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Tests for cointegration rank
and choice of the alternative

Giuseppe Cavaliere∗, Luca Fanelli∗, Paolo Paruolo†

August 31, 2005

Abstract

This paper discusses likelihood-ratio (LR) tests on the cointegrating (CI)
rank which consider any possible dimension of the CI rank under the alterna-
tive. The trace test and lambda-max test are obtained as special cases. Limit
quantiles for all the tests in the class are derived. It is found that any of these
tests can be used to construct an estimator of the CI rank, with no differences
in asymptotic properties when the alternative is fixed.
The properties of the class of tests are investigated by local asymptotic

analysis, a simulation study and two empirical illustrations. It is found that all
the tests in the class have comparable power, which deteriorates substantially
as the number of random walks increases. For one dimensional alternatives
sufficiently far from the null, the trace tests is dominated by other tests in the
class; this is in line with expectations based on the results of Andrews (1996,
Econometrica) for LR tests in a stationary regression setup, when alternatives
are one-sided.
The tests in the class can also be arranged to give a constrained estimator

of the CI rank, that restricts the minimum number of common trends. We find
that mis-specification of the minimum number of common trends implies that
the correct CI rank is selected with 0 limit probability. As a consequence, no
value of the CI rank should be left untested, unless it can be excluded beyond
any reasonable doubt.

Keywords: Cointegration rank, Likelihood ratio, Asymptotic power, Unit
roots, Brownian motion.

J.E.L. Classification: C30, C32.

1 Introduction

Likelihood ratio tests for the determination of cointegration rank in VAR processes
are used extensively in applications. These tests were derived in Johansen (1988,
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395509.
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1991, 1996) and admit many variants depending on the treatment of the intercept
and the linear trend, see Lütkepohl, Saikkonen and Trenkler (2001) for a review. For
any choice of deterministic components, two LR statistics are usually considered,
the so-called trace test and the lambda-max test.
The trace test compares a given CI rank with the dimension of the process, where

a CI rank equal to the dimension implies that the process is stationary. The lambda-
max test, instead, compares a given CI rank with the closest larger integer value.
In this paper we discuss the class of LR tests obtained comparing a given CI rank
with any greater integer value. This class includes the trace test and lambda-max
test as special cases, as well as some new statistics.
We derive appropriate asymptotic critical values for all the tests in the class. The

procedure for CI rank determination in Johansen (1992), based on the trace test,
is here re-considered using any of these tests as a building block. It is shown that
the asymptotic properties of the resulting CI rank estimator are unchanged. This
finding extends a similar result of Paruolo (2001a) for the lambda-max statistics.
The tests within the class are compared through local asymptotic analysis and a

finite-sample simulation study. The local asymptotics of the trace test and lambda-
max test have been compared in Paruolo (2001a) for the case of no deterministics
and in Lütkepohl, Saikkonen and Trenkler (2001) for various choices of deterministic
terms. In this paper, while extending the comparison to all the members of the class,
we calculate the local asymptotic power with a number of unit root processes up to
6, instead of 3 as in the previous references.
We find that the power of all the tests deteriorates significantly with the increase

of the number of unit roots. When comparing the powers of the tests in the class, it is
found that the local powers do not differ dramatically. However, for local alternatives
sufficiently far from the null and lying in a smaller dimensional subspace, the power
of the trace test is dominated by the one of other members of the class.
This observation is in line with analystical results for the LR test in a classi-

cal regression setup for one-sided alternatives, as described in Andrews (1996). He
showed that the LR test maximizes a weighted average of the power over the alter-
native when the alternative is sufficiently far from the null. This behavior is similar
to the results presented here for the local power, although the theory developed in
Andrews (1996) does not cover the present non-stationary case.
Any test in the class can also be arranged to give a constrained estimator of the

CI rank, which restricts the minimum number of common trends. Several authors
have entertained the idea that some values for the CI rank may be excluded on the
basis of prior information. For instance, Saikkonen and Lütkepohl (2000, eq. (2.3)
and following lines) argue that a CI rank equal to the dimension of the process (i.e.
one that would imply that the process is stationary) "can often be ruled out on the
basis of prior information on the data and variables".1

We investigate the properties of the constrained estimator of CI rank. If the
restrictions on the minimum number of common trends are true, the estimator has
the same asymptotic properties as the unconstrained estimator for fixed alternatives.
On the other hand, under mis-specification, we show that the constrained estimator

1Horvath and Watson (1995) and Paruolo (2001b) consider CI rank determiantion under re-
strictions on the cointegration space instead than its dimension.
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selects the (incorrect) entertained maximum CI rank with limit probability 1. We
hence advise not to use the constrained estimator, unless there is no reasonable
doubt about the minimum number of common trends.
A Monte Carlo analysis is performed in order to evaluate how well the asymp-

totics matches small-sample behavior the tests. In the Monte Carlo design, the I(1)
data generating processes (DGP) are selected in order to verify (i) the validity of
the local asymptotics (ii) the validity of the fixed alternative asymptotics (iii) the
performance of the CI rank estimators.
It is found that, in most cases, sample sizes close to 100 are large enough to find

a close resemblance of the local and fixed asymptotics with the finite sample results.
For the same sample size, the sampling performance of the CI rank estimator is
found to be reasonable, when the DGP has local asymptotic parameters far enough
from the null. However, when the stationary autoregressive roots are close to unity,
one finds that all the tests are still oversized for sample size close to 200.
The paper includes also two empirical illustrations; we reconsider a quarterly

money demand system for the Euro area estimated in Brand and Cassola (2004), and
an annual per-capita consumption model relative to four Italian regions considered
in Cavaliere et al. (2005). As shown in these illustrations, all the LR tests can
be computed from standard output of CI software. In both illustrations one finds
similar inferences on the CI rank for the unconstrained estimator based on the trace
test and the constrained estimator which assumes at least one common trend, even
though the latter gives better support to the predictions of the underlying economic
theory.
The rest of the paper is organized as follows. Section 2 illustrates the model and

the statistical analysis. The asymptotics under the null are reported in Section 3;
these are used to derive the properties of the CI rank estimators in Section 4. Section
5 derives the asymptotic local power which is calculated by simulation in Section 6.
Section 7 reports the Monte Carlo simulation of the finite sample properties of the
tests, while Section 8 contains the empirical illustrations. Section 9 concludes. All
proofs are placed in the Appendix.
In the following “→w” denotes weak convergence and “→p” convergence in prob-

ability; “x := y” indicates that x is defined by y. col(a) is the space spanned by the
columns of the matrix a.

2 Cointegration rank tests

In this section we present the various LR tests considered in the paper. We fol-
low the notation of Johansen (1996) and Paruolo (2001a). Consider the following
cointegrated I (1) VAR process in equilibrium correction form:

∆Xt = αβ0Xt−1 +ΨUt + µDt + εt (1)

where Xt and εt are p×1, Ut := (∆Xt−1, ...,∆Xt−q+1)
0 is p (q − 1)×1, Dt is a vector

of deterministic terms, εt is p-variate i.i.d. Gaussian, εt ∼ N (0,Ω) and α and β are
full column p× r matrices, r ≤ p.
The process (1) is assumed to satisfy Granger’s representation theorem, see Jo-

hansen (1996), Theorem 4.2. Specifically we label as ‘I(1, r) condition’ the following
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three conditions: (a) all the characteristic roots associated with (1) be outside the
unit circle or equal to 1; (b) the AR impact matrix has rank r, i.e. it can be writ-
ten as −αβ0 for α and β are full column p × r matrices; (c) detα0⊥Γβ⊥ 6= 0, with
Γ := Ip − Ψ (iq−1 ⊗ Ip), iq−1 and Ip being respectively a (q − 1) × 1 vector of ones
and an identity matrix of dimension p.
Eq. (1) for unknown parameters α, β, Ψ, µ, Ω, when α and β are p× j matrices

not necessarily of full rank and Ω is positive definite, denotes a model. We assume
that the deterministic part can be partitioned into Dt := (D0

1t : D
0
2t)

0 and µ :=
(µ1 : µ2) where µ1 = αρ01 is the part of the coefficient of the deterministic terms that
is constrained to be in col (α). We indicate the corresponding model as H(j), which
can be put in the format

Z0t = αβ∗0Z1t + µ2Z2t + εt (2)

with Z0t := ∆Xt, Z1t := (X 0
t−1 : D

0
1t)

0, Z2t := (U 0
t : D

0
2t)

0, β∗ := (β0 : ρ01)
0. If Dit is set

equal to 0, it is understood that Dit is dropped from the definition of Zit, i = 1, 2.
Given a sample {Xt}Tt=1, let (j) indicate the maximized Gaussian log-likelihood

of model H(j); the LR test of H(j) within H (s), for j < s can be written as (see
Johansen, 1996)

LR (j, s) := −2( (j)− (s)) = −T
sX

i=j+1

log(1− bλi). (3)

where bλi is the i-th largest solution of the eigenvalue problem¯̄̄bλS11 − S10S
−1
00 S01

¯̄̄
= 0

and where Sij :=Mij.2 :=Mij −Mi2M
−1
22 M2j, Mij := T−1

PT
t=1 ZitZ

0
jt.

Setting s = j+1 in (3) one obtains the lambda-max test, maxQ(j) := LR(j, j+1),
whereas setting s = p one obtains the trace statistic trQ(j) := LR(j, p). Values of s
different from j+1 and p give other test statistics which form the class of interest of
the paper. Consider the test of H(j) against H (p−m), where m can be interpreted
as the assumed minimum number of common trends. The corresponding LR test
statistic is given by

mQ(j) := LR (j, p−m) = −T
p−mX
i=j+1

log(1− bλi). (4)

With this notation trQ(j) = 0Q(j) and maxQ(j) = p−j−1Q(j). It is simple to
express the mQ(j) statistic (4) as a function of trQ(j):

mQ(j) = LR (j, p)− LR (p−m, p) = trQ(j)− trQ(p−m). (5)

Alternatively, mQ(j) can be written as a function of the lambda-max statistics

mQ(j) =

p−m−1X
i=j

LR (i, i+ 1) =

p−m−1X
i=j

maxQ(i). (6)
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Any of the formulas (4), (5), (6) can be used to calculate the mQ(j) statistic from
standard output of CI software, which typically reports (possibly a subset of) the 3
sets of values {bλi}, {trQ(i)}, {maxQ(i)}.
The limit distribution of statistics (4) under the null given by the I(1, r) condi-

tion, r < p−m, is derived in the following section.

3 Asymptotics under the null

In this section we derive asymptotics under the null. Let eigi (A) indicate the i-th
largest eigenvalue of a real square symmetric matrix A. Let B(u) indicate a standard
Brownian motion of dimension p−r, decomposed as B(u) := (B1(u)0, B2(u))0, where
B2(u) is one-dimensional. In the following all integrals are from 0 to 1 and we use
the notation (a|b) := a(u)− R a(s)b(s)0ds(R b(s)b(s)0ds)−1b(u). Moreover

N(F,B) :=

Z
(dB)F 0

µZ
FF 0

¶−1 Z
F (dB)0 ,

where here and hereafter the argument u in processes like B(u) is usually omitted
for brevity.

Theorem 1 Let the I(1, r) condition hold, r < p−m; then the asymptotic distrib-
ution of mQ(r) := LR (r, p−m) is given by

mQ(r) := LR (r, p−m)
w→ Zm :=

p−r−mX
i=1

eigi (N(F,B)) (7)

where F depends on B and on the deterministic term as described in Johansen
(1996), Theorems 6.1 and 6.2. Specifically

1. if Dt = 0 in (1) and D1t = D2t = 0 in (2), then F := B;

2. if µDt = µ1 ∈ col (α) in (1), and D1t = 1, D2t = 0 in (2), then F := (B0, 1)0;

3. if µDt = µ1 /∈ col (α) in (1), and D1t = 0, D2t = 1 in (2), then F := (B0
1, u|1)0;

4. if µDt = µ1 + µ2t, µ2 ∈ col (α) in (1), and D1t = t, D2t = 1 in (2), then
F := (B0, u|1)0;

5. if µDt = µ1 + µ2t, µ2 /∈ col (α) in (1), and D1t = 0, D2t = (1 : t)
0 in (2), then

F := (B0
1, u

2|u, 1)0.

Moreover if j < r, mQ(j) := LR (j, p−m) = Op(T ).

Theorem 1 shows that the asymptotic distribution of (4) under the null depends
both on p − r and m, where p − r is the number of common stochastic trends of
the system, and m is the number of assumed common trends under the alternative.
The limit distribution Zm differ from the ones already tabulated e.g. in Johansen
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(1996), and need to be simulated. This is performed in Section 6 along with the
estimation of asymptotic local power.
It can be noted that the results in parts 3, 4, 5 of Theorem 1 do not change

if seasonal dummies are included both in Dt in DGP (1) and in D2t in model (2),
provided the dummies are orthogonalized with respect to the constant, i.e. are of
the type dit := 1(tmod s = i)− s−1, where s is the number of seasons and in 1(·) is
the indicator function.
Observe that for m = 0 the limit distribution (7) reduces to the sum of all the

eigenvalues of N , i.e. one obtains the trace of N , which is the usual form of the
limit distribution of the trace test. For m = p − r − 1, then the sum in the limit
distribution (7) involves just the largest eigenvalue of N , which is the usual form of
the limit distribution of the lambda-max test.
Before analyzing the local power properties of the tests, we consider the proper-

ties of the procedure for CI rank determination when the trace test is substituted
with any of the mQ(j) tests.

4 Properties of CI rank estimators

The present section derives the properties of two CI rank estimators based on the
mQ(j) tests. The first estimators, indicated by ers, simply uses mQ(j) tests in place of
the trace test in the procedure proposed by Johansen (1992). The second estimator,
indicated as brm, uses the mQ(j) tests to build a constrained estimator, that cannot
exceed a pre-specified value p − m, where m is the constraint on the minimum
number of common trends.
Specifically, let ers be defined as the smallest integer j for which mQ(j) does not

reject when m is chosen as m = max(p− s− j, 0) and s is fixed; the mQ(j) tests in
this sequence sum s consecutive values of −T ln(1− bλi), where bλi are defined equal
to 0 for i > p. When s = 1, the building block mQ(j) is the lambda-max test, ander1 is the selection procedure based on the lambda-max test considered in Paruolo
(2001a), denoted there by max

h br.
Formally, ers is chosen according to the ruleers := min

0≤j<p
{j : mQ(j) ≤ cϕ(p− j,m), m = max(p− s− j, 0)} (8)

where cϕ(p − j,m) indicates the 1 − ϕ quantile of the limit distribution (7) and
min∅ := p. Note that 0 ≤ j < p and no constraint is placed on the minimum
number of the common trends.
We next consider the constrained estimator that restricts the minimum number

of common trends m, that is fixed in the sequence of tests. We define brm as the
smallest integer j for which mQ(j) does not reject, where 0 ≤ j < p−m. Formally,brm is chosen according to the rulebrm := min

0≤j<p−m
{j : mQ(j) ≤ cϕ(p− j,m)} (9)

where cϕ(p−j,m) indicates the 1−ϕ quantile of the limit distribution (7), ϕ ∈ (0, 1),
and min∅ := p−m. Note that this selection procedure does not consider values for
the common trends inferior to m.
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It is easy to prove that Propositions 1 and 2 in Paruolo (2001a) also hold for brm
and ers. Here we just report the analogue to Proposition 1 for space constraints.
Theorem 2 Let the I(1, r) assumption hold and T → ∞. Then Pr(ers < r) → 0,
Pr(ers = r) → 1 − ϕ. Moreover if r < p −m then Pr(brm < r) → 0, Pr(brm = r) →
1− ϕ.

The key property in establishing Theorem 2 is that mQ(j) diverges if j < r.
Since bλ1, ..., bλr are Op(1), one has maxQ(j) := −T ln(1 − bλj+1) = Op(T ) for j < r.
This is the same reason that ensures that mQ(j) =

Pp−m−1
i=j

maxQ(i) = Op(T ) in
the same circumstances, see (6). We hence observe that all the tests mQ(j) can be
arranged to give the same asymptotic properties for ers.
We next discuss behavior of the constrained estimator brm under mis-specification.

Theorem 3 Let the I(1, r) assumption hold and let r > p−m, i.e. p−r < m; then
as T diverges Pr(brm = p−m)→ 1.

Theorem 3 highlights the dangers of incorrectly imposing at least m common
trends when indeed fewer common trends drive the system. In this case all the tests
in the sequence brm would reject in the limit, and the CI rank is estimated equal to
its (assumed) maximum value p − m with probability 1. We hence advise not to
impose a minimum number of common trends without testing, unless the untested
CI rank can be excluded beyond any reasonable doubt.

5 Asymptotics under a local alternative

In this section the local power of mQ(j) tests are analyzed. The local power of the
trace test has been investigated by Johansen (1991b), and the one of the lambda-
max test in Paruolo (2001a) for the case no deterministic terms, Dt = 0 in (1) and
(2). Lütkepohl, Saikkonen and Trenkler (2001) considered the power of the trace
and lambda-max tests in the presence of deterministic terms.
We analyze the asymptotic power of the tests under the local alternative that

the product αβ0 is replaced by

αβ0 + T−1α1β01 (10)

where α, β are p× r full column rank matrices and α1, β1 are p× 1 vectors, chosen
not to lie in col(α) and col(β) respectively. For simplicity, the local alternative (10)
is chosen to be one-dimensional (i.e. α1 and β1 are chosen to be vectors), and we
limit attention to the case of no deterministic terms.
Let f := f1 and g := f2 be defined as follows

f := f1 :=β
0
1Cα1

g2 := f22 :=
³
α01α⊥ (α

0
⊥Ωα⊥)

−1
α0⊥α1

´
(β01CΩC

0β1)− f2, (11)
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where C is the moving average impact matrix, C = β⊥ (α0⊥Γβ⊥)
−1 α0⊥. Let also B be

a standard (p− r)-variate Brownian motion partitioned as B = (B1, B2, B3), with
B3 of dimension (p− r − 2)× 1; moreover let K be the diffusion K := (K1,K2, B3)

0

where Ki (s) := Bi(s) + fi
R s
0
K1 (u) du, i = 1, 2.2

Theorem 4 If |eigi(Ir + β0α)| < 1 and r < p−m, then the asymptotic distribution
of mQ(r) is given by

mQ(r) := LR (r, p−m)
w→ Vm :=

p−r−mX
i=1

eigi (N(K,K)) .

Observe that the distribution of Vm depends on f , g, p−r and m. The quantiles
of the asymptotic distribution under the null from Theorem 1 and the local power
derived from Theorem 4 are calculated in the following section.

6 Quantiles simulation

Asymptotic quantiles of the distributions of Zm and Vm in Theorems 1 and 4 may be
calculated by Monte Carlo simulation. The asymptotic critical values, i.e. the 95%
quantiles of Zm, were simulated by substituting the limiting Brownian process with
a random walk over T = 2500 segments and using 105 replications. 95% quantiles
for the 5 different specifications of the deterministic component Dt of Theorem 1
are reported in the Tables 1-5.3 Calculations were performed with Gauss versions
3.2.
[Tables 1-5 approximately here]
In order to compute the asymptotic local powers, we simulated the distribution of

Vm using discretization of the Ornstein-Uhlenbeck process K as in Johansen (1996)
Chapter 15. Again we chose T = 2500 segments and performed 105 replications.
Values of f and g which define the local alternative where selected in order to

allow comparison with previous simulation results reported in Johansen (1991b) and
Paruolo (2001a). The selected values of f and g were the points in the set F0×G0,
where F0 := {0, −3, −6, −9, −12, −15, −18, −21, −24}, and G0 := {0, 6, 12, 18,
24}, while values of p − r were chosen between 2 and 6. The values of (p − r, f ,
g) considered here extend the ones used in Johansen (1991b) and Paruolo (2001a),
Lütkepohl, Saikkonen and Trenkler (2001), who considered p− r ≤ 3. The selected
significance level was 5%.
In order to calculate simulation standard errors for rejection frequencies taking

the estimation of the critical values into account, we used the results in Paruolo
(2002). The obtained standard errors are considerably larger than the ones that do
not account for the variability induced by the estimation of critical values.

2Note that K1 is an Ornstein-Uhlenbeck (OU) process, see e.g. Karatzas and Shreve (1988),
p. 358, which is mean-reverting for f < 0. K2 is given by the sum of a Brownian motion and
an integrated OU process; therefore for f close to 0 and g > 0, K2 behaves like an integrated
Brownian motion.

350%, 75%, 80%, 90%, 97.5% and 99% quantiles can be downloaded from the internet address
http://www2.stat.unibo.it/cavaliere/cvalues/cvalues.html for p− r = 1, ..., 11 and all possible val-
ues of m.
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We also followed the discussion of MC design in Paruolo (2002) in order to reduce
the MC standard errors for the power differences between the mQ tests and the trQ.
In particular the same realizations of the random walks were used to simulate the
asymptotic distribution of all tests (i) both under the null hypothesis and (ii) under
the alternative. This technique allows to reduce the MC variance for the difference
of the powers of the mQ and the trQ tests; the obtained variance reduction was
around 3 fold.
[Fig. 1 — 4, Table 6 approximately here]
Most of the results are reported graphically for brevity.4 In the following we

indicate by bπm the rejection frequency of test mQ. Minimum and maximum values
across f , g, m of the power difference 100 (bπm − bπtr) are given in Table 6 for different
values of p− r; the power differences 100 (bπm − bπtr) and the power function bπtr are
also reported in Fig. 1-4. In these graphs insignificant differences bπm − bπtr are
indicated by empty circles.
We collect observations about the power in the following remarks.

(a). The power of all the tests deteriorates with the increase of the number of unit
roots. The power for (f, g) = (−24, 24) is over 90% for p − r = 3 for all the
tests in the class, while at the same value of (f, g) and p − r = 6 it is only
around 50%. This ‘curse of dimensionality’ is already documented in Johansen
(1991b) for p−r = 1, 2, 3; however the actual extent of its magnitude at higher
values of p− r is novel.

(b). When comparing the powers of the tests in the class, it is found that the local
power does not differ dramatically. Table 6 in fact shows that the minimum
and maximum values of 100 (bπm − bπtr) are −5.3% and 9% respectively.

(c). For local alternatives sufficiently far from the null, the power of the trace test
is dominated by the ones of the other members of the class. This observation
is in line of the theoretical results for the LR tests in classical situations, as
described in Andrews (1996). He considered the case where the parameter
space is restricted under the alternative, such as in (multivariate) one-sided
tests. This situation is similar to the present local asymptotics, where the
local alternative, indexed by (f, g) is one-sided.5

Andrews (1996) showed that the LR test maximizes a weighted average of the
power over the alternative when the alternative is sufficiently far from the null.
A LR test which averages over a larger region of the alternative should present
worse power with respect to another LR test which averages across a smaller
region. Because the alternative is one-dimensional (α1 and β1 are vectors), the
maxQ test is expected to maximize the power for alternatives sufficiently far
from the null. This appears to be the case in Fig. 1-4 for high values of (f, g).

4The complete set of results is available on the authors’ webpages.
5Obviously the one-sided nature of the alternative is preserved also when considering the bi-

jective transformation in Lütkepohl, Saikkonen and Trenkler (2001) of (f, g) into (l, d), where

l := f2 + g2, d := − ¡f2/ ¡f2 + g2
¢¢1/2

.
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7 Finite sample properties

In this section we present a finite-sample simulation study. This study is undertaken
in order to ascertain how well the asymptotics (both under the null and under a local
alternative) can describe finite samples properties of the mQ tests.
Similarly to previous simulations of the finite sample power, see Lütkepohl,

Saikkonen and Trenkler (2001) and reference therein, we consider a VAR(1) as DGP.
Unlike previous studies, however, we let dimension p vary from 3 to 7. For simplicity
we consider the case of no deterministics, i.e. D1t = D2t = 0. Similarly to Nielsen
(2004), we choose T ∈ T := {24, 48, 96, 192}.
We apply the invariance properties described in Paruolo (2005) in order to reduce

the VAR(1) design dimension. By invariance the design can be reduced to the form X1t = JX1t−1 + υ1t
∆X2t = κX1t−1 + υ2t

∆X3t = υ3t

, var

 υ1t
υ2t
υ3t

 =

 Φ 0 0
0 Ij 0
0 0 Ip−r−j

 (12)

where X1t is r× 1, X2t is j× 1, j ≤ r and X3t is (p− r − j)× 1, and the covariance
matrix var (υt) has been partitioned conformably. The matrix J is a Jordan matrix
of dimension r, κ is upper triangular, with positive elements on the main diagonal;
j can vary from 0 to r. Here we implicitly assume r < p − r, which is the case for
the designs used in the simulations. Finally Φ is a covariance matrix, where first
element on the main diagonal is equal to 1.
Let DGPr indicate the group of designs with a specified CI rank r. The following

3 cases are considered:

(a). DGP0 : The group contains one single design where ∆Xt = υt, var (υt) = Ip.

(b). DGP1 : Here Φ = 1 and hence var (υt) = Ip. The designs are indexed by two
scalar parameters, J and κ. The choice of values for J and κ and the MC
results are discussed in Subsection 7.1. This class contains 42 designs.

(c). DGP2 : This class is indexed by J (of dimension 2× 2), κ (of dimension 2× j,
j = 0, 1, 2) and a by correlation coefficient τ in Φ. The design and the results
for this class are discussed in Subsection 7.2. This class contains 297 designs.

Therefore a total of 340 designs was considered, which cover all cases in DGP0
and DGP1, and a large part of the possible cases in DGP2. For each design we
performed 104 replications. We only considered the nominal 5% level for all the tests.
Calculations were performed in Gauss, versions 3.6 and 6.0. Not all the simulation
results are reported here for space constraints; the complete set is available on the
authors’ webpages.
The results of the single design in DGP0 showed that for T = 192 empirical

sizes for all the mQ(0) tests are close to the nominal 5% level. This simple case is
not discussed further. The following two subsections describe the designs and the
results for the classes DGP1 and DGP2.
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7.1 CI rank equal to 1

We choose J in the stationary region −1 < J < 1. In order to mimic the local
asymptotic analysis, we set J = 1 + f/T for some values of f ∈ F := F0\{0} :=
{−3,−6...,−24}, where the value 0 is excluded because this would violate the sta-
tionarity requirement −1 < J < 1 and change the CI rank. Table 7 reports some
of the chosen values of J , where bold entries in the table indicate that the corre-
sponding value of f is in F. The left panel can be read along the columns for the
asymptotics under the null, and along the major diagonal for the local asymptotics.
Bold entries in the table corresponds to values in the set F. The values f = −3

and f = −24 can be traced in 3 designs for increasing T (f = −3 corresponds to
T = 24, 48, 96, f = −24 to T = 48, 96, 192), while the values f = −6 and f = −12
can be traced in all 4 designs for increasing T .
[Table 7 here]
We also add the values −1

2
and 0 as possible values for J ; the resulting set of

design values for J are J := {Ji} :=
©−1

2
, 0, 1

2
, 3
4
, 7
8
, 15
16
, 31
32

ª
, for a total of 7 entries.

In the following we partition J = J1 ∪ J2 where J1 :=
©−1

2
, 0, 1

2

ª
contains values of

J far from unity and J2 :=
©
3
4
, 7
8
, 15
16
, 31
32

ª
collects values close to unity.

κ is also a (nonnegative) scalar. We set κ = g/T for some values of g ∈ G0 :=
{0, 6, 12, 18, 24}. We choose the values of κ in the heading of the right panel of
Table 7, where entries in the panel indicate the corresponding value of g. Bold
entries in the right panel correspond to values g in the set G0. Hence the values
g = 3 and g = 24 can be traced in 3 designs for increasing T (g = 3 corresponds to
T = 24, 48, 96, g = 24 to T = 48, 96, 192), while the values g = 6 and g = 12 can
be traced in all 4 designs for increasing T . The resulting values of κ are collected
in the set K := {κj} :=

©
0, 1

32
, 1
16
, 1
8
, 1
4
, 1
2

ª
, for a total of 6 entries. The class DGP1

has thus a total of 6 · 7 = 42 designs, each one corresponding to (J, κ) = (Ji, κj) for
i = 1, ..., 7, j = 1, ..., 6. We indicate the corresponding DGP as DGP1(i, j), where
the ordering of i and j is the natural one in J and K.
A selection of results concerning asymptotics under the null are presented in

Tables 8—10. Table 8 reports results for DGP1(3, 1), with J = 1/2, κ = 0 , for
p = 5. The entries of the table are percentage rejection frequencies of the tests
mQ(i), i = 0, 1, and m = 0, 1, 2. These values of i are the relevant ones for the CI
rank estimators of Section 4.
Table 8 represents a typical outcome for designs with J ∈ J1. It can be seen that

for T = 192 all 3 tests mQ(0) reject with almost probability 1, and that all mQ(1)
tests are undersized for small samples, while the size converges to the nominal level
at T = 192. The results in this table hence are in line with predictions from the
asymptotics under the null.
One can observe a moderate improvement in using 1Q, 2Q or 3Q in place of the

trace test 0Q. At T = 96 the power of mQ(0) improves monotonically from 73% to
81% when going fromm = 0 to m = 2, while the size of all the mQ(1) tests are close
to the nominal level of 5%.
[Table 8 here]
A different situation occurs when J is local to unity, i.e. when J ∈ J2. In this

case the stationary root is close to 1, and hence one can consider the process as
having CI rank 0 with 1 autoregressive root close to 1, in the sense of the local
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asymptotic hypothesis, see eq. (10). Specifically in this case one has α = β = 0,
α1 = (T (J − 1), Tκ, 0p−2)0, β1 = (1, 0p−1) and C = Ω = Ip. Substituting into (11)
one finds f = T (J − 1) and g = Tκ, as planned in the choice of design.
[Tables 9 and 10 here]
Tables 9 and 10 present results for J = 31/32 and κ = 0 or κ = 1/2 respectively.

For ease of exposition the tables report also the values of f and g implied by the
values and J , κ. In Table 9 κ = g = 0; notice that all mQ(0) reject the null very
infrequently, m = 0, 1, 2, 3. This would make the CI rank estimators select r = 0
with probability approximately 80%, 90%, 94%, 95% for all the 4 tests as T grows
from 28 to 192.
Note also that the calculation of the power function in Section 6 shows that the

asymptotic local power at p− r = 5, f = −6, g = 0 is about 5% for all the 4 tests
mQ(0). This matches the finite sample frequency of rejections, which approaches
5% for all the 4 tests when T grows to 192. Note that increasing T will eventually
make f diverge to −∞, thus approaching the limit distribution under the null I(1,1)
reported in the last line.
The reason why this convergence is very slow in this case is associated to the

fact that the asymptotic local power function increases very slowly in f for g = 0.
This is also apparent comparing Tables 9 and 10, where in the latter κ = 1/2 and
hence g = Tκ is also increasing with T . In this case the 4 tests mQ(0) reject with
frequency that approaches 1 when T = 192. The price of a root close to unity is
given by the fact that the tests mQ(1) are still oversized at T = 192.
We next consider wether the local asymptotic analysis of Section 5 is able to

capture the relevant features of the finite sample results simulations. In Table 11 we
collect the frequency of rejection of the trace test 0Q(0) for the various combinations
of coefficients described in Table 7 that give rise to values of f ∈ F and g ∈ G0; here
p = 3. We also report the limit asymptotic power calculated in Section 6 under the
label T =∞.
It can be seen that the local asymptotic distribution is able to capture the main

features of the finite sample properties at T = 96. Table 12 reports the same analysis
for the test 2Q. Again the main features of the finite sample behavior are captured
by the local asymptotics. Note that 2Q is only marginally more powerful than 0Q
for large values of f , g .
The analysis of Tables 11- 12 (and of similar ones not reported for brevity) shows

the usefulness of the local asymptotics for predicting the small sample behavior of
the tests. It is found that differences in power are modest, as predicted by the local
asymptotics.
[Tables 11, 12 and 13 here.]
Table 13 reports the behavior of the trace test when p is 5; we compared these

results with Table 11 in order to find the effects of increasing the number of random
walks p− r. Again the fit of the local asymptotics to the finite sample distributions
is good. As predicted by the local asymptotic analysis, the power is lower than in
the case p = 3, i.e. one looses power as more and more random walks are added to
the process.
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7.2 CI rank equal to 2

In this subsection we describe the structure of the designs in DGP2, which are
characterized by different values of the triplet J , κ, Φ. Not all possible configurations
of J are considered here, due to space limitations. We choose

J =

µ
λ1

λ2

¶
with λ1, λ2 real, non necessarily equal. This allows to have λ2 close to unity and λ1
sufficiently far away in order to calculate local power of CI rank test with the null
of r ≤ 1 versus higher rank.6
Because J is diagonal, we can apply further simplifications described in Paruolo

(2005), thus treating Φ as a correlation matrix, indexed by a scalar correlation
coefficient τ . Finally κ is a 2× 2 matrix; we thus have

var (υt) =

 1 τ 0
τ 1 0
0 0 Ip−2

 , κ =

µ
κ11 κ12
0 κ22

¶
and κii ≥ 0.
In order to choose values for J , observe that −1 < λ1, λ2 < 1; moreover one

can choose λ1 ≤ λ2 because the process is invariant with respect to switches in
λ1, λ2 given that Φ is a correlation matrix. We choose λ1 ∈ J1 :=

©−1
2
, 0, 1

2

ª
,

λ2 ∈ J :=
©−1

2
, 0, 1

2
, 3
4
, 7
8
, 15
16
, 31
32

ª
where we select pairs l := (λ1, λ2) with λ1 ≤ λ2.

The resulting set L := {li} of pairs l := (λ1, λ2) has cardinality 18 and it is shown
in Table 14 with the ordering used in the following. 15 designs in L have λ1 < λ2
and 3 have λ1 = λ2 =: λ, with J = λI2 is a diagonal matrix; the latter are labelled
l1, l2, l3.
[Tables 14 and 15 here]
In Paruolo (2005) it is shown that τ can be always be taken to be non-negative

for a diagonal J matrix, which is the case considered here. Moreover it is shown
there that for the scalar configurations l1, l2, l3 of J (J = λI2) one can set τ = 0.
For non-scalar J we take τ ∈ {0, 0.5}, where for later reference we indicate τ1 = 0,
τ2 = 0.5. Table 15 lists the configurations we consider for k := vech(κ0).
The designs included in DGP2 are obtained as follows. The first 27 designs

correspond to a scalar J (l1, l2, l3) and τ = 0; they are given by (l, τ, k) = (li, 0, kh)
for i = 1, 2, 3 and h = 1, ..., 9. The remaining 270 designs are characterized by
λ1 < λ2, and are given by (l, τ, k) = (li, τj, kh) for i = 4, ..., 18, j = 1, 2 and
h = 1, ..., 9. We indicate the corresponding designs as DGP2(i, j, h), where the
ordering of i, j, h is the one described above.
For the analysis of the local asymptotics, some of the 297 designs in DGP2 can

be interpreted as local to the case of CI rank r = 1. This is obtained when λ2 is
close to 1, i.e. when λ2 ∈ J2 := {34 , 78 , 1516 , 3132}; note that λ1 is always chosen far from
1, i.e. λ1 ∈ J1.

6This choice of J excludes local-to-I(2) processes and stationary processes with complex AR
roots.
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In order to compare the finite sample results with the appropriate local asymp-
totics, we calculate the parameters f and g of the local asymptotics for the designs
with λ2 ∈ J2. In order to do so, we set r = 1, α = (λ1 − 1: 0: κ11: 00p−3)0, β = (1:
00p−1)

0, α1 = (0: T (λ2 − 1): Tκ12: Tκ22: 00p−4)0, β1 = (0: 1: 00p−2)0, where 0n indi-
cates a n × 1 zero vector. We substitute the values of α, β, α1, β1 and var (υt) in
place of Ω in (11), and we find f = T (λ2 − 1),

g =

Ã
(Tκ22)

2 +
(Tκ12 (λ1 − 1) + fκ11τ)

2

(1− τ 2)κ211 + (λ1 − 1)2
! 1

2

. (13)

Observe that one obtains f in F for the same pairs of values (J, T ) reported in
the left panel in Table 7, simply substituting J in the headings of the Table with λ2.
The expression (13) for g involves all the remaining design coefficients λ1, τ , κ11,
κ12, κ22. Note that κ = 0 implies g = 0, so that designs (li, τj, k1) all have g = 0.
Similarly if τ = 0, also κ12 = κ22 = 0 implies g = 0; this corresponds to designs
(li, τ1, k4). In the following we use eq. (13) to calculate the value of g for each design
with λ2 ∈ J2 of in DGP2.
As for DGP1, we present evidence first results for the designs with −1/2 ≤ λ1 ≤

λ2 ≤ 1/2, where the stationary roots are far from 1. As a worst case we present
results for λ1 = 1/2, λ2 = 3, τ = 0, k = k9, which is DGP2(3, 1, 9).7 Table 16
presents the percentage of rejections of mQ(i) for m = 0, 1, 2 and i = 0, 1, 2, when
p = 5. These are the relevant tests in the CI rank estimators described in Section 4.
It can be seen that all tests diverge for i = 0, 1 at T = 96 and give approximately
the same number of rejections for all T ∈ T. The size of the mQ(2) tests converges
to 5% with a similar rate for different m, m = 0, 1, 2.
[Tables 16, 17 and 18 here]
We next consider cases where λ2 is close to 1. Consider for example DGP2(18, 1, 1)

with λ1 = 1/2, λ2 = 31/32, τ = 0, k = 0. Table 17 presents the percentage of re-
jections of mQ(i) for m = 0, 1, 2 and i = 0, 1, 2, when p = 5. It can be seen that
all mQ(0) tests tend to diverge at T = 192 but the mQ(1) fails to do so, for all
m = 0, 1, 2. This is parallel to the finding in Table 9 for DGP1(7, 1). From the local
power analysis we know that the bigger the g parameter, the higher the power. In
this type of design g = 0, and the test has low power for all T ∈ T. Note that, from
Section 6, the simulated local asymptotic power of mQ for p− r = 4, f = −6, g = 0
is approximately 5% for all mQ tests, m = 0, 1, 2.
This is also apparent when we compare Table 17 with Table 18, which reports

results for DGP2(18, 2, 9), where l is the same and k now takes the non-zero value
(1, 1, 1)0. The table presents the percentage of rejections of mQ(i) for m = 0, 1, 2, 3,
i = 0, 1, 2, p = 5. It can be seen that all mQ(0) and mQ(1) tests diverge for all
m = 0, 1, 2. Note that now the value of g exceeds 200 at T = 192.
Thus, despite a stationary root λ2 very close to 1, a parameter g far away from

0 gives enough power to the mQ(1) tests to reject. The price of a root λ2 very close
to 1 is the fact that the mQ(2) tests are still oversized at T = 192 , with a size close
to 13% instead of 5%.

7We define as worst case the one where the size of the mQ tests is furthest away from the
nominal size at T = 192.
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Summarizing, in all the situations described above, the finite sample properties
of all the different mQ tests appear to be very similar, for varyingm. There is rather
close fit between the small sample behavior and the asymptotics, both under the
null and under the local alternative. When the stationary roots are sufficiently away
from 1, the asymptotic nominal size appears to be reliable. In the same situations,
the CI rank estimators described in Section 4 appear to be working as predicted by
Theorem 2.

8 Two illustrative examples

This section provides two empirical illustrations. The first one deals with a money
demandmodel for the Euro area and it is reported in Subsection 8.1. The second one,
presented in Subsection 8.2, refers to consumption risk-sharing among four Italian
regions. Both applications illustrate how unrestricted and restricted estimation of
CI rank can be performed.

8.1 Money demand system for Euro area

We consider the money demand model of Brand and Cassola (2004), to which we
refer for detailed explanations and references on how variables have been constructed
and aggregated across European countries. Let mt − pt, yt, st, lt and ∆pt indicate
respectively the log of the real stock of money, the log of real gross domestic product
(GDP), the short-term and long-term interest rates and the inflation rate, with pt
being the implicit GDP deflator.8 These variables are often regarded as I(1) in
developed economies, so one may wish to impose that there is at least one common
trend in the system.
The economic long run relations predicted for the system Xt := (mt − pt, yt,

st, lt, ∆pt)
0 are relatively uncontroversial, as they appear in most theoretical and

applied models of transmission mechanisms of monetary policy. Three cointegrating
relations should characterize the system: a money demand relation relating the
real stock of money to real GDP and a measure of the opportunity cost of holding
money; a Fisher inflation parity connecting the long-term interest rate and inflation;
a relation among interest rates over the yield curve consistently with the expectation
hypothesis.
A VAR with unrestricted constant and q = 2 lags was estimated by Brand and

Cassola (2004) over the 1980:1-1999:3 period, using initial observations to account
for lags.9 The results of the CI test are summarized in the left panel of Table 19,
which reports the values the trace test 0Q(j), with the corresponding 5% asymptotic

8The source of the data is the European Central Bank (ECB) and the aggregate time-series
cover the period 1980:1-1999:3. The nominal stock of money is measured as the log of M3 (mt);
the log of the price level (pt) is obtained from the (seasonally adjusted) GDP deflator and the
(annualized) inflation rate is computed as ∆pt := 4(pt − pt−1); income is measured as the log
of real GDP (yt); short term rates (st) are 3-month money market interest rates and long-term
interest rates (lt) are 10-year government bond yields or close substitutes.

9We re-estimated the model using PcFiml 10.0. Usual diagnostic tests give no indication of
residuals misspecification or parameters instability for the VAR(2). Moreover, tests for the presence
of I(2) components suggest that there is no I(2) component in the system.
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critical values taken from Table 3, column m = 0. The 0Q(j) statistic selects 3
cointegrating relations at the 5% significance level, albeit the existence of the third
cointegration vector is not clear-cut, because the 0Q(j) statistics is approximately
equal to its 5% critical value.
Table 19 displays also the corresponding 1Q(j) statistic and 5% critical values

taken fromTable 3, columnm = 1. Using expression (5), 1Q(j) := trQ(j)− trQ(4) for
j := 0, 1, 2, 3, 1Q(j) can be easily calculated from the trace statistics. The 1Q(j)
test gives the same inference as the trace test, although 1Q(2) is greater that the
5% critical value, giving better support to the choice of r = 3.
The three deviations from the long run equilibrium identified and estimated in

Brand and Cassola (2004), see their Table 4, bβ0Xt = (v1t, v2t, v3t)0, are given by
v1t = mt − pt − 1.33yy + 1.608lt (money demand), v2t = ∆pt − 0.67lt (Fisher-type
parity) and v3t = lt − st (interest rates spread) and lead to a LR test for over-
identifying restrictions equal to χ2(3) = 1.47 with a p-value of 0.69. This is in line
with economic expectations.

8.2 Consumption risk-sharing among Italian regions

Consider p regions of a given country, area or monetary union, attempting to insure
their consumption streams against idiosyncratic income fluctuations. According to
risk-sharing theory, see e.g. Canova and Ravn (1996), under complete markets,
perfect factor mobility and with utility maximizing agents endowed with constant
relative risk aversion, expected lifetime utilities and exogenous stochastic output
processes, the optimal consumption allocation over time and across regions can be
represented as

c∗it = θic1t + ξit + ηit , i = 2, ..., p, (14)

where cit is the log of per capita consumption in region i, c∗it is the corresponding
optimal level, c1t is the log of per capita consumption of the leader region (e.g. the
one with highest per capita GDP or population level), θi is a parameter measuring
heterogeneity of relative risk aversion between the leader and the i-th region, ξi is
a trend parameter which is different from zero if the regions 1 and i discount at
different rates, and ηit is a (possibly stationary) stochastic term depending on the
preference shocks of the two regions10.
Eq. (14) describes optimal risk sharing against long term income fluctuations

and allows heterogeneity in preference parameters. The theory has strong impli-
cations on interregional consumption dynamics. It is widely recognized that per
capita consumption data can be approximated as non-stationary I(1) processes over
relatively long span of data; eq. (14) suggests that deviations of actual from opti-
mal per capita consumption, cit − c∗it , should be transitory for risk sharing to hold.
Put differently, net of preference shocks, cit and c1t should be cointegrated, possibly
around a linear trend, with cointegration vector (1 : −θi)0, see e.g. Cavaliere et al.
(2005) and references therein.
Under perfect risk sharing, the vector Xt = (c1t : c2t : ....: cpt )

0 should therefore
embody p−1 cointegrating relations, i.e. a single common stochastic trend. Also in
10Equation (14) can be obtained also under incomplete markets provided a (benevolent) social

planner maximizes collective utility, see e.g. Canova and Ravn (1996).
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this case one may use the constrained CI rank estimator that assumes the existence
at least of one common trend.
We consider the consumption data of four regions of central Italy: Lazio, Marche,

Umbria and Abruzzo.11 One would expect to identify three cointegrating relations
of the form cit− θic1t − ξit, i = 2, 3, 4 in Xt = (c

1
t , c

2
t , c

3
t , c

4
t )
0, where we label Lazio

as region 1, Marche, Abruzzo and Umbria as regions 2, 3 and 4. 12

The attractive feature of the regional risk-sharing model sketched above is that
the preference parameters θi are allowed to vary across regions under long run con-
sumption insurance; moreover, preference homogeneity can be tested as the hypoth-
esis θi = 1 on the CI space, after determining its rank.
A VAR(1) with unrestricted constant and a linear trend restricted to the coin-

tegration space was estimated over the 1960-2001 period.13 The results for 0Q(j)
and 1Q(j) are summarized in the right panel of Table 19, with the corresponding
5% asymptotic critical values taken from Table 4, column m = 1.
The 0Q(j) trace statistic selects 2 cointegrating relations at the 5% significance

level, one less than expected under the hypothesis of full risk sharing. Therefore,
at face value, the trace test rejects the full risk sharing hypothesis as 2 stochastic
trends are detected in the 4 regions. The 1Q(j) statistics can again be calculated
as 1Q(j) := 0Q(j)− 0Q(3) for j := 0, 1, 2, see the right panel of Table 19. It is now
observed that 1Q(j) selects 3 cointegrating relations at the 5% significance level, as
predicted by economic theory.
The restricted estimates of the CI relations β are given by

bβ0Xt :=


c2t − c1t

c3t − 1.46
(0.03)

c1t + 0.011
(0.0009)

t

c4t − c1t + 0.001
(0.0003)

t


where asymptotic standard errors are reported in parenthesis. The LR test for the 3
over-identifying restriction in this specification equals 2.07, which gives a p-value of
0.56 when compared with a χ2(3); over-identifying restrictions are hence supported
by the data.
All estimated preference parameters θi exhibit the correct sign and magnitude;

one here finds some heterogeneity in preference parameters. Overall it seems that
the four selected regions of central Italy share risks consistently with the predictions
of the theory; moreover, results confirm those in Cavaliere et al. (2005) who find
substantial long-run risk sharing and heterogeneity in the preference parameters
among all twenty Italian regions, using a different approach.

[Table 19 approximately here]
11Annual per capita regional consumption data is taken from Cavaliere et al. (2005). This

is constructed as the sum of regional household and government consumption at constant 1995
prices, divided by resident population at the end of the corresponding year. The source of the
data is Svimez and the Italian Statistical Institute (ISTAT); annual logged observations cover the
1960-2001 period with 42 observations per region.
12Lazio is here chosen as the “leader” region of central Italy because of its higher demographic

density and economic importance.
13Also in this case the usual diagnostic tests give no indication of residuals misspecification or

parameters instability for the VAR(1).
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9 Conclusions

This paper investigates LR CI rank statistics for any possible value of the CI rank
under the alternative; this class includes the trace and lambda-max tests as special
cases. We tabulate the limit quantiles for all the new tests in the class. We find
that any of the tests can be used in constructing the CI rank estimator proposed in
Johansen (1992), without changing the asymptotic properties.
We investigate the local power of the tests and we find a significant deterioration

of the power curves for all the tests when the number of common trends increases.
The power differences within the class are moderate; these differences appear to
increase as the number of common trends increases and power deteriorates.
When considering one-dimensional alternatives, one observes a superior power

of the lambda-max test for values sufficiently far from the null; this is in line with
the prediction of classical results on LR tests for one-sided alternatives, see Andrews
(1996).
The tests in the class can also be arranged to give a constrained estimator of the

CI rank, which imposes restrictions on the minimum number of common trends. We
show that mis-specification of the minimum number of common trends has adverse
effects, because it makes the limit probability of selecting the correct rank equal to
0. We hence advise not to leave any value of the common trends untested, unless
the untested value can be excluded beyond any reasonable doubt.

Appendix

Proof of Theorem 1. Following Johansen (1991a) one can prove that LR(r,
p−m) = T

Pp−m
i=r+1

bλi+op (1) where the eigenvalues (Tbλr+1,...,Tbλp) converge weakly
to (η1, ..., ηp−r) with ηi := eigi(N(F,B)), while (bλ1,...,bλr) = Op(1). The latter
results implies that −T ln(1−bλi) = Op(T ) when i ≤ r. Since the eigenvalues are all
distinct with probability one, the statement of the theorem follows by applying the
continuous mapping theorem, see e.g. Billingsley (1968).
Proof of Theorem 2.
The results follow applying the proof of Proposition 1 in Paruolo (2001a) to ers

and brm.
Proof of Theorem 3.
The statements follow as in Theorem 2.
Proof of Theorem 4.
The proof is the same as in Johansen (1991b, 1996) and Paruolo (2001a) noting

that if the eigenvalues are distinct, they are continuous functions of the argument.
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Figures and tables

Figure 1: Power comparison for p − r = 3. f on x-axis; n = 105 replications,
T = 2500. Lines obtained by quadratic interpolation. m = 2 corresponds to the
maxQ test. Panels g = 0 to g = 24: percentage power difference 100(bπm−bπtr). Empty
circle indicate insignificant power differences. Lower right panel: power function for
trQ. Power curves correspond to values of g = 0 (bottom line), 6, 12, 18 and 24 (top
line).
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Figure 2: Power comparison for p − r = 4. m = 3 corresponds to the maxQ test.
Panels g = 0 to g = 24: 100(bπm − bπtr). Lower right panel: power of trace test 0Q.
See caption of Fig. 1.
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Figure 3: Power comparison for p − r = 5; m = 4 corresponds to the maxQ test.
Panels g = 0 to g = 24: 100(bπm − bπtr). Lower right panel: power of trace test 0Q.
See caption of Fig. 1.
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Figure 4: Power comparison for p − r = 6. m = 5 corresponds to the maxQ test.
Panels g = 0 to g = 24: 100(bπm − bπtr). Lower right panel: power of trace test 0Q.
See caption of Fig. 1.
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p− r m = 0 1 2 3 4 5 6 7
1 4.156
2 12.327 11.224
3 24.286 23.500 17.790
4 40.080 39.402 34.679 24.076
5 59.819 59.217 54.953 46.063 30.284
6 83.784 83.205 79.101 70.906 57.436 36.482
7 111.400 110.803 106.687 99.038 86.832 68.754 42.653
8 143.335 142.779 138.689 131.112 119.586 103.129 80.284 48.677

Table 1: 95% asymptotic quantiles for mQ for different values of (p− r) and m. 0Q
is the trace test. Entries on the main diagonal, corresponding to m = p− r− 1, are
the ones of the lambda-max test. Case 1 in Theorem 1.

p− r m = 0 1 2 3 4 5 6 7
1 9.158
2 20.287 15.962
3 35.157 31.543 22.286
4 53.945 50.536 42.819 28.506
5 76.714 73.387 66.335 54.171 34.676
6 103.574 100.207 93.442 82.277 65.448 40.833
7 134.179 130.721 124.063 113.633 98.331 76.866 46.939
8 169.042 165.458 158.894 148.709 134.337 114.581 88.248 53.051

Table 2: 95% asymptotic quantiles for mQ. Case 2 in Theorem 1. See caption of
Fig. 1.

p− r m = 0 1 2 3 4 5 6 7
1 3.807
2 15.488 14.273
3 29.782 28.849 21.076
4 47.725 46.953 40.620 27.493
5 69.553 68.836 63.160 52.129 33.771
6 95.304 94.610 89.357 79.319 63.593 39.836
7 125.162 124.468 119.216 109.984 95.697 75.129 46.109
8 158.968 158.353 153.065 144.070 130.699 111.932 86.505 52.200

Table 3: 95% asymptotic quantiles for mQ. Case 3 in Theorem 1. See caption of
Fig. 1.
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p− r m = 0 1 2 3 4 5 6 7
1 12.516
2 25.844 19.375
3 42.790 37.479 25.724
4 63.630 58.799 48.975 31.936
5 88.422 83.797 74.889 60.471 38.193
6 117.324 112.729 104.281 91.073 71.798 44.323
7 149.972 145.367 137.289 125.001 107.372 83.371 50.473
8 186.676 182.087 174.029 162.255 145.804 123.703 94.697 56.524

Table 4: 95% asymptotic quantiles for mQ. Case 4 in Theorem 1. See caption of
Fig. 1.

p− r m = 0 1 2 3 4 5 6 7
1 3.820
2 18.330 17.059
3 35.025 33.983 24.255
4 55.053 54.165 46.173 30.588
5 78.994 78.158 70.971 57.880 37.054
6 106.833 106.076 99.348 87.573 69.504 43.170
7 138.629 137.886 131.399 120.336 104.140 81.188 49.406
8 174.411 173.734 167.382 156.854 141.549 120.613 92.703 55.555

Table 5: 95% asymptotic quantiles for mQ. Case 5 in Theorem 1. See caption of
Fig. 1.

p− r 2 3 4 5 6
min −1.5 −2.6 −4.0 −4.0 −5.0
max 1.5 5.3 8.0 9.0 8.0

Table 6: Absolute power differences 100(bπm − bπtr); minimum and maximum calcu-
lated across f , g, m. bπm is the estimated power of test mQ.

T J = 1
2

3
4

7
8

15
16

31
32

κ = 1
32

1
16

1
8

1
4

1
2

24 −12 −6 −3 −1. 5 −0.75 0.75 1. 5 3 6 12
48 −24 −12 −6 −3 −1. 5 1. 5 3 6 12 24
96 −48 −24 −12 −6 −3 3 6 12 24 48
192 −96 −48 −24 −12 −6 6 12 24 48 96

Table 7: Left panel: f = T (J − 1); right panel: g = Tκ; bold entries indicate values
of f, g in the range of values used in the local asymptotic simulations.
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T 0Q(0) 0Q(1) 1Q(0) 1Q(1) 2Q(0) 2Q(1) 3Q(0) 3Q(1)
24 23.50 3.83 23.44 3.60 23.56 3.08 22.22 1.85
48 28.19 3.22 28.20 3.30 28.91 2.82 29.42 1.99
96 73.23 4.80 73.62 4.78 76.86 4.83 81.61 4.22
192 99.97 5.44 99.97 5.52 99.99 5.48 99.99 5.09
∞ 100 5 100 5 100 5 100 5

Table 8: DGP1(3,1), p = 5. J = 1/2, κ = 0 % frequency of rejections. T =∞ from
the asymptotics under the null.

T f g 0Q(0) 0Q(1) 1Q(0) 1Q(1) 2Q(0) 2Q(1) 3Q(0) 3Q(1)
24 −0.75 0 19.10 2.68 18.99 2.63 18.98 2.19 17.95 1.30
48 −1.5 0 8.42 0.94 8.44 0.98 8.43 0.75 8.31 0.40
96 −3 0 6.06 0.42 6.10 0.44 6.15 0.33 5.94 0.31
192 −6 0 5.62 0.52 5.60 0.48 5.79 0.38 5.76 0.30
∞ 100 5 100 5 100 5 100 5

Table 9: DGP1(7,1), p = 5. J = 31/32, κ = 0. % frequency of rejections. T = ∞
from the asymptotics under the null.

T f g 0Q(0) 0Q(1) 1Q(0) 1Q(1) 2Q(0) 2Q(1) 3Q(0) 3Q(1)
24 −0.75 12 75.49 24.59 75.29 24.06 74.41 20.10 72.06 13.72
48 −1.5 24 95.63 21.97 95.67 21.88 95.86 18.44 96.11 13.67
96 −3 48 99.97 18.73 99.98 18.67 99.98 16.34 100 12.79
192 −6 96 100 14.12 100 14.15 100 12.85 100 10.37
∞ 100 5 100 5 100 5 100 5

Table 10: DGP1(7,6), p = 5. J = 31/32, κ = 1/2. % frequency of rejections. T =∞
from the asymptotics under the null.

T f = −3 −6 −12 −24 f = −3 −6 −12 −24
g = 0 g = 6

24 7.9 9.6 20.0 - 24.4 20.1 27.5 -
48 6.2 7.5 15.2 54.1 22.8 17.2 23.1 60.0
96 5.5 7.4 13.5 48.0 21.4 17.0 20.3 53.1
192 - 6.7 13.5 44.1 - 15.1 19.5 48.9
∞ 4.8 6.3 12.7 42.0 21.3 15.0 18.8 46.9

g = 12 g = 24
24 66.6 54.4 50.6 - - - - -
48 67.3 52.0 45.9 72.7 98.5 96.8 93.5 95.0
96 68.5 53.0 45.0 66.2 98.6 97.0 93.6 93.9
192 - 51.8 42.8 63.2 - 97.6 93.7 93.2
∞ 68.7 52.3 41.9 60.7 99.1 97.7 93.8 92.5

Table 11: DGP1, p = 3, trace test 0Q: % frequency of rejections. T =∞ from the
simulation of the asymptotic distribution under the local alternative.
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T f = −3 −6 −12 −24 f = −3 −6 −12 −24
g = 0 g = 6

24 7.8 8.9 18.4 - 21.5 17.5 26.2 -
48 5.9 6.7 14.0 59.1 19.8 15.3 22.1 65.1
96 5.5 6.8 12.8 51.5 18.7 14.5 19.5 58.0
192 - 6.3 12.0 47.9 - 13.1 18.5 53.7
∞ 4.9 6.0 11.8 45.0 18.7 13.3 17.6 50.4

g = 12 g = 24
24 64.8 53.2 51.7 - - - - -
48 66.3 51.3 46.2 77.9 98.8 97.7 95.5 97.2
96 67.3 52.6 45.8 71.6 98.9 97.8 95.4 96.7
192 - 52.0 43.7 68.3 - 98.1 95.6 96.2
∞ 68.4 52.2 42.6 65.8 99.4 98.4 95.8 95.7

Table 12: DGP1, p = 3, test 2Q: % frequency of rejections. T = ∞ from the
simulation of the asymptotic distribution under the local alternative.

T f = −3 −6 −12 −24 f = −3 −6 −12 −24
g = 0 g = 6

24 18.2 18.8 23.5 - 31.1 26.0 28.4 -
48 8.8 8.6 12.1 28.2 20.1 14.6 16.3 30.4
96 6.1 6.7 9.3 20.5 15.8 12.1 12.0 24.3
192 - 5.6 8.1 18.1 - 10.1 10.5 21.2
∞ 4.3 4.7 6.6 15.8 13.4 8.7 8.8 17.7

g = 12 g = 24
24 61.1 48.2 41.8 - - - - -
48 53.1 36.5 27.9 39.8 93.0 86.0 73.1 69.4
96 51.1 33.1 23.3 31.6 93.6 86.3 70.8 62.5
192 - 31.2 21.4 28.1 - 87.6 71.5 59.9
∞ 49.8 30.5 19.3 24.6 94.6 87.9 71.0 57.1

Table 13: DGP1, p = 5, trace test 0Q: % frequency of rejections. T =∞ from the
simulation of the asymptotic distribution under the local alternative.

λ1 λ2 = −1
2

0 1
2

3
4

7
8

15
16

31
32

−1
2

l1 l4 l5 l6 l7 l8 l9
0 l2 l10 l11 l12 l13 l14
1
2

l3 l15 l16 l17 l18

Table 14: (λ1, λ2) pairs. l1, l2, l3 correspond to λ1 = λ2 =: λ.

k1 k2 k3 k4 k5 k6 k7 k8 k9
κ11 0 0 0 1 1 1 1 1 1
κ12 0 −1 1 0 −1 1 0 −1 1
κ22 0 0 0 0 0 0 1 1 1

Table 15: k triplets included in the design.
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T f g 0Q(0) 0Q(1) 0Q(2) 1Q(0) 1Q(1) 1Q(2) 2Q(0) 2Q(1) 2Q(2)
24 −12 26.29 99.49 58.76 10.96 99.53 58.74 1095 99.65 58.89 8.10
48 −24 52.58 100 93.14 8.85 100 93.49 907 100 95.09 8.38
96 −48 105.16 100 100 7.15 100 100 705 100 100 6.73
192 −96 210.33 100 100 6.12 100 100 596 100 100 5.56
∞ 100 100 5 100 100 5 100 100 5

Table 16: DGP2(15,2,9), p = 5. % frequency of rejections. T = ∞ from the
asymptotics under the null.

T f g 0Q(0) 0Q(1) 0Q(2) 1Q(0) 1Q(1) 1Q(2) 2Q(0) 2Q(1) 2Q(2)
24 −0.75 0 23.27 3.23 0.53 23.07 3.14 0.46 23.04 2.67 0.21
48 −1.5 0 27.06 3.06 0.40 27.30 3.01 0.39 28.06 2.52 0.20
96 −3 0 73.08 4.80 0.44 73.49 4.68 0.42 76.59 4.90 0.32
192 −6 0 99.99 5.90 0.46 100 5.93 0.42 100 6.13 0.22
∞ 100 100 5 100 100 5 100 100 5

Table 17: DGP2(15,2,9), p = 5. % frequency of rejections. T = ∞ from the
asymptotics under the null.

T f g 0Q(0) 0Q(1) 0Q(2) 1Q(0) 1Q(1) 1Q(2) 2Q(0) 2Q(1) 2Q(2)
24 −0.75 27.00 99.98 72.22 21.19 99.98 71.66 20.35 99.97 68.11 13.33
48 −1.5 54.01 100 96.82 20.96 100 96.86 20.37 100 97.12 15.10
96 −3 108.01 100 100 16.66 100 100 16.28 100 100 12.66
192 −6 216.02 100 100 12.98 100 100 12.74 100 100 11.00
∞ 100 100 5 100 100 5 100 100 5

Table 18: DGP2(18,2,9), p = 5. % frequency of rejections. T = ∞ from the
asymptotics under the null.

j 0Q(j) 5% cv 1Q(j) 5% cv 0Q(j) 5% cv 1Q(j) 5% cv
0 95.71 69.55 95.69 68.84 97.91 63.63 92.80 58.89
1 59.26 47.72 59.24 46.95 53.55 42.79 48.44 37.48
2 29.79 29.78 29.77 28.85 25.00 25.84 19.89 19.37
3 13.59 15.49 13.57 14.27 5.11 12.52 - -
4 0.021 3.81 - -

Table 19: Two empirical illustrations. Left panel: Money demand system for Euro
area M3. Right panel: Risk-sharing model for 4 Italian regions. Critical values (cv)
for the trace test 0Q(j) and 1Q(j) are taken from Table 3.
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