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Bartlett corrections in stationary VARS

Pieter Omtzigt
July 17, 2003

Abstract

We derive the Bartlett correction for a simple hypothesis on the regression pa-
rameters in a multivariate stationary autoregressive process.

Three applications illustrate the use of the correction: the test for absence of
autocorrelation of any order, a simple hypothesis on the autoregressive parameters
and two tests for weak exogeneity in the cointegrated VAR model. In the first of
these tests, the cointegration space is known, in the second it is not.

The Bartlett correction performs well in all simulation studies, except in the one
of the last test, that is a test for weak exogeneity in the cointegrated VAR with an
unknown cointegration space.

1 Introduction

Vector Autoregressive Models (VAR) are widely applied both in macroeconomics and
econometrics. Estimation of these models is often done by means of maximum likelihood
methods. For almost every test statistics only asymptotic results are available regarding
the distribution of the statistic under the null hypothesis. In small samples, the size dis-
tortion can be particularly large if large models (in terms of number of variables and lags)
are used for relatively short spans of data series. A Bartlett correction (Bartlett, 1937) to
a likelihood ratio test is one method to correct for the size distortion.
In this paper we consider the following multivariate model:

Yt = AXt + T2t
where

Xi = Q(L)Ni—1 = Qo1 + Q11— + Qa3 + . ..
m= [ ]~ MIIDN(0,Q)
under the assumption th@{ L) is an exponentially decreasing polynomial and we derive

the Bartlett correction for a simple hypothesis 4 : A = A, both whenvar (1) is
known (theorem 2) and when it is unknown (theorem 1).

*University of Amsterdam, Faculty of Economics and Econometrics, Roetersstraat 11, 1018WB Ams-
terdam, The Netherlands, Email: P.H.Omtzigt@uva.nl
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After a short introduction into Bartlett corrections and the two main theorems, we
consider three specific applications. In section 4 we consider likelihood ratio tests for the
absence of autocorrelation in a VAR model and in section 5 we consider a more general
hypothesis on the autoregressive parameters of the VAR. Section 6 contains the Bartlett
correction for two different tests of no long run feedback in the cointegrated VAR model.
These last three sections all contain Monte Carlo studies of the derived results.

Conclusions are drawn in section 7. The longest section, the proof of the two main
theorems and two other theorems, is given in the only appendix of this chapter, section A.

2 Bartlett corrections

Letir (0),0 = (6,,02) denote the log likelihood function @f observations. Then the log
likelihood ratio (¥'7) test statistic for the null hypothests, : 6, = 69 equals

—2In LR [91 = 0? |9} = WT = -2 (I%ax lT (0(1) s 92) - I@Il%X lT (Ql, 92))
2 1,02

Under a number of regularity conditions, this test statistic converges in distribution. In
many cases this is the?-distribution, but it can also also be a different distribution; The
rank test in cointegration analysis (Johansen, 1988, 1991) for instance, converges to a
stochastic integral.

In small samples, the asymptotic distribution does not necessarily provide a good
approximation to the actual one. The idea of the Bartlett correction (Bartlett, 1937) is to
expand the expectation of the LR-statistic:

B (0
EWr| = f (1 + # +0 (T‘Q))
wheref = limy_., Ey [W7]| and then to define the Bartlett adjusted likelihood ratio statis-
tic WEC as:
Wp¢ =Wr/(1+ B(0)/T)

The termB () /T shall be referred to as the Bartlett Factor (BF). It generally depends
on the parameters of the model. When substituting values, it will sometimes make a
difference whether we take the true values from the data generating process, the restricted
estimates (that is the maximum likelihood estimates under the null hypothesis), or the
unrestricted estimates.

Lawley (1956) proves that for stationary series and under a number of stochastic or-
der conditions that the Bartlett Correction (BC) not only corrects the first moment up to
O (T~?), but also all higher moments. Barndorff-Nielsen and Hall (1988) prove the same

result elegantly and demonstrate that is holds wBe(ré) replacesB (0), whered is a

v/n-consistent estimator @f. Often small sample corrections are referred to as Bartlett
correction only if the result of Lawley holds. We shall however also refer to any division
of the likelihood ratio test statistic by its expectation as a Bartlett correction.

Nielsen (1997) and Johansen (2000, 2002a,b) show that a Bartlett correction can be
useful in models with unit roots. Jensen and Wood (1997) show by means of calculation
of the first two moments that the result of Lawley does not hold for the Dickey-Fuller
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distribution. More precisely they show th&t{Wr] = f (1+ %) + O (T~?) andE [W}]
=2f (1+22) + O(T%), but thath, # bs.

General overviews of Bartlett and related corrections can be found in Jensen (1993)
and Cribari-Neto and Cordeiro (1996) .

A large number of Bartlett correction concern univariate models, but Attfield (1995,
1998) derives a number of Bartlett corrections for simultaneous systems with fixed exoge-
nous regressors. In this paper we consider multivariate models with lagged endogenous
regressors.

3 The model and main results
Let us consider the following statistical modéj:

Y, = AX, + ny (1)
where

X =Q(L)y—1 = Qone—1 + Q12 + Qane—s + . ..
m=1[m ny | ~MIIDN(0,Q)
Ae R Qe Sy,

and the null hypothesis
Ho: A=Ay

R is the space of real numbe&; ., the space of positive definite matrices of di-
mensionp x p. The processy; is of dimensionp ands, is of dimensiong(< p). The
independent variabl&;, (1 x n) is a moving average process. The innovatiggsof
the dependent variablg are a subset of the innovationg which constitute the mov-
ing average procesk;. This model allows for the possibility that; contains not only
past values ol;, but also past value of exogenous variables, but not present values of
exogenous variables. The model does not contain any deterministic terms.

We shall make the explicit assumption that the prodéss stationary.

Define

C, =002, i=012,... 2)

such thatX, = C(L),_, ande, = Q~27, is distributedM 17 DN (0, L)

Define the jth autocovariance matrix&f asl'; = £ [ X, X/ .| = > >7 [ Qa;QQ), =
Yoo o Cat;Cr and its variance = T'.

In the examples, it will be clarified how seemingly more general situations, like mul-
tiple lags, are in fact special cases of the following theorem, which concerns a simple
hypothesis on the parametér:

Theorem 1 For the statistical model’;, the expected value of the likelihood ratio test of
the null hypothesis that/, : A = Ay equals:

EWrl L g+ % (3(n.0) + (.4, {C:))) ©



where:

J= % (=4 + qn + ¢*n + qn?) (4)
1= Z[O:HZO tr {[CLO7 T, @7 T 07 ), (t1)
2 Z:fe:o i { [ 1F:€+1 10/3] 22} tr {F,@+1 1} (t2)

+Z:N:Otr{
+Z;O,¢ tr{
+2Z Lt {

r
tr{

,6’50
T

Cro~'Cyl,, p tr {T) @'} tr {T5,, @7} (t3)
S VA 1F5+1<1>‘1(J,i]22} (t4)
1r;+1 1r’ﬂ+1<1>—10,4]22} (t5)

}tr{rﬁH@ T @1} (6)

e 105}22}”{&%% ) (t7)

[

[

lef
2y ot
Z tr{[Cﬁ SV RTeA } (t8)
ZM {

{

t

tr [C,{(b Fﬂ+1(b Cﬁ+,{+1:| (tg)

.}
tr [ 1F5+1 1Cﬁ+n+1]22} (t10)

=0

BHO

Proof. See the appendim

With [M],, we indicate the lower right hand block of dimensigrx ¢ in the matrix
M, which itself is of dimensiom x p. Thustr {[M],,} is the sum of the last elements
on the main diagonal of the matrix.

The expression (n, ¢, C(L)) looks complicated, but it should be borne it mind that it
needs to be programmed only once and is programmed and computed relatively quickly.
Furthermore it simplifies considerably in most cases. The version in the theorem has
been written down with an eye on programming: it contains only two loops. The loops
in the theorem go to infinity, but in all the examples and corollaries contained in this
paper, the expression for simplifies, such that only finite loops remain. The following
expression forl (n, ¢, C'(L)) is useful in the corollaries and examples that will follow (we
just substitut®) _>" | C,,,,C; for I,):



1= Z:W,QZO br { [CLd7 O @7 1Cﬁ+n+1cﬁ,‘1>7105]22} (t1’)
+2 Zzon rieo " { [ef ICCC;+C+1(D 'C }22} tr{Cl 1 ®7'Cy} (t2)
Za an¢=0 tr {[C\@7'Calpy } tr {CLOT Crscn J tr {Clpy 1 @7 Ch - (t3)
ﬁn eo!” { [Ch27CyC 1 @7 Cpacn CLOTICL], } (t4")

+2 25 BAC=0 br { [ChO™C O 1 @7 OO 1 7] 22} (t5")
X O 1 {07 Oy G Caran) ()
7 ZZ;,H:O tr {[CL2 Cc] o } 11 {Clisciysa® O} (t7)
—2 Z:O a0 o { [CR71ChC @ C 22} (t8)
—2) " w {107 Cur O Cupi ], ) (19)
=23t { [l ® ' CeranCLa7 G, | (t10))

In most applications the variance gfis unknown. There is however little difference
in deriving the main result for known and unknown variance. In section 5 we shall en-
counter one instance of a result in the literature which deals with known variance. We
thus include the version of the main theorem with known variance in this paper to make
results comparable. Consider the following statistical maédel

Yt = AXt + Eot (5)
where

Xt = O(L)&t_l = 0051‘,—1 + Clgt—Q + 02875_3 —+ ...
ee=1[¢y ey ] ~MIIDN(0,1,)
A e R

and the null hypothesis
Ho: A= A

Theorem 2 For the statistical modeX’,, the expected value of the likelihood ratio test of
the null hypothesis that(, : A = Ay equals:

E[Wr] = ng+ (32 (n,q) + 1 (n,q,{Ci})) (6)
where:

:—ZZtr{C’ o, }

andT(n,q,{C;}) is given in theorem 1.



Proof. See the appendix, section A.1li.

All corollaries that follow will be of theorem 1. The only exceptions is corollary 7,
which follows from theorem 2.

The following three sections carry examples of increasing complexity, of the main
result. Each section contains at least one simulation study to see how useful the correction
IS in practice.

4 Autocorrelation

4.1 First order autocorrelation

A first illustration of the theory is the test that a certaidimensional process is white
noise versus the alternative that it contains first order autocorrelation. The model is

U = Blut,1 + (7)
e ~ MIIDN(0,9)

and the hypothesisH, : B; = 0. Note that Maximum Likelihood and Ordinary Least
Squares coincide in this case (see also lemma 13 in the appendix) andthat p. The
last equality implies thatr { M,y } = tr { M }. Under the null hypothesis) collapses to
u—1 = m4—1, such that we find tha®, = 1, andC; = I'; = 0 for all ¢ > 1. This implies
Coy = Q> and ®, = . Now each of the terms t1-t10 ini has at least one term, whose
summation starts dt= 1, for instancel”/_,, or Cz, 1. Therefore each term in all 10
summations is zero and thils= 0. So we obtain:

Corollary 3 The likelihood ratio test thaB; = 0 in model (7) has the following expected
value

1
1
E[Wr] =p* + o= (0° + 20" — 4p)

The Bartlett correction here does not depend on the parameters of the model, that is
B (#) = B. The correction only depends gn the dimension of the system. In this
simple example we therefore do not encounter any problem as to which estimate for the
parameters we should take.

By means of a Monte Carlo Study we investigate how well the Bartlett correction per-
forms. As parameters of choice we tdke= 1,,,n € {1,2,...,8} andT" € {25,50, 100}.
The results are reported by means of QQ-plots for half of the experiments, that is for
n € {1,3,5,7},T € {25,50,100} whereas all the results are reported in table 1 and are
based ol 0® Monte Carlo replications each.

For each experiment we repdtt[IV;], E [WF°], the Bartlett Factor and the empir-
ical rejection probabilities at the nomin&0%, 5% and1% level of both the asymptotic
and Bartlett adjusted test statistic. We note that the Bartlett corrections brings the rejec-
tion probability close to the nominal one, except for the &ea {25} ,n € {5,6,7,8}
where at the 5% nominal rejection probability the empirical rejection probability is still
abovel% after the correction. Yet it does come down from values as highi #sto at
most25%.



The QQ-plots show that/; is a straight line, which makes it ideally suited for the
Bartlett correction. A Bartlett correction, which does not depend on the estimated param-
eters, rotates the QQ-plot around the origin. If it is negative (as it ip forl) it rotates
the line anti-clockwise and if it is positive it rotates it clockwise. Success is measured in
how well the rotated line coincides with the 45-degree line. In the QQ-plots in figure 1,
we see that with the possible exceptions of subfigures 1(j),1(g) and 1(h) the rotated line is
virtually indistinguishable from the 45-degree line.

4.2 Fourth order autocorrelation

A second illustration is a test that fourth order autocorrelation is absent

U = Baup_y + e (8)
ny ~ MIIDN(0,Q)

Now our null hypothesis i8{, : By = 0. We find thatQ)s = [ and@Q; = 0 fori €
{0,1,2,4,5,...}. As a consequencé = (). Let us now defind’,; = (C,®'Cj) =
(Q%Q’a@‘ngQ%). Itis immediately clear that in this example s = [, iff o = 3 =3
andF, s = 0 otherwise. Now rewrité, = > 7" _tr {FcFayci10q+1F,5}. Forany

of the terms in this summation to be different from zero, we need{ =k +(+1 = 3,
such that we conclude thdt = 0. In similar fashion we see that all other nine terms
t2' — t10’ equal zero as well, such = 0 and we obtain the same expression as in the last
parapraph:

Corollary 4 The likelihood ratio test thaB, = 0 in model (8) has the following expected
value

1
E[Wr] £p* + o7 (p* + 2p° — 4p)

which once again does not depend on the parameters of the model.

4.3 First to kth order autocorrelation

Third we test whether there is no first upitth order autocorrelation:

w = Biug—1 + ...+ Brug_p + 1 9
ng ~ MIIDN(0,$2)
The null hypothesis is thugl, : B; = ... = B, = 0. We see that the regressors in

the modelu,_, are all independently identically distributed with me@m@and variance-
covariance matrix2. The polynomial matrice® are of dimensiopk x p and read:

QO:[Ip:O:O:---:O:O]/
le[O:]p:O:---:O:O]/

Qe = [0:0:0:50: 1]
Qj:[O:O:O:--~:0:O],f0rj2k



T 25 50 100
Wy  WEC Wr  WEC Wy  WEC
p=1
E[LR]  0.9836 1.0036 0.9906 1.0006 0.9938  0.9988
BF —0.0200 —0.0100 —0.0050
10% 9.70  10.04 9.85  10.02 9.92  10.00
5% 4.78 5.01 4.90 5.02 4.94 4.99
1% 0.95 1.02 0.96 1.02 0.99 1.00
D=
E[LR] 42749  4.0329 4.1322 4.0118 4.0652  4.0051
BF 0.0600 0.0300 0.0150
10% 1220 1026 11.03  10.09  10.48  10.01
5% 6.44 5.18 5.65 5.06 5.31 5.01
1% 1.44 1.05 1.19 1.01 1.08 1.00
D=
E[LR] 10.2294 9.1881  9.5609  9.0482  9.2612  9.0060
BF 0.1133 0.0567 0.0283
10% 16.64 1098 1290 1028  11.30  10.05
5% 9.45 5.65 6.86 5.16 5.83 5.02
1% 2.50 1.20 1.37 1.05 1.24 1.00
p=4
E[LR] 19.2543 16.5986 17.4245 16.1338 16.6750 16.0336
BF 0.1600 0.0800 0.0400
10% 2410 1228 1565 1053 1255  10.16
5% 14.87 6.47 8.67 5.31 6.60 5.09
1% 4.69 1.44 2.16 1.09 1.48 1.02
D=
E[LR] 31.8993 26.4944 27.9155 25.3317 26.3618 25.0826
BF 0.2040 0.1020 0.0510
10% 35.88  14.66  19.61  10.94 1412  10.23
5% 24.40 8.02  11.40 5.59 7.63 5.14
1% 9.44 1.96 3.15 1.17 1.81 1.06
p==06
E[LR] 48.9253 39.2449 41.2386 36.7109 38.4106 36.1796
BF 0.2467 0.1223 0.0617
10% 52.68  19.46 2541  11.73 1629  10.44
5% 39.88  10.96  15.67 6.07 9.06 5.26
1% 19.46 3.00 4.88 1.30 2.27 1.07
p="7T
E[LR] 71.1650 55.2278 57.5895 50.3279 52.8800 49.3218
BF 0.2886 0.1443 0.0721
10% 71.97 2592  33.05 1278  19.00  10.66
5% 60.51  16.14  21.74 6.72  10.92 5.41
1% 37.35 5.16 7.69 1.50 2.92 1.11
p=2_8
E[LR] 100.0981 75.2617 77.2226 66.2855 69.8832 64.5572
BF 0.3300 0.1650 0.0825
10% 88.69  37.26  42.92 1431 2248  10.97
5% 81.58 2549  30.18 772 13.38 5.59
1% 62.77 9.95  12.42 1.83 3.86 1.17
o

Table 1: Bartlett corrections for the test of absence of first order autocorrelation
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Figure 1: QQ-plots of LR-tests (asymptotic and Bartlett corrected) for residual autocor-
relation



This implies® = (I; ® ). Realizing that);Q; = 1, iff i = j,i < k—1 and0 otherwise,
we check each of the ten terms in turn to find out which ones are non-zero. As in the last
paragraph we defing, 5 = (C/.®7'Cj) = (Q%Q;quQgQ%) and see that, 5 = I, if
Q;Q; = I, and equals zero whep;(); = 0.
For the first termt} = 37 o tr {FucFaici1piqi1ly s}t we see that each time
k=C(r+(+1=0+n+1<k—1andg = n simultaneously, this term equalsin all
other cases it equals zero. Thus we look for how many combination there are for which
k=(>0andk + ¢+ 1 < k—1hold true. There aréZ | such that this term equals
k
pl5).
The second term i, = 37 | -_otr {FcFaiciia} tr {Fasni1,}. By definition
a +n+ 1 # n, leading to the conclusion that this term is zero. Similarly we seefihat
t, tg, o, ty andt), are zero.
For any of the terms in the summatioh = > °7° o tr {FsFurpiprcriFep)
to be different from zero we need = (andn = fands +n+1=08+(+1 <
k—1. There arer;1 i such combination, giving a contribution @;ﬁk (k —1). Similarly
tho = = Yomtamo T {(Chini1Crar1) (CLCL) } equals—p iff k = Canda + k + 1 =
(+a+1<k—1whichis possibleink (k — 1) ways.
For the problem at hand we see that p andn = pk. Substituting all these terms in
the expression in theorem 1 we obtain the following result:

Corollary 5 The likelihood ratio test thakt{, : B; = ... = By = 0 in model (9) has the
following expected value

1 1 k 1
E W] £ kp> + 57 (p°k + p°K* + p°k — 4p) + 7 (p M — 5pk (k — 1))

Once more we notice that the Bartlett factor does not depend on any of the parameters.

5 Multivariate AR(1) process
Let us once more consider thedimensional AR(1) model and denote it By:

Xt = BXt—l + T]t (10)
e~ MIIDN(0,Q)
The parameters of this model &te= (B, (2) € (RP*?,S,«,) and we test the hypothesis

Ho : B = pol, where|py| < 1. UnderH, the dependent variablE, ; has the following
moving average representation:

X1 = Zi:ﬂ pé[nt—l—i

10



from which we see directly tha; = I} for i > 0. ThenC; = Q2 (Ip}) and® =
Sooeo (Ipgh) Q2 = ( 1_1p3> Q2. Now take the first term

f = Z:n we=0 " {CLe7 0y 127 Cpayn G 07 O}
=t (L ) e (1 ) e (L 68) 60,
- Zﬁm,n,C:O " {po (1 N pO) ngpgnp(?)ﬁpg Ip}

{0 ) 1)
_ A
1)

The third term is derived in the following way:

ts = Z:on A(=0 tr {C\®TCL } tr {CLOT Orycqa f tr {1 @710 )
— Z:omc ST {py (1= p3) pgL}tr {pg (1—g2) pé+c+1} e {pa T (1= p2) pi)

= P (=) e el

Po 3
= TP
(1= pp)
The other 8 terms are derived in an entirely analogous manner. In fact each of them
gives a contribution equal t ﬁ p® wheres is the number of different traces in the
—Fo

expression. We obtain the following result:

Corollary 6 The likelihood ratio test thak{, : B = pyI in model£, (10) has the follow-
ing expected value

2
E[Wr] £ p* + 21T (p* + 20" — 4p) + % (p® +p* — 2p) (Qf—OPZ)) (11)

0

The expected value of the likelihood depends on the parantgtébsin this case) but
not on the parameters (2). This means that when using this correction, no estimated
parameters have to be substituted in the Bartlett correction.

We could have sutl)stituted the maximum likelihood estimate f6r

By = (Zthl XHX;_l)_ (Zle XHXt’), which is /n-consistent, and used it in
the Bartlett correction, instead @f,/. Both methods are valid in this case. If we did

however use3,, ., the expression in corollary 6 will be considerably more complicated.
Now consider modeL,:

Xy =BX;1 +& (12)
ee ~ MIIDN(0,1,)

with the parameteré = B € RP*P,
11



Taniguchi (1988, 1991) derives Bartlett corrections for univariate ARMA-processes
and in the special case of an AR(1) process with known variance finds that the expected
value of the likelihood ratio equalis— % We thus also state the corollary for modgl
which is based on theorem 2:

Corollary 7 The likelihood ratio test thak{, : B = pyI in modelL, (12) has the follow-
ing expected value

19 2p 14 2 %
EWr]=p T+T(p +p 2p)((1_p3>> (13)
and conclude that the result of Taniguchi is a special case of (13)with.

Both expectations, (11) and (13) have a pole|f@f = 1. Even though the Bartlett
correction is only valid whety,| < 1, it is of interest how close to the pole the Bartlett
correction is still of practical use. We thus perform a Monte Carlo study for both corollary
6 and 7.

The DPG is

Xy = (pl,) Xi—1 + &4 (14)
e ~ MIIDN(0, 1)

and the parameters of choice dre= {100}, p = {—0.9,-0.6,—0.3,0,0.3,0.6,0.9} ,p =

{1,5} and we test the hypothestt, : B = poI both when() is unknown and when it is
known. The results are reported in table 2 and are baséf@’aeplications. The Bartlett

factor for the case of a one-dimensional process does not depend on any of the parameters
and is thus constant over the choicepoffFor the 5-dimensional VAR, we see that when

|p| approaches unity, the uncorrected test becomes severely oversized. The Bartlett cor-
rection does however somewhat overcorrect, which is what we expected with the pole in
the expression. Overall the Bartlett corrected test is closer to the nominal size of the test
than the uncorrected one in 69 out of 84 cases.

6 No level feedback in the cointegrated VAR

Let us consider the cointegrated VAR model in the Equilibrium Correction form:

k—1
AX, =TIX 1+ Y TiAX; + 1, (15)
=1
ny ~ MIIDN(0,Q)
with the following assumptions:

1. Every rootz of the characteristic polynomial of; satisfies: = 1 or |z| > 1.
2. IT:= —A(1) = af, wherea and arep x r matrices of full rank- < p.

3. o/, '3, has full rankp — r, wherel' := T — %' T,.

12



T = 100 2 unknown (corollary 6) 2 known (corollary 7)
p=1 p=>5 p=1 p=2>5
Wy WEBC Wy WEC Wy WEC  Wp WEC
p=—0.9
E[LR] 0.997 1.002 31.31 24.28 0.983 1.003 29.33 23.75
BF —0.005 0.290 —0.020 0.235
10% 9.95 10.03 3285 6.96 9.61 9.96 24.23 5.72
5% 495 5.00 21.04 3.06 476 499 14.21 2.36
1% 1.00 1.02 700 043 098 1.05 3.88 0.33
p=—0.6
E[LR] 0.996 1.001 27.10 25.04 0.981 1.001 25.57 24.88
BF —0.005 0.083 —0.020 0.028
10% 9.95 10.03 16.61 10.15 9.65 10.01 10.62 9.64
5% 5.00 5.06 932 516 480 502 595 4.76
1% 1.00 101 234 103 094 1.01 1.22 0.87
p=-—03
E[LR] 0.992 0.997 26.47 25.05 0.977 0.997 25.00 24.96
BF —0.005 0.057 —0.020 0.002
10% 9.86  9.94 14.51 10.15 9.62 9.97 10.04 9.3
5% 493 500 796 516 477 499 495 488
1% 097 099 18 1.03 093 099 099 0.97
p=0
E[LR] 0.990 0.995 26.33 25.05 0.975 0.995 24.88 24.98
BF —0.005 0.051 —0.020 —0.004
10% 9.90 10.00 14.19 10.29 964 999 964 993
5% 487 492 758 512 473 497 476 4.92
1% 096 097 1.79 1.04 090 098 093 0.99
p=0.3
E[LR] 0.990 0.995 26.48 25.06 0.976 0.996 25.01 24.97
BF —0.005 0.057 —0.020 0.002
10% 991 998 14.54 10.15 9.66 10.03 9.95 9.85
5% 490 495 7.83 511 472 494 499 492
1% 094 09 18 1.03 08 094 096 094
p=0.6
E[LR] 0.993 0.998 27.13 25.06 0.978 0.998 25.60 24.91
BF —0.005 0.083 —0.020 0.028
10% 10.04 10.13 16.71 10.08 9.78 10.09 11.64 9.58
5% 5.00 5.056 926 497 483 506 591 4.65
1% 098 1.00 234 1.02 092 099 121 091
p=0.9
E[LR] 0.999 1.004 31.34 24.30 0.984 1.004 29.37 23.79
BF —0.005 0.290 —0.020 0.235
10% 9.93 10.02 33.01 694 9.67 999 2435 5.74
5% 5.00 5.06 21.09 3.06 483 5.04 1440 247
1% .05 1.07 699 044 099 1.06 398 0.34

Table 2: Bartlett corrections of tests on the autoregressive parameters in the multivariate

AR(1) model with unknown and known i&@81iance



We consider maximum likelihood estimation as proposed by Johansen (1988).

Divide the variable-vectoX; in two, X;; of dimensionp — s and X5, of dimensions
(< p — r) and the parametersandl’; conformably, that isv = [a, a4]’. We then obtain
the following system of equations:

k-1

AXy =o' X1+ Z Iy AX— + iy (16)
=1
k—1

AXy = oS Xy 1 + Z Lo AXG i + o (17)

=1

Nt
= ~ MIIDN(0,9)), Q=
U’ { } (0.€) {921 Qs

M2t

Q11 Q12 :|

Conditioning onA X5, in equation(16) we obtain the following system.

k—1
AXy = wA Xy + (g —wag) /X1 + Z (T — wloy) AXy; + 71y (18)
i=1
k—1
AXy = ' Xy + Z Lo AX—i + 0o (19)
i=1

iy = [’7” } ~ MIIDN(0,Q), = {
Tot

Q11 — wlyy 0
0 QQQ

where we have defined = 0,95, . Furthermore defing* = (I';; — wl'y, ..., g1 — wlo 1)
and¥, = (I'yy,...,T9%_1). The parameters in the conditional equat{@f) ared.,, =
(a1 — wag, B3, V% w,Q; — wley) and those in the marginal mod€l9) read6,,,, =
(v, B, s, Qss). Beon, @andb,,,,. do not vary in a product space, such that for inference
the whole systenil5) needs to be analyzed.

The following concept will offer a way to analyze partial systems:

Definition 8 There is No Level Feedback (NLF) from the cointegration relati@ds, _;
to AXs5 , whenAX,, does not react to a disequilibrium in the cointegration relations
4’ X;_; that is whem, = 0.

This means that the differencésX,; do not react directly to a disequilibrium in the
cointegration relation. Of course they may still react to past changes in the differences as
under NLFV, does not necessarily equal zero.

If NLF holds, then the parameters in the marginal equation beédme= (¥, Q2s,).
Johansen(1996, theorem 8.1) proves thakif= 0, that is NLF from3’X;_; to A Xy,
then the maximum likelihood estimates @f(and ;) are obtained from the conditional
equation(18) only, as#? . andd..,, do vary in a product space.

There are two moments, one can test for NLF: before and after determination of the
cointegration space. Even though both tests have the same asymptotic distribution under
the null, namelw@(pﬂ) they do not have the same small sample properties.

The first test is the one proposed by Harbo et al. (1998) as an ex-post misspecifica-
tion test after analyzing a conditional system. The second one is a test on the adjustment
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parameters before inference oy is made. If the test does not reject conditional infer-
ence can be made afterwards. First we shall outline each of these tests in turn and their
Bartlett correction. A Monte Carlo simulation study will illustrate the use of the Bartlett
correction in each case and show remarkable differences between the two tests.

6.1 Testing NLF after determination of the cointegration space

Harbo et al. (1998) propose to use economic arguments to determine s(xich) vari-
ablesA X5, do not react to disequilibria in the cointegration relations. Having assumed
NLF from (' X;_; to A Xy, they suggest estimating the rank from the conditional model
(18), as this is maximum likelihood estimator if NLF holds. They then go on and and
restrict the cointegration space, still using only the conditional model.

After this they propose to do a misspecification test to check whether the initial as-
sumption of NLF was correct. Defining; = (' X, this is done by testin@{, : a, = 0

in
k—1

AXy = apZyq + Z Lo AXy i + may (20)
=1

by means of a likelihood ratio test. The parameter space in this matfglis= (az, ¥a, Qo).
The null hypothesis only concerng and not¥, such that we cannot apply theorem 1 di-
rectly. We can however write the expectation of the desired test as the difference between
two tests, that are each special cases of theorem 1.

Define the following three models, which successively restrict the parameter space in
the marginal mode(20):

1. M, : unrestricted parametets, U, and(s,.
2. My :ay =0, butl, and(2,, unrestricted.

3. Mz :ay =0, ¥y = Wy, and(2y, unrestricted.

Let (&2, %) be the maximum likelihood estimators 8f;, and ¥, those of M,.
Then the test that, = 0 in M, that iIsM, in M, can be written as:

L <a2 _0, \If)
L (@2,@)

B L((XQ:O,W) XL(CVQ:O,\D:\IJO)
L(ay=0,7 = T) L (dg, \1/)

LR (M3y|M;) =

This means that the log-likelihood ratio test can be written as the difference between two
log-likelihood ratio tests:

—21n LR (M2|M1) = —21In LR (M3|M1) + 21n LR (Mg’/\/lg)

such that to get the Bartlett correction, we just have to take the difference between the
two expectations. To see how these tests are both special cases of theorem 1, rewrite the
stationary part of the cointegrated VAR mode5) in the following moving average form:
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AX, [ Iy Ty | « 1 AXy [ 1y ]
AX, I, 0 . 0 AX, 5 0
0o -
= + U
AXy gy3 : oot e : AXy g2 :
AXi ko 0O ... 0 I, O 0 AXy g 0
. Ze ] | BT, ... ... ... BTy, fa+IL || Zir ] L 5]
(21)
Y, = DY, + En (22)
n ~ MIIDN(0,Q) (23)

The regressors ioVl; areY; ;. These can be written in terms of thg//DN(0,<)
process), asY;_ = » ., Gim—1-; where

G, =D'E fori=0,1,... (24)

H, = D'EQ? = D'F fori=0,1,... (25)
In the last line we definediH;} by postmultiplying{G, } by Qz, just as we postmulti-
plied {Q;} to obtain{C;} and then expressed the theorems in term&}. Next define

the matrixS which selects the first differences and the lagged first differences, but not the
cointegration relationships froj_; as:

S = [[p(k—lﬁop(k—l)xr}/ (26)

such thatS’Y;_; are the regressors v, and we obtain the following expressions for its
polynomial

N, =S'D'E fori=0,1,... (27)
0, = S'D'EQ: = S'D'F fori=0,1,... (28)

For future reference we also define the variance of the pracess.,,:
Yy, = var (Yy) (29)

In M, the dimension of the coefficient matrix4s< ((k — 1) p + r), whereas inM,
itis s x (k— 1) p. The null hypothesis i%{, : s = 0. Consequently the Bartlett factor
can be used and the expectation of the likelihood ratio is given in the following corollary:

Corollary 9 The likelihood ratio forH, : a; = 0in (19) has the following expected
value:

1
E[—2In LR (Mo M,)] = sr + o (sr+ s*r + sr® + 2rsp(k — 1))

+ %‘l (k=1)p+mrs,{H})— %-[ ((k =1)p,,{0i})

whereH; and O; are defined in(25) and (28) respectively andl is defined in theorem 1.
16



V=Y D'FF'D" Ay=V'S®ISVA A;=(1—A%)"

P=8(SUS)'SU A, =V1PV Ag = (I = A®A™
A =V IFL,F'VY A =V'S'd1SV  Ag = (I, — v;A)
Ay = V'PV-VA Ag =V'dV Agj = (In —v;A) ™"

Table 3: Definition of a number of terms for theorems 10 and 11

The two expression for in corollary 9 contain infinite loops, but due to their structure
{H,} and{O;} in equations (25) and (28) can be simplified, such that the expressions can
be computed exactly.

Let

Uiy, Uy (30)

be the (possibly complex) eigenvaluesiofandwy, . . ., w, the corresponding eigenvec-
tors. Then define:

V:[wl wn] (32)
A= (32)
L Un
ANo=[v ... v, ] (33)
o
A= | (34)
L Un
ba=[1 ... 1] (35)

A number of terms, which are expressed in terms;df ,A,A"°andA® are given in table
3. They are used in the following two theorems.

Theorem 10 If C; = S’D'F for i > 0 then the expression fot in theorem 1 simplifies
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to:
=tr{A4; (A2 @ As) Az (A4 © Ag)}
) Z L tr {A1 (As @ Ag) AsAg;}
—+ Z t’f’ {A A91A5A9]}
; Z?j,m 1 o U

(1 — UJUm)(l — Ul’l)k)
A1 (AQ)jk (AQ) km <A5)mi
+221]km 1 1—U]Um)(1—Uz‘Uk)

+ Z o tr {A1Agi As Agj}

—2 Zizl );; Vit { A1 Ag;i As Ag; }
—2tr { A (Ay @ Ag) A* (A5 @ As) }
—2tr {(A1 © As) A3 (A4 © As) A}
—2tr {(A1 © As) A (A3 @ Ag) A}

where relevant definitions are given in equations (30)-(34) and in tablex3enotes
Hadamard division. For three matrice$, B andC of equal dimensiod’ = A© B is the
matrix with entries:;; = a;;/b;;.

Proof. see section A.12a
Theorem 11 If C; = D'F for i > 0 then the expression fof in theorem 1 simplifies to:
T=1tr{A1AA;AcAAL}

+2 Z; vitr { A1 A A7 Ag Ag:}
+ ZZ]'=1 vivtr {A1Ag;AgAgj }
i {(A414) @ Ag) (45 © 49))
—2tr { A1 A7 A (As @ Ag)}
=3 v {A1AgAc Ao}

where relevant definitions are given in equations (30)-(34) and and in table 3.

Proof. see section A.13m

Both expressions are quickly programmed and as they contain only finite!)dbps
first order expansion of the expectation of the likelihood ratio test statistic can be calcu-
lated exactly.

6.2 Testing NLF before determination of the cointegration space

Under the assumption of NLF from¥ X;_; to A Xy, the parameters of the conditional
model(18) 6., and those in the marginal mod@l) 62 . vary in a product space, such

mar

Note thatl = V ((V-'FF'V~Y) @ (I = A°°A™)) V' such that only finite loops remain for the
expression in table 3.
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that A Xy, is weakly exogenous fgs. The aim of the test for NLF is thus to be able to do
inference ong in the conditional model only.

We can find the Bartlett correction for that test, but once again we need to take differ-
ences between likelihood ratio tests to be able to find a first order approximation to the
expectation of the test of interest. Define the following models:

1. N_; : matrixIT is of full rank p.

2. Ny : unrestricted parameters in the cointegrated VAR, equéfion
3. Ny 8= (oo

4. Ny : a0 = agrp

5. Ny : = fp,a=aw

where¢ andy are(r x r) matrices of full rank.

The difference betwee; and M, is that in M, s (< p — r) rows equal zero and
the others are estimated freely. Ay the whole column space of is fixed. This implies
that LR (N>|N7) is a special case diR (M| M;).

Our interest focuses obR (Ni,|N;y) which can be written as:

LNMd) LNy L(M)

R(Ma‘%) = L(Nz) x L(Nl) x L(M)

(36)

such that we find:
—2InLR (./\/’1@|N0) =+2In LR (N2|Ma) —2InLR (N2|N1) —2InLR (N1|N0)

In this section we have already derived the first order approximation to the expecta-
tion of —21In LR (N5|N;), whereas Johansen (2000) derives that-0fin LR (N;|A\p)
and Johansen (2002a) contains the one-fain LR (N5|Ny,). We can simply add
up the three expectations of these terms to find the Bartlett correction of the test for
—2In LR (N1a| VD).

All three tests concern the whole system of equations, naf&)ybut—21n LR (N3 |N7)
is done in the marginal equation only, as we saw in the last paragraph. Adding up the three
expressions we obtain:

Corollary 12 For unknown cointegration parametgrthe likelihood ratio forH, : as =
0in (19) has the following expected value:

1

E[-2In LR (N, |No)] = 7 (p — 1)+ g (2 4+ 200+ 20%p(k — 1))
2T (k= Dp o () — 2 (k= ) {0)

1 Jn
+ TT’%T {(oz Q la) S\ 1SL}
whereH;, O;, S andX,, are defined in25) — (29) and T is defined in theorem 1.
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Figure 2: Overview of Bartlett corrections in the cointegrated VAR

For completeness we state that Johansen (2002b) derives the Bartlett correction for
the rank test, that is faE R (AVy|NV_1) and graphically represent this information in figure
2.

Equation(36) shows that we are able to Bartlett correct the one test in the diagram, for
which the Bartlett correction has not been derived explicitly. We do stress that whereas
the Bartlett corrections in Johansen (2000, 2002a,b) allow for certain deterministic terms,
the one in this paper does not and is therefore somewhat less general.

6.3 A Monte Carlo study of the test for NLF

We perform a Monte Carlo study of the two tests for no long run feedback and use the
following 5-dimensional Data Generating Process:

¢1 (L) X1y = e
P2 (L) Xot = €94
g(L) Xy =eu fori=3,4,5
eg~ MIIDN(0, 1I,)

where
o (L) =TI, (1 —oul) w1=[o6n ... du ] maz(pyl) <
by (L) =TIy (1= duL) @2=[m ... o] maz(|ém]) <1
gL) =TI (1—gL) ~v=[g - ]  maz(lg)) =1

The first two variables are stationary, whereas the last three each contain exactly one unit
root. As the calculation of the Bartlett correction is computer-intensive (in a simulation
framework) and in order to keep the size of this experiment under control, we have opted
for a benchmark case and then varied one or two aspects of the benchmark DGP.

When we rewrite the model in the equilibrium correction faif), thena andg take
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(4 known (corollary 9) 5 unknown (corollary 12)

Wy whe Wy whe

o 0. 0, o 0. 0,
Experiment 1 E[LR] 6.71 6.07 6.08 6.10 11.49 7.68 8.65 9.21
1 = [0.8,0.6] BF 0.106 0.496
w2 =10.8,0.6] 10% 148 104 104 105 51.0 19.8 279 326
v =11,€ 5% 8.0 52 52 52 376 105 164 21.0
T =100 1% 1.8 07 07 08 165 1.8 4.2 6.7
Experiment 2 E[LR] 628 596 597 597 853 6.83 7.08 7.28
¢1 = [0.8,0.6] BF 0.053 0.248
w2 =[0.8,0.6] 10% 11.7 98 98 98 270 147 16.35 17.9
v =11,€ 5% 63 53 53 53 172 86 95 108
T =200 1% 20 14 14 15 72 24 2.8 3.3
Experiment 3 E[LR] 6.09 593 593 593 691 6.15 6.21 6.27
©1 = [0.8,0.6] BF 0.026 0.124
w2 =[0.8,0.6] 10% 11.0 10.0 10.0 10.0 16.2 11.0 114 11.8
v =1,€ 5% 54 48 48 48 87 56 56 6.1
T =400 1% 1.0 08 0.8 0.8 26 1.3 1.4 1.6
Experiment 4 E[LR] 746 6.11 6.25 6.31 1259 7.82 9.08 9.72
©1 = [0.8,0.6] BF 0.221 0.611
@9 = [0.8,0.6] 10% 212 116 11.6 122 59.0 20.1 31.6 36.6
~v =[1,0.6] 5% 120 58 58 6.3 453 100 184 244
T =100 1% 3109 09 10 216 23 5.5 7.7
Experiment 5 E[LR] 6.74 6.06 6.07 6.09 13.03 7.19 9.54 10.29
¢1 = [0.8,0.8] BF 0.112 0.812
w2 =[0.8,0.8] 10% 14.8 10.3 103 104 61.7 150 356 42.1
v =11,€ 5% 82 54 54 5H6 473 6.7 231 282
T =100 1% 1.8 09 09 09 248 09 59 102
Experiment 6 E[LR] 648 6.08 6.06 6.06 9.78 7.28 7.80 8.13
1 =1[0.8,—0.6] BF 0.066 0.343
w2 =[0.8,—0.6] 10% 13.1 10.2 10.2 10.2 379 17.0 21.7 24.0
v =1,€ 5% 6.8 53 53 53 252 93 122 149
T =100 1% 1.8 1.3 13 1.3 9.6 2.0 2.9 4.3
Experiment 7 E[LR] 6.45 6.02 6.01 6.01 722 628 6.34 6.39
¢1 = [0.6,—0.6] BF 0.072 0.150
2 = [0.61, —0.61] 10% 13.4 10.7 10.7 10.7 188 124 129 13.6
v =11,¢ 5% 74 54 54 53 112 60 62 64
T =100 1% 1.2 08 0.8 0.8 25 1.2 1.3 1.4
Experiment 8 E[LR] 792 634 6.41 6.45 1437 853 9.87 10.65
¢1 =[0.8,0.6,0.2,0.2] BF 0.250 0.684
wo =[0.8,0.6,0.2,0.2] 10% 23.5 125 125 127 67.6 272 38.1 438
v =[1,€ €6 5% 147 67 67 70 547 162 256 31.2
T =100 1% 4.7 12 1.2 12 318 41 845 126

Table 4: Bartlett corrections for two tests of no level feedback in the cointegrated VAR.
The variations with respect to Experiment 1 are given in bold face. 10~ (If ¢ were
equal to zeroP would be of reduced rank in the DGP)
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the following values:
’ 11 0 0 00 ;.
O‘_{ 0 amn 00 0}’ 5_{

k

app = Z ¢1; — 1
=1
k

Q22 = Z P2 — 1
i=1

We vary the following aspects of the DG: (the number of observations}, (the
number of lags) ang;, o, and~. For each experiment we report two tests (in their
uncorrected and corrected versions): the test that the last three rows of the adjustment
parameters are zero for known cointegration spaeand for unknowrs. UnderH, both
tests asymptotically have @-distribution with six degrees of freedom and the Bartlett
correction for the first test is given in corollary 9.Corrollary 12 provides the expression
for the second test.

Each of these Bartlett corrections depends on the parameters of the model. We calcu-
late the Bartlett correction based on

1. The true (DGP) value of the parametets,
2. The maximum likelihood estimates of the parameters uﬁdﬁ;ér.

3. The maximum likelihood estimates of the parameters under the alterrative,

Omtzigt and Fachin (2002) argue that for the test of corollary 12 one needs tq use
aslimyp_ootr (o/Q*la)_l S’LE;;SL} is not defined under the alternative. Their point

does not apply to the test in corollary 9.

The simulation is based on 2000 replications and for each test we report the expected
value of the likelihood ratio test, as well as the expected value of the Bartlett corrected
test based oA, 6, andd,.We also give the Bartlett factor based@nrs before we report
the empirical rejection probabilities at the nominal 10%, 5% and 1% level.

In the benchmark model (experiment 1), both stationary variablgsand X, have
relatively large residual roots @t6 and 0.8. The other three series are pure random
walks’ and we have 100 observations. The first block-row of table 4 shows that the
Bartlett correction in the test for knowfi performs well: at the 5% nominal level, it
corrects from 8.0% to 5.2% for all three Bartlett corrected tests. For unkrbihe
results are different. The original size distortion is considerably larger, as the empirical
size of the asymptotic test at the nominal 5% level is 37.6%. The Bartlett correction
based on the true value brings this down to 10.5%, but those based on the restricted
and unrestricted estimates only bring it down to 16.4% and 21.0% respectively. Even for
T=200 (experiment 2) the corrected test remains size distorted. Four hundred observations
(experiment 3) are needed for the corrected test to reach a rejection probability close
to 5%. In experiments 4 and 5, the smallest residual roots in the non-stationary and

2There are one or three very small extra small roots in the polynomial, whigh-are)—*. They serve
no other purpose than to ensure invertibility of the madrix
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stationary variables respectively are raised. The Bartlett correction for the test based on
known 3 continues to perform well, but the one based on unknpwioes even worse

than in the benchmark case. If the roots are more scattered on the real line (experiment
6) or inside the unit circle (experiment 7), the performance of the Bartlett corrected test
with unknown 3 is more acceptable. The size corrections perform worse with a longer
lag length (experiment 8), which is in line with the findings in Omtzigt and Fachin (2002)

Overall the Bartlett correction performs better wheis known than when it is un-
known, though this may be specific to the Monte Carlo design chosen and the larger size
distortion of the non-corrected test.

In figure 3 we give the QQ-plots of the uncorrected and corrected test in experiment
1, based on 20000 replications. We observe that the plots on the left hand side, which
correspond to corollary 9 are straight and that all three corrected test virtually coincide
with the 45 degree line, showing the effectiveness of the Bartlett correction. The plots
on the right hand side correspond to the case wivele unknown and in none of the
four plots does the empirical QQ-plot coincide with the 45 degree line. However all four
plots are almost straight lines. (In the bottom two rows, the Bartlett correction depends
on the estimated parameters, such that the Bartlett correction does not just rotate the QQ-
plot. Potentially it can also change the curvature). The relatively straight line and the
fact that the correction functions with 400 observations are consistent with the view that
a higher order expansion of the expectation of the likelihood ratio test is needed in this
case. Nielsen (1997) and Johansen (2002b) provide examples of Bartlett corrections in
which higher order terms are needed to make the Bartlett correction function.

7 Conclusions

We have derived the Bartlett correction for a simple hypothesis on the regression param-
eters in a multivariate stationary autoregressive process. Three applications illustrate the
use of the correction: the test for absence of autocorrelation of any order, a simple hy-
pothesis on the autoregressive parameters and two tests for no long run feedback in the
cointegrated VAR model. In the first of these last two tests, the cointegration space is
known, in the second it is not. In all sections explicit expressions for the Bartlett correc-
tion are given.

The Bartlett correction performs well in all simulation studies, except in the one of
the last test, that is a test for weak exogeneity in the cointegrated VAR with an unknown
cointegration space. In that particular case a second order expansion might improve the
Bartlett correction.
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A Derivation of the main results

In this appendix we prove theorem 1 and 2. In the first subsection we derive a number
of useful lemma’s, which will be applied over and again in the theorems. Then theorem
1 is derived. Theorem 2 is derived in subsection A.11: the short proof is in some way a
special case of theorem 1. Theorems 11 and 10 are derived in subsections A.13 and A.12
respectively.

A.1 Lemma’s

To prove the two theorems and their corollaries, we shall state a few useful lemma’s. The
first one states that in all the estimation problems we consider in this paper, the Ordinary
Least Squares (OLS) estimator and Maximum Likelihood (ML) estimators coincide:

Lemma 13 If A varies unrestricted in a product space, thatiss R"*(¢*7) in the model:

Yi o Ay €t
RN @)
ey~ MIIDN(0,Q)

then the maximum likelihood estimator.4f A and the OLS-estimator of, A coin-
cide. Furthermored, = A,

Proof. In the first sub model;, = A X, + ey, 41 = (X'X)"" X'Y; whereas in
the full model (37) A = (X'X)~' X'Y which impliesA; = (1,0)(X'X)"' XY =
(X’X)~' X'Y;. Therefore the OLS estimators in the two small submodels coincide with
the OLS estimator of the large model (37)
The variance-covariance matrix @feu 0 ]/ is trivially block-diagonal with2 and0 as
diagonal elements. Therefore maximization of the likelihood function of (37) is the same
as the separate maximization of the likelihood functions of the two submodels.
In the second sub mod&h, = A,X;,Ay = (X’X)*1 X'Y, = A, as we are estimating
an identity. This estimator trivially equals the maximum likelihood estimator. The ML-
estimator of the first submodel equals the OLS-estimatot,as R"*? m

Next we state two standard result on the products of the errors in the multivariate
normal distribution:

Lemma 14 Lete; = [¢),,¢h,]',1 = 1,...,T be(n x 1) vectors, distributed i.i.dy (0, I,,)
and letey; be of dimensiog < n. Further letM be an(n x n) matrix.

Then: on i
i1 tr{M}y ifi=
EleiMe;] = { 0 otherwise
Litr {M} if i=1+4j=k
E[D] = E [ege;Meyely] = < Mb, ifi=k#j5=1
Mas if i=j£k=1
0 otherwise
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Proof. Firstlets; = [ e} ¢ - & | eo = [ ™ ... e ] and denote the
element in rowz and columnb of matrix M asm<. Then letL,,, = [0, I,]. Throughout
we use the fact that the first and third moment of this normal distribution are zero and that

E [e?ej

bl =1iff a =bandi=j.

o BleiMei] =B [0, Xp gm®e] = B[y o efme]] = tr {M}

If i = j # k=1, thenE [eye Meyely| = E [egicl] ME [eyehy,] = LML = My
If i =1+ j =k thenE [eye Meyel| = E [eaieh,] tr {M} = Itr {M}
If i =k # j =1 thenE [egeMeyel| = E [ege]] M'E [e;eh,] = LM'L' = M3,

If i = 7 =k = [, ConsiderD* = L'DL. Then only the entries in the lower right
hand part of the matrix are non zero.lddte the Kronecker delta, such thigl = 1

iff « = 3 and zero otherwise to findd***] = (1 — d,,) E [(e?)Q (m 4+ mbe) (e?)z] +
oo | (€ ()" Spy i+ ()
= (1= da) (M +m™) + dap 2 m™ + dgp3m® fora,b >n —q+1

otherwiseE [d***] = 0
We thus find thaty [D*| = L'ML + L'M'L + L'L x tr {M} .
E[D|=M+ M + 1, xtr{M}.

If we have ac—vector, whose index does not coincide with the index of another
e—vector, then by independence the expectation of the whole expression becomes
zero.

Lemma 15 Lete; = [ey;,e9],i = 1,...,T be (n x 1) vectors, distributed i.i.dv (0, 1,,)
and letey; be of dimensio < n. Further letS be an(q x ¢) matrix and_L,y,, = [0, I,].
DefineS* = L'SL. Then:

S*+ 8+ Litr{S} ifi=j=k=I

Ltr {S} if i=1#£j=k
E D] = E [eig);Seare)] = ¢ S if i=k#j=1
S if i=j#k=1
0 otherwise
Proof. Firstlete} = [ ¢ ¢ -+ ¢ |, ey = | AL | and denote the

element in rowz and columrb of matrix .S ass?.

o Ifi=j#k=1IthenkE [e;ch;Seae]| = E [eieh,] ME [ege}] = L'SL = S

o Ifi=1+#j=kthenk [eyeMepelhy] = E [enich,] tr {S} = Ltr {S}

o Ifi=Fk+#j=I1thenE [@ieg-Makg’QJ = FElegel] M'E [éjggj} =LS'L =5¥
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e Fori=j=Fk=1,etdy=11Iff o, > n — 1+ 1 and0 otherwise then
E [61;8’%58%5’2}

= B (@) ()" iy (60" s | (1= ) (6" () (&)

0 (1= 2) B [ (e0)? ()" Sy 8| + (1= 8n) (1= 82) 0
such that we find? [e9;¢}Se;ey,| = S* + S + I,tr {S}

¢ If we have az—vector, whose index does not coincide with the index of another
e—vector, then by independence the expectation of the whole expression becomes
zero.

Lemma 16 Lete;,i = 1,..., 7 be(n x 1) vectors, distributed i.i.dN (0, I,,) and M and
N (n x n) matrices.

Then:
tr{MN}+tr{MN'} +tr{M}tr{N} ifi=j=k=1
tr{M}tr{N } if i=j#k=1
EleiMejeiNej] = ¢ tr{MN'} ifi=k#j=1
tr {MN} ifi=1#j=k
0 otherwise
(38)

Proof. We proceed as in the last two lemma’s and refer to them for notation:

o Ifi=j+#k=IthenE [c]Me;e;Ne)| = E [e;Me;| E e, Ne)] =tr {M }tr {N}

Ifi=1+#j=kFk thenE[cMe;e;Ne)| =tr {MN}
o Ifi=Fk+#j=IthenE [c[Me;e} Ne|| = E [e;Meje;N'ey] = tr {MN'}
o Ifi=j=Fk=IthenE[c[Me;e; Ne|| = E [e[Me;e;Ne]

_FE [Zabcd € mabebecncded}

= B[, () m*n] + E {z’;,czl (€)% (€5)° mn]
B {za ot (€0) (€)? (e 4 mobie)
= tT{MN} +tr{MN'} +tr{M}tr{N }

¢ If we have a=—vector, whose index does not coincide with the index of another
e—vector, then by independence the expectation of the whole expression becomes
zero. Throughout we have used the fact that the first and third moments of the
normal distribution is zero.
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A.2 Proof of Theorem 1

We first consider the model of theorem 1, which concerns a simple hypotigsist =
Ao
Y, = AXy + (39)

where

Xy = Q(L)Tlt—l
m= [ ny] ~MIIDN(0,Q)

where, is of dimensionn, whereasn,; is of dimensiong. Furthermore undet,
H =Y — XA, where with capitals we denote the stacked vectors.1 For instenee
[yl, ce ,yT]/,U = [521, ce 752T]/ , H = [7’]21, R ,T]QT]/. Also Eop = Q;f?’]gt and g =
Q_%nt.

Itis well-known that the ordinary least squares estimator and the maximum likelihood
estimator coincide in this model, such that the maximum likelihood estimator can be
written as: A = A + (X'X) ™" (X’H). We substitute this in the likelihood ratio test for
Ho : A = Ay and expand it, keeping only first order terms:

—2InLR(A = Ay) = —Tlog|(Y — XA (Y — X A)||(H'H)|™"

1 1\ 1 1 1
— Tlog|l, - (Q§2U’UQ§2) <Q§2U’X> (X'X)"! (X’UQ§2>

= Tlog |1, - 2 (V)™ (U'X) (X'X) ™" (X'U) 3,

= —Tlog |7 | |1, — 5 (U'U) 7 (U7 X) (X' X) TN (X'U) 5| |03,

— _Tlog|l, — (U'U) " (U'X) (X'X)" (X’U)‘
=T\l — K|

1 1 2
f— —_—
tr(K) + 2Ttr([§ )

where we have definell = 7 (U'U) " (U'X) (X'X) " (X'U) .
The probability limits of the two matrices, whose inverses ehieare:

(%U’U) L,

1 / P - /
(TX X) S0 =Y C,C)=Var(X,)

n=0
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and their first order expansions are:

()= (o o 3e))

1 1 2
é@+<@—ﬁﬂ0+(@—ﬂﬂ0 (40)

1 -1 1 -t
—X'X) =(d-(d-=X'X
T T
1 1 1
PLlid (D =X'X )P 4+d (D= X'X )P (D—=X'X)D!
T T T
(41)

Using(40) and(41) we can write the first order expansion of the expected valué€ of
as:

Er(K)] £ tr {E (%fo) o1 (%X’U) }

(o) oo (o)

e () ot (o g o (o)
o) o) o oo ()
(e300 (o) ()}
+w{E(§?Ux)@4(¢—%XW)¢4(¢—%Xx)¢4(j%xw)}

The names of these terms shall be to Dg. Together withE [¢tr(K?)] these terms
form the expansion of the expectation of the likelihood ratio test. Their expectations are
worked out one by one in the following pages.

A.3 Derivation of D,

1 1
triE|—=UX|®o"'—=XU
{ (vT ) <\/T )}
T [e'e)
1 ! — /
=tr {E T E E 52t5t—l—CCC(I) 107755_1_77525]}

t,s=1¢{,n=0
There is only one way in which this terms gives a non-zero expectatiers,n = (. We
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then get:

E

1 T
tr {?E Z £5.E2s
s=1
=qxtr {Z 03@104}
n=0

=qxtr{l,}
:q’n

Z 6ls—1—ncé(D_IGC€S—1—n] }

n=0

A.4 Derivation of D,

tr {E (Iq - %U’U) (%U’X) ! <%X’U) }

T 00
1 _
= —tr {ﬁE E E (627«5/% — Iq) 521382717(0&(1) ICngs—l—Wa/Qs}

t’s?/]":l <777:0

There are two ways in which this combination gives has an expectation of aﬂ(a%x}a‘t
Eithert =s=r andp=(_ort=sands—1—-n=t—1—-(=r.

A.4.1 The first combination

t=s=r andn =
| find

1 T T

/ !/ /

—tr ﬁE E 825825825825—2 EsEy
s=1 s=1

_ —tr{% (T(q+1) x I,) x tr{]n}}

E

Z 8;_1_770,/](1)10778517]] }
n=0

where we applied lemma 14 in the second line.

[ Do = -5 |

31



A.4.2 The second combination

t=sands—1—-n=t—-1—-(=r.
Here the reasoning goes as follows:

-1 !
{T2E E E (gargy, — Iy) eier 1 (CLP C’naslnaQs}
t,s,r=1(,n=0
T
-1 !
§ :625 1- 7785 1-n 77 085 1- 77523 1-n E :825823
s=1
T
-1 /
E 8s 1-n r] Céfs 1-n § :623625
s=1

:_tr{TlQ ((n+2)><[q)><(Tx[q)}+%

2q
T
where we have applied lemma 15 in the third passage. We thus conclude that

— _Z
D22_ T |

A.5 Derivation of Dy

tr {E (%U’X) o1 (cb — %X’X) ot (%X’U)}

T o)
1 _ _
— —tr {szE E E 2611 Ce® O (evm1-kEly_1_\ — Ourln) C1® 107785_1_7]6,28}

t,s,v=1(,n,k,A=0
There are five ways in which this expression gives an expectation of aﬂ(a§$t
l.s=t=v—-1-A=v—1—kandt—1—-(=s—1—nand\ =k
2.s=tandt—1-(=s—-1—-n=v—-1-A=v—-1—k

B v—-1—-rk=s—-1—-n#v—-1—-XA=t—1—ands =t (also change and\ to
get two combinations in total)

4. s=v—1—randt=s—1—npandv—1—- X =t —1— ( (also change both
and )\ and¢ andr for four combinations)

5.t=v—1—k ands=v—1—Xandt—1—- =s—1—n (also change and),
deriving two expressions)

These five combinations, some of them consisting of subcombinations, shall now be
dealt with one by one:
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A.5.1 Derivation of Ds;
s=t=v—1—-A=v—1—-—rand{ =nand\ =«

T 00
1 _ _
—tr {ﬁE E E VAR O/ 1c. (61,_1_,{6;_1_)\ — 5“[“) C\® 16’7755_1_775'25}

t,s,v=1(,n,k,A=0
1
—1ir {7T2E
= ! 2T I* C' o
= —tr T2 X Z
_ 2y {37, coe } }
T k=0 " "2

where we defined thg: x n) matrix I as:

., [0 0
[q_{o JJ

}

E ii(]’ Oy, Cr@TIC

k=0 n=0

T T
/ / /
g €5€94€25E5 — E Ie.es

s=1kA

‘ D3, = —%tr {[ZZO:O C;(I)_lcﬁ]m} H

|

A.5.2 Derivation of D3,
s=tandt—1—-(=s—-1-n=v—-1-A=v—-1—k

T 0o
1 - —
- {ﬁE Z Z 52755:5—1%0&@ 'Cy (61,_1_,{82}_1_)\ - 5m\]n) Ci\® 107758—1—77525}

t,s,v=1(,n,k, =0

— —%E iegsags ZZ& (eucy, — 1) Cr.® ' Chey
s=1 k=0 =0
% ZZ& O Crenel, Ch® ' Creu | + E ZZe OICLCLPT Cen
k=0 n=0 k=0 n=0
IS e {(cec)) - LS (e a.ceic,)
k=0 1=0 #=0 1=0
%ii tr {(CLo7C) ) + £ E;t ehot N}

where we have applied lemma 16 in the third passage, such that we conclude that the total

contribution of D32 is equal to:
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Dy = & 5% 3% tr {(c,;@—lcﬁ)Q} — LY S 2 {(CLETIC,))

A.5.3 Derivation of D33

First combination This is the way to derive the first combination of D33
v—1l—-A=s—1—-n#v—1—k=t—1—Cands=t,rk#\
which means that:

[CHA=n+r,k#N]

T 00
1 _ _
—tr {ﬁE E E VAR O/ o (61,_1_,{6;_1_)\ — 5“[“) Ci® 16’7755_1_775’25}

t,s,v=1(,n,k, =0

T
=Y Y {E el Qe e e e )

s k+n=A+(¢
KFEA

= -2 >t {aen Gl (a0,
K+N= ¢
KFEN
So the total contribution of the first part of the D33 term is:
q _ _
—7 D tr{cerCr{ceTc))
n+n;§+€

Second combination v—1—xk=s—1—-n#v—1—-A=t—1—Cands=1t,k # \
Stated alternatively:

(CHr=n+XA,k#)]

T 00
1
—tr {EE Z Z 521&5;_1_CC£®_10K (811—1—1@5;_1_)\ — 55)\-[71) C;q)_lcnﬁs_l_ng/%] }
t,s,v=1(,n,k,A=0
— —%tr E Z ggiliccé(bilc'%gv*l*ﬂg;f17)\Cé\®71Cné\sflin (42)
An=r+(¢
KFEX
q . )
An=r+C
KFEN
Total

The total summation abs; is equal to:
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_% EA—FZ:’;\J'_C tr {Céq)_ICHC;(I)_IC)\}

A.5.4 Derivation of D3y

First combination s=v—-1—krkandt=s—1—npandv—1—-A=t—1-
Note thatx # A and

A=r+(+n+2]

o

T
Z Z AR on (ev,l,,{eg_l_A — (5“[”) C&@lc’neslnsés] }

t,s,v=1(,n,k, =0

o0

-1 / I FH—1 /
E 216t 1 (OO Crep1-rEy 1 zCO\P ™ Crgs_1-nen,

T
s=1 {,n,k=0
T 00

1
= —tr{szE 52s5v 1-wCn® ™ Ceercel ACoicint2®” 'Cheemtm 775215]}
1 oo
-1 -1
=gl § Ch®™ OOl iy Oy
Cvnvﬁ’:O 22

The second combination s=v—1—-Xandt=s—1—pandv—1—k=t—1-(
Note thatx # A and

| k=A+(+n+2]

T 00
1
o {ﬁE Z Z 521552717CC£(I)710,4 (51)717%5;—17)\ - 5,{,\1'”) Cﬁ\q)lCﬁESlng%] }
t,s,v=1(,n,k, =0
1 T 00
—tr {772 Z Z E [5;_1_4(72(1)_1C,\+<+n+2€v,1,,§] E [egtes - 77] C;@_lCAE [Eles/ZS]}
s=1 CpA=0

1 oo
= Z tr {CL® ! Chyeampa} tr { [C;z(bflck]m}

¢n,A=0

The third combination t=v—1—-rkands=t—1—Candv—1—-A=s—1—1n
Note thatx # A and

(A=r+(+n+2]
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T 00

Z Z VAR O/ 1O, (sv_l_ﬁsg_l_A —5m\[n) C’A(I)_lc’nss_l_ns'%]}

t,s,v=1(,n,k, =0

1

1 o
= —tr {7722 Z E [52755'0 1- n} C;@_ICCE [5t—1—<5/23]E[ €v-1-2Ci +etn+2® 107785—1—77]}
¢,m,k=0

t=1

1 & '
:_f Z tr{[C’ 104]22}257"{ H+C+n+2 10’7}

¢n,k=0

The fourth combination t=v—-1—-Xands=t—1—-Candv—1—rk=s—1—n
Note thatx # Aandk = A+ (+n+2

T 00
Z Z EotEh 1 CCC o0, (a, 1 k€ 1y 5/{)\In) C’A@_lCnas_l_ne’QS]}

1 T 0
= —tr {_QZ Z E [engy 13 X7 ChE [esmiopey 1] Chycinta®” 'CE [52&145/23]}

Total The total contribution of D34 is therefore:

D3y = _% Z?n,n:o tr {[Cl el 22} tr {C;+C+n+261>‘10,7}
_% szn,/\:o tr { [C/ o-IC C’f\+<+n+2© 1Cd 29

A.5.5 Derivation of D35

First combination t=v—-1—x ands=v—-1—-Xandt—-1-(=s—1—-—nand

K #£ A

K+ C=n+A]
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—_

T2

Z Z AR . (sv_l_ﬁsg_l_A — 5m\[n) C’A(I)_lan—:S_l_ns'QS] }

t,s,v=1(,n,k, =0

1
—2 E[Sgtf:v 1n) CLOTICLE [g4o1-cey_y_,)| Cr @ CONE [ey-1-2Eh)
t=1 )\—l—r] H-l—(

[c ol o)

—%Z > Y w{lCe o], |

0 A=k+1 n=0

3 (e Gt )

Second combination t=v—-1—X ands=v—1—-xkandt—1—-((=s—1—nand

K # A\

|l k+n=C(+ )|

Z Z EotEh 1 CCC oo, (&, 1 wEh 15 — Ourln )C’A o1 Es—1— 778251}
t,s,0=1(,n,k,A=0

The total contribution of D35 is therefore:

RS (T
_% Zz?a,(:o tr { [Cé+n+1q)_10€+a+1céq)_lcﬁ} 22}
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A.6 Derivation of Dy

tr {E (Il — %U’U) <%U/X> ot (CID — %X’X) ot (%X’U)}

T o)
1 _ _
= tr {EE E E (e2rgh, — Iy) €261 (CL P o (gv_l_,{sg_l_A — 55/\[71) P 10,755_1_775'25}

t,s,r,v=1(,n,k,A=0

| only find one combination in this case:

t—1—-(=s—1—npandv—1—-X=v—1—k =r which implies that\ = .

Take the four separate terms one by one, starting with the case in which we take both
identity matrices:

T o)
1 _ _
tr{ﬁE E E VAR O/ HoNeKX:: 16’455_1_45’%}

t =1 ¢,\=0

Then

3

T o)
1
— tr{ E Z Z 5%5’27,52156;1CC’éCI)_lCAC’QCD_lCCas_l_Cs;t}
1
T

T o]
1 -1 -1
—tr{—3EE E 52158:571{0&‘1) Crere, O\ @ CC€5145/215}
t,r=1¢,A=0

1

and the most complicated one:

T 00
1 —1 —1
tr {ﬁE E E 82715/2748%6;71740&(1) Cvflf)\c?rg;ﬂc’;flf)\q) Cn‘gSle/Qt}

tr=1¢,A=0

T )
1 _ _
:tr{ﬁE E E leaeely] €arenCpy @' Creepy_cely O ® 1CU1)\STE/2T}

t,r=1{, =0
_ 2 N C.o~iC !
= ?tr ; [ ¢ d 99 + fqn

The total expression then becomes equal to:

D, = 2t {22, [Clo i, }
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A.7 Derivation of Dy

w{e (1, o) (%m) o ()]

{T?’E Z Z EayEh, — 1g) (€205, — ])sgtsg_l_CC’é@_l07’755_1_,75’25}

t,s,y,r=1(,n=0

Here | find only one combination:
y=rs—1—-n=t—-1-(t=s

T o0
1 oy
tr {FE g E (e208h, — 1Ig) (e2reh, — Iy) nel_y_CLOC z—:t_l_cz-:’%}

= %t’r {L,} tr{E[(e2,85, — I,) (e2r85, — 1,)]}
1 2
== (ng + ng*)

Therefore:

| Ds = 7 (ng +ng*) |

HIH

A.8 Derivation of Dy

tr {E (%U’X) ot (@ — %X’X) ot (<I> — %X’X) ot (%X'U)}

= —Etr { Z Z 52t€£_1_CCéq)710v7171@ (50717145;—1—)\ - 5NAIn) 01,1—1—)\@71

t,s,v,w=1 {,n,k,\a,0=0

X Co (Ew-1-ably_1_g — Oapln) C4® ' Cres1nel}

The combinations, which give non-zero expectations of ogctmn be logically subdi-
vided in three groups:

1. The (ey—1-x&)_1_x — Oxaln) @nd (ew_1-a€),_,_5 — 6apl,) all coincide. At the
sametimes =tandt—1—-(=s—1—n.

2. One ofg,_, , ande,_,_, coincides with one of,, , , /e, ;5. The two remain-
ing ones then also coincide. Obviously we have two different combinations and
s=tandt—1—-(C=s—1—n.
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3. ¢/ coincides with one of,_,_, ande]_,_,. £,_1_, then coincides with the other.
Similarly ¢, ande}_, ¢ each coincide with one af,_;_, /<], | _5- Note that there
are eight of such combinations, which are listed one by one below in the derivation
of C63

Each of these possibilities shall now be dealt with in turn.

A.8.1 Derivation of Dg;

_Etr { Z Z 2611 Ct® Ol (eym1-ntly_y_y — Oualn) CLO 7!

t,s,v,w=1{,n,Kk,\a,3=0
1
X Co (Ew—1-ably_1_p — Oapln) CH@ ' Cres1_yeh, }

For the first combination,wehave- 1 —(=s—1—-n,s=t,v—1—rk=v—-1—-\A =
w—l—a=w—-1-0F=y
which can be rephrased as:

’s:t,gzn,a:ﬁ,ﬁ:)\‘

w can also vary.
For simplicity we shall just use thé  for now.

Ztr {emer_1_CLO7'C (e, — 1) CLO™!
xC, (Eyzs; — In) C(;CD_lCcet_l_Ce’Qt}

= %tr {Z Co@7'Cy (48, — 1) CLO ' Cy (g2, — In)}
q A q o
-1 ;mﬂ [Clo'C ) + ftr; {(cromcy)’)

So we have that the total is equal to:

Dot = 4 X, {CL0 7'} + 4r S, (Cho' 6"

A.8.2 Derivation of D¢,

—Etr{ > Z eae)_1_CL®Cr (ep1-nEl_y_y — urln) RO

t,s,0,w=1 ¢,n,k,\,a,8=0
X Co (Ew-1-abiy_1_5 — Oapln) CH® ' Cres1yeh, }
There are two combinations:
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l.t=sn=¢(,
v—1l—-rk=w—-1-«
v—1-A=w—-1-0
K #£ A

2.t=s1n=¢(,
v—1l-A=w—-1—-«
v—1l—k=w—-1-0
KF# A

First combination This combination implies that:

| B+r=a+ ) \r#\]

T 00
1 _ _
ﬁEtr g E g en€y_1_Ct® ' Crep1_pel,__,Ch0 7!

t,v,w=1 (=0 f+r=a+A
TN

X Cagw—l—agiu—l—ﬂcflx-M—nq)_lCégt—l—églzt}

= L gty Z D Crey1-nely 1 Z\C\D ' Cotuwoi—atly_1_5Ch

T
B+r=a+A
KFEX

Sk X S DINEL peNeR el
B+r=a+A
RFEA

Note that this expression is exactly the opposite of expression D33. So we conclude
that the expectation of this combination is equal to:

T Y G007,
B+r=a+A
KF#A

Second combination Combining the conditions, we obtain:

| B+A=a+rKK#N]
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tr {E (%U’X) o1 <c1> - %X’X) ot ((I) - %X’X) ot (%X’U) }

= —Etr{ Z Z ency 1 CL® ' Crep1_pel, 1 RO

t,v,w=1 (,k,\,a,5=0

x Caaw—l—agiu—l—ﬁcéfwmq)_lCﬁgt—l—ﬁgét}

Total

> {Cpe'C Gt {0 CLY

B+ =a+k
KFEA

The total expectation of this term is therefore equal to:

D62 = %t?“ Z,?i)wa:o {C;Jr/\iﬁq)iloﬁczyq)ilg)\}
KFEA
HA S iratn tr {4010 tr {CL 071}
KZA

A.8.3 Derivation of Dgs

tr{E

(%U’X) o1 (<I> — %X’X) ot (<I> — %X’X) ot (%X’U)}

— —Etr { Z Z 52t€;71740é<1>*10,€ (gy,l,,ﬁ&:;flfA — 5,{,\1,1) CLe!

t,s,v,w=1{,n,k,\a,=0

xC,, (&tw,l,aeziﬂ,l,ﬁ — (Sagfn) C’g@flCngs,l,na’Qs}

There are eight possible constellations, which give rise to first order terms:

l|ls=w—-1-0 s—-1—-n=w—-1—-a|t=v—1—kK [t—1—-(=v—1—-X
2.|ls=w—-1—-a s—1—-n=w—-1-F|t=v—-—1—k |[t—-1—-(C=v—1—2A
3|s=w—-1-0 s—1—-np=w—-1—-a|t=v—-1-X |t—-1—-(C=v—-1—k
4 |ls=w—-1-a s—1—-n=w—-1-F|t=v—-1-X |[t—-1—-(C=v—-1—k
5|s=v—-1—-k s—1—-n=v—-1—-X |[t=w—-1-0|t—-1-(C(=w—1—«
6 |s=v—-1-X s—1—-n=v—-1—k |t=w—-1=-F|t—-1-(=w—-1-a
7|s=v—1—-rk s—1—-n=v—-1-\|t=w—-1-a|t—-1-(=w—-1-7
8|ls=v—-1-X s—1-n=v—-—1—k |[t=w—-1-a|t—-1—-(C=w—-1-7
In all of these eight constellations we have that \, o # 5. We shall now take them
one by one:

First combination This combination implies that:

la=f+n+land=k+(+1]

42




1 _ _
ﬁEtT‘{Zgztc‘f;_l_CC&qD 1CH€U_1_H€,/U_1_>\C$\(I) 1

/ ! —1 /
xC, sw 1—abhy_1-gCEP  Cres1_yeh, }

EtrZ{egtsv L Cr0 0y cel 1 \Ch® ' Cotn 1 a
€s—1— nCnCD Cﬂé‘w,l,ﬁé%}

1 _ _ -
= Ttr{ > [CLeTCCL 1@ Caya O 105]22}
ﬂ7777h:7(

Second combination

| B=a+n+landd=k+(+1]

_EtT{ZEQtEt 1— CC/ 10/@51)—1—&5;_1_,\0;\@_1
xC. 5w 1—afp_1_3ChP o-1C 58,1,,,5’25}

EZtr {enel, | ClL.O ' Crepr_cel,_|_\ChP ' Cotuyi—ahy b X
tr {5w—1—ﬂcﬁ 1077537177]}

= f Z tr { [C;q)ilccqlﬁﬁﬂq)ilc }22} tr{ at+n+1 71077}

Third combination

la=f+n+lands = A+ (+1]

1
ﬁEtT {Z EQtZ‘:;_1_(02(1)_1Cngv_l_ﬁgfu_l_)\cg\(b_l

xC, 5w 1—aCty_1-3Ch0 ' Cre1yeh, }
EZtr {ene, 1 ZCYP ' Catuw—1-atl 1 ,C/® ' Cper,_y_pehe} X
tr {st—l—CCC 10/{51;717&}
1 _ _ _
== >t {[G07 0T Gl | {CLOT e}

B,mA,(=0

o

which incidentally is equal to the second combination
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Fourth combination

| B=a+n+lands=A+(+1]

1
ﬁEt’f’ {Z EQtEQ_1_<Cé(1)_1Cﬁgv_l_HEL_l_/\C;(I)_l

/ ! /—1 /
X Caew_l_aew_l_ﬁCﬁé Cn€s—1—n€25}

= %E Z tr {enc,_1_\C\® ' Cow1-ath, }
x tr{e;__Cr® ' Creyrntr{e,_ sCh0 ' Ches1p}

1 - ! — / _
T Z tr { [C/\(I) 1004} 22} tr {C 1CA+C+1} tr { atnt1® 1077}
a,n,A,(=0

Fifth combination

| A=r+n+landa=F+(¢+1]

_EtT{Z€2t€t 1— CC/ 1C”€5U_1_H€;_1_/\C;\Q)_1
XCotw-1-aty_1_gChP~ Cnes,l,na’%}

1

— ﬁEtr {Z 52t8;,1,5Céq>*1Cngs,l,n&?;,l,)\(?/’\q)*lCaewflfa

xat,l,CCéq)*lCnay_l_né’Qs}

- Y u { [Cg®*10n0;+n+l<I>*105+¢+1Cé<1>*10K]22}
ﬂ77]7l€74:0

Sixth combination

lk=X+n+landa=3+C+1]

—Etr{Zegtet 1 Cl® T1Cey 1 kel OO
xC, 5w 1—abhy_1_gChP ' Ches1_yeh, }

EZtr {eael,_1_gCh0 ' Cresmrpet 1 Cr® ' Ceerr—cely_1_oCL® ' Creyo1-xeh, }
tr {5w,1,ﬂ05 TChEsi1oy )

= 3 {70 CCli @ O, i {ChONC )

57777)\7(:0

Seventh combination

[ A=kr+n+landf=a+(+1]
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1
ﬁEtr {Z ency_1_Ct® ' Crep1_rel_1_,CRO™!

xC aw 1—abhy 1 BCﬁ’géflC 53717775/25}
EZW’ {égtéw 1—a a IC)\EU 1— ,\63 1— 7707)(1) ICﬂéwflfg
thqucg T CEy1-nEhy )
- ~ _ _
= ) tr{[c;p 'Cry 1 CL ™ Cly 11 CLD ICR]QQ}

a,n,,¢=0

Eighth combination

k=X+n+landf=a+(+1]

1
TTSEtT {Z 52t5;_1_CCé(b_1Cﬂgv_l_mgi}_l_)\c&q}_l

xC, 5“’ 1€ ﬁcé o' 58—1—775,25}
EZtr {enel,_1_oCL® ' Creyo1-2Eh, }
tr {ew 1-8611_CL®™ 1O ep_1_nE" C'® 105}

s=1-n""n
1 0
= ? Z tr { [C&@ilc)\] 22} tr {Cé@ilc)\+n+1c7/7®ilca+c+1}
a,n,\,(=0

which is seen to equal the sixth combination

Total The total of theDg; term then becomes:

Dgg = #tr {Zg,w,g [C;¢’1CCC;+C+1(ID’lCBMHC’;(I)*ng} 22}

+7 D=0 T { [eXs O 127G }22} tr {Oéy+n+1 e

+% zzjn,,\,(:o tr {[CL @7 Colyy } tr {C ' IC/\+C+1} tr { atn+1 —1077}
7 2 gmmco 7 [CEPT CrChp 1 @' Cprcn CLOTICL]

+22F Z;}n,/\(:(} tr [C, -0 Cf\+77+1 _ICCC,IG+§+1CD_IC,\} 29

+% Zzon (=0 tr {[C&(I) 10/\ 22} tr {Céq)ilox\wﬁth;q)ilcaﬁﬂ}
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A.9 The second term:E [5-tr(K?)]

This term is already of the ord%r, S0 we just have to take the nullth order expansion of
F = Etr(K?)]

ir {E [K?])

o) () ) ) 1)
() () ()]}
oG (o) (o) o)

:tr{E = i S g%g;1Cogquongs_l_nsgsggma;”Wc;qucxgn_l_xa;n”

t,s,m,n=1¢,n,v,x=0
There are three possible combinations:

l.t=s(=nm=nv=x
2.t=m,(=v,5=n,n=X
.t=n,(=x,s=m,y =1

A.9.1 First combination

T 00
1 1 -1
tr {E Tz Z Z egtsg,l,CCéfb C’nss,l,nggsggmdn,lﬂC;CI) Cxenlxagn] }
t,s;mn=1¢,n,y,x=0
1 T [e's)
-1 -1
= ﬁE Z Z tr {[eaieh omehn) } tr {e1_1_Ce® ' Ceesr—y p tr {er, 1 _,CLO ' Coen1—y }
t,m=1(,y=0

A.9.2 Second combination

tr {E

T 00
1 _ _
— ﬁE E E tr {e2uehmeaseh, } tr {En—1-1€1_1_CLO ' Cres1nep,_1_ Ch® ' Ce }

t,s=1¢,n=0

T 00
1 _ _
Tz E E ency_1_cCLO a1 yEhEomEn 1, CL P 1stnlxa’2n]}

t,s,m,n=1(,n,7,x=0

:qn
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A.9.3 Third combination

T o0
1
tr {E Tz Z Z 52,55;_1_402@_1C’nss_l_ns’zsa?gms;%_l_WC’QCI)_1stn_l_xsgn] }
t,s,m,n=1{,n,y,x=0
T 00
1
- ﬁE Z Z tr {eh,e2eh,am } tr {Ceen1—x&y_1_Ct® ' Cresryer, 1, Cr® '}
t,s=1(,n=0
= q2n
So the total contribution of this term is:
[P =4 + o5
A.10 Total
Adding up all the terms, we find:
1 2 2
E[LR] = qn+ o (—4q +qn +¢'n +qn’) (44)
1 00 _ _ _
- {ZM oy [T CC @7 Can O 27 € "
2 00 _ _ _
* T Za 1,k,{=0 tr { [O’;(I) ICC ;+<+1(I) ICO‘} 22} tr {O;+n+1q) 1077}
1 00 _ _ -
+ > e {[C507C],, ) tr {CLOT Crican b tr { Ol 1 @710,
1 o0 B 3 B
by { [0, Oy @ i GO, |
2 o0 B B B
- T Zﬁm)\,czo tr { [C,,@CI) 107]0;“7“(1) 1CCC,,6+C+1<D 10/\]22}
1 00 _ _ _
=D s T HCROTIO , br {CLOTIC 1y a Gl Cain }
2 S 1 o
T ZCW,R:O tr {[CLOT C o, {Chi i@ O}
2 o 1 .
— 2 [T 0 07O, )

R
- Zwazo tr { [C;qucaﬂ,,lq;qucaﬂﬂ}22}

2 0
T ZH,C,a:O tr { [C’;+KH(I>_IC’C+&+ICé<I>—1CH] 22}

substitutingl’; = £ [XtXt’_j} = > >, Cat;C, where possible gives the expression

in theorem 1 which is hereby proven.
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A.11 Proof of Theorem 2

For theorem 2 we note that the log-likelihood equals:
Iy — —%Tq log 27 — glog Q| — %tr (Qoa(Y — XAV (Y — XA}
Thus for a known variance-covariance mattix = I , the likelihood ratio statistic equals
“2ILR(A=Ay) = tr {(Y — XA)(Y — XA} —tr {(Y XA (Y - XA’)}
— tr {U'U} — tr {(Y — XA+ X (AO - A))'(Y — XA+ X <A0 - A))}
— tr {U'UY — tr {(Y X (X' X)TXUY(Y - X (XX) X’U)}
= tr {(U’X) (X'X)"! (X'U)}

where we have used that = (X'X)™" (X'Y) = 4, + (X’X)™" (X'U) and defined
U=Y — XA,. We thus obtain:

2 LR(A=Ay) =tr {(U’X) (X'X)"! (X’U)}
A first order expansion of this expression (using equatittn) delivers

E [tr {(U’X) (X' X)" (X’U)}]

oo () (o)

+ tr {E (%U’X) ot (<I> - %X’X) ot (%X’U)}

+ tr {E (%U’X) O (cp — %X’X) ot (cp — %X’X) ot (%X’U)}

or stated differently
E |tr {(U'X) (X'X)" (X'V) }| £ Dy + Dy + Dy
Adding up the expressions for all these terms, which were calculated in the last paragraph,

deliver the result in theorem 2.

A.12 Proof of theorem 10
We take the terms of theorem 1 one by one, substyte- SD’F andD = VAV ! and

then simplify. In this proof all ten terms turn out to be different.
t1' = ZMM:O tr {CL2CCl, @ ChyyrCp @ Ol }
— Z:’ N {F’D"’S’ (SUS) T SUDHVS (ST SIS (SUS) ! SDﬁFIQQ}
— Z: Lt {FIQQF’D"’S’ (SUS) ' SUDHS (SUS) T SDAHBS (SWS) T SDP }
= ZMZO tr {(VIFLeF'VY) A" (V' PV VA) A" (VIS'@LSVA) AP (VIP'V) AP}
=tr {Al (A2 @ Ag) A3 (A4 @ Ag)}
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12’ = Za,n,m:O tr {CL@ 7 CCy 1@ Caln ) tr {C&MH@_lC’n}
= ZOO Y tr {F’DR/S/Q)_ls\IJDK+1/51(I)—ISD()¢FI22} tr {S/q)—lsqua+1/}
= VPV At { (VI P PV V) AT (VIPYTYA) A (VIS 9TISY) A
=2t {(V PV AT (VIR L, V) AT (VIPYTVA) A (VIS'BSV) A
=i W‘Q 84 > (I® (42 @ (I = AN'?)) A5) (e — A A) '}
- Z atr { A1 (A2 © Ag) AsAgi}

= Z:n,/\,czo tr {Cl ¢IC 122} tr {C o 10/\+<+1} tr{ a+n+1 1Cn}
= i AP D i (PDV Y tr {FInF'DYS'7'SD")
=D {AVTIPV) M bt {(VPVIEA) A}t {(VT R I F'V V) AN (VIS'@TISV) A%
=3 AN i {AaA) tr { AN A5A%)
:““{(A’ ®A2®A )(I—A®I®A)—1(I®I®A5)(1—I®A®A)—1}
= Z it {A Ag A5 Agy)

W= Z:n,n,czo tr {Ch® " CyCriy 1@ Copern CL@ Ol }
- Z;o c=0'" {F'DYPD*VS'®~ ' SD ' P'D"Fly,}
s1,K,0=
= (VT PPV AP (VIPVTVA) AT (VIS'9TISVA) AP (VT PY) AT
- ZOO _tr {A AﬂAQAHA3A6A4A“}

)ij (A2) ;i (As)yy, (Ad),,
h Z”km 1 1 — VjUm ) (1 — vivy)

t5' = Z;‘;MZO tr {C4 7 CyCh 1 @ CeClyy o @ oy )
=5 {F'D"PD*VPD*VS' o SD Fly)}
B,A=0
= ZMZO tr { (V' FLuoF'V™V) A" (V'PVVA) AN (V/PVVA) A" (V/S'@1SV) AN
= {A A“AQAAAQA”A5AA}

)ij (A2) 51 (A2)4, (A5),,,;
- Zz]km 1 1 — U]U:;>(1 — VUE)
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6/ — szk’c:o tr {C;,CI)*lCAIQQ} tr {Céq)ilc)\+n+1czy@ilc'a+g+1}
= Z:)\ZO tr {Da+1P/D)\+1P/} tr {F/DQ/S/®7ISD/\F122}
= HAVTPYV) AT (AVTIPV) A tr (VT FIp F'V V) A (VIS'@TISV) A
=3 A AN {40
- ““{<A' ® A ><f AN (A © A5) (I - A A) )
=3 )iy tr { A1 Agi As Agy

17 = Z:M:O tr {CLO 7 Celo} tr { e 1a® ' C)
= ZZZO tr { D2 Pt {F'D¥S'd SDC F )
= A (VTIPV) AR { (VT F L F'V V) A% (V'S'® 71 SV) ACY
= ZOOH_ tr {ALARAZAC) £ { A AR AAC)
—Z r{(Ai@A) (I =A@ A) " (N @A5) (I -A0A)"}
= Zizl ), U2tr { Ay Ag; As Ag;}

8 = Z::,,\:o tr {Ci\q)ilcn0§\+g+n+2quc<[22}
— Z:::O tr {F]'22FID)\/PD)\+C+2I5/(I)715D§}
=Yt {V”FIQQF’V*“A“V’PV*“A“AQAOV's'quva !
- Z {(VIFInF'VV) A" (V'PVTY) AR (A?) AY (V/S'@71SV) A
= ZQA:O tr {AlAﬁAgAﬁ (A2) AV A7)

— tr { Ay (A} @ (' — A°A™)) (A?) (45 © (I — A®A™))}
=tr {A; (4} © 4s) (A?) (45 © As)}

t9 = Z:WZO tr {CL D Cosnp1CL " Copsr on}
=3 {FInF DY SO S DI P D
=D AN (VI F I V) A (VISBTISVA) A% (VI PV) ACA
=3 AN AN AR
— 1 {(A1 0 Ag) As (A1 @ Ag) A}
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t10" = Z:Qa:o tr {C'('HHH(I)_lCg+a+10é<13_10,.@[22}
_ Zoo . - {F122F/Da+n+1lsq)—ISDo¢+lP/Dn}
Y A (VT RV A AN (ViSETISVA) A (VT PV))
_ Z:"azo tr { A" A AFANT AZN AL}
=tr {(A; © As) A (A5 @ Ag) Ay}

Adding the ten terms up, we obtain the expression in theorem 10:

= tr {A, <A2 %) Ag) Az (A4 @ Ag)}

+2 Z atr{Ar (A2 © Ag) A5 Ag; }

—+ Z t?” {A A91A5A9J}
n (Al) (A2>jk (A3) o (A4) s

+ Zij k,m=1

(1 — vjum,)(1 — vuE)
+221]km 1 (A1) (A2) 1 (A2) 4 (As),

(1 — vjv) (1 — vivg)

+ Z 1 {A1Agi A Agj }

— 22 ” ’U,L tT {AlAgl'Ag,Agi}
— 2tr {Al AZ; %) Ag) (A2) (A5 (%) Ag)}
— 2tr {(Al %) Ag) A3 (A4 (%) Ag) A}

— 2tr {(Al @ Ag) A (Ag (%) Ag) A4}

A.13 Proof of theorem 11

Theorem 11 is a special case of 10 with= /. Inserting this in the expressions in table
3 we see thaP = I and furthermore thatl, = A, A3 = AgA, A, = I, A5 = Ag and for
any diagonal matrixG, G © As = GA;. We substltute this in the ten terms dfin the
last expression:

t1' =tr{A; (A2 © As) A3 (A4 © A5)}
=tr {AlAA7A6AA7}

t2' = Z; (Ag),; tr{A1 (A2 © As) AsAg;}
=3 vt {AAA A Ay}

3= 3 () (o), tr {ArAai s Aoy}
- Z:jzl vivjtr { A1 Ag; As Ags }
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t4 = Z:/-e:() tr {A1ABA2AF"A3ABA4AH}
= Zﬁ,nzo tr { Ay AP Ag AP
= tr {((AA1A) @ As) (As @ As)}

150= 3t { A AN AN A AN
_ Z t?" {A1A2/{+)\+2A6A/\}
=tr {A1A7A2 (A@ (%) Ag)}

t6' = Zmzl (AQ)ji <A2)ij tr { A1 Ag; A5 Ag; }
= Zé_l vPtr { Ay Agi AsAgi}

t7/ = 21;1 <A4)“ Uz tT’ {AlAgiAg)Agi}
= Zé—l Uiztr {AlAgiA(jAgi}

=1r {Al Ail @ Ag) (AQ) <A5 %) Ag)}
—tT{A A7A A6®A8 }

9 =>" I AT AT AN A A
_ Z:a:(] tr {AlAnA6AI€+2a+2}

= {r {AfiJrZoHrQAGAﬁAl}
=tr {A1A7A2 (AG @ Ag)}

£10 = tr {(A; © Ag) A (A3 @ As) As}
=tr {(AAlA @ Ag) (Aﬁ @ Ag)}

Noting that in this cas€ = t; = t;, t}, = t}, andt; = t7, and adding up we find the result
in theorem 11:

T=tr {AlAA7A6AA7}
—+ 2 Zi:l UitT’ {AlAA7A6A97;}
+ Zz - Uﬂ)jt’l” {AlAgiAgAgj}

—tr {((AA1A) @ Ag) (Ag @ Ag)}
—2tr { A, A7 A2 (As @ As) )

— ZTAil ’UiQtT‘ {AlAgiAﬁAgi}
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