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Local robustness measures for posterior
summaries∗

Katia Passarin †

Abstract

This paper deals with measures of local robustness for particular Bayesian
quantities, i.e. posterior summaries. We build a framework where any Bayesian
quantity can be seen as a posterior functional and its sensitivity to all inputs
is checked. First, we use the Gateaux derivatives to measure the impact on
posterior summaries of perturbations of prior or sampling models, giving some
general expressions. Such quantities capture both a ’data effect’ and a ’model
effect’ on the functional. Secondly, we check the sensitivity to one observa-
tion in the sample, once a particular combination of prior/sampling models
has been chosen. Moreover, we propose a new estimator of the Bayes fac-
tor for practical implementation. Finally, illustrative examples on sensitivity
analysis are provided and discussed.

1 Introduction

Any Bayesian quantity depends strongly on the modeling assumptions and on the
sample of observed data. Bayesian Robust Statistics evaluates the sensitivity of this
quantity to their inputs and in recent years it has met a great development (D.
Rìos Insua and F. Ruggeri, 2000). Most efforts concentrate on global robustness, in
particular with respect to prior specification. Such approach consists in calculating
the range of the quantity of interest as the model varies within a class of distributions.
If this range is small enough for the conclusions to be clear, the quantity is declared
to be robust. If not, further analysis is needed. For more details on this see Lavine
(1991), Berger (1994), Basu (1999), Sivaganesan (1999, 2000), Berger et al. (2000),
Moreno (2000) and Shyamalkumar (2000).
A second approach - named local - assesses the sensitivity to deviations only in

a neighborhood of the base model. Measures of local robustness are obtained by
suitable derivatives of the functional (Ruggeri and Wasserman, 1993; Sivaganesan,
1993; Dey et al., 1996; Gustafson et al., 1996; Moreno et al., 1996; Peña and Za-
mar, 1997). The functional is said to be robust if the computed measure is small.

∗This paper has been presented at the University of Insubria (Como) on the 22th of April 2004
and its publication in the working paper series of the Dep. of Economics of the U. of Insubria has
been proposed by Prof. Mira, University of Insubria.
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Also in this case, most contributions are only concerned with local prior influence
(Gustafson, 2000).
In this paper we deal with local robustness. It is interesting to note that the

same approach is used in classic robust statistics (Hampel et al., 1986). However the
robustness perspective slightly differ in a frequentist and in a Bayesian context. We
discuss this point in Section 2, introducing the concept of functional and looking
at any Bayesian quantity as a function of three distinct elements (the prior, the
sampling model and the data). Such point of view constitute a simple and unified
framework for robustness evaluation in Bayesian statistics. In particular we consider
the posterior expectation of a function ρ (θ), named posterior summary. The first
goal of this paper is to check the sensitivity of posterior summaries to one input a
time, all the rest remaining stable. Different diagnostic tools for distributional as-
sumptions -named local influence measures- are derived in Section 3. Such measures
capture the impact on the functional of contaminations of the base model in differ-
ent directions. The sensitivity of a Bayesian functional to observations is addressed
in Section 4. Section 5 deals with the matter of implementation of local influence
measures when analytical calculations are not feasible. Starting from the work of
Chen and Shao (1997), we propose a new estimator for the Bayes Factor which is
more efficient in terms of computational time. Illustrative examples are given in
Section 6 and Section 7 concludes.

2 Frequentist and Bayesian robustness

In this section we underline some common and different features of the robustness
concept in a Bayesian and in a frequentist framework.
First it is worth introducing some notation. We will use capital letters for both

a probability distribution and its corresponding cumulative distribution function.
Moreover, we denote with small letters the corresponding density, when it exists.
We consider i.i.d. one-dimensional random variables X = (X1, .., Xn) generated
by a reference distribution Fθ0 , which belongs to the set eF = {Fθ : θ ∈ Θ}. Each
observation in sample x = (x1, .., xn) takes value in a sample space Ξ ⊆ R.
We denote by Fn (y) =

1
n

Pn
i=1∆xi (y) the empirical distribution where ∆x (y) is

the Dirach distribution which puts mass 1 at x. In a Bayesian setting we also define
Π(θ) and P (θ|x) to be an element respectively of the set eΠ of all possible priors and
of the set eP of all possible posteriors on the parameter space Θ.
In frequentist statistics observed data are used to make inference on the true

parameter value θ0, which is assumed to be a fixed constant (Cox and Hinkley, 1974;
Ellison, 1996). The approach of classical robust theory based on influence functions
(Hampel et al., 1986) deals with estimators that can be expressed as functionals i.e.

T : eF → Rk.

It is required that the functional does not depend on the number of sample obser-
vations (Tn(Fn) = T (Fn)), it converges to the asymptotic value of the estimator
(T (Fn) −→

n→∞
T (Fθ0)) and that Fisher consistency holds (T (Fθ0) = θ0).
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Measures of robustness to small deviations from the reference model are obtained
by computing the influence function (IF ), which is the Gateaux derivative of the
functional under a locally perturbed distribution in direction of a point mass. There-
fore the evaluation of robustness properties of the estimator occurs at an asymptotic
level. In the sample one can calculate some empirical version of the IF such as the
Empirical Influence Function and the Sensitivity Curve.
In Bayesian statistics the parameter θ is not a fixed quantity, but a random

variable, whose entire probability distribution have to be computed (Ellison, 1996).
Two distributions are matched with the observed data: Π that represents our knowl-
edge a priori on θ and Fθ that expresses the parametric model we believe generated
observations x. Using the Bayes theorem, the posterior distribution for parameter
θ is obtained:

P (θ|x) =
Π(θ)LF (x|θ)
m (x ;Π, Fθ)

(1)

=
eP (θ|x)

m (x ;Π, Fθ)
,

where LF (x|θ) =
Y
i

fθ (xi) is the likelihood and m (x ;Π, Fθ) =
R ep (θ|x) dθ is the

marginal likelihood. Inferential conclusions on the value of θ are based on (1).
Any Bayesian quantity can be expressed as a functional of type

TB : eFn × eΠ× eF → Υ,

where eFn = {all discrete distributions with probability p1, .., pn at the points x1, .., xn,
pi > 0,

P
i pi = 1} and Υ is a suitable space. For example, one can be inter-

ested in the entire posterior distribution (Υ = eP ) or in some posterior summaries
(Υ = Rk, k > 1).
When the number of observations increases, the impact of Π on (1) disappears

since the likelihood dominates the prior distribution and the posterior collapses to
a point mass on the true parameter value θ0. Therefore, Bayesian functionals sat-
isfy TB(Fn,Π, Fθ) −→

n→∞
T (Fθ0). Asymptotic functionals do not allow to capture the

sensitivity of posterior quantities to perturbations in the prior. Hence, we will work
with sample-based functionals. In particular we will focus on robustness evaluation
for posterior summaries of type

TB(Fn,Π, Fθ) =

Z
ρ (θ) p (θ|x) dθ. (2)

In the sequel we will in short denote TB andm (x) respectively the posterior summary
and the marginal likelihood under base models Π and Fθ.

3 Sensitivity to distributional assumptions

In this section we deal with the sensitivity of a Bayesian estimator to small depar-
tures from the assumed model, either the prior or the sampling distribution. In order
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to simplify the notation we will denote the posterior functional only as a function of
the distribution under study, say generically distribution H, keeping the remainder
unchanged. We represent these deviations through ε−contamination classes of type:

Iε (H) =
n
Hε = (1− ε)H + εC | 0 ≤ ε ≤ 1, C ∈ eCo . (3)

Set (3) represents the perturbation of reference distribution H in the direction
of C and ε is the contamination amount (assumed to be small in local analysis).
Clearly, the wider the set of contaminating distribution eC is, the richer the neigh-
borhood we are considering. As in Sivaganesan (1993) and Peña and Zamar (1997),
we measure the impact of such contaminations on functional (2) by the Gateaux
derivative:

LI (C;TB,H) =

·
∂TB (Hε)

∂ε

¸
ε=0

(4)

=

Z
ρ (θ)

·
∂pε (θ|x)

∂ε

¸
ε=0

dθ.

We refer to this quantity as local influence (LI) of TB when H is perturbed in the
direction of C. Note that measure (4) is a sample-based quantity. We will see in
a while that it captures both a ’data effect’, i.e. the effect on the functional of
choosing a contaminating model which is more adequate than the base one with
respect to observed data, and a ’model effect’, i.e. the effect on the functional value
of perturbing the base model in some directions. The strong dependence of measure
(4) on the sample is the reason why Sivaganesan (1993) looks at it only to compare
whether a functional is more sensible to prior or sampling model specifications and
does not judge about its magnitude. For this purpose we define

LI∗( eC;TB, H) = sup
C∈ eC

¯̄̄̄
LI (C;TB,H)

TB (H)

¯̄̄̄
, (5)

which gives the maximum relative effect on the functional as the distribution moves
locally around H in different directions. Measure (5) evaluates the magnitude of the
sensitivity of the functional and can be used to compare robustness properties among
different functionals. In the following sections we derive local influence measures for
both the prior and the sampling model.

3.1 Prior distribution

Many papers in Bayesian robustness are concerned with the assessment of the sensi-
tivity with respect to the prior (Ruggeri and Wasserman, 1993; Gustafson et al.,
1996; Moreno et al., 1996; Peña and Zamar, 1997). The main reason for this
widespread interest is probably due to the feeling that prior knowledge formalized
by the researcher is the most subjective source of the analysis. Much work has been
done in the direction of global robustness. A good review on the topic is provided
by Berger (1994).
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Local robustness assesses effects of small prior perturbations on the functional.
We consider a neighborhood of the base prior Π of type (3), with Q the contami-
nating distribution. The local influence of TB when Π is perturbed in the direction
of Q is given by:

LI(Q;TB,Π) =

·
∂TB(Πε)

∂ε

¸
ε=0

=

·Z
ρ (θ)

∂

∂ε

µ
LF (x|θ)πε(θ)
m (x ;Πε, Fθ)

¶
dθ

¸
ε=0

=

Z
ρ (θ)

LF (x|θ) [q (θ)− π(θ)]

m (x)
dθ +

+

Z
ρ (θ)

[m (x ;Q,Fθ)−m (x )]LF (x|θ)π(θ)
m (x )

dθ

=
m(x;Q,Fθ)

m(x)
[TB(Q)− TB] , (6)

where m(x;Q,Fθ) and TB(Q) are respectively the marginal likelihood and the pos-
terior summary obtained when the prior is Q. Measure (6) depends on two factors.
The first is the ratio of marginal likelihoods under contaminating and base dis-
tribution respectively (Bayes factor). This can be regarded as a measure of data
supporting degree for different contaminating priors that compares the researcher’s
subjectivity and the objectiveness of the data. If this amount is greater (smaller)
than one, data may be said to support more (less) the contaminating prior then the
base one. For this reason the Bayes factor can be said to capture a ’data effect’
on the functional. The second factor is the difference between the functional value
computed under the contaminating and the base prior respectively. It captures the
effect on the functional of choosing a different model for the prior and we refer to
this as ’model effect’. If the value of TB(Q) is much different from the value of TB,
the model effect turns out to be big. However, note that such effect in measure
(6) is weighted by the corresponding Bayes factor. Therefore the total effect on the
functional of contaminations in the direction of Q will be big itself only if Q will
be supported by data more than Π. In the next section we consider the sampling
model.

3.2 Sampling distribution

Another source of possible misspecification is the data-generating model. Robust-
ness with respect to sampling model specification is referred in the literature as
model or likelihood robustness. In most scenarios inference will depend much more
heavily on the model than on the prior (see Section 2). However, few contributions
in assessing likelihood robustness can be found in the literature (see Sivaganesan,
1993; Dey et al., 1996; Gustafson, 1996; Shyamalkumar, 2000).
This fact can be explained by considering the non linearity of the posterior with

respect to the sampling distribution. Indeed when regarded as a function of the prior,
(1) is a ratio of two linear functionals, or briefly is said to be ratio-linear. This is not
true when considered as a function of the sampling model, as the sampling density
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enters through the likelihood function. This often leads to intractable global analysis
from an analytical point of view. However, in local analysis this problem can be
tackled by taking the derivative with respect to the quantity of contamination ε
when ε is small.
Assume we represent uncertainty about the base sampling model Fθ by (3) withG

the contaminating distribution. The obtained perturbed likelihood will be differently
combined with the prior according to the information G brings on θ.
If G is a distribution still governed by parameter θ, we denote the contaminating

distribution by Gθ. For example Gθ can be an unimodal distribution around θ. In
this case the local influence of TB when Fθ is perturbed in the direction of Gθ is
given by

LI(Gθ;TB, Fθ) =

·
∂TB(Fθ,ε)

∂ε

¸
ε=0

=

·Z
ρ (θ)

∂

∂ε

µ
LFε (x|θ) · π(θ)
m (x ;Π, Fθ,ε)

¶
dθ

¸
ε=0

=
X
j

mj(x;Π, Fθ, Gθ)

m(x)
[TB,j (Fθ, Gθ)− TB] , (7)

where

mj(x;Π, Fθ, Gθ) =

Z epj (θ|x) dθ
and

TB,j (Fθ;Gθ) =

R
ρ (θ) epj (θ|x) dθ

mj(x;Π, Fθ, Gθ)

are respectively the marginal likelihood and the posterior functional obtained when
the sampling distribution is Gθ only for observation xj and Fθ for the others, the
quantity epj is defined as

epj (θ|x) = gθ (xj)LF

¡
x(−j)|θ

¢
π (θ) ,

and x(−j) is the sample x without observation xj.
If G does not depend on θ we denote the contaminating distribution by Gη. The

local influence of TB when Fθ is perturbed in the direction of Gη is then given by:

LI(Gη;TB, Fθ) =

·
∂TB(Fθ,ε)

∂ε

¸
ε=0

=

·Z
ρ (θ)

∂

∂ε

µ
LFε (x|θ) · π(θ)
m (x ;Π, Fθ,ε)

¶
dθ

¸
ε=0

=
X
j

mj(x;Π, Fθ, Gη)

m(x)

h
T
(−j)
B − TB

i
, (8)

where mj(x;Π, Fθ, Gη) = gη (xj) ·m(x(−j);Π, Fθ) and m(x(−j);Π, Fθ) and T
(−j)
B are

respectively the marginal likelihood and the posterior functional under base models
using sample x(−j). For detailed calculations see Appendix 1.
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For any observation xj the local influence measure for the sampling distribution
is still a function of two factors and it captures both a ’data effect’ and a ’model
effect’. The Bayes factor plays the important role of increasing (decreasing) the
difference when data support (do not support) the contaminating distribution more
than the base distribution for observation j (’data effect’). The second factor is the
difference between the value of the functional computed when model G is assumed
only for observation xj and the base functional TB. Note that observation xj enters
in the calculation of the former value only if G depends on θ, i.e. if xj has something
to say on the parameter of interest. Otherwise, xj cannot give any information for
updating our prior knowledge and the resulting functional has the form of the base
one where one observation has been dropped out. The total effect on the functional
of perturbations of the sampling model turns out to be the sum of the effect for each
observation.

4 Sensitivity to observations

In the previous section we assess the influence on posterior summaries of a perturba-
tion of the assumed model in some direction. In this section we measure the influence
of a given observation in the sample (outlier robustness). It is worth stressing the
difference between model robustness and outlier robustness. Model robustness eval-
uates the impact on the functional of a small contamination of the base sampling
model (see section 3.2). Outlier robustness evaluates the effect of moving one obser-
vation in the sample once prior and sampling distributions are fixed. In this section
we still denote the Bayesian functional as a function of the distribution under study,
i.e. the empirical distribution.
Little attention has been paid in Bayesian literature to the impact of outliers

and mainly focused on the posterior distribution. Ramsay and Novick (1980), for
example, propose to look at the rate of change of the sampling model density with
respect to an observation value. A similar idea is used by West (1984) on Bayesian
regression. However such approach is hardly applicable because involves derivatives
which are difficult to compute apart from particular family of distributions. The
same problem is addressed by Chen and Fournier (1999). Their influence measure
summarizes the difference between posterior distributions computed with original
data and with an additional observation. Such posterior distributions are obtained
through the use of numerical techniques and therefore always applicable.
In this paper, however, we do not deal with posterior distributions directly, but

with posterior summaries. Studying the sensitivity of such a quantity to observations
is a well known matter in frequentist robust statistics. The right tool therefore is
the Sensitivity Curve (see Hampel et al., 1986), defined as

SC(z) =
[T

B
(F z

n)− T
B
(Fn−1)]

1
n

, (9)

where Fn−1 = (x1, .., xn−1) is the empirical distribution of the sample of (n − 1)
observations and F z

n = (x1, .., xn−1, z) is the sample in which observation z has
been added. In a Bayesian context this measure captures the influence of moving
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just one observation under a certain prior/sampling model combination. If this
measure diverges as z becomes bigger, the functional is said to be non robust with
respect to observations. Typically this curve is useful to identify observations with
a large influence, such as outliers and loosely speaking an outlier is defined to be an
observation that is unlikely to have been generated by the assumed sampling model.
For its simple definition (9) can be implemented even when analytical calculations
are not feasible by means of numerical algorithms.
In the next section we will discuss practical implementation of local sensitivity

measures derived in the previous sections when analytical results are not feasible.

5 Implementation of local sensitivity measures

Posterior distribution and local influence measures are analytically tractable when
conjugate prior and sampling models are assumed. However, often this is not the
case and we need to use numerical procedures to compute them. Typically MCMC
algorithms are used to generate a sample from complicated distributions. Local
influence measures can be then easily obtained by estimating the Bayes factor and
the functionals under base and contaminating distributions. In this section we con-
centrate on implementation of (7) by means of Metropolis-Hastings algorithm and
we propose a way to speed up its computation.
Local influence measures for the sampling distribution involve the computation

of Bayes factors and of posterior summaries (see Section 3.2). We first deal with the
estimation of the former quantity (shortly denoted by rj), which is given by

rj =
mj(x;Π, Fθ, G)

m(x)
(10)

=

R epj (θ|x) dθR ep (θ|x) dθ .
Different bridge estimators (Meng and Wong, 1996; Chib and Jeliazkov, 2001;

Mira and Nicholls, 2001) are possible solutions. However, to compute such local
influence measures we would be expected to run n + 1 simulations, where n is the
number of observations. Clearly, the estimation procedure will take a long time
when n is big.
We need a way to be more efficient in terms of computational time. A good

starting point is the two-stage estimator proposed by Chen and Shao (1997). Ratio
(10) can be written as

rj =

R epj(θ|x)
ξ(θ)

ξ (θ) dθR ep(θ|x)
ξ(θ)

ξ (θ) dθ
, (11)

where ξ (θ) is an arbitrary importance sampling density. When observations are i.i.d.
from ξ, the importance density which minimizes the relative mean square error of
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the estimator is given by

ξoptj (θ) =
|pj (θ|x)− p (θ|x)|R |pj (θ|x)− p (θ|x)| dθ

=
|epj (θ|x)− rj · ep (θ|x)|R |epj (θ|x)− rj · ep (θ|x)| dθ , (12)

where pj = epj/mj and p = ep/m.
The corresponding estimator broptj is implemented in two stages. First, a Monte

Carlo estimate of (11) is computed with a random sample from an arbitrary dis-
tribution. Then a random draw from (12) can be obtained by means of a MCMC
simulation. One advantage of broptj is that its estimate is available with a single ran-
dom sample from ξoptj rather than two samples respectively from pj and p. However,
we are still expected to generate n samples to compute (7).
In order to run a single MCMC simulation we propose to use an importance

sampling density with a form similar to the optimal one, but which does not depend
on j. Such a density is given by

ξ∗ (θ) =
|ep∗ (θ|x)− r∗ · ep (θ|x)|R |ep∗ (θ|x)− r∗ · ep (θ|x)| dθ , (13)

where ep∗ (θ|x) = 1
n

Pn
j=1 epj (θ|x) and r∗ = R ep∗(θ|x)dθR ep(θ|x)dθ . Figure 1 compares density (13)

with the posterior densities p and p0js. The sampling density displays fatter tails
which is a crucial characteristic for a good importance sampling. The corresponding
modified two-stages estimator is given by

br∗j =
Pnξ

i=1
epj(θi|x)eξ∗(θi|x)Pnξ

i=1
ep(θi|x)eξ∗(θi|x)

, (14)

where [θi]
nξ
i=1 is the output of a MCMC simulation for (13). We tested the perfor-

mance of the new estimator by running K = 30 independent simulations of length
s (s = 1000, 2000, .., 5000) under the normal sampling model. For each chain we
estimate (14) and we compute its mean value with the corresponding confidence
interval. Figure 2 shows that estimator (14) behaves well with a mean value ofbr∗j close to the analytical value and smaller variability with increasing number of
simulations.
To estimate the local influence measure for the sampling distribution, we still

need to compute TB and TB,j (Fθ, G). The former quantity can be obtained by
running a MCMC simulation for posterior p. The latter can be obtained using im-
portance sampling technique with ξ∗ as importance density. Finally, measure (7)
can be written as

LI(G;TB, Fθ) =
X
j

mj(x;Π, Fθ, G)

m(x)
[TB,j (Fθ, G)− TB]

9



=
X
j

rj

·Z
ρ (θ) pj (θ|x) dθ −

Z
ρ (θ) p (θ|x) dθ

¸

=
X
j

rj ·
"
mξ

mj
·
Z

ρ (θ)
epj (θ|x)eξ∗ (θ|x)ξ∗ (θ|x) dθ −

Z
ρ (θ) p (θ|x) dθ

#

=
X
j

"
rξ ·

Z
ρ (θ)

epj (θ|x)eξ∗ (θ|x)ξ∗ (θ|x) dθ − rj ·
Z

ρ (θ) p (θ|x) dθ
#
, (15)

where rξ =
mξ

m
. Denoting by [θs]

np
s=1 and [θi]

nξ
i=1 respectively the samples from p (θ|x)

and from ξ∗ (θ), the ratio rξ can be estimated using optimal Meng andWong’s bridge
estimator given by

brt+1ξ =

1
np

Pnp
s=1

eξ∗(θs)
nξ · eξ∗(θs) + np · brtξ · ep(θs)

1
nξ

Pnξ
i=1

ep(θi)
nξ · eξ∗(θi) + np · brtξ · ep(θi)

.

An estimate of (15) is then obtained as

cLI(G;TB, Fθ) =
nX

j=1

"brξÃ 1
nξ

nξX
i=1

ρ (θi)
epj (θi|x)eξ∗ (θi|x)

!
− br∗j

Ã
1

np

npX
s=1

ρ (θs)

!#
.

In the next section we will provide some examples of how performing a Bayesian
sensitivity analysis.

6 Examples of local sensitivity analyses

In the following simple examples we perform sensitivity analyses of the functional
of interest. We keep the same notation as in previous sections. We first consider the
Bayes estimator given by the mean of the posterior distribution. For this example
we simulate a sample of n = 3 observations from a standard univariate normal given
by (0.5375, 1.4221, 1.0946). Then we consider a Bayesian regression model using
real data. In both case we perform conjugate analyses in order to obtain analytical
results.

6.1 Posterior mean

The posterior mean is a frequently used estimator of the parameter of interest. We
now illustrate how a sensitivity analysis on this functional can be carried out. We
assume that prior Π is N(θ0, σ20) with θ0 = 0.5 and σ20 = 1. Moreover sampling
distribution Fθ is N (θ, σ2) with σ2 = 0.2. The posterior mean and the marginal
likelihood can be computed analytically and turn out to be respectively

TB =
nσ20

nσ20 + σ2
x+

σ2

nσ20 + σ2
θ0.
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and

m(x) = (2π)−
n
2
¡
σ2
¢− (n−1)

2
¡
nσ20 + σ2

¢−1
2 ·

· exp
(
− 1

2σ2

X
i

(xi − x)2
)
exp

(
− n (θ0 − x)2

2 (nσ20 + σ2)

)
.

First, we assume to be not very confident about the value of prior mean θ0. We
express our uncertainty through the set of possible contaminating prior distributioneQ = {N(λ, σ20) : λ ∈ [−4.5, 5.5]} . In this case the local influence measure is given
by (6) with

TB (Q) =
nσ20

nσ20 + σ2
x+

σ2

nσ20 + σ2
λ

and

m(x;Q,Fθ) = (2π)−
n
2
¡
σ2
¢− (n−1)

2
¡
nσ20 + σ2

¢−1
2 ·

· exp
(
− 1

2σ2

X
i

(xi − x)2
)
exp

(
− n (λ− x)2

2 (nσ20 + σ2)

)
.

Table 1 and Figure 3 show such a measure for different values of σ20. The magni-
tude of LI decreases with increasing prior variances, meaning that flatter priors are
less influenced by perturbations. The two factors of measure (6) are displayed in
Figure 4. The effect on the functional of choosing prior Q instead of prior Π (’model
effect’) is linear and smaller with decreasing prior precision. Moreover, priors with
α0 around the value of the sample mean (x = 1.01) appear to be more adequate
than Π for small value of σ20. As long as the base prior becomes flatter, the Bayes
factor approaches to 1 for all possible contaminating distributions.
We turn now to the sampling model. We account for perturbations of the base

distribution in the direction of flatter ones. The chosen contaminating set is eGθ =
{N(θ, η2) : η2 ∈ [0.2, 2]} .Clearly this contamination is quite restrictive, but it leads
to analytical results. LI measure for the sampling model is given by (7) with

mj(x;Π, Fθ, Gθ) = (2π)
−n
2
¡
σ2
¢− (n−2)

2
¡
σ2η2 + (n− 1) η2σ20 + σ2σ20

¢− 1
2

· exp
(
− 1

2σ2

X
i6=j

¡
xi − x(−j)

¢2 − σ2 (xj − θ0)
2

2 (σ2η2 + (n− 1) η2σ20 + σ2σ20)

)

· exp
(
−(n− 1)η

2
¡
x(−j) − θ0

¢2
+ (n− 1)σ20

¡
x− x(−j)

¢2
2 (σ2η2 + (n− 1) η2σ20 + σ2σ20)

)
,

where x(−j) is the mean of the sample without observation xj. Calculations can be
found in Appendix 2.
Table 2 and Figure 5 show measures (7) for different values of σ2. LI measure

is very small when σ2 = 0.2, which corresponds to the value of the sample variance,
and LI∗ shows its minimum value which is around 0.009. As long as σ2 moves away
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from 0.2, LI∗ increases up to around 0.065. To better understand such a result, each
row of Figure 6 plots the two factors of measure (7) for observation j (j = 1, 2, 3).
The ’model effect’ on the functional is increasing with increasing variance of the
contaminating model, but it is no longer linear as in the prior case. When σ2 = 0.1
or σ2 = 0.2, data support at least few contaminating models more than the base one.
This is not true in other cases where the the Bayes factor declines rapidly. Therefore
the plot of the Bayes factor helps also to check whether the assumed sampling model
is reasonable with respect to the data we have in the hand.
Comparing now the two bold columns in Table 1 and Table 2, we conclude

that with these data the posterior mean is more sensible to perturbations in the
prior model specification (LI∗

³ eQ;TB,Π´ = 0.0702 > LI∗
³ eGθ;TB, Fθ

´
= 0.0096).

However both measures are small and the estimate is judge locally robust with
respect to our distributional assumptions.
Finally Figure 7 plots the SC (z). We let observation z move in the range

[−5, 5]. The effect of an extreme observation on the posterior mean with a nor-
mal prior/normal sampling model combination is linear and therefore potentially
unbounded. Hence, it is crucial to assess whether some extreme observations are
present in the sample. We expect that in such a case measure (7) increases since
data would support sampling models with higher variance more than the base one
and model effect would also display a greater value. In order to investigate this point
we introduce the observation x4 = −5 in the sample and we compute LI measures
again. Results given in Table 3 support our hypothesis. Therefore in presence of
outliers measure (7) takes into account the fact that the normal distribution becomes
inadequate.

6.2 Linear Bayesian Regression

We now consider the Bayesian linear model y = Xβ + u. For simplicity, we assume
that the error distribution F is a N (0, σ2I) with known variance σ2. We further
adopt a normal prior distribution Π (β) of type N (β0, σ

2Σ0) . Under the assumed
models, the Bayes estimator of β is given by

bβBayes = ¡Σ−10 +X 0X
¢−1 ¡

Σ−10 β0 +X 0y
¢
.

If eQ is the family ©N (α0, σ2Σ0) : αinf0 ≤ α0 ≤ αsup0
ª
that accounts for uncertainty

in the prior mean, measure (6) is given by

LI (Q;TB,Π) = exp

(
−(α0 − β0)

0 £Σ−10 − Σ−10 V 0Σ−10
¤
(α0 − β0)

2σ2

)
·

·
h¡
X 0X + Σ−10

¢−1
Σ−10 (α0 − β0)

i
. (16)

Furthermore, assuming a contaminating family eG for the sampling distribution

12



of type
©
N (0, c2) : cinf ≤ c2 ≤ csup

ª
, measure (7) becomes

LI (G;TB, F ) =
nX

j=1

µ
c2 |V |
σ2 |Vj|

¶− 1
2

· exp
−

³
σ2

c2
− 1
´
y2j +

bβ0BayesV −1bβBayes
2σ2


· exp

bβ
(j)0
BayesV

−1
j
bβ(j)Bayes

2σ2

 · ³bβ(j)Bayes − bβBayes´ , (17)

where c2 is the variance of the contaminating distribution, Vj =
h
X 0
(−j)X(−j) + σ2

c2
xjx

0
j + Σ−10

i−1
and bβ(j)Bayes = Vj ·

³
X 0
(−j)y(−j) +

σ2

c2
xjyj + Σ−10 β0

´
are respectively the posterior vari-

ance and mean when distribution G is assumed only for observation j, x0j is the row
of matrix X corresponding to observation j, X(−j) and y(−j) are respectively matrix
X and vector y without observation j. For detailed calculations see Appendix 3.
Relative measures of local influence are given respectively by

LI∗
³ eQ;TB;Π´ = sup

Q∈ eQ
¯̄̄
diag−1

³bβBayes´ · LI (Q;TB,Π)¯̄̄
and √

LI∗
³ eG;TB;F´ = sup

G∈ eG
¯̄̄
diag−1

³bβBayes´ · LI (G;TB, F )¯̄̄ .
Bayesian estimation and local influence measures in the normal linear model are

now illustrated. We use the same data set employed by Ramsay and Novick (1980).
These are observations on 29 children on 3 psychological variables: a test of verbal
intelligence (VI), a test of performance intelligence (PI) and sin−1

¡√
pi
¢
, where pi is

the proportion correct on a dichotic listening task (DL). We regress DL on remaining
variables including a constant term. β1 and β2 are the coefficient corresponding to
VI and PI respectively, whereas β3 is the intercept. We also adopt the same values
for both prior parameters and sampling variance which have been discussed at length
by the authors. Analytical Bayes estimate of regression coefficients bβBayes equals
(0.7458,−0.0734, 38.3505)0.
Plots of measure (16) and (17) are shown in Figure 8 and 9. Each component of

contaminating prior mean α0 varies in the range (−2, 2) with respect to the corre-
sponding component of β0. The impact on the Bayes estimate of contaminations in
the prior is negligible. However, this is probably more a proof of the disappearing
impact of the prior as the number of observations increases than a sign of robustness
itself. Contaminating variance c2 moves in the range (σ2, 10 · σ2) . Perturbations of
the sampling distribution play an important role on the estimates. The effect seems
more pronounced for intercept β3, but relative measures of Table 4 reveal a stronger
impact for β2. The size of LI

∗ measure for the sampling model is not negligible
at all. In this case a small contamination with a flatter normal distribution leads
to quite a big effect on coefficient estimates. The big size of LI measure for the
sampling distribution reveals that the normal model does not fit data very well.
We now concentrate on the sensitivity to observations. We move the value of the

first two regressors in the range1 (65, 135) as represented by asterisks in Figure 10
1This interval represents the theoretical values of the regressors.
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and we look at the effect on the estimates. Figure 11 measures whether the added
observation is an influential point through the Cook’s distance. As the value moves
away from the mean value of the regressors (V I = 99.75 and PI = 104.89), the
added point becomes more and more influential. The same pattern is found in Figure
12 where the SC of β is displayed. Coefficient estimates are strongly dependent on
the value of just one observation. In normal regression, hence, coefficients turn out
to be so sensible that we do not necessary have to observe “extreme” value before
estimates are influenced.

7 Conclusive remarks

In this paper we construct a framework to perform the sensitivity analysis of any
Bayesian quantity to all inputs. Past literature on the field checked the sensitivity
mainly to the prior distribution only. In our framework the sensitivity to all inputs is
considered, giving the whole picture of robustness properties of the functional itself.
We concentrate on posterior summaries and we measure the impact of perturbations
of prior or sampling models in different direction by local influence measures. Such
impact is the product of two effects: a ’data effect’, i.e. the effect on the functional
of choosing a contaminating model which is more adequate than the base one with
respect to observed data, and a ’model effect’, i.e. the effect on the functional value
of perturbing the base model in some directions. In some special cases we also derive
analytical formulations for these quantities. Local influence measure for the prior
model decreases with flatter (less informative) prior and with increasing number of
observations. However, the latter is probably simply an effect of the disappearing
impact of the prior as the number of observations increases.
Then we check the sensitivity of a Bayesian functional to observations by means

of the Sensitivity Curve. Typically this curve is useful to identify observations with
a large influence, such as outliers and loosely speaking an outlier is defined to be
an observation that is unlikely to have been generated by the assumed sampling
model. Therefore when the influence on the functional of a single observation is
potentially unbounded, it is crucial to determine whether some outliers are present
in the sample. We show that the local influence measure for the sampling model can
be used for this purpose. In this case, indeed, it assumes huge values revealing that
base sampling model is very sensible to perturbations and hence probably inadequate
for the presence of some outlying observations. Further research in this direction
includes the computation of measure of sensitivity to more than one input a time.
Finally we deal with the issue of practical implementation. We concentrate on

the local influence measure for the sampling model and we propose a new estimator
for the Bayes factor which speeds up computations. Such estimator performes well,
giving precise estimates with small confidence intervals. Further developments could
be also in more specific and efficient estimators for the quantites involved in local
influence measures.
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8 Appendix 1

Consider a linear perturbation of the sampling distribution of type (3) with G the
contaminating distribution. The perturbed posterior density is given by

pε (θ|x) = π (θ) · LFε (x|θ)
m (x ;Π, Fθ,ε)

,

and its derivative

·
∂pε (θ|x)

∂ε

¸
ε=0

=


³
π (θ)

∂LFε(x|θ)
∂ε

´
m (x ;Π, Fθ,ε)

m (x ;Π, Fθ,ε)
2 −

(π (θ) · LFε (x|θ))
µ

∂m(x ;Π,Fθ,ε)
∂ε

¶
m (x ;Π, Fθ,ε)

2


ε=0

=

Ã
π (θ) ·

nX
j=1

(g (xj)− fθ (xj))
Y
i6=j

fθ (xi)

!
m (x ;Π, Fθ)

−

−
(π (θ) · LF (x|θ))

Ã
nX

j=1

(mj (x ;Π, Fθ, G)−m (x ;Π, Fθ))

!
m (x ;Π, Fθ)

2

=
nX

j=1

pj (θ|x) mj (x ;Π, Fθ, G)

m (x ;Π, Fθ)
− n · p (θ|x)

−π (θ|x)
nX

j=1

mj (x ;Π, Fθ, G)

m (x ;Π, Fθ)
+ n · p (θ|x)

=
nX

j=1

mj (x ;Π, Fθ, G)

m (x ;Π, Fθ)
[pj (θ|x)− p (θ|x)] ,

where

pj (θ|x) =
π (θ) · g (xj) ·

Y
i6=j

fθ (xi)

mj (x ;Π, Fθ, G)

is the posterior obtained when a sampling distribution G is adopted only for obser-
vation j and

mj (x ;Π, Fθ, G) =

Z
g (xj) ·

Y
i6=j

fθ (xi)π (θ) dθ

is the corresponding marginal likelihood.
The measure of local influence of the functional to the sampling model is therefore
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given by

LI(G;TB, Fθ) =

Z
ρ (θ)

·
∂pε (θ|x)

∂ε

¸
ε=0

dθ

=

Z
ρ (θ) ·

nX
j=1

·
mj (x ;Π, Fθ, G)

m (x ;Π, Fθ)
· (pj (θ|x)− p (θ|x))

¸
dθ

=
nX

j=1

mj (x ;Π, Fθ, G)

m (x ;Π, Fθ)

Z
ρ (θ) · (pj (θ|x)− p (θ|x)) dθ. (18)

Expression (18) takes different forms according to the information G brings on the
parameter of interest. If G is a distribution still governed by parameter θ, we denote
the contaminating distribution by Gθ. Local influence measure of TB is then given
by:

LI(Gθ;TB, Fθ) =
nX

j=1

mj (x ;Π, Fθ, Gθ)

m (x ;Π, Fθ)
·
³
T
(j)
B (Fθ, Gθ)− TB (Fθ)

´
where mj(x;Π, Fθ, Gη) =

R
gθ (xj) ·

Y
i 6=j

fθ (xi)π (θ) dθ.

If G depends on a different known parameter η (η 6= θ), the contaminating
distribution is denoted by Gη and (18) turns out to be

LI(Gη;TB, Fθ) =
X
j

mj(x;Π, Fθ, Gη)

m(x)

³
T
(−j)
B − TB

´
where mj(x;Π, Fθ, Gη) = gη (xj) ·

R Y
i6=j

fθ (xi)π (θ) dθ and T
(−j)
B is the posterior

functional under base models using sample x without observation xj.
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9 Appendix 2

Assume a priorΠ and a sampling model Fθ to be respectivelyN(θ0, σ20) andN(θ, σ
2).

We need to compute the marginal likelihood m (x) =
R
LF (x|θ)π (θ) dθ where

LF (x|θ) is the likelihood under the reference sampling model. It is well known that
in this case the posterior is N

¡
θpost;σ

2
post

¢
with θpost =

nσ20x+σ
2θ0

nσ20+σ
2 and σ2post =

σ2σ20
nσ20+σ

2 .
Our quantity of interest turns out to be:

m(x) =

Z
π (θ) · LF (x|θ) dθ

=

Z ¡
2πσ20

¢− 1
2
¡
2πσ2

¢−n
2 exp

(
− 1

2σ20
(θ − θ0)

2 − 1

2σ2

X
i

(xi − θ)2
)
dθ

= (2π)−
(n+1)
2
¡
σ2
¢−n

2
¡
σ20
¢− 1

2 exp

(
− 1

2σ2

X
i

(xi − x)2
)
·
Z
exp {A (θ)} dθ.

Let’s work with the exponent of the integrand term, given byA (θ) = − 1
2σ20
(θ − θ0)

2−
n
2σ2
(x− θ)2. We have

A (θ) = −1
2

"¡
θ2 + θ20 − 2θθ0

¢
σ20

+
n
¡
x2 + θ2 − 2θx¢

σ2

#
= − 1

2σ20σ
2

£
σ2θ2 + σ2θ20 − 2σ2θθ0 + nσ20x

2 + nσ20θ
2 − 2nσ20θx

¤

= −1
2

σ2 + nσ20
σ20σ

2| {z }
=σ−2post

θ2 − 2
µ
σ2θ0 + nσ20x

σ2 + nσ20

¶
| {z }

=θpost

θ +
σ2θ20 + nσ20x

2

σ2 + nσ20

 .
Adding and subtracting θ2post we get

A (θ) = −σ
−2
post

2

·
(θ − θpost)

2 +
σ2θ20 + nσ20x

2

σ2 + nσ20
− θ2post

¸
= −1

2

µ
θ − θpost
σpost

¶2
− 1
2

n

σ2 + nσ20
(θ0 − x)2 .

Therefore substituting into m (x) we have

m(x) = (2π)−
(n+1)
2
¡
σ2
¢−n

2
¡
σ20
¢− 1

2
¡
2πσ2post

¢ 1
2

· exp
(
− 1

2σ2

X
i

(xi − x)2 − 1
2

n

σ2 + nσ20
(θ0 − x)2

)
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·
Z ¡

2πσ2post
¢− 1

2 exp

(
−1
2

"µ
θ − θpost,j
σpost,j

¶2#)
dθ| {z }

=1

= (2π)−
n
2
¡
σ2
¢− (n−1)

2
¡
σ2 + nσ20

¢− 1
2

· exp
(
− 1

2σ2

X
i

(xi − x)2 − 1
2

n

σ2 + nσ20
(θ0 − x)2

)
.

Consider now the class of contaminating distribution

eGθ =
©
N(θ, η2) : η2 ∈ £σ2, 10 · σ2¤ª .

We need to compute the marginal likelihood in the case where contaminating model
G is assumed only for observation j. We denote with L

(j)
F,G (θ|x) the likelihood

function in this case. The marginal likelihood is now given by

mj(x;Π, Fθ, G) =

Z
L
(j)
F,G (θ|x)π (θ) dθ

=
¡
2πσ20

¢− 1
2
¡
2πσ2

¢− (n−1)
2
¡
2πη2

¢− 1
2 ·

·
Z
exp

(
− 1

2σ20
(θ − θ0)

2 − 1

2σ2

X
i

(xi − θ)2 − 1

2η2
(xj − θ)2

)
dθ

= (2π)−
(n+1)
2
¡
σ2
¢− (n−1)

2
¡
σ20η

2
¢− 1

2 ·

· exp
(
− 1

2σ2

X
i6=j

¡
xi − x(j)

¢2) · Z exp {Bj (θ)} dθ.

Working again with the exponent of the integrand term we have:

Bj (θ) = − 1

2σ20
(θ − θ0)

2 − (n− 1)
2σ2

¡
x(j) − θ

¢2 − 1

2η2
(xj − θ)2

= −1
2

¡θ2 + θ20 − 2θθ0
¢

σ20
+
(n− 1)

³
x2(j) + θ2 − 2θx(j)

´
σ2

+

¡
x2j + θ2 − 2θxj

¢
η2


= − 1

2σ20σ
2η2

£
σ2η2θ2 + σ2η2θ20 − 2σ2η2θθ0 + (n− 1) η2σ20x2(j)

+(n− 1) η2σ20θ2 − 2 (n− 1) η2σ20θx(j) + σ2σ20x
2
j + σ2σ20θ

2 − 2σ2σ20θxj
¤

= − 1

2σ20σ
2η2

£¡
σ2η2 + (n− 1) η2σ20 + σ2σ20

¢ · θ2 + σ2σ20x
2
j + σ2η2θ20

+(n− 1) η2σ20x2(j) − 2
¡
σ2η2θ0 + (n− 1) η2σ20x(j) + σ2σ20xj

¢ · θ¤
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= −1
2

σ2η2 + (n− 1) η2σ20 + σ2σ20
σ20σ

2η2| {z }
=σ−2post,j

θ2 − 2
µ
σ2η2θ0 + (n− 1) η2σ20x(j) + σ2σ20xj

σ2η2 + (n− 1) η2σ20 + σ2σ20

¶
| {z }

=θpost,j

· θ

+
σ2σ20x

2
j + σ2η2θ20 + (n− 1) η2σ20x2(j)

σ2η2 + (n− 1) η2σ20 + σ2σ20

#
.

Adding and subtracting θ2post,j we get

= −σ
−2
post,j

2

"
(θ − θpost,j)

2 +
σ2σ20x

2
j + σ2η2θ20 + (n− 1) η2σ20x2(j)

σ2η2 + (n− 1) η2σ20 + σ2σ20
− θ2post,j

#

= −1
2

µ
θ − θpost,j
σpost,j

¶2
− σ−2post,j

2
·
Ã
σ2σ20x

2
j + σ2η2θ20 + (n− 1) η2σ20x2(j)

σ2η2 + (n− 1) η2σ20 + σ2σ20
− θ2post,j

!

= −1
2

µ
θ − θpost,j
σpost,j

¶2
− σ−2post,j

2
·

³
σ2σ20x

2
j + σ2η2θ20 + (n− 1) η2σ20x2(j)

´
(σ2η2 + (n− 1) η2σ20 + σ2σ20)

2 ·

· (σ
2η2 + (n− 1) η2σ20 + σ2σ20)

(σ2η2 + (n− 1) η2σ20 + σ2σ20)
2 −

¡
σ2η2θ0 + (n− 1) η2σ20x(j) + σ2σ20xj

¢2
(σ2η2 + (n− 1) η2σ20 + σ2σ20)

2

!

= −1
2

µ
θ − θpost,j
σpost,j

¶2
− σ−2post,j

2
· σ20σ

2η2

(σ2η2 + (n− 1) η2σ20 + σ2σ20)
2

·
³
σ2 (xj − θ0)

2 + (n− 1)η2 ¡x(j) − θ0
¢2
+ (n− 1)σ20

¡
x(j) − xj

¢2´
= −1

2

µ
θ − θpost,j
σpost,j

¶2
− 1
2
·
³
σ2 (xj − θ0)

2 + (n− 1)η2 ¡x(j) − θ0
¢2´

σ2η2 + (n− 1) η2σ20 + σ2σ20

−1
2
· (n− 1)σ20

¡
x(j) − xj

¢2
σ2η2 + (n− 1) η2σ20 + σ2σ20

.

Therefore substituting in mj(x;Π, Fθ, G) we get

mj(x;Π, Fθ, G) = (2π)−
n
2
¡
σ2
¢− (n−1)

2
¡
σ20η

2
¢− 1

2
¡
2πσ2post,j

¢ 1
2

· exp
(
− 1

2σ2

X
i6=j

¡
xi − x(j)

¢2 − 1
2
· σ2 (xj − θ0)

2

(σ2η2 + (n− 1) η2σ20 + σ2σ20)

)

· exp
(
−1
2
· (n− 1)η

2
¡
x(j) − θ0

¢2
+ (n− 1)σ20

¡
x(j) − xj

¢2
(σ2η2 + (n− 1) η2σ20 + σ2σ20)

)

·
Z ¡

2πσ2post,j
¢−1

2 exp

(
−1
2

"µ
θ − θpost,j
σpost,j

¶2#)
dθ| {z }
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= (2π)−
n
2
¡
σ2
¢− (n−2)

2
¡
σ2η2 + (n− 1) η2σ20 + σ2σ20

¢− 1
2

· exp
(
− 1

2σ2

X
i6=j

¡
xi − x(j)

¢2 − 1
2
· σ2 (xj − θ0)

2

(σ2η2 + (n− 1) η2σ20 + σ2σ20)

)

· exp
(
−1
2
· (n− 1)η

2
¡
x(j) − θ0

¢2
+ (n− 1)σ20

¡
x(j) − xj

¢2
(σ2η2 + (n− 1) η2σ20 + σ2σ20)

)
.
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10 Appendix 3

Consider the Bayesian linear regression model where a normal distribution is as-
sumed both for the error model F and for the prior Π. The posterior distribution
of regression coefficients turns out to be normal with mean

E (β|y,X) = ¡Σ−10 +X 0X
¢−1 ¡

Σ−10 β0 +X 0y
¢

and variance
V ar (β|y,X) = σ2

¡
Σ−10 +X 0X

¢−1
.

The Bayes estimator βBayes for regression coefficients is given by E (β|y,X), which is
a posterior functional of type(2). We also denote by V the quantity

¡
Σ−10 +X 0X

¢−1
.

Therefore measures of local influence of the functional to prior and sampling model
perturbations are respectively given by

LI (Q;TB,Π) =

·
∂TB (Πε)

∂ε

¸
ε=0

=

Z
β ·
·
∂

∂ε
p (β|y,X,Πε, F )

¸
ε=0

dβ

=
m (y,X;Q,F )

m (y,X)
[TB (Q)− TB] ,

and

LI (G;TB, F ) =

·
∂TB (Fε)

∂ε

¸
ε=0

=

Z
β ·
·
∂

∂ε
p (β|y,X,Π, Fε)

¸
ε=0

β

=
nX

j=1

mj (y,X;Π, F,G)

m (y,X)

Z
β · [pj (β|y,X)− p (β|y,X)] dβ

=
nX

j=1

mj (y,X;Π, F,G)

m (y,X)

h
T
(j)
B (F,G)− TB

i
,

where mj (y,X;Π, F,G) =
R
L
(j)
F,G (y|X,β)π (β) dβ and pj (β|y,X) = π(β)·L(j)F,G(y|X,β)

mj(y,X;Π,F,G)
.

Both measures can be solved analytically only performing a conjugate analy-
sis. Suppose that the uncertainty about the prior distribution on β is represented
by the family eQ =

©
N (α0, σ

2Σ0) : α
inf
0 ≤ α0 ≤ αsup0

ª
. The posterior derived with

such a prior is still normal with mean β∗Bayes =
¡
X 0X + Σ−10

¢−1 ¡
X 0y + Σ−10 α0

¢
and

covariance matrix σ2V ∗ = σ2
¡
X 0X + Σ−10

¢−1
= σ2V. The corresponding marginal

likelihood is given by

m (y,X;Q,F ) =
¡
2πσ2

¢−k+n
2 |Σ0|−

1
2 exp

½
−A

∗

2

¾¡
2πσ2

¢k
2 |V ∗| 12

with A∗ = σ−2
¡
y0y + α00Σ

−1
0 α0 − β∗0BayesV

−1β∗Bayes
¢
.
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Under this assumption the local influence for the prior becomes

LI (Q;TB,Π) =
exp

©−A∗
2

ª
exp

©−A
2

ª ¡β∗Bayes − βBayes
¢

= exp

½
−(α0 − β0)

0Σ−10 (α0 − β0)

2σ2

¾
= exp

(
+

¡
β∗Bayes − βBayes

¢0
V −1

¡
β∗Bayes − βBayes

¢
2σ2

)¡
β∗Bayes − βBayes

¢
= exp

(
−(α0 − β0)

0 £Σ−10 − Σ−10 V 0Σ−10
¤
(α0 − β0)

2σ2

)£
VΣ−10 (α0 − β0)

¤
.

Let’s now consider the perturbation of the sampling distribution. We will denote
by x0j (1 × k) the row j of matrix X corresponding to observation j and with
X(−j) (n − 1 × k) and y(−j) respectively the matrix X and the vector y where the
observation j has been dropped out. Assuming a contaminating family of typeeG = ©N (0, c2) : cinf ≤ c2 ≤ csup

ª
the marginal likelihood mj (y,X;Π, F,G) is given

by

mj (y,X;Π, F,G) =

Z
L
(j)
F,G (y|X,β) π (β) dβ

=
¡
2πσ2

¢− (k+n−1)
2

¡
2πc2

¢− 1
2 |Σ0|−

1
2 exp

½
−1
2
eB¾ .

The terms eB is given by

eB = σ−2 (β − β0)
0Σ−10 (β − β0) + c−2

¡
yj − x0jβ

¢0 ¡
yj − x0jβ

¢
+σ−2

¡
y(−j) −X(−j)β

¢0 ¡
y(−j) −X(−j)β

¢
= σ−2β0Σ−10 β − 2σ−2β0Σ−10 β0 + σ−2β00Σ

−1
0 β0 + c−2y2j − 2c−2β0xjyj

+c−2β0xjx0jβ + σ−2y0(−j)y(−j) − 2σ−2β0X 0
(−j)y(−j) + σ−2β0X 0

(−j)X(−j)β

= β0
£
σ−2

¡
X 0
(−j)X(−j)

¢
+ c−2

¡
xjx

0
j

¢
+ σ−2Σ−10

¤
β

−2β0 ¡σ−2X 0
(−j)y(−j) + c−2xjyj + σ−2Σ−10 β0

¢
+σ−2β00Σ

−1
0 β0 + c−2y2j + σ−2y0(−j)y(−j)

= σ−2β00Σ
−1
0 β0 + c−2y2j + σ−2y0(−j)y(−j) − σ−2mjV

−1
j mj| {z }

= eBj

+σ−2
³
β − β

(j)
Bayes

´0
V −1j

³
β − β

(j)
Bayes

´
= eBj + σ−2

³
β − β

(j)
Bayes

´0
V −1j

³
β − β

(j)
Bayes

´
,

where

β
(j)
Bayes =

·
X 0
(−j)X(−j) +

σ2

c2
xjx

0
j + Σ−10

¸−1µ
X 0
(−j)y(−j) +

σ2

c2
xjyj + Σ−10 β0

¶
,
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and

Vj =

·
X 0
(−j)X(−j) +

σ2

c2
xjx

0
j + Σ−10

¸−1
.

Marginal mj (y,X;Π, F,G) becomes

mj (y,X;Π, F,G) =
¡
2πσ2

¢− (n−1)
2
¡
2πc2

¢− 1
2 |Σ0|−

1
2 |Vj|

1
2 exp

(
−
eBj

2

)
,

and the corresponding posterior distribution turns out to be a N
³
β
(j)
Bayes, σ

2Vj
´
.

Therefore T (j)B (F,Gβ) = β
(j)
Bayes.

Under this assumption the local influence for the sampling turns out to be

LI (G;TB, F ) =
nX

j=1

(2πσ2)−
(k+n−1)

2 (2πc2)
−1
2 |Σ0|−

1
2 exp

n
− eBj

2

o
(2πσ2)

k
2 |Vj|

1
2

(2πσ2)−
k+n
2 |Σ0|−

1
2 exp

©−A∗
2

ª
(2πσ2)

k
2 |V | 12

·
³
β
(j)
Bayes − βBayes

´i
=

nX
j=1

µ c2 |V |
σ2 |Vj|

¶− 1
2

exp

−
³ eBj −A

´
2


³β(j)Bayes − βBayes

´

=
nX

j=1

µ c2 |V |
σ2 |Vj|

¶− 1
2

exp

−
³
σ2

c2
− 1
´
y2j

2σ2


· exp

(
−β

0
BayesV

−1βBayes − β
(j)0
BayesV

−1
j β

(j)
Bayes

2σ2

)³
β
(j)
Bayes − βBayes

´#
.
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Table 1: Relative local sensitivity measures of the posterior mean with
respect to the prior model with different prior precisions.

σ20
0.5 1 10 100

TB 0.9571 0.9857 1.0146 1.0177

LI∗
³ eQ;TB,Π´ 0.1270 0.0702 0.0148 0.0029

λ for LI∗
³ eQ;TB,Π´ 1.6 1.8 3.9 5.5

λ for max m(x;Q,Fθ)/m (x) 1 1 1 1

Table 2: Relative local sensitivity measures of the posterior mean with
respect to the sampling model with different sampling precisions.

σ2

0.1 0.2 1 4

TB 1.0014 0.9857 0.8885 0.7220

LI∗
³ eGθ;TB, Fθ

´
0.0650 0.0096 0.0544 0.0651

η2 for LI∗
³ eGθ;TB, Fθ

´
1.0 0.6 4.0 13.6
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Table 3: Relative local sensitivity measures of the posterior mean
with respect to the base prior and sampling models.
Contaminated sample.

TB −0.4395

LI∗
³ eQ;TB,Π´ 0.2303

λ for LI∗
³ eQ;TB,Π´ −1.1

LI∗
³ eGθ;TB, Fθ

´
7.41 · 1025

η2 for LI∗
³ eGθ;TB, Fθ

´
2

Table 4: Relative local sensitivity measures of regression coefficient
estimates with respect to the base prior and sampling models.

component 1 2 3

LI∗
³ eQ;TB;Π´ 2.2 · 10−19 2.9 · 10−18 1.0 · 10−18

α0 for LI∗
³ eQ;TB;Π´ −1.69 −1.69 41

LI∗
³ eG;TB;F´ 42.93 458.18 13.14

c2 for LI∗
³ eG;TB;F´ 360 360 360
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Figure 1: Importance sampling density ξ∗ and posterior densities p and pj’s.

Figure 2: Analytical and estimated value of rj (j = 1, 2, 3) with confidence in-
terval.

28



.

Figure 3: LI(Q;TB,Π) measure for the posterior mean with different values of
prior variance σ20.

Figure 4: Difference TB (Q)− TB and ratio
m(x ;Q,Fθ)

m(x)
for different values of prior

variance σ20.
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Figure 5: LI (G;TB, Fθ) measure for the posterior mean with different values of
sampling variance σ2.

Figure 6: Difference TB,j (Fθ, G)− TB and ratio mj (x;Π, G) /m (x) for
different values of sampling variance σ2.
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Figure 7: SC for the posterior mean under normality of both prior and sampling
distributions.

Figure 8: LI (Q;TB,Π) measure for regression coefficients.
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Figure 9: LI (G;TB, F ) measure for regression coefficients.

Figure 10: Scatterplot of V I towards PI. Asteriscs represent the observations
which have been added.
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Figure 11: Cook’s distance for observations which have been added.

Figure 12: SC of regression coefficients moving the first two regressors in the
range (65, 135) .
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