(2)-ness in the data. If an I(1) model is to be
preferred, then some pretesting is warranted. This can take the form of unit root
tests on series. The augmented Dickey Fuller test and the Phillips-Perron test are
often used. Alternatively one can do a full I(2)-rank test. If at least one I(2)-trend is
found, a test for a so-called nominal-to-real transformation (Kongsted, 1998, 1999)
can be executed to transform the model into an I(1) model.
In choosing the deterministics of the model, preference is often given to so-called
star-models, which allow for the same kind of trend in both the stationary and the
non-stationary direction. This means either a constant in the cointegration space or
a trend in the cointegration spaceDt and a constant (differenced trend) outside. This
fits in naturally with our formulation of the problem. For these specifications, the
rank test is asymptotically similar with respect to the actual trends in the data, such
that rank and deterministics determination can be separated (Nielsen and Rahbek,
2000). Restrictions on the trend/constant can be tested in 5 and 6.

2. The procedure we are using is based on a Gaussian likelihood function. If there are
large outliers, then these have to be modelled explicitly. Tests on the residuals will
reveal whether any misspecification is present. Outliers often have a meaning and
several solutions to outlier problems can be employed. If the outliers are caused by
the say the oil shocks, then the economic and historical knowledge can lead either
to the inclusion of one or two dummies for these shocks or to the inclusion of the
oil price as an exogenous variable in the model.
The dotted arrow between dummy variables and selection of variables on the one
hand and deterministics on the other indicates the idea that it is possible to go back
one stage in the modelling process and rethink which variables should be included.
In fact at any stage in the modelling process the researcher can go back to previous
stages.

3. If the model is well-specified, the lag length of the process is set: in the model the
lag length is equal on all variables (though this can be changed later). This can
be done either on the basis of an information criterion like Aikaike’s Information
Criterion or by testing successively that the coefficients to the last lag present in the
model are zero.

4. The rank of the matrixΠ is selected using the trace test Johansen (1995b) . The
maximum eigenvalue is not frequently used. If there are strong theoretical priors
they can be included in the procedure, see Paruolo (2002) .

5. Restrictions on the cointegration space are tested by means of likelihood ratio test.
5



These restrictions are usually motivated by economic theory. If real money and real
income are the first two variables in our data vector and we want to consider whether
velocity of money is stationary, we test an hypothesis of the kind (2) withH1 =[

1 −1 0 0
]

3. Consequently accepted hypotheses are combined to restrict the
whole cointegration space.

6. Restrictions on the short run parametersα, Γ or on the so-called structural form,
can be tested for knownβ, as the last are estimated in a superconsistent way and
the former are not. If interest only lies in testing theories which involve just the
cointegration parameters, then this step can be omitted.

The various parts of the modelling process do not take up equal amounts of time. In
applied work especially number 5, the testing of restrictions often requires a large amount
of time. This part will be object of study in the next paragraph and then be automated.

3 Identification and restriction of β

Current practice is to find sets of individual restrictions, based on economic theory. One
vector is restricted and the other vectors are left to vary freely. We thus have a test of the
kind (2). Hypotheses, which are accepted at a set significance level (often 5%) are then
tested jointly. To my knowledge, few authors, if any, actually report which combinations
they have tested and why and how they have selected the final model. Usually one reports
only the final combination of restrictions accepted and the p-value associated with it.

The following algorithm mimics and automates this process. It is graphically repre-
sented in figure 2.

1. Let the user specifyq × 1 restriction columns of the kindfi =
[

1 −1 0 0
]
,

i = 1, . . . , F . These can be interpreted as new variables, that might be stationary
themselves or enter into a stationary relationship. Examples include the real rate of
interest, velocity and interest rate spread.

2. Letting ej =
[

1 0 0 0
]
, j = 1, . . . , q denote the unit vector with1 in the

jth position, we take all possible matricesHk, k = 1 . . . K whose columns are
combinations offi, i = 1, . . . , F andej, j = 1, . . . , q such that

(a) The number of columns ofHk is smaller than or equal toq+1−r (this ensures
that each of these matrices will put at least one over-identifying restriction).

(b) Hk is of full column rank

(c) sp (Hk) 6= sp (Hl) for k 6= l (because they would represent the same restric-
tion).

3For convenience we have assumed 4 variables and at least a constant outside the cointegration space

6



(d) If the system contains both stochastic and deterministic variables, then that
part of Hk which premultiplies the stochastic variables contains at least one
non-null element. We thereby avoid testing whether there exists a stationary
combination among the deterministics variables only.

3. For k = 1 . . . K test whetherβ = (Hkϕ1, ψ) is accepted or not. Reject if the p-
valuep(k) is smaller than 1%. DefineC1 = {1, . . . , i, j, . . . c1} as the ordered set
of accepted restrictions, that isp (i) > p (j) if i < j.

4. For every combination({i, j} , i < j ∈ C1) test whetherβ = (Hiϕ1, Hjϕ2, ψ) is
accepted or not at the 1% level. DefineC2 = {{i, j}l , l = 1, . . . , c2} as the set of
restrictions accepted.

5. For every combination({i, j, k} , {i, j} ∈ C2, k ∈ C1, i < j < k) test whetherβ =
(Hiϕ1, Hjϕ2, Hkϕ3, ψ) is accepted or not at the 1% level. DefineC3 = {{i, j, k}l , l = 1, . . . , c3}
as the set of restrictions accepted.

6. Repeat step 5 untilCr or until one of theC ’s is an empty set.

7. Select the final model in the following way

(a) Among the families of setsB = {C1, C2 . . . Cr} select all the models, which
are accepted at the 5% level, which defines the setB2.

(b) Order all the models inB2 according to the number of accepted restrictions,
starting with the one with the highest number of accepted restrictions. In case
of parity, rank the one with the highest p-value first.

3.1 Remarks on the algorithm

A number of comments on the algorithm will clarify certain choices inside the procedure
and replication of the experiment.

• Every time we take a combination of restrictions (as in step 4,5 and 6), we have to
check whether the restrictions are generically identifying. This is done by checking
the condition in Johansen (1995a) . If the restrictions implied by sayH1 andH2

say are not generically identifying, then we can eliminate one column ofH1 or
H2 and still have the same model, see Omtzigt (2002) . As an example consider
that in step 3, we have accepted bothH1 = [e1, e2] andH2 = [e2]. Then testing
β = (H1ϕ1, H2ϕ2) is equivalent to testingβ = (H3ϕ1, H2ϕ2), whereH3 = [e1]. In
the algorithm above, this combination is only tested if bothH1 or H3 are accepted
in step 3.
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?
Take all combinations of vectors{f1, f2, e1, . . . , e5} to obtainH1, . . . , HK

• Max p− r + 1 vectors
• No overlap, such that ifsp (Hi) = sp (Hj), then only include one of them:
here include only one of[e1, e4] , [f1, e1] and[f1, e4]
• Exclude possibility that deterministic term is cointegration relations: exclude[e5]
• Hi must have full column rank: exclude for instance[e1, e4, f1]

?

Testβi = [Hiϕ,ψ] for i = 1, . . . , k
Accept if p-value≥ 0.01
Create ordered (highest p-value first) set of accepted restrictionsC1 = {1, . . . , c1}

?
Testβi = [Hiϕ,Hjϕ,ψ] for i ∈ C1, j ∈ C1, i < j and only if{Hi,Hj}
generically identify a bi-dimensional space (use test Johansen 1995a)
Accept if p-value≥ 0.01
Create ordered (highest p-value first) set of accepted restrictionsC2 = {{i, j}l l = 1, . . . , c2}

?
Testβi = [Hiϕ,Hjϕ,Hkϕ,ψ] for {i, j} ∈ C2, k ∈ C1, k > max(i, j) and only if{Hi,Hj ,Hk}
generically identify a tridimensional space (use test Johansen 1995a)
Accept if p-value≥ 0.01
Create ordered (highest p-value first) set of accepted restrictionsC3 = {{i, j}l l = 1, . . . , c3}

?

.........

Testβi = [Hiϕ,Hr−1ϕ, . . . , Hrϕ] for {i, j, . . . , r − 1} ∈ Cr−1, r ∈ C1, r > max(i, j, . . . , r − 1)
and only if{Hi,Hj , . . . , Hr} generically identify anr-dimensional space
Accept if p-value≥ 0.01
Create ordered (highest p-value first) set of accepted restrictionsCr = {{i, j, . . . , r}l l = 1, . . . , cr}

?
Combine family of setsB1 = {C1, . . . , Cr} select all models, which are accepted at 5% level:B5

Rank models inB5 according to the following criteria:
• highest number of overidentifying restrictions
• in case of parity highest p-value first

Figure 2: Algorithm for automatically restricting the cointegration space
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• There is often more than one way to impose the same restrictions. If we define
f1 =

[
1 −1 0 0

]
and in the DGP the fist two variables are stationary and

the other two are not (and not cointegrated), then we may accept three different
combinations ofH ’s:{[f1], [e1]},{[f1], [e2]} and{[e1], [e2]}. In the final step one
should check whether models are equivalent.
Furthermore if one of the restrictions is rejected at an intermediate stage (say[e1]),
then the other restrictions could still be accepted (say both[f1] and[e2]) such that
it is still possible to recover at least one equivalent model. Thus the existence of
equivalent models can increase the chance of accepting the DGP as the preferred
model.

It is possible to prove the following theorem on the asymptotic size and power of the
complete procedure

Theorem 1 The asymptotic size of the algorithm is smaller than or equal to0.03+0.02r,
while the asymptotic power is1.

The last theorem sets an upper limit to the size of the test procedure. It is very likely
that the true size is considerably lower for a number of reasons:

1. The results of the individual tests in the procedure are most likely positively corre-
lated.

2. There may be more than one set ofH ’s which identifies the model, as was seen in
one of the previous comments: just one of them needs to be accepted.

3. In 5, we took({i, j, k} , {i, j} ∈ C2, k ∈ C1, i < j < k) on purpose. If i,j and k are
the three are the three restrictions of the DGP, which we want to recover, then we
really want to arrive at the last step, where we test them jointly. To maximize this
chance and minimize the number of calculations (taking all possible triples would
take too much time, as would testing all couples and then adding any restrictionk,
not justi < j < k), we test the combination ofi andj, the two restrictions, which
were most easily accepted by the data, first. Conditional on that combination being
accepted, we add restrictionk, the restriction with the lowest p-value of the three
when tested individually.

We can in fact proof the following theorem, which is not operational, as the number
of restrictions is not known a priori, but shows that in special cases the asymptotic
size of the algorithm is in fact 5%

Theorem 2 In the special case that only one relation contains over-identifying restric-
tions and in the special case that only two relations contain only 1 over-identifying re-
striction each, the asymptotic size of the algorithm equals0.05

In fact it is possible to lower the intermediate rejection probability, such that the
asymptotic size of the test procedure becomes 5%:

9



Theorem 3 If the intermediate values at steps (3) and (5) of the algorithm the critical
value is set atκ = χ2

0.95(qr − r2) the asymptotic size of the algorithm is 0.05 while the
asymptotic power is1.

In the following we shall not use theorem 3, because the critical valueκ can become
so large in practice, that virtually none of the tested restrictions are rejected at the inter-
mediate levels. Consequently the computational costs explodes and only a small benefit
is obtained in size if is it used.

3.2 An example

Let’s consider a trivariate DGP with a trend inside the cointegration space. We have
rightly determined the cointegration rank to be two and try to identify the parameter space.
In the DGP we have that the first variable is trend-stationary, whereas the second one is
stationary and the third one non-stationary, as in

β′ =
[

1 0 0 0.023
0 1 0 0

]

1. Based on economic theory, the following two vectors are indicated as possible com-
binations in a stationary relationship:

f ′1 =
[

1 1 0 0
]

f ′2 =
[

0 1 −1 0
]

2. As possible matricesH we take all matrices consisting of one column, choosing
from the set{f1, f2, e1, e2, e3, e4} and any combination of two columns with the
following exceptions:

(a) We do not teste4 on its own, because then we would test whether a linear
trend in stationary by itself

(b) We test only one out of the combinations{[e1, e2] , [f1, e1] , [f1, e2]} as they
are equivalent restrictions. We choose the first combination. Similarly we
only take one of the following set{[e2, e3] , [f2, e2] , [f2, e3]}
In total we thus have 16 matricesH which we test individually in the next step

3. We find that the following restrictions are accepted. The p-values are between
brackets:
C1,1 H1 :=

[
e1 e2

]
(0.80) C1,4 H4 :=

[
e1 f2

]
(0.25)

C1,2 H2 :=
[

e2 e3

]
(0.40) C1,5 H5 :=

[
e2

]
(0.06)

C1,3 H3 :=
[

e2 e4

]
(0.35) C1,6 H6 :=

[
f1 e4

]
(0.04)

We note thatH4 has erroneously been accepted, whereas the hypothesisHx :=[
e1 e4

]
has been wrongly rejected. Its p-value was lower than0.01.
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4. There are 15 potential combinations to be tested. However we do not test{H1, H5}
as this combination does not satisfy the conditions for generic identification in Jo-
hansen (1995a) : it is easily seen that an equivalent identified model would be
{[e1] , H5}. The same comment applies to the combinations{H2, H5} and{H3, H5}
We find that the following combinations are accepted:
C2,1 {H1, H3} (0.52) C2,5 {H2, H4} (0.23)
C2,2 {H1, H6} (0.52) C2,6 {H5, H6} (0.05)
C2,3 {H3, H6} (0.52) C2,7 {H2, H4} (0.03)
C2,4 {H2, H6} (0.36) C2,8 {H1, H4} (0.03)

We note that the last two have been erroneously accepted, but that no error of type
I was made in this round.

(7) We takeC1, . . . , C5 andC2,1, . . . , C2,6 as they were accepted at 5% or more. First
we note thatC2,1, C2,2 andC2,3 share the same p-value. It turns out that the models
are equivalent, such that they are the same model. We give the first five models
according to our selection criteria:

Model d.o.f. p− value
C2,6 3 (0.05)
C2,1, C2,2, C2,3 2 (0.52)
C2,4 2 (0.36)
C2,5 2 (0.23)
C1,5 2 (0.06)

Closer inspection shows that modelC2,6 is an equivalent model to the DGP: Even
thoughHx was rejected at step 3, we find an equivalent representation. The next
four models are accepted all impose 2 out of the 3 restrictions we could have found.
This is also a relative success as the restrictions we found actually hold. We just
failed to get the last one in those cases.

4 Monte Carlo evidence

We used the following 5-variable DGP with k lags and a trend in the cointegration relation
to test the algorithm:

k∏
i=1

(1− φiL) X1t = α11 (X2t + X3t + 0.02t) + ε1t

k∏
i=1

(1− φiL) X3t = α32 (X4t + X5t) + ε3t

∆X2t = ε2t

∆X4t = ε4t

∆X5t = ε5t

11



where

α11 = α32 =
k∏

i=1

(1− φi)

εt ∼ iidN
(
0, I5 × 10−4

)

There are two cointegration relations in the DGP and the roots of each stationary equations
are equal toφ1 to φk. The main reason for proposing this DGP is that when adding a lag,
all the existent roots can be kept constant.

The cointegration space is equal for any number of lags:

β′ =
[

1 1 1 0 0 0.02
0 0 1 1 1 0

]

In the experiments that follow we vary three parts of the procedure:

1. The series of roots{φi}k
i=1. In all but one case we model the right number of lags,

but in one case we model only 2 lags, whereas the DGP contains three lags.

2. The economic theory input: either we do not specify anyfi vectors, in which case
we should be able to find the 5 zeros in the DGP, which is equivalent to 3 restrictions
or we specify only one, namely:

f ′1 =
[

1 1 1 0 0 0
]

(4)

In the last case recovering the DGP is equivalent to finding five over-identifying
restrictions.

3. The length of the time series: we takeT = 100 as our bench mark case, but have
one experiment withT = 1000 to check the asymptotic behaviour of the procedure.

The success of the procedure is measured in two different ways:

1. Taking the first model, we look whether

(a) the restrictions of the model exactly identify the DGP

(b) the model found is a submodel of the DGP (that it all the restrictions of the
model are present in the DGP), but the model misses one restriction

(c) the model found is a submodel of the DGP, but it misses two restrictions

(d) the model found has all the over-identifying restrictions of the DGP plus one
restriction too many.

(e) the model found has all the over-identifying restrictions plus two.

(f) a completely different model is selected

12



(g) no model at all is selected (as all of them are rejected)
a is an outright success, but especially b can also be classified as a success as
the DGP is nearly recovered. f is complete failure.

2. As in the example above, it is possible to give the first five selected model to the
researcher and let her make the choice. We thus measure how often the model,
which exactly identifies the DGP is among the those first five.

The degree of identification is conditional on thef -vectors specified. In our particular
example three overidentifying restrictions can be found, if nof -vectors are specified,
whereas 5 restrictions can be found if thef−vector (4) is given as input. In the first case
recovering the DGP is equivalent to accepting{[e1, e2, e3, e6] , [e3, e4, e5]}, whereas in the
second case it is{[f1, e6] , [e3, e4, e5]}.

In the last column of the table we report one minus the rejection probability of a
straight test of these last models, when testing at the nominal 5% level. These numbers
give an indication of the small sample performance of these tests and also provide an
upper bound to how often the DGP can be among the first five models or indeed how
often the DGP can be the first selected model.

The results of the Monte Carlo simulations are based on 1000 replications. For each
replication the first 100 observations were discarded. The results are reported in table 1.

In our benchmark case, number 1, the systems contains two residual roots of 0.6 and
two roots of 0.2. We model the right number of lags, namely two and do not provide any
input in the form of anf -vector. In53.6% of the cases the proposed algorithm is able to
recover the restrictions in the cointegration space, whereas in7.8% it only misses one. If
we consider the first five selected model, then the DGP is among them in fully72.8% of
the cases. This is a high success rate when one considers than the estimated size of testing
just all the right restrictions is19.2% (see the last column of the table) for a nominally5%
test. 80.8% is an upper limit to how often the selected model can be recovered (column
a) or how often it can be among the first five.

The second and third DGP show that increasing the roots of the process leads to a
complete breakdown of the algorithm. On the other hand DGP’s with one lag (number 4
and 5) have a relatively good performance. In the case of number 4, in fully 98% of cases
do we either recoup the original DGP or miss just one restriction.

It is fairly common to select a low lag length even if it is believed that the true lag
length of the DGP is longer, possibly even infinite: to our knowledge no asymptotic
results are known for the consistency of the estimated cointegration parameters in this
case.(obviously the short run parameters are not estimated unbiased any more in that
case) In experiment 6 and 7 we check the effect the effect of underselecting the true lag
length and remarkably the algorithm does better by all measures when the lag length is
underestimated. This lends support to the view that a short model should be fitted to the
data.

In experiment 8 we give some quasi-economic input in that we specify the vector
f ′1 =

[
1 1 1 0 0 0

]
.
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DGP Lags T f ? The first model DGP 1-Size
{φi} Mod a b c d e f g in 5?

1 {0.6, 0.2} 2 100 no 53.6 7.8 0.6 11.2 2.0 24.6 72.8 80.8
2 {0.8, 0.2} 2 100 no 5.8 0.8 0.2 9.4 10.2 73.6 19.6 72.2
3 {0.8, 0.6} 2 100 no 0.4 0 0 1.4 6.6 91.6 2.4 56.4
4 {0.6} 1 100 no 91.0 7.0 1.2 0.4 0 0.4 91.6 91.6
5 {0.8} 1 100 no 44.8 4.2 0.2 13.4 3.4 34.0 66.4 83.0
6 {0.6, 0.2, 0.2} 3 100 no 27.4 6.4 0.6 9.0 4.6 51.8 42.6 68.0
7 {0.6, 0.2, 0.2} 2 100 no 37.8 5.2 0.2 13.4 5.2 38.2 61.4 82.0
8 {0.6, 0.2} 2 100 yes 65.0 15.0 1.4 3.2 0.6 14.8 74.6 76.2
9 {0.6, 0.2} 2 1000 no 93.8 5.4 0.8 0 0 0 93.8 94.2

Table 1: Monte Carlo study of automated model selection

The results should be compared to those of experiment 1: even though the size distor-
tion of this test is large (23.8%!), the true restrictions (5 in this case) or all but one of them
are recovered in fully80% of all cases. Furthermore the model with the true restrictions
is among the first five selected in74.6% of cases and thus almost reaches its upper bound.

Experiment 9 shows that the procedure works asymptotically. The fact that the true
model is among the first five in only93.8% of cases, compared to an upper bound of
94.2% is caused by the fact that one of the two vectors individually can be rejected at the
1% level, whereas the combination of the two restrictions can still be accepted at the5%
level. This happened in our example above, but in that case there were equivalent models,
whereas there are none in the Monte Carlo study.

4.1 An empirical example

We take the data on money demand in the UK as analyzed by Hendry and Doornik (1994)
and many others. The data consist of log of real output (TFE), money (M1), inflation and
an interest rate differential. Furthermore there are two dummies: one for output shocks
(Dout) and one for oil shocks (Doil). For full details of the variables and the data the
reader is referred to the original paper. The documented data and the programs to run the
original analysis are available at the web site of David Hendry4. The cointegration space
they find is the first one reported in table 2.

After formal testing the authors decide that the model should have 2 lags and 2 cointe-
gration relations. They then decide that the oil dummy is outside the cointegration space
and the output dummy inside. We shall put them both inside the space and thereby test
their possible exclusion. Their reported test is a combined restriction of the short run
matrix (four zero restrictions), a restriction that the second vector is completely specified

4http://www.nuff.ox.ac.uk/users/hendry/
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H&D Ex1, M1 Ex 2, M5 Ex 3, M1
output −1 1 −1 1 −1 1 −1 1
money 1 0 0.89 0 1 0 1 0
inflation 6.91 −3.4 7.23 −1.98 6.90 −1.86 7.12 −1.90
Rnet 6.91 1.8 6.39 1.34 6.90 1.36 7.12 1.31
trend/100 0 −0.63 0 −0.65 0 −0.66 0 −0.67
Dout 1.46 −0.40 0 −0.26 0 −0.27 0 −0.18
Doil n/a n/a 0 0 0 0 0 0
p-value 0.385 0.65 0.48 0.30

Table 2: Automated model selection in UK money demand

and the followingH-matrix on the first vector:

H ′
1 =




1 −1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 0 1




We leave the second vector completely unrestricted throughout and in our first run of
the algorithm we impose nof−vectors, that is we ran the algorithm without any theory
input. The first model, the algorithm selects is reported in table 2.

In the second run we use the theory input from Hendry and Doornik by specifying the
following two vectors:

f ′1 =
[

1 −1 0 0 0 0 0
]

f ′2 =
[

0 0 1 1 0 0 0
]

and feeding them into the algorithm. In the table we report only the fifth model. The first
four models all have p-values of between 5% and 6%. They have different second cointe-
gration vectors, which consists of changing combinations of inflation, output dummy and
trend. In view of the outcome of the previous run of the algorithm (and the next run), the
considerably higher p-value and the economic interpretability of the vector as an demand
equation, we report model 5.

In the third run we still have the twof -vectors, two cointegration vectors, but choose
only one lag, as the previously reported simulation suggested this may help. We report
the first model selected by the algorithm.

We thus found a model with one more over-identifying restriction, namely that the
output dummy should be zero in first cointegration vector. The total analysis has only
taken a few minutes on a Pentium-II computer.
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5 Use of the algorithm

5.1 Practical advantages

The algorithm can be used to simply check whether the final result obtained by the tradi-
tional way of finding an identified cointegration space is good. There are however more
promising uses: the procedure can be directly applied by the practitioner or referee to
select the final model.

But the speed of the algorithm (in most cases the answer is given in a few minutes)
allows for more possibilities. Sometimes the outcome of the lag length selection proce-
dure or the rank-test is unclear and a choice has to be made. With the new procedure it
is possible to find an identified model for both possibilities. Sensitivity check procedures
of all kinds are now possible: if the inclusion of an extra dummy leads to a completely
different model, then a problem of stability certainly exists in the data.

5.2 Methodological advantages

The presently used procedure to find identifying restrictions is long and cumbersome and
many rules of the thumb have to be applied: not every combination of two vectors, which
are accepted can possibly be tested in a reasonable time. Replication, even by the very
same researcher who did the original study, is often difficult. With a standard, thorough
procedure, like the here proposed algorithm, replication becomes possible.

The LSE-methodology itself is often attacked for being partially ’art’ or worse, ’alchemy’.
By clearly spelling out the modelling process, formalizing and automating it, the method-
ology itself is being strengthened. The number of key decisions in the identifying/restriction
process is brought down to three:

1. What economic theory should be tested in the form off -vectors?

2. Which of the top models should be chosen as the preferred model?

3. Which sensitivity checks should be done?

All three decisions can be discussed and reported in a paper, whereas it is currently
often impossible to report all tests on the cointegrated space done in the modelling pro-
cess.

Once more the dichotomy between on the one hand selecting the right variables, being
explicit in each step which economic theory is being used and selecting the final model
and on the other hand the testing procedures is stressed. The second part can be automated
(and should be) to leave more time and space to do the first carefully.

5.3 Improving the methods themselves

The present algorithm is but a first proposal on how to automate a part of the modelling
process. It can no doubt be improved, both in terms of computational speed and - far
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more importantly - in terms of internal decision rules. One possibility is to use sub-
samples and sub-sets of the variables in the algorithm to find the building blocks for the
total cointegration space.

The small Monte-Carlo study has already pointed to two possible improvements in the
methods: keeping in restrictions, which are accepted at the 1% level, but rejected at the
5% level and selecting fewer lags than are believed present in the DGP. The first rule can
be applied in automated modelling only, but the second is certainly relevant for traditional
modelling as well.

The very poor actual size performance of the applied tests is of great concern in the
development of these methods. The only theorem underlying the algorithm relies on the
asymptotic size. Omtzigt and Fachin (2002) clearly show that the currently available
methods Bartlett corrections and Bootstrapping, do not offer satisfactory solutions, so
new ones will have to improve the algorithm. The size of this problem had been somewhat
hidden in the literature due to the reliance on small DGP, whose parameters can easily be
controlled. The large number of parameters in the Monte Carlo DGP used here means that
no effective exploration of the size in the whole parameter space could be executed. Yet
this particular example shows that at least in some cases size distortion is an extremely
serious problem.

Finally no evidence is yet available about how likely the modelling procedure is able
to recover the original DGP. We show it only for part of the process (disregarding rank
and lag selection for instance). Of course it is unlikely that the DGP falls within the class
of models considered, but still measures on how well the modelling process does when it
is close should be available.

5.4 Comparison with Minimal

Minimal by Davidson (1998a) follows a different approach: it tries to find all the smallest
subsets of variables which are cointegrating. It does so by using the Wald test statistics
for (2) as developed by the Davidson (1998b) . His procedure is certainly faster, as the
Wald test does not require restricted optimization. Yet the method proposed carries the
following advantages:

1. It allows for theory input in the form off -vectors.

2. The combinations of restrictions are tested in the algorithm presented, whereas in
minimal the accepted cointegration vectors are just combined

3. In minimal, the combination of accepted vectors can and does lead to conflicting
evidence: it is perfectly possibly for minmax to accept[e1, e2] and[e1, e3] but reject
[e2, e3]. Thus the space spanned by the cointegration vectors is not unambiguously
defined.

The speed of the algorithm remains a cause for concern. With 2 cointegration vectors
and 5 variables minimal or step 3 will consists of doing (a maximum of)W =

∑3
i=1

(
5
i

)
=
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25 tests. With 8 variables (either because variables are added orf -vectors defined), there
are up to246 tests. If many of them are accepted, the number of calculations explodes in
the step 4 of the algorithm: withr = 2, there could be up toW (W − 1) /2 combinations
in that step. This will be a major concern in future development of the algorithm.

6 Conclusions

We have presented an algorithm for the automatic identification and restriction of the
parameter space of a cointegrated VAR. Its used was demonstrated both by means of a
Monte Carlo study and an empirical example. One remarkable solution of the former is
that underselection of the VAR lag length may lead to a higher probability of recovering
the original cointegration space.

Throughout we have argued the methodological advantages of automation: separation
of economic theory decision, which will have to be performed by the researcher and
search procedures, which can be automated.
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Appendix: Proofs

Proof of Theorem 1. If r = 1 we test all possible restrictions{Hi} . They fall in three
categories:

1. {Hi}t The true DGP (there could be more equivalent reprentations) This is accepted
at the asymptotic 5% level. It has the maximum (true) number of overidentifying
restrictions

2. {Hi}s The restrictions hold true, but are less in number than in{Hi}t. This means
that if the model is accepted, it is classified below{Hi}t (if that last one is accepted)
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3. {Hi}f The restrictions do not hold true. The asymptotic power of the test is1

(Johansen 1991):L
(
{Hi}f

)
→ ∞ ast → ∞ such that this test in always rejected

asymptotically.
The result forr = 1 follows.

For r > 1 consider what happens to{H1, . . . , Hr} the DGP combination.
In step 3, we test all possible restrictions of the kind (2) and so each of the DGP restrictions
is tested individually at the 1% level, that is accepted ifL (Hi) ≤ c0.99 wherecr is the
99%th percentile of theχ2 distribution. In step 4, we test whetherL (H1, H2) ≤ c0.99

whereas in step 5 we testL (H1, H2,, H3) ≤ c0.99 until L (H1, H2,, . . . , Hr−1) ≤ c0.99 . In
step 7, we then test whetherL (H1, H2,, . . . , Hr) ≤ c0.95. To find the asymptotic size of
this procedure, we use Bonferroni inequality:

P (∩r
i=1 (L (Hi) ≤ c0.99 ) ∩ ∩r

i=2 (L (H1, . . . , Hi) ≤ c0.99 ) ∩ L (H1, H2,, . . . , Hr) ≤ c0.95)

≥ 1−
r∑

i=1

P (L (Hi) ≥ c0.99 )−
r−1∑
i=2

P (L (H1, . . . , Hi) ≥ c0.99 )− P (L (H1, H2,, . . . , Hr) ≥ c0.95)

= 1− 0.01r − 0.01(r − 2)− 0.05

= 1− 0.02r + 0.03

The comments of point 2 and 3 still hold true in this case.
Proof of Theorem 2. If only one relation contains overidentifying restrictions, the

DGP can be written as
β = (Hxφ, ψ)

and this is tested at round 3 and included in setC1 if accepted. Then in step 7 it is tested
again, such that we have:

P ((L (Hx) ≤ c0.99 ) ∩ (L (Hx) ≤ c0.95 ))

= P (L (Hx) ≤ c0.95 )

= 0.95

If two relations contain exactly overidentifying relations, then we have the following
DGP:

β = (Hxφ1, Hzφ2, ψ)

and we find

P ((L (Hx) ≤ c0.99 ) ∩ (L (Hy) ≤ c0.99 ) ∩ (L (Hx, Hy) ≤ c0.99 ) ∩ (L (Hx, Hy) ≤ c0.95 ))

= P ((L (Hx) ≤ 6.63) ∩ (L (Hy) ≤ 6.63) ∩ (L (Hx, Hy) ≤ 5.99))

= P (L (Hx, Hy) ≤ 5.99)

= 0.95

where we have used thatL (Hy) ≤ L (Hx, Hy) andL (Hx) ≤ L (Hx, Hy).
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Proof of Theorem 3. The proof proceeds as the proof of theorem 1 until

P (∩r
i=1 (L (Hi) ≤ κ) ∩ ∩r

i=2 (L (H1, . . . , Hi) ≤ κ) ∩ L (H1, H2,, . . . , Hr) ≤ c0.95)

= P (L (H1, H2,, . . . , Hr) ≤ c0.95)

= 0.95

where in the second line we have used the fact that all hypotheses{Hi} , i = 1, . . . , r
and{(H1, . . . , Hi)} , i = 1, . . . , r are subhypotheses of{(H1, H2,, . . . , Hr)} such that
L (Hi) ≤ L (H1, H2,, . . . , Hr) , i = 1, . . . , r andL (H1, . . . , Hi) ≤ L (H1, H2,, . . . , Hr) , i =
1, . . . , r. Furthermore the maximum number of overidentifying restrictions on the space
is qr − r2 (at which point each matrixHi has only one column), such thatκ ≥ c0.95.
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