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Bartlett corrections in stationary VARs

Pieter Omtzigt∗

July 17, 2003

Abstract

We derive the Bartlett correction for a simple hypothesis on the regression pa-
rameters in a multivariate stationary autoregressive process.

Three applications illustrate the use of the correction: the test for absence of
autocorrelation of any order, a simple hypothesis on the autoregressive parameters
and two tests for weak exogeneity in the cointegrated VAR model. In the first of
these tests, the cointegration space is known, in the second it is not.

The Bartlett correction performs well in all simulation studies, except in the one
of the last test, that is a test for weak exogeneity in the cointegrated VAR with an
unknown cointegration space.

1 Introduction

Vector Autoregressive Models (VAR) are widely applied both in macroeconomics and
econometrics. Estimation of these models is often done by means of maximum likelihood
methods. For almost every test statistics only asymptotic results are available regarding
the distribution of the statistic under the null hypothesis. In small samples, the size dis-
tortion can be particularly large if large models (in terms of number of variables and lags)
are used for relatively short spans of data series. A Bartlett correction (Bartlett, 1937) to
a likelihood ratio test is one method to correct for the size distortion.

In this paper we consider the following multivariate model:

Yt = AXt + η2t

where

Xt = Q(L)ηt−1 = Q0ηt−1 + Q1ηt−2 + Q2ηt−3 + . . .

ηt =
[

η′1t η′2t

]′ ∼ MIIDN(0, Ω)

under the assumption thatQ(L) is an exponentially decreasing polynomial and we derive
the Bartlett correction for a simple hypothesis onA H : A = A0 both whenvar (ηt) is
known (theorem 2) and when it is unknown (theorem 1).

∗University of Amsterdam, Faculty of Economics and Econometrics, Roetersstraat 11, 1018WB Ams-
terdam, The Netherlands, Email: P.H.Omtzigt@uva.nl
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After a short introduction into Bartlett corrections and the two main theorems, we
consider three specific applications. In section 4 we consider likelihood ratio tests for the
absence of autocorrelation in a VAR model and in section 5 we consider a more general
hypothesis on the autoregressive parameters of the VAR. Section 6 contains the Bartlett
correction for two different tests of no long run feedback in the cointegrated VAR model.
These last three sections all contain Monte Carlo studies of the derived results.

Conclusions are drawn in section 7. The longest section, the proof of the two main
theorems and two other theorems, is given in the only appendix of this chapter, section A.

2 Bartlett corrections

Let lT (θ) , θ = (θ1, θ2) denote the log likelihood function ofT observations. Then the log
likelihood ratio (WT ) test statistic for the null hypothesisH0 : θ1 = θ0

1 equals

−2 ln LR
[
θ1 = θ0

1 |θ
]

= WT = −2

(
max

θ2

lT
(
θ0
1 , θ2

)−max
θ1,θ2

lT (θ1, θ2)

)

Under a number of regularity conditions, this test statistic converges in distribution. In
many cases this is theχ2-distribution, but it can also also be a different distribution; The
rank test in cointegration analysis (Johansen, 1988, 1991) for instance, converges to a
stochastic integral.

In small samples, the asymptotic distribution does not necessarily provide a good
approximation to the actual one. The idea of the Bartlett correction (Bartlett, 1937) is to
expand the expectation of the LR-statistic:

E [WT ] = f

(
1 +

B (θ)

T
+ O

(
T−2

))

wheref = limT→∞ Eθ [WT ] and then to define the Bartlett adjusted likelihood ratio statis-
tic WBC

T as:
WBC

T = WT / (1 + B (θ) /T )

The termB (θ) /T shall be referred to as the Bartlett Factor (BF). It generally depends
on the parameters of the model. When substituting values, it will sometimes make a
difference whether we take the true values from the data generating process, the restricted
estimates (that is the maximum likelihood estimates under the null hypothesis), or the
unrestricted estimates.

Lawley (1956) proves that for stationary series and under a number of stochastic or-
der conditions that the Bartlett Correction (BC) not only corrects the first moment up to
O (T−2), but also all higher moments. Barndorff-Nielsen and Hall (1988) prove the same

result elegantly and demonstrate that is holds whenB
(
θ̂
)

replacesB (θ), whereθ̂ is a√
n-consistent estimator ofθ. Often small sample corrections are referred to as Bartlett

correction only if the result of Lawley holds. We shall however also refer to any division
of the likelihood ratio test statistic by its expectation as a Bartlett correction.

Nielsen (1997) and Johansen (2000, 2002a,b) show that a Bartlett correction can be
useful in models with unit roots. Jensen and Wood (1997) show by means of calculation
of the first two moments that the result of Lawley does not hold for the Dickey-Fuller
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distribution. More precisely they show thatE [WT ] = f
(
1 + b1

T

)
+ O (T−2) andE [W 2

T ]

= 2f
(
1 + 2b2

T

)
+ O (T−2), but thatb1 6= b2.

General overviews of Bartlett and related corrections can be found in Jensen (1993)
and Cribari-Neto and Cordeiro (1996) .

A large number of Bartlett correction concern univariate models, but Attfield (1995,
1998) derives a number of Bartlett corrections for simultaneous systems with fixed exoge-
nous regressors. In this paper we consider multivariate models with lagged endogenous
regressors.

3 The model and main results

Let us consider the following statistical modelK1:

Yt = AXt + η2t (1)

where

Xt = Q(L)ηt−1 = Q0ηt−1 + Q1ηt−2 + Q2ηt−3 + . . .

ηt =
[

η′1t η′2t

]′ ∼ MIIDN(0, Ω)

A ∈ Rq×n, Ω ∈ Sp×p

and the null hypothesis
H0 : A = A0

R is the space of real numbersSp×p the space of positive definite matrices of di-
mensionp × p. The processηt is of dimensionp andη2t is of dimensionq(≤ p). The
independent variableXt (1× n) is a moving average process. The innovationsη2t of
the dependent variableYt are a subset of the innovationsηt, which constitute the mov-
ing average processXt. This model allows for the possibility thatXt contains not only
past values ofYt, but also past value of exogenous variables, but not present values of
exogenous variables. The model does not contain any deterministic terms.

We shall make the explicit assumption that the processYt is stationary.
Define

Ci = QiΩ
1
2 , i = 0, 1, 2, . . . (2)

such thatXt = C(L)εt−1 andεt = Ω− 1
2 ηt is distributedMIIDN(0, Ip)

Define the jth autocovariance matrix ofXt asΓj = E
[
XtX

′
t−j

]
=

∑∞
α=0 Qα+jΩQ′

α =∑∞
α=0 Cα+jC

′
α and its varianceΦ = Γ0.

In the examples, it will be clarified how seemingly more general situations, like mul-
tiple lags, are in fact special cases of the following theorem, which concerns a simple
hypothesis on the parameterA :

Theorem 1 For the statistical modelK1, the expected value of the likelihood ratio test of
the null hypothesis thatH0 : A = A0 equals:

E [WT ]
1
= nq +

1

T
(i (n, q) + k (n, q, {Ci})) (3)
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where:

i =
1

2

(−4q + qn + q2n + qn2
)

(4)

k =
∑∞

β,κ=0
tr

{[
C ′

κΦ
−1Γ′κ+1Φ

−1Γβ+1Φ
−1Cβ

]
22

}
(t1)

+ 2
∑∞

β,κ=0
tr

{[
C ′

κΦ
−1Γ′κ+1Φ

−1Cβ

]
22

}
tr

{
Γ′β+1Φ

−1
}

(t2)

+
∑∞

β,κ=0
tr

{[
C ′

κΦ
−1Cβ

]
22

}
tr

{
Γ′κ+1Φ

−1
}

tr
{
Γ′β+1Φ

−1
}

(t3)

+
∑∞

β,κ=0
tr

{[
C ′

βΦ−1Γ′κ+1Φ
−1Γβ+1Φ

−1Cκ

]
22

}
(t4)

+ 2
∑∞

β,κ=0
tr

{[
C ′

βΦ−1Γ′κ+1Φ
−1Γ′β+1Φ

−1Cκ

]
22

}
(t5)

+
∑∞

β,κ=0
tr

{[
C ′

βΦ−1Cκ

]
22

}
tr

{
Γβ+1Φ

−1Γκ+1Φ
−1

}
(t6)

− 2
∑∞

β,κ=0
tr

{[
C ′

κΦ
−1Cβ

]
22

}
tr

{
Γ′κ+β+2Φ

−1
}

(t7)

− 2
∑∞

β,κ=0
tr

{[
C ′

κΦ
−1Γ′κ+β+2Φ

−1Cβ

]
22

}
(t8)

− 2
∑∞

β,κ=0
tr

{[
C ′

κΦ
−1Γβ+1Φ

−1Cβ+κ+1

]
22

}
(t9)

− 2
∑∞

β,κ=0
tr

{[
C ′

κΦ
−1Γ′β+1Φ

−1Cβ+κ+1

]
22

}
(t10)

Proof. See the appendix
With [M ]22 we indicate the lower right hand block of dimensionq × q in the matrix

M , which itself is of dimensionp× p. Thustr {[M ]22} is the sum of the lastq elements
on the main diagonal of the matrixM .

The expressionk (n, q, C(L)) looks complicated, but it should be borne it mind that it
needs to be programmed only once and is programmed and computed relatively quickly.
Furthermore it simplifies considerably in most cases. The version in the theorem has
been written down with an eye on programming: it contains only two loops. The loops
in the theorem go to infinity, but in all the examples and corollaries contained in this
paper, the expression fork simplifies, such that only finite loops remain. The following
expression fork (n, q, C(L)) is useful in the corollaries and examples that will follow (we
just substitute

∑∞
α=0 Cα+ηC

′
η for Γα):
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k =
∑∞

β,η,κ,ζ=0
tr

{[
C ′

κΦ
−1CζC

′
κ+ζ+1Φ

−1Cβ+η+1C
′
ηΦ

−1Cβ

]
22

}
(t1’)

+ 2
∑∞

α,η,κ,ζ=0
tr

{[
C ′

κΦ
−1CζC

′
κ+ζ+1Φ

−1Cα

]
22

}
tr

{
C ′

α+η+1Φ
−1Cη

}
(t2’)

+
∑∞

α,η,λ,ζ=0
tr

{[
C ′

λΦ
−1Cα

]
22

}
tr

{
C ′

ζΦ
−1Cλ+ζ+1

}
tr

{
C ′

α+η+1Φ
−1Cη

}
(t3’)

+
∑∞

β,η,κ,ζ=0
tr

{[
C ′

βΦ−1CηC
′
κ+η+1Φ

−1Cβ+ζ+1C
′
ζΦ

−1Cκ

]
22

}
(t4’)

+ 2
∑∞

β,η,λ,ζ=0
tr

{[
C ′

βΦ−1CηC
′
λ+η+1Φ

−1CζC
′
β+ζ+1Φ

−1Cλ

]
22

}
(t5’)

+
∑∞

α,η,λ,ζ=0
tr

{[
C ′

αΦ−1Cλ

]
22

}
tr

{
C ′

ζΦ
−1Cλ+η+1C

′
ηΦ

−1Cα+ζ+1

}
(t6’)

− 2
∑∞

ζ,η,κ=0
tr

{[
C ′

κΦ
−1Cζ

]
22

}
tr

{
C ′

κ+ζ+η+2Φ
−1Cη

}
(t7’)

− 2
∑∞

ζ,η,λ=0
tr

{[
C ′

λΦ
−1CηC

′
λ+ζ+η+2Φ

−1Cζ

]
22

}
(t8’)

− 2
∑∞

κ,η,α=0
tr

{[
C ′

κΦ
−1Cα+η+1C

′
ηΦ

−1Cα+κ+1

]
22

}
(t9’)

− 2
∑∞

κ,ζ,α=0
tr

{[
C ′

α+κ+1Φ
−1Cζ+α+1C

′
ζΦ

−1Cκ

]
22

}
(t10’)

In most applications the variance ofηt is unknown. There is however little difference
in deriving the main result for known and unknown variance. In section 5 we shall en-
counter one instance of a result in the literature which deals with known variance. We
thus include the version of the main theorem with known variance in this paper to make
results comparable. Consider the following statistical modelK2:

Yt = AXt + ε2t (5)

where

Xt = C(L)εt−1 = C0εt−1 + C1εt−2 + C2εt−3 + . . .

εt =
[

ε′1t ε′2t

]′ ∼ MIIDN(0, Ip)

A ∈ Rq×n

and the null hypothesis
H0 : A = A0

Theorem 2 For the statistical modelK2, the expected value of the likelihood ratio test of
the null hypothesis thatH0 : A = A0 equals:

E [WT ]
1
= nq +

1

T
(i2 (n, q) + k (n, q, {Ci})) (6)

where:

i2 = −2
∞∑

ζ=0

tr
{[

C ′
ζΦ

−1Cζ

]
22

}

andk (n, q, {Ci}) is given in theorem 1.

5



Proof. See the appendix, section A.11.
All corollaries that follow will be of theorem 1. The only exceptions is corollary 7,

which follows from theorem 2.
The following three sections carry examples of increasing complexity, of the main

result. Each section contains at least one simulation study to see how useful the correction
is in practice.

4 Autocorrelation

4.1 First order autocorrelation

A first illustration of the theory is the test that a certainp-dimensional processut is white
noise versus the alternative that it contains first order autocorrelation. The model is

ut = B1ut−1 + ηt (7)

ηt ∼ MIIDN(0, Ω)

and the hypothesis:H0 : B1 = 0. Note that Maximum Likelihood and Ordinary Least
Squares coincide in this case (see also lemma 13 in the appendix) and thatq = n = p. The
last equality implies thattr {M22} = tr {M}. Under the null hypothesis(7) collapses to
ut−1 = ηt−1, such that we find thatQ0 = Ip andCi = Γi = 0 for all i ≥ 1. This implies
C0 = Ω

1
2 andΦ0 = Ω. Now each of the terms t1-t10 ink has at least one term, whose

summation starts att = 1, for instanceΓ′κ+1 or Cβ+κ+1. Therefore each term in all 10
summations is zero and thusk = 0. So we obtain:

Corollary 3 The likelihood ratio test thatB1 = 0 in model (7) has the following expected
value

E [WT ]
1
= p2 +

1

2T

(
p2 + 2p3 − 4p

)

The Bartlett correction here does not depend on the parameters of the model, that is
B (θ) = B. The correction only depends onp, the dimension of the system. In this
simple example we therefore do not encounter any problem as to which estimate for the
parameters we should take.

By means of a Monte Carlo Study we investigate how well the Bartlett correction per-
forms. As parameters of choice we takeΩ = In, n ∈ {1, 2, . . . , 8} andT ∈ {25, 50, 100}.
The results are reported by means of QQ-plots for half of the experiments, that is for
n ∈ {1, 3, 5, 7} , T ∈ {25, 50, 100} whereas all the results are reported in table 1 and are
based on106 Monte Carlo replications each.

For each experiment we reportE [WT ], E
[
WBC

T

]
, the Bartlett Factor and the empir-

ical rejection probabilities at the nominal10%, 5% and1% level of both the asymptotic
and Bartlett adjusted test statistic. We note that the Bartlett corrections brings the rejec-
tion probability close to the nominal one, except for the areaT ∈ {25} , n ∈ {5, 6, 7, 8}
where at the 5% nominal rejection probability the empirical rejection probability is still
above8% after the correction. Yet it does come down from values as high as81% to at
most25%.
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The QQ-plots show thatWT is a straight line, which makes it ideally suited for the
Bartlett correction. A Bartlett correction, which does not depend on the estimated param-
eters, rotates the QQ-plot around the origin. If it is negative (as it is forp = 1) it rotates
the line anti-clockwise and if it is positive it rotates it clockwise. Success is measured in
how well the rotated line coincides with the 45-degree line. In the QQ-plots in figure 1,
we see that with the possible exceptions of subfigures 1(j),1(g) and 1(h) the rotated line is
virtually indistinguishable from the 45-degree line.

4.2 Fourth order autocorrelation

A second illustration is a test that fourth order autocorrelation is absent

ut = B4ut−4 + ηt (8)

ηt ∼ MIIDN(0, Ω)

Now our null hypothesis isH0 : B4 = 0. We find thatQ3 = I andQi = 0 for i ∈
{0, 1, 2, 4, 5, . . .}. As a consequenceΦ = Ω. Let us now defineFαβ = (C ′

αΦ−1Cβ) =(
Ω

1
2 Q′

αΦ−1QβΩ
1
2

)
. It is immediately clear that in this exampleFα,β = Ip iff α = β = 3

andFα,β = 0 otherwise. Now rewritet′1 =
∑∞

β,η,κ,ζ=0 tr {Fκ,ζFκ+ζ+1,β+η+1Fη,β}. For any
of the terms in this summation to be different from zero, we needκ = ζ = κ+ ζ +1 = 3,
such that we conclude thatt′1 = 0. In similar fashion we see that all other nine terms
t2′ − t10′ equal zero as well, suchk = 0 and we obtain the same expression as in the last
parapraph:

Corollary 4 The likelihood ratio test thatB4 = 0 in model (8) has the following expected
value

E [WT ]
1
= p2 +

1

2T

(
p2 + 2p3 − 4p

)

which once again does not depend on the parameters of the model.

4.3 First to kth order autocorrelation

Third we test whether there is no first up tokth order autocorrelation:

ut = B1ut−1 + . . . + Bkut−k + ηt (9)

ηt ∼ MIIDN(0, Ω)

The null hypothesis is thusH0 : B1 = . . . = Bk = 0. We see that the regressors in
the modelut−1 are all independently identically distributed with mean0 and variance-
covariance matrixΩ. The polynomial matricesQ are of dimensionpk × p and read:

Q0 = [Ip : 0 : 0 : · · · : 0 : 0]′

Q1 = [0 : Ip : 0 : · · · : 0 : 0]′

...

Qk−1 = [0 : 0 : 0 : · · · : 0 : Ip]
′

Qj = [0 : 0 : 0 : · · · : 0 : 0]′ for j ≥ k

7



T 25 50 100
WT WBC

T WT WBC
T WT WBC

T

p = 1
E [LR] 0.9836 1.0036 0.9906 1.0006 0.9938 0.9988
BF −0.0200 −0.0100 −0.0050
10% 9.70 10.04 9.85 10.02 9.92 10.00
5% 4.78 5.01 4.90 5.02 4.94 4.99
1% 0.95 1.02 0.96 1.02 0.99 1.00
p = 2
E [LR] 4.2749 4.0329 4.1322 4.0118 4.0652 4.0051
BF 0.0600 0.0300 0.0150
10% 12.20 10.26 11.03 10.09 10.48 10.01
5% 6.44 5.18 5.65 5.06 5.31 5.01
1% 1.44 1.05 1.19 1.01 1.08 1.00
p = 3
E [LR] 10.2294 9.1881 9.5609 9.0482 9.2612 9.0060
BF 0.1133 0.0567 0.0283
10% 16.64 10.98 12.90 10.28 11.30 10.05
5% 9.45 5.65 6.86 5.16 5.83 5.02
1% 2.50 1.20 1.37 1.05 1.24 1.00
p = 4
E [LR] 19.2543 16.5986 17.4245 16.1338 16.6750 16.0336
BF 0.1600 0.0800 0.0400
10% 24.10 12.28 15.65 10.53 12.55 10.16
5% 14.87 6.47 8.67 5.31 6.60 5.09
1% 4.69 1.44 2.16 1.09 1.48 1.02
p = 5
E [LR] 31.8993 26.4944 27.9155 25.3317 26.3618 25.0826
BF 0.2040 0.1020 0.0510
10% 35.88 14.66 19.61 10.94 14.12 10.23
5% 24.40 8.02 11.40 5.59 7.63 5.14
1% 9.44 1.96 3.15 1.17 1.81 1.06
p = 6
E [LR] 48.9253 39.2449 41.2386 36.7109 38.4106 36.1796
BF 0.2467 0.1223 0.0617
10% 52.68 19.46 25.41 11.73 16.29 10.44
5% 39.88 10.96 15.67 6.07 9.06 5.26
1% 19.46 3.00 4.88 1.30 2.27 1.07
p = 7
E [LR] 71.1650 55.2278 57.5895 50.3279 52.8800 49.3218
BF 0.2886 0.1443 0.0721
10% 71.97 25.92 33.05 12.78 19.00 10.66
5% 60.51 16.14 21.74 6.72 10.92 5.41
1% 37.35 5.16 7.69 1.50 2.92 1.11
p = 8
E [LR] 100.0981 75.2617 77.2226 66.2855 69.8832 64.5572
BF 0.3300 0.1650 0.0825
10% 88.69 37.26 42.92 14.31 22.48 10.97
5% 81.58 25.49 30.18 7.72 13.38 5.59
1% 62.77 9.95 12.42 1.83 3.86 1.17

Table 1: Bartlett corrections for the test of absence of first order autocorrelation
8
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Figure 1: QQ-plots of LR-tests (asymptotic and Bartlett corrected) for residual autocor-
relation
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This impliesΦ = (Ik ⊗ Ω). Realizing thatQ′
iQj = Ip iff i = j, i ≤ k−1 and0 otherwise,

we check each of the ten terms in turn to find out which ones are non-zero. As in the last
paragraph we defineFα,β = (C ′

αΦ−1Cβ) =
(
Ω

1
2 Q′

αΦ−1QβΩ
1
2

)
and see thatFα,β = Ip if

Q′
iQj = Ip and equals zero whenQ′

iQj = 0.
For the first termt′1 =

∑∞
β,η,κ,ζ=0 tr {Fκ,ζFκ+ζ+1,β+η+1Fη,β} we see that each time

κ = ζ, κ+ ζ +1 = β +η +1 ≤ k−1 andβ = η simultaneously, this term equalsp. In all
other cases it equals zero. Thus we look for how many combination there are for which
κ = ζ ≥ 0 andκ + ζ + 1 ≤ k − 1 hold true. There are

⌊
k
2

⌋
such that this term equals

p
⌊

k
2

⌋
.

The second term ist′2 =
∑∞

α,η,κ,ζ=0 tr {Fκ,ζFκ+ζ+1,α} tr {Fα+η+1,η}. By definition
α + η + 1 6= η, leading to the conclusion that this term is zero. Similarly we see thatt′3,
t′5, t′6, t′7, t′8 andt′10 are zero.

For any of the terms in the summationt′4 =
∑∞

β,η,κ,ζ=0 tr {Fβ,ηFκ+η+1,β+ζ+1Fζ,β}
to be different from zero we needκ = ζ andη = β andκ + η + 1 = β + ζ + 1 ≤
k−1. There are

∑k−1
i=1 i such combination, giving a contribution of1

2
pk (k − 1). Similarly

t′10 = −∑∞
κ,ζ,α=0 tr

{(
C ′

α+κ+1Cζ+α+1

) (
C ′

ζCκ

)}
equals−p iff κ = ζ andα + κ + 1 =

ζ + α + 1 ≤ k − 1 which is possible in1
2
k (k − 1) ways.

For the problem at hand we see thatq = p andn = pk. Substituting all these terms in
the expression in theorem 1 we obtain the following result:

Corollary 5 The likelihood ratio test thatH0 : B1 = . . . = Bk = 0 in model (9) has the
following expected value

E [WT ]
1
= kp2 +

1

2T

(
p2k + p3k2 + p3k − 4p

)
+

1

T

(
p

⌊
k

2

⌋
− 1

2
pk (k − 1)

)

Once more we notice that the Bartlett factor does not depend on any of the parameters.

5 Multivariate AR(1) process

Let us once more consider thep-dimensional AR(1) model and denote it byL1:

Xt = BXt−1 + ηt (10)

ηt ∼ MIIDN(0, Ω)

The parameters of this model areθ = (B, Ω) ∈ (Rp×p,Sp×p) and we test the hypothesis
H0 : B = ρ0I, where|ρ0| < 1. UnderH0 the dependent variableXt−1 has the following
moving average representation:

Xt−1 =
∑∞

i=0
ρi

0Iηt−1−i

10



from which we see directly thatQi = Iρi
0 for i ≥ 0. ThenCi = Ω

1
2 (Iρi

0) andΦ =∑∞
i=0 (Iρ2i

0 ) Ω =
(
I 1

1−ρ2
0

)
Ω. Now take the first term

t′1 =
∑∞

β,η,κ,ζ=0
tr

{
C ′

κΦ
−1CζC

′
κ+ζ+1Φ

−1Cβ+η+1C
′
ηΦ

−1Cβ

}

=
∑∞

β,η,κ,ζ=0
tr

{
ρk

0

(
1− ρ2

0

)
ρζ

0ρ
κ+ζ+1
0

(
1− ρ2

0

)
ρβ+η+1

0 ρη
0

(
1− ρ2

0

)
ρβ

0Ip

}

=
∑∞

β,η,κ,ζ=0
tr

{
ρ2

0

(
1− ρ2

0

)3
ρ2ζ

0 ρ2κ
0 ρ2β

0 ρ2η
0 Ip

}

= tr
{

ρ2
0

(
1− ρ2

0

)−1
Ip

}

=
ρ2

0

(1− ρ2
0)

p

The third term is derived in the following way:

t′3 =
∑∞

α,η,λ,ζ=0
tr

{
C ′

λΦ
−1Cα

}
tr

{
C ′

ζΦ
−1Cλ+ζ+1

}
tr

{
C ′

α+η+1Φ
−1Cη

}

=
∑∞

α,η,λ,ζ=0
tr

{
ρλ

0

(
1− ρ2

0

)
ρα

0 I
}

tr
{

ρζ
0

(
1− ρ2

0

)
ρλ+ζ+1

0

}
tr

{
ρα+η+1

0

(
1− ρ2

0

)
ρη

0

}

=
∑∞

α,η,λ,ζ=0
p3

(
ρ2

0

(
1− ρ2

0

)3
ρ2α

0 ρ2η
0 ρ2λ

0 ρ2ζ
0

)

=
ρ2

0

(1− ρ2
0)

p3

The other 8 terms are derived in an entirely analogous manner. In fact each of them

gives a contribution equal to

(
ρ2
0

(1−ρ2
0)

)
ps wheres is the number of different traces in the

expression. We obtain the following result:

Corollary 6 The likelihood ratio test thatH0 : B = ρ0I in modelL1 (10) has the follow-
ing expected value

E [WT ]
1
= p2 +

1

2T

(
p2 + 2p3 − 4p

)
+

1

T

(
p3 + p2 − 2p

) (
ρ2

0

(1− ρ2
0)

)
(11)

The expected value of the likelihood depends on the parametersθ1 (B in this case) but
not on the parametersθ2 (Ω). This means that when using this correction, no estimated
parameters have to be substituted in the Bartlett correction.

We could have substituted the maximum likelihood estimate forB

B̂ML =
(∑T

t=1 Xt−1X
′
t−1

)−1 (∑T
t=1 Xt−1X

′
t

)
, which is

√
n-consistent, and used it in

the Bartlett correction, instead ofρ0I. Both methods are valid in this case. If we did
however usêBML, the expression in corollary 6 will be considerably more complicated.

Now consider modelL2:

Xt = BXt−1 + εt (12)

εt ∼ MIIDN(0, Ip)

with the parametersθ = B ∈ Rp×p.

11



Taniguchi (1988, 1991) derives Bartlett corrections for univariate ARMA-processes
and in the special case of an AR(1) process with known variance finds that the expected
value of the likelihood ratio equals1 − 2

T
. We thus also state the corollary for modelL2

which is based on theorem 2:

Corollary 7 The likelihood ratio test thatH0 : B = ρ0I in modelL2 (12) has the follow-
ing expected value

E [WT ]
1
= p2 − 2p

T
+

1

T

(
p3 + p2 − 2p

) (
ρ2

0

(1− ρ2
0)

)
(13)

and conclude that the result of Taniguchi is a special case of (13) withp = 1.
Both expectations, (11) and (13) have a pole for|ρ0| = 1. Even though the Bartlett

correction is only valid when|ρ0| < 1, it is of interest how close to the pole the Bartlett
correction is still of practical use. We thus perform a Monte Carlo study for both corollary
6 and 7.

The DPG is

Xt = (ρIp) Xt−1 + εt (14)

εt ∼ MIIDN(0, Ip)

and the parameters of choice areT = {100} , ρ = {−0.9,−0.6,−0.3, 0, 0.3, 0.6, 0.9} , p =
{1, 5} and we test the hypothesisH0 : B = ρ0I both whenΩ is unknown and when it is
known. The results are reported in table 2 and are based on105 replications. The Bartlett
factor for the case of a one-dimensional process does not depend on any of the parameters
and is thus constant over the choice ofρ. For the 5-dimensional VAR, we see that when
|ρ| approaches unity, the uncorrected test becomes severely oversized. The Bartlett cor-
rection does however somewhat overcorrect, which is what we expected with the pole in
the expression. Overall the Bartlett corrected test is closer to the nominal size of the test
than the uncorrected one in 69 out of 84 cases.

6 No level feedback in the cointegrated VAR

Let us consider the cointegrated VAR model in the Equilibrium Correction form:

∆Xt = ΠXt−1 +
k−1∑
i=1

Γi∆Xt−i + ηt (15)

ηt ∼MIIDN(0, Ω)

with the following assumptions:

1. Every rootz of the characteristic polynomial ofXt satisfiesz = 1 or |z| > 1.

2. Π := −A(1) = αβ′, whereα andβ arep× r matrices of full rankr < p.

3. α′⊥Γβ⊥ has full rankp− r, whereΓ := I −∑k−1
i=1 Γi.

12



T = 100 Ω unknown (corollary 6) Ω known (corollary 7)
p = 1 p = 5 p = 1 p = 5

WT WBC
T WT WBC

T WT WBC
T WT WBC

T

ρ = −0.9
E [LR] 0.997 1.002 31.31 24.28 0.983 1.003 29.33 23.75
BF −0.005 0.290 −0.020 0.235
10% 9.95 10.03 32.85 6.96 9.61 9.96 24.23 5.72
5% 4.95 5.00 21.04 3.06 4.76 4.99 14.21 2.36
1% 1.00 1.02 7.00 0.43 0.98 1.05 3.88 0.33
ρ = −0.6
E [LR] 0.996 1.001 27.10 25.04 0.981 1.001 25.57 24.88
BF −0.005 0.083 −0.020 0.028
10% 9.95 10.03 16.61 10.15 9.65 10.01 10.62 9.64
5% 5.00 5.06 9.32 5.16 4.80 5.02 5.95 4.76
1% 1.00 1.01 2.34 1.03 0.94 1.01 1.22 0.87
ρ = −0.3
E [LR] 0.992 0.997 26.47 25.05 0.977 0.997 25.00 24.96
BF −0.005 0.057 −0.020 0.002
10% 9.86 9.94 14.51 10.15 9.62 9.97 10.04 9.3
5% 4.93 5.00 7.96 5.16 4.77 4.99 4.95 4.88
1% 0.97 0.99 1.88 1.03 0.93 0.99 0.99 0.97
ρ = 0
E [LR] 0.990 0.995 26.33 25.05 0.975 0.995 24.88 24.98
BF −0.005 0.051 −0.020 −0.004
10% 9.90 10.00 14.19 10.29 9.64 9.99 9.64 9.93
5% 4.87 4.92 7.58 5.12 4.73 4.97 4.76 4.92
1% 0.96 0.97 1.79 1.04 0.90 0.98 0.93 0.99
ρ = 0.3
E [LR] 0.990 0.995 26.48 25.06 0.976 0.996 25.01 24.97
BF −0.005 0.057 −0.020 0.002
10% 9.91 9.98 14.54 10.15 9.66 10.03 9.95 9.85
5% 4.90 4.95 7.83 5.11 4.72 4.94 4.99 4.92
1% 0.94 0.96 1.88 1.03 0.88 0.94 0.96 0.94
ρ = 0.6
E [LR] 0.993 0.998 27.13 25.06 0.978 0.998 25.60 24.91
BF −0.005 0.083 −0.020 0.028
10% 10.04 10.13 16.71 10.08 9.78 10.09 11.64 9.58
5% 5.00 5.05 9.26 4.97 4.83 5.06 5.91 4.65
1% 0.98 1.00 2.34 1.02 0.92 0.99 1.21 0.91
ρ = 0.9
E [LR] 0.999 1.004 31.34 24.30 0.984 1.004 29.37 23.79
BF −0.005 0.290 −0.020 0.235
10% 9.93 10.02 33.01 6.94 9.67 9.99 24.35 5.74
5% 5.00 5.06 21.09 3.06 4.83 5.04 14.40 2.47
1% 1.05 1.07 6.99 0.44 0.99 1.06 3.98 0.34

Table 2: Bartlett corrections of tests on the autoregressive parameters in the multivariate
AR(1) model with unknown and known variance13



We consider maximum likelihood estimation as proposed by Johansen (1988).
Divide the variable-vectorXt in two, X1t of dimensionp− s andX2t of dimensions

(≤ p− r) and the parametersα andΓi conformably, that isα = [α′1, α
′
2]
′. We then obtain

the following system of equations:

∆X1t = α1β
′Xt−1 +

k−1∑
i=1

Γ1i∆Xt−i + η1t (16)

∆X2t = α2β
′Xt−1 +

k−1∑
i=1

Γ2i∆Xt−i + η2t (17)

ηt =

[
η1t

η2t

]
∼ MIIDN(0, Ω), Ω =

[
Ω11 Ω12

Ω21 Ω22

]

Conditioning on∆X2t in equation(16) we obtain the following system.

∆X1t = ω∆X2t + (α1 − ωα2) β′Xt−1 +
k−1∑
i=1

(Γ1i − ωΓ2i) ∆Xt−i + η̃1t (18)

∆X2t = α2β
′Xt−1 +

k−1∑
i=1

Γ2i∆Xt−i + η2t (19)

η̃t =

[
η̃1t

η2t

]
∼ MIIDN(0, Ω̃), Ω̃ =

[
Ω11 − ωΩ21 0

0 Ω22

]

where we have definedω = Ω12Ω
−1
22 . Furthermore defineΨ∗

1 = (Γ11 − ωΓ21, . . . , Γ1k−1 − ωΓ2k−1)
andΨ2 = (Γ21, . . . , Γ2k−1). The parameters in the conditional equation(18) areθcon =
(α1 − ωα2, β, Ψ∗

1, ω, Ω11 − ωΩ21) and those in the marginal model(19) readθmar =
(α2, β, Ψ2, Ω22). θcon andθmar do not vary in a product space, such that for inference
the whole system(15) needs to be analyzed.

The following concept will offer a way to analyze partial systems:

Definition 8 There is No Level Feedback (NLF) from the cointegration relationsβ′Xt−1

to ∆X2t , when∆X2t does not react to a disequilibrium in the cointegration relations
β′Xt−1 that is whenα2 = 0.

This means that the differences∆X2t do not react directly to a disequilibrium in the
cointegration relation. Of course they may still react to past changes in the differences as
under NLFΨ2 does not necessarily equal zero.

If NLF holds, then the parameters in the marginal equation becomeθ2
mar = (Ψ2, Ω22).

Johansen(1996, theorem 8.1) proves that ifα2 = 0, that is NLF fromβ′Xt−1 to ∆X2t,
then the maximum likelihood estimates ofβ (andα1) are obtained from the conditional
equation(18) only, asθ2

mar andθcon do vary in a product space.
There are two moments, one can test for NLF: before and after determination of the

cointegration space. Even though both tests have the same asymptotic distribution under
the null, namelyχ2

s(p−r) they do not have the same small sample properties.
The first test is the one proposed by Harbo et al. (1998) as an ex-post misspecifica-

tion test after analyzing a conditional system. The second one is a test on the adjustment

14



parametersα before inference onβ is made. If the test does not reject conditional infer-
ence can be made afterwards. First we shall outline each of these tests in turn and their
Bartlett correction. A Monte Carlo simulation study will illustrate the use of the Bartlett
correction in each case and show remarkable differences between the two tests.

6.1 Testing NLF after determination of the cointegration space

Harbo et al. (1998) propose to use economic arguments to determine whichs (≤ r) vari-
ables∆X2t do not react to disequilibria in the cointegration relations. Having assumed
NLF from β′Xt−1 to ∆X2t they suggest estimating the rank from the conditional model
(18), as this is maximum likelihood estimator if NLF holds. They then go on and and
restrict the cointegration space, still using only the conditional model.

After this they propose to do a misspecification test to check whether the initial as-
sumption of NLF was correct. DefiningZt = β′Xt this is done by testingH0 : α2 = 0
in

∆X2t = α2Zt−1 +
k−1∑
i=1

Γ2i∆Xt−i + η2t (20)

by means of a likelihood ratio test. The parameter space in this model isθ3
mar = (α2, Ψ2, Ω22).

The null hypothesis only concernsα2 and notΨ2 such that we cannot apply theorem 1 di-
rectly. We can however write the expectation of the desired test as the difference between
two tests, that are each special cases of theorem 1.

Define the following three models, which successively restrict the parameter space in
the marginal model(20):

1. M1 : unrestricted parametersα2, Ψ2 andΩ22.

2. M2 : α2 = 0, butΨ2 andΩ22 unrestricted.

3. M3 : α2 = 0, Ψ2 = Ψ20 andΩ22 unrestricted.

Let
(
α̃2, Ψ̃2

)
be the maximum likelihood estimators ofM1 and Ψ̂2 those ofM2.

Then the test thatα2 = 0 in M1, that isM2 in M1 can be written as:

LR (M2|M1) =
L

(
α2 = 0, Ψ̂

)

L
(
α̃2, Ψ̃

)

=
L

(
α2 = 0, Ψ̂

)

L (α2 = 0, Ψ = Ψ0)
× L (α2 = 0, Ψ = Ψ0)

L
(
α̃2, Ψ̂

)

This means that the log-likelihood ratio test can be written as the difference between two
log-likelihood ratio tests:

−2 ln LR (M2|M1) = −2 ln LR (M3|M1) + 2 ln LR (M3|M2)

such that to get the Bartlett correction, we just have to take the difference between the
two expectations. To see how these tests are both special cases of theorem 1, rewrite the
stationary part of the cointegrated VAR model(15) in the following moving average form:
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


∆Xt

∆Xt−1
...

∆Xt−k+3

∆Xt−k+2

Zt




=




Γ1 Γ2 . . . . . . Γk−1 α
Ip 0 . . . . . . . . . 0

0
.. . . . .

...
...

.. . . . . . ..
...

0 . . . 0 Ip 0 0
β′Γ1 . . . . . . . . . β′Γk−1 β′α + Ir







∆Xt−1

∆Xt−2
...

∆Xt−k+2

∆Xt−k+1

Zt−1




+




Ip

0
...
...
0
β′




ηt

(21)

Yt = DYt−1 + Eηt (22)

ηt ∼ MIIDN(0, Ω) (23)

The regressors inM1 are Yt−1. These can be written in terms of theMIIDN(0, Ω)
processηt asYt−1 =

∑∞
i=0 Giηt−1−i where

Gi = DiE for i = 0, 1, . . . (24)

Hi = DiEΩ
1
2 = DiF for i = 0, 1, . . . (25)

In the last line we defined{Hi} by postmultiplying{Gi}by Ω
1
2 , just as we postmulti-

plied{Qi} to obtain{Ci} and then expressed the theorems in terms of{Ci}. Next define
the matrixS which selects the first differences and the lagged first differences, but not the
cointegration relationships fromYt−1 as:

S =
[
Ip(k−1), 0p(k−1)×r

]′
(26)

such thatS ′Yt−1 are the regressors inM2 and we obtain the following expressions for its
polynomial

Ni = S ′DiE for i = 0, 1, . . . (27)

Oi = S ′DiEΩ
1
2 = S ′DiF for i = 0, 1, . . . (28)

For future reference we also define the variance of the processY asΣyy:

Σyy = var (Yt) (29)

In M1 the dimension of the coefficient matrix iss× ((k − 1) p + r), whereas inM2

it is s × (k − 1) p. The null hypothesis isH0 : α2 = 0. Consequently the Bartlett factor
can be used and the expectation of the likelihood ratio is given in the following corollary:

Corollary 9 The likelihood ratio forH0 : α2 = 0 in (19) has the following expected
value:

E [−2 ln LR (M2|M1)]
1
= sr +

1

2T

(
sr + s2r + sr2 + 2rsp(k − 1)

)

+
1

T
k ((k − 1) p + r, s, {Hi})− 1

T
k ((k − 1) p, s, {Oi})

whereHi andOi are defined in(25) and(28) respectively andk is defined in theorem 1.
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Ψ =
∑∞

i=0 DiFF ′Di′ A3 = V ′S ′Φ−1SV Λ A7 = (I − Λ2)
−1

P = S ′ (SΨS ′)−1 SΨ A4 = V −1P ′V A8 = (ll′ − ΛcoΛro)

A1 = V −1FI22F
′V −1′ A5 = V ′S ′Φ−1SV A9i = (In − υiΛ)−1

A2 = V ′PV −1′Λ A6 = V ′Φ−1V A9j = (In − υjΛ)−1

Table 3: Definition of a number of terms for theorems 10 and 11

The two expression fork in corollary 9 contain infinite loops, but due to their structure
{Hi} and{Oi} in equations (25) and (28) can be simplified, such that the expressions can
be computed exactly.

Let
υ1, . . . , υn (30)

be the (possibly complex) eigenvalues ofD andw1, . . . , wn the corresponding eigenvec-
tors. Then define:

V =
[

w1 . . . wn

]
(31)

Λ =




υ1

. . .
υn


 (32)

Λro =
[

υ1 . . . υn

]
(33)

Λco =




υ1
...

υn


 (34)

ln×1 =
[

1 . . . 1
]′

(35)

A number of terms, which are expressed in terms ofυi,V ,Λ,ΛroandΛco are given in table
3. They are used in the following two theorems.

Theorem 10 If Ci = S ′DiF for i ≥ 0 then the expression fork in theorem 1 simplifies
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to:

k = tr {A1 (A2 ® A8) A3 (A4 ® A8)}
+ 2

∑n

i=1
(A2)ii tr {A1 (A2 ® A8) A5A9i}

+
∑n

i,j=1
(A2)ii (A2)jj tr {A1A9iA5A9j}

+
∑n

i,j,k,m=1

(A1)ij (A2)jk (A3)km (A4)mi

(1− υjυm)(1− υiυk)

+ 2
∑n

i,j,k,m=1

(A1)ij (A2)jk (A2)km (A5)mi

(1− υjυm)(1− υiυk)

+
∑n

i,j=1
(A2)ji (A2)ij tr {A1A9iA5A9j}

− 2
∑n

i=1
(A4)ii υ

2
i tr {A1A9iA5A9i}

− 2tr
{
A1 (A′

4 ® A8) Λ2 (A5 ® A8)
}

− 2tr {(A1 ® A8) A3 (A4 ® A8) Λ}
− 2tr {(A1 ® A8) Λ (A3 ® A8) A4}

where relevant definitions are given in equations (30)-(34) and in table 3.® denotes
Hadamard division. For three matricesA,B andC of equal dimensionC = A®B is the
matrix with entriescij = aij/bij.

Proof. see section A.12

Theorem 11 If Ci = DiF for i ≥ 0 then the expression fork in theorem 1 simplifies to:

k = tr {A1ΛA7A6ΛA7}
+ 2

∑n

i=1
υitr {A1ΛA7A6A9i}

+
∑n

i,j=1
υiυjtr {A1A9iA6A9j}

− tr {((ΛA1Λ)® A8) (A6 ® A8)}
− 2tr

{
A1A7Λ

2 (A6 ® A8)
}

−
∑n

i=1
υ2

i tr {A1A9iA6A9i}
where relevant definitions are given in equations (30)-(34) and and in table 3.

Proof. see section A.13.
Both expressions are quickly programmed and as they contain only finite loops1, the

first order expansion of the expectation of the likelihood ratio test statistic can be calcu-
lated exactly.

6.2 Testing NLF before determination of the cointegration space

Under the assumption of NLF fromβ′Xt−1 to ∆X2t the parameters of the conditional
model(18) θcon and those in the marginal model(19) θ2

mar vary in a product space, such

1Note thatΨ = V
((

V −1FF ′V −1′)® (ll′ − ΛcoΛro)
)
V ′ such that only finite loops remain for the

expression in table 3.
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that∆X2t is weakly exogenous forβ. The aim of the test for NLF is thus to be able to do
inference onβ in the conditional model only.

We can find the Bartlett correction for that test, but once again we need to take differ-
ences between likelihood ratio tests to be able to find a first order approximation to the
expectation of the test of interest. Define the following models:

1. N−1 : matrixΠ is of full rankp.

2. N0 : unrestricted parameters in the cointegrated VAR, equation(15)

3. N1 : β = β0φ

4. N1a : α = α0ψ

5. N2 : β = β0, α = α0

whereφ andψ are(r × r) matrices of full rank.
The difference betweenN2 andM2 is that inM2 s (≤ p− r) rows equal zero and

the others are estimated freely. InN2 the whole column space ofα is fixed. This implies
thatLR (N2|N1) is a special case ofLR (M2|M1).

Our interest focuses onLR (N1a|N0) which can be written as:

LR (N1a|N0) =
L (N1a)

L (N2)
× L (N2)

L (N1)
× L (N1)

L (N0)
(36)

such that we find:

−2 ln LR (N1a|N0) = +2 ln LR (N2|N1a)− 2 ln LR (N2|N1)− 2 ln LR (N1|N0)

In this section we have already derived the first order approximation to the expecta-
tion of −2 ln LR (N2|N1), whereas Johansen (2000) derives that of−2 ln LR (N1|N0)
and Johansen (2002a) contains the one for−2 ln LR (N2|N1a). We can simply add
up the three expectations of these terms to find the Bartlett correction of the test for
−2 ln LR (N1a|N0).

All three tests concern the whole system of equations, namely(15), but−2 ln LR (N2|N1)
is done in the marginal equation only, as we saw in the last paragraph. Adding up the three
expressions we obtain:

Corollary 12 For unknown cointegration parameterβ the likelihood ratio forH0 : α2 =
0 in (19) has the following expected value:

E [−2 ln LR (N1a|N0)]
1
= r (p− r) +

1

2T

(
r2 + 2r3 + 2r2p(k − 1)

)

+
1

T
k ((k − 1) p + r, r, {Hi})− 1

T
k ((k − 1) p, r, {Oi})

+
1

T
r2tr

{(
α′Ω−1α

)−1
S ′⊥Σ−1

yy S⊥
}

whereHi, Oi, S andΣyy are defined in(25)− (29) andk is defined in theorem 1.
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Figure 2: Overview of Bartlett corrections in the cointegrated VAR

For completeness we state that Johansen (2002b) derives the Bartlett correction for
the rank test, that is forLR (N0|N−1) and graphically represent this information in figure
2.

Equation(36) shows that we are able to Bartlett correct the one test in the diagram, for
which the Bartlett correction has not been derived explicitly. We do stress that whereas
the Bartlett corrections in Johansen (2000, 2002a,b) allow for certain deterministic terms,
the one in this paper does not and is therefore somewhat less general.

6.3 A Monte Carlo study of the test for NLF

We perform a Monte Carlo study of the two tests for no long run feedback and use the
following 5-dimensional Data Generating Process:

φ1 (L) X1t = ε1t

φ2 (L) X2t = ε2t

g (L) Xit = εit for i = 3, 4, 5

εt ∼ MIIDN(0, In)

where

φ1 (L) =
∏k

i=1 (1− φ1iL) ϕ1 =
[

φ11 . . . φ1k

]
max (|φ1i|) < 1

φ2 (L) =
∏k

i=1 (1− φ2iL) ϕ2 =
[

φ21 . . . φ2k

]
max (|φ2i|) < 1

g (L) =
∏k

i=1 (1− giL) γ =
[

g1 . . . gk

]
max (|gi|) = 1

The first two variables are stationary, whereas the last three each contain exactly one unit
root. As the calculation of the Bartlett correction is computer-intensive (in a simulation
framework) and in order to keep the size of this experiment under control, we have opted
for a benchmark case and then varied one or two aspects of the benchmark DGP.

When we rewrite the model in the equilibrium correction form(15), thenα andβ take
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β known (corollary 9) β unknown (corollary 12)
WT WBC

T WT WBC
T

θ θ̂r θ̂u θ θ̂r θ̂u

Experiment 1 E [LR] 6.71 6.07 6.08 6.10 11.49 7.68 8.65 9.21
ϕ1 = [0.8, 0.6] BF 0.106 0.496
ϕ2 = [0.8, 0.6] 10% 14.8 10.4 10.4 10.5 51.0 19.8 27.9 32.6
γ = [1, ε] 5% 8.0 5.2 5.2 5.2 37.6 10.5 16.4 21.0
T = 100 1% 1.8 0.7 0.7 0.8 16.5 1.8 4.2 6.7
Experiment 2 E [LR] 6.28 5.96 5.97 5.97 8.53 6.83 7.08 7.28
ϕ1 = [0.8, 0.6] BF 0.053 0.248
ϕ2 = [0.8, 0.6] 10% 11.7 9.8 9.8 9.8 27.0 14.7 16.35 17.9
γ = [1, ε] 5% 6.3 5.3 5.3 5.3 17.2 8.6 9.5 10.8
T = 200 1% 2.0 1.4 1.4 1.5 7.2 2.4 2.8 3.3
Experiment 3 E [LR] 6.09 5.93 5.93 5.93 6.91 6.15 6.21 6.27
ϕ1 = [0.8, 0.6] BF 0.026 0.124
ϕ2 = [0.8, 0.6] 10% 11.0 10.0 10.0 10.0 16.2 11.0 11.4 11.8
γ = [1, ε] 5% 5.4 4.8 4.8 4.8 8.7 5.6 5.6 6.1
T = 400 1% 1.0 0.8 0.8 0.8 2.6 1.3 1.4 1.6
Experiment 4 E [LR] 7.46 6.11 6.25 6.31 12.59 7.82 9.08 9.72
ϕ1 = [0.8, 0.6] BF 0.221 0.611
ϕ2 = [0.8, 0.6] 10% 21.2 11.6 11.6 12.2 59.0 20.1 31.6 36.6
γ = [1, 0.6] 5% 12.0 5.8 5.8 6.3 45.3 10.0 18.4 24.4
T = 100 1% 3.1 0.9 0.9 1.0 21.6 2.3 5.5 7.7
Experiment 5 E [LR] 6.74 6.06 6.07 6.09 13.03 7.19 9.54 10.29
ϕ1 = [0.8,0.8] BF 0.112 0.812
ϕ2 = [0.8,0.8] 10% 14.8 10.3 10.3 10.4 61.7 15.0 35.6 42.1
γ = [1, ε] 5% 8.2 5.4 5.4 5.6 47.3 6.7 23.1 28.2
T = 100 1% 1.8 0.9 0.9 0.9 24.8 0.9 5.9 10.2
Experiment 6 E [LR] 6.48 6.08 6.06 6.06 9.78 7.28 7.80 8.13
ϕ1 = [0.8,−0.6] BF 0.066 0.343
ϕ2 = [0.8,−0.6] 10% 13.1 10.2 10.2 10.2 37.9 17.0 21.7 24.0
γ = [1, ε] 5% 6.8 5.3 5.3 5.3 25.2 9.3 12.2 14.9
T = 100 1% 1.8 1.3 1.3 1.3 9.6 2.0 2.9 4.3
Experiment 7 E [LR] 6.45 6.02 6.01 6.01 7.22 6.28 6.34 6.39
ϕ1 = [0.6,−0.6] BF 0.072 0.150
ϕ2 = [0.6i,−0.6i] 10% 13.4 10.7 10.7 10.7 18.8 12.4 12.9 13.6
γ = [1, ε] 5% 7.4 5.4 5.4 5.3 11.2 6.0 6.2 6.4
T = 100 1% 1.2 0.8 0.8 0.8 2.5 1.2 1.3 1.4
Experiment 8 E [LR] 7.92 6.34 6.41 6.45 14.37 8.53 9.87 10.65
ϕ1 = [0.8, 0.6,0.2,0.2] BF 0.250 0.684
ϕ2 = [0.8, 0.6,0.2,0.2] 10% 23.5 12.5 12.5 12.7 67.6 27.2 38.1 43.8
γ = [1, ε, ε,ε] 5% 14.7 6.7 6.7 7.0 54.7 16.2 25.6 31.2
T = 100 1% 4.7 1.2 1.2 1.2 31.8 4.1 8.45 12.6

Table 4: Bartlett corrections for two tests of no level feedback in the cointegrated VAR.
The variations with respect to Experiment 1 are given in bold face.ε = 10−4 (If ε were
equal to zero,Φ would be of reduced rank in the DGP)

21



the following values:

α′ =
[

α11 0 0 0 0
0 α22 0 0 0

]
, β′ =

[
1 0 0 0 0
0 1 0 0 0

]

α11 =
k∑

i=1

φ1i − 1

α22 =
k∑

i=1

φ2i − 1

We vary the following aspects of the DGP:T (the number of observations),k (the
number of lags) andϕ1, ϕ2 and γ. For each experiment we report two tests (in their
uncorrected and corrected versions): the test that the last three rows of the adjustment
parametersα are zero for known cointegration spaceβ and for unknownβ. UnderH0 both
tests asymptotically have aχ2-distribution with six degrees of freedom and the Bartlett
correction for the first test is given in corollary 9.Corrollary 12 provides the expression
for the second test.

Each of these Bartlett corrections depends on the parameters of the model. We calcu-
late the Bartlett correction based on

1. The true (DGP) value of the parameters,θ.

2. The maximum likelihood estimates of the parameters underH0, θ̂r.

3. The maximum likelihood estimates of the parameters under the alternative,θ̂u.

Omtzigt and Fachin (2002) argue that for the test of corollary 12 one needs to useθ̂u

aslimT→∞tr
{

(α′Ω−1α)
−1

S ′⊥Σ−1
yy S⊥

}
is not defined under the alternative. Their point

does not apply to the test in corollary 9.
The simulation is based on 2000 replications and for each test we report the expected

value of the likelihood ratio test, as well as the expected value of the Bartlett corrected
test based onθ, θ̂r andθ̂u.We also give the Bartlett factor based onθ. As before we report
the empirical rejection probabilities at the nominal 10%, 5% and 1% level.

In the benchmark model (experiment 1), both stationary variables,X1t andX2t have
relatively large residual roots at0.6 and 0.8. The other three series are pure random
walks2 and we have 100 observations. The first block-row of table 4 shows that the
Bartlett correction in the test for knownβ performs well: at the 5% nominal level, it
corrects from 8.0% to 5.2% for all three Bartlett corrected tests. For unknownβ the
results are different. The original size distortion is considerably larger, as the empirical
size of the asymptotic test at the nominal 5% level is 37.6%. The Bartlett correction
based on the true value brings this down to 10.5%, but those based on the restricted
and unrestricted estimates only bring it down to 16.4% and 21.0% respectively. Even for
T=200 (experiment 2) the corrected test remains size distorted. Four hundred observations
(experiment 3) are needed for the corrected test to reach a rejection probability close
to 5%. In experiments 4 and 5, the smallest residual roots in the non-stationary and

2There are one or three very small extra small roots in the polynomial, which areε = 10−4. They serve
no other purpose than to ensure invertibility of the matrixΦ.
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stationary variables respectively are raised. The Bartlett correction for the test based on
known β continues to perform well, but the one based on unknownβ does even worse
than in the benchmark case. If the roots are more scattered on the real line (experiment
6) or inside the unit circle (experiment 7), the performance of the Bartlett corrected test
with unknownβ is more acceptable. The size corrections perform worse with a longer
lag length (experiment 8), which is in line with the findings in Omtzigt and Fachin (2002)
.

Overall the Bartlett correction performs better whenβ is known than when it is un-
known, though this may be specific to the Monte Carlo design chosen and the larger size
distortion of the non-corrected test.

In figure 3 we give the QQ-plots of the uncorrected and corrected test in experiment
1, based on 20000 replications. We observe that the plots on the left hand side, which
correspond to corollary 9 are straight and that all three corrected test virtually coincide
with the 45 degree line, showing the effectiveness of the Bartlett correction. The plots
on the right hand side correspond to the case whereβ is unknown and in none of the
four plots does the empirical QQ-plot coincide with the 45 degree line. However all four
plots are almost straight lines. (In the bottom two rows, the Bartlett correction depends
on the estimated parameters, such that the Bartlett correction does not just rotate the QQ-
plot. Potentially it can also change the curvature). The relatively straight line and the
fact that the correction functions with 400 observations are consistent with the view that
a higher order expansion of the expectation of the likelihood ratio test is needed in this
case. Nielsen (1997) and Johansen (2002b) provide examples of Bartlett corrections in
which higher order terms are needed to make the Bartlett correction function.

7 Conclusions

We have derived the Bartlett correction for a simple hypothesis on the regression param-
eters in a multivariate stationary autoregressive process. Three applications illustrate the
use of the correction: the test for absence of autocorrelation of any order, a simple hy-
pothesis on the autoregressive parameters and two tests for no long run feedback in the
cointegrated VAR model. In the first of these last two tests, the cointegration space is
known, in the second it is not. In all sections explicit expressions for the Bartlett correc-
tion are given.

The Bartlett correction performs well in all simulation studies, except in the one of
the last test, that is a test for weak exogeneity in the cointegrated VAR with an unknown
cointegration space. In that particular case a second order expansion might improve the
Bartlett correction.
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A Derivation of the main results

In this appendix we prove theorem 1 and 2. In the first subsection we derive a number
of useful lemma’s, which will be applied over and again in the theorems. Then theorem
1 is derived. Theorem 2 is derived in subsection A.11: the short proof is in some way a
special case of theorem 1. Theorems 11 and 10 are derived in subsections A.13 and A.12
respectively.

A.1 Lemma’s

To prove the two theorems and their corollaries, we shall state a few useful lemma’s. The
first one states that in all the estimation problems we consider in this paper, the Ordinary
Least Squares (OLS) estimator and Maximum Likelihood (ML) estimators coincide:

Lemma 13 If A varies unrestricted in a product space, that isA ∈ Rn×(q+r) in the model:
[

Y1t

Y2t

]
=

[
A1

A2

]
Xt +

[
εt

0

]
(37)

ε1t ∼ MIIDN(0, Ω)

then the maximum likelihood estimator ofA, Ã and the OLS-estimator ofA, Â coin-
cide. FurthermoreÂ2 = A2

Proof. In the first sub modelY1t = A1Xt + ε1t, Â1 = (X ′X)−1 X ′Y1 whereas in
the full model (37) Â = (X ′X)−1 X ′Y which impliesÂ1 = (I, 0) (X ′X)−1 X ′Y =
(X ′X)−1 X ′Y1. Therefore the OLS estimators in the two small submodels coincide with
the OLS estimator of the large model (37)
The variance-covariance matrix of

[
ε1t 0

]′
is trivially block-diagonal withΩ and0 as

diagonal elements. Therefore maximization of the likelihood function of (37) is the same
as the separate maximization of the likelihood functions of the two submodels.
In the second sub modelY2t = A2Xt,Â2 = (X ′X)−1 X ′Y2 = A2 as we are estimating
an identity. This estimator trivially equals the maximum likelihood estimator. The ML-
estimator of the first submodel equals the OLS-estimator asA1 ∈ Rn×q

Next we state two standard result on the products of the errors in the multivariate
normal distribution:

Lemma 14 Let εi = [ε′1i, ε
′
2i]
′, i = 1, ..., T be(n× 1) vectors, distributed i.i.d.N (0, In)

and letε2i be of dimensionq ≤ n. Further letM be an(n× n) matrix.
Then:

E [ε′iMεj] =

{
tr {M} if i = j
0 otherwise

E [D] = E
[
ε2iε

′
jMεkε

′
2l

]
=





M22 + M ′
22 + Iqtr {M} if i = j = k = l

Iqtr {M} if i = l 6= j = k
M ′

22 if i = k 6= j = l
M22 if i = j 6= k = l
0 otherwise
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Proof. First letεi =
[

ε1
i ε2

i · · · εn
i

]′
, ε2i =

[
εn−q+1
i · · · εn

i

]′
and denote the

element in rowa and columnb of matrixM asmab. Then letLq×n = [0, Iq]. Throughout
we use the fact that the first and third moment of this normal distribution are zero and that
E

[
εa
i ε

b
j

]
= 1 iff a = b andi = j.

• E [ε′iMεi] = E
[∑n

a=1

∑n
b=1 εa

i m
abεb

i

]
= E [

∑n
a=1 εa

i m
aaεa

i ] = tr {M}
• If i = j 6= k = l, thenE

[
ε2iε

′
jMεkε

′
2l

]
= E [ε2iε

′
i] ME [εkε

′
2k] = LML′ = M22

• If i = l 6= j = k, thenE
[
ε2iε

′
jMεkε

′
2l

]
= E [ε2iε

′
2i] tr {M} = Iqtr {M}

• If i = k 6= j = l, thenE
[
ε2iε

′
jMεkε

′
2l

]
= E [ε2iε

′
i] M

′E
[
εjε

′
2j

]
= LM ′L′ = M ′

22

• If i = j = k = l, ConsiderD∗ = L′DL. Then only the entries in the lower right
hand part of the matrix are non zero.Letδ be the Kronecker delta, such thatδαβ = 1

iff α = β and zero otherwise to find:
[
d∗ab

]
= (1− δab) E

[
(εa

i )
2 (

mab + mba
) (

εb
i

)2
]
+

δabE

[
(εa

i )
2 (

εb
i

)2 ∑n
b=1
b6=a

mbb + (εa
i )

4 maa

]

= (1− δab)
(
mab + mba

)
+ δab

∑n
b=1
b 6=a

mbb + δab3m
aa for a, b ≥ n− q + 1

otherwiseE
[
d∗ab

]
= 0

We thus find thatE [D∗] = L′ML + L′M ′L + L′L× tr {M} .
E [D] = M + M ′ + Iq × tr {M} .

• If we have aε−vector, whose index does not coincide with the index of another
ε−vector, then by independence the expectation of the whole expression becomes
zero.

Lemma 15 Let εi = [ε1i, ε2i], i = 1, ..., T be (n× 1) vectors, distributed i.i.d.N (0, In)
and letε2i be of dimensionq ≤ n. Further letS be an(q × q) matrix andLq×n = [0, Iq].
DefineS∗ = L′SL. Then:

E [D] = E
[
εiε

′
2jSε2kε

′
l

]
=





S∗ + S∗′ + Intr {S} if i = j = k = l
Intr {S} if i = l 6= j = k
S∗′ if i = k 6= j = l
S∗ if i = j 6= k = l
0 otherwise

Proof. First letε′i =
[

ε1
i ε2

i · · · εn
i

]
, ε′2i =

[
εn−q+1
i · · · εn

i

]
and denote the

element in rowa and columnb of matrixS assab.

• If i = j 6= k = l, thenE
[
εiε

′
2jSε2kε

′
l

]
= E [εiε

′
2i] ME [ε2kε

′
k] = L′SL = S∗

• If i = l 6= j = k,thenE
[
ε2iε

′
jMεkε

′
2l

]
= E [ε2iε

′
2i] tr {S} = Intr {S}

• If i = k 6= j = l,thenE
[
ε2iε

′
jMεkε

′
2l

]
= E [ε2iε

′
i] M

′E
[
εjε

′
2j

]
= LS ′L′ = S∗′
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• For i = j = k = l, et δ2 = 1 iff α, β ≥ n− 1 + 1 and0 otherwise then
E

[
εiε

′
2jSε2kε

′
2

]

= δabδ2E

[
(εa

i )
2 (

εb
i

)2 ∑q
b=1
b6=a

sbb + (εa
i )

4 saa

]
+(1− δab) δ2

[
(εa

i )
2 (

sab + sba
) (

εb
i

)2
]

+δab (1− δ2) E
[
(εa

i )
2 (

εb
i

)2 ∑q
b=1 sbb

]
+ (1− δab) (1− δ2) 0

such that we findE [ε2iε
′
iSεiε

′
2l] = S∗ + S∗′ + Intr {S}

• If we have aε−vector, whose index does not coincide with the index of another
ε−vector, then by independence the expectation of the whole expression becomes
zero.

Lemma 16 Let εi, i = 1, ..., T be(n× 1) vectors, distributed i.i.d.N (0, In) andM and
N (n× n) matrices.
Then:

E [ε′iMεjε
′
kNεl] =





tr {MN}+ tr {MN ′}+ tr {M} tr {N } if i = j = k = l
tr {M} tr {N } if i = j 6= k = l
tr {MN ′} if i = k 6= j = l
tr {MN} if i = l 6= j = k
0 otherwise

(38)

Proof. We proceed as in the last two lemma’s and refer to them for notation:

• If i = j 6= k = l, thenE [ε′iMεjε
′
kNεl] = E [ε′iMεj] E [ε′kNεl] = tr {M } tr {N}

• If i = l 6= j = k, thenE [ε′iMεjε
′
kNεl] = tr {MN}

• If i = k 6= j = l, thenE [ε′iMεjε
′
kNεl] = E [ε′iMεjε

′
lN

′εk] = tr {MN ′}
• If i = j = k = l, thenE [ε′iMεjε

′
kNεl] = E [ε′iMεiε

′
iNεi]

= E
[∑n

a,b,c,d=1 εa
i m

abεb
iε

c
in

cdεd
i

]

= E
[∑n

a=1 (εa
i )

4 maanaa
]
+ E

[∑n
a,c=1
a6=c

(εa
i )

2 (εc
i)

2 maancc

]

+E

[∑n
a,b=1
a6=b

(εa
i )

2 (
εb
i

)2 (
mabnab + mabnba

)]

= tr {MN}+ tr {MN ′}+ tr {M} tr {N }
• If we have aε−vector, whose index does not coincide with the index of another

ε−vector, then by independence the expectation of the whole expression becomes
zero. Throughout we have used the fact that the first and third moments of the
normal distribution is zero.
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A.2 Proof of Theorem 1

We first consider the model of theorem 1, which concerns a simple hypothesisH0 : A =
A0

Yt = AXt + η2t (39)

where

Xt = Q(L)ηt−1

ηt =
[

η′1t η′2t

]′ ∼ MIIDN(0, Ω)

whereηt is of dimensionn, whereasη2t is of dimensionq. Furthermore underH0,
H = Y − XA, where with capitals we denote the stacked vectors. For instanceY =

[y1, . . . , yT ]′,U = [ε21, . . . , ε2T ]′ , H = [η21, . . . , η2T ]′. Also ε2t = Ω
− 1

2
22 η2t and εt =

Ω− 1
2 ηt.
It is well-known that the ordinary least squares estimator and the maximum likelihood

estimator coincide in this model, such that the maximum likelihood estimator can be
written as:Â = A + (X ′X)−1 (X ′H). We substitute this in the likelihood ratio test for
H0 : A = A0 and expand it, keeping only first order terms:

−2 ln LR (A = A0) = −T log
∣∣∣(Y −XÂ′)′(Y −XÂ′)

∣∣∣ |(H ′H)|−1

= −T log

∣∣∣∣Iq −
(
Ω

1
2
22U

′UΩ
1
2
22

)−1 (
Ω

1
2
22U

′X
)

(X ′X)
−1

(
X ′UΩ

1
2
22

)∣∣∣∣

= −T log
∣∣∣Iq − Ω

− 1
2

22 (U ′U)
−1

(U ′X) (X ′X)
−1

(X ′U) Ω
1
2
22

∣∣∣

= −T log
∣∣∣Ω− 1

2
22

∣∣∣
∣∣∣Iq − Ω

− 1
2

22 (U ′U)
−1

(U ′X) (X ′X)
−1

(X ′U) Ω
1
2
22

∣∣∣
∣∣∣Ω

1
2
22

∣∣∣
= −T log

∣∣∣Iq − (U ′U)
−1

(U ′X) (X ′X)
−1

(X ′U)
∣∣∣

= −T |Iq −K|
1
= tr(K) +

1

2T
tr(K2)

where we have definedK ≡ T (U ′U)−1 (U ′X) (X ′X)−1 (X ′U) .
The probability limits of the two matrices, whose inverses enterK, are:

(
1

T
U ′U

)
P→ Iq

(
1

T
X ′X

)
P→ Φ =

∞∑
η=0

CηC
′
η = V ar(Xt)
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and their first order expansions are:

(
1

T
U ′U

)−1

=

(
Iq −

(
Iq − 1

T
U ′U

))−1

1
= Iq +

(
Iq − 1

T
U ′U

)
+

(
Iq − 1

T
U ′U

)2

(40)

(
1

T
X ′X

)−1

=

(
Φ−

(
Φ− 1

T
X ′X

))−1

1
= Φ−1 + Φ−1

(
Φ− 1

T
X ′X

)
Φ−1 + Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(41)

Using(40) and(41) we can write the first order expansion of the expected value ofK
as:

E [tr(K)]
1
= tr

{
E

(
1√
T

U ′X
)

Φ−1

(
1√
T

X ′U
)}

+ tr

{
E

(
Iq − 1

T
U ′U

)(
1√
T

U ′X
)

Φ−1

(
1√
T

X ′U
)}

+ tr

{
E

(
1√
T

U ′X
)

Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(
1√
T

X ′U
)}

+ tr

{
E

(
Iq − 1

T
U ′U

)(
1√
T

U ′X
)

Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(
1√
T

X ′U
)}

+ tr

{
E

(
Iq − 1

T
U ′U

)2 (
1√
T

U ′X
)

Φ−1

(
1√
T

X ′U
)}

+ tr

{
E

(
1√
T

U ′X
)

Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(
1√
T

X ′U
)}

The names of these terms shall beD1 to D6. Together with 1
2T

E [tr(K2)] these terms
form the expansion of the expectation of the likelihood ratio test. Their expectations are
worked out one by one in the following pages.

A.3 Derivation of D1

tr

{
E

(
1√
T

U ′X
)

Φ−1

(
1√
T

X ′U
)}

= tr

{
E

[
1

T

T∑
t,s=1

∞∑

ζ,η=0

ε2tεt−1−ζC
′
ζΦ

−1Cηεs−1−ηε
′
2s

]}

There is only one way in which this terms gives a non-zero expectation:t = s, η = ζ. We
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then get:

tr

{
1

T
E

[
T∑

s=1

ε′2sε2s

]
E

[ ∞∑
η=0

ε′s−1−ηC
′
ζΦ

−1Cζεs−1−η

]}

= q × tr

{ ∞∑
η=0

C ′
ζΦ

−1Cζ

}

= q × tr {In}
= qn

D1 = qn

A.4 Derivation of D2

tr

{
E

(
Iq − 1

T
U ′U

)(
1√
T

U ′X
)

Φ−1

(
1√
T

X ′U
)}

= −tr

{
1

T 2
E

T∑
t,s,r=1

∞∑

ζ,η=0

(ε2rε
′
2r − Iq) ε2tε

′
t−1−ζC

′
ζΦ

−1Cηεs−1−ηε
′
2s

}

There are two ways in which this combination gives has an expectation of at leastO( 1
T
):

Eithert = s = r andη = ζ or t = s ands− 1− η = t− 1− ζ = r.

A.4.1 The first combination

t = s = r andη = ζ
I find

− tr

{
1

T 2
E

[
T∑

s=1

ε2sε
′
2sε2sε

′
2s −

T∑
s=1

εsε
′
s

]
E

[ ∞∑
η=0

ε′s−1−ηC
′
ηΦ

−1Cηεs−1−η

]}

= −tr

{
1

T 2
(T (q + 1)× Iq)× tr {In}

}

= −q2n + nq

T

where we applied lemma 14 in the second line.

D21 = − q2n+nq
T
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A.4.2 The second combination

t = s ands− 1− η = t− 1− ζ = r.
Here the reasoning goes as follows:

− tr

{
1

T 2
E

T∑
t,s,r=1

∞∑

ζ,η=0

(ε2rε
′
2r − Iq) ε2tε

′
t−1−ζC

′
ζΦ

−1Cηεs−1−ηε
′
2s

}

= −tr

{
1

T 2
E

[ ∞∑
η=0

ε2s−1−ηε
′
s−1−ηC

′
ηΦ

−1Cηεs−1−ηε
′
2s−1−η

]
E

[
T∑

s=1

ε2sε
′
2s

]}

+ tr

{
1

T 2
E

[ ∞∑
η=0

ε′s−1−ηC
′
ηΦ

−1Cηεs−1−η

]
E

[
T∑

s=1

ε2sε
′
2s

]}

= −tr

{
1

T 2
((n + 2)× Iq)× (T × Iq)

}
+

nq

T

= −2q

T

where we have applied lemma 15 in the third passage. We thus conclude that

D22 = −2q
T

A.5 Derivation of D3

tr

{
E

(
1√
T

U ′X
)

Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(
1√
T

X ′U
)}

= −tr

{
1

T 2
E

T∑
t,s,v=1

∞∑

ζ,η,κ,λ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκ

(
εv−1−κε

′
v−1−λ − δκλIn

)
C ′

λΦ
−1Cηεs−1−ηε

′
2s

}

There are five ways in which this expression gives an expectation of at leastO( 1
T
) :

1. s = t = v − 1− λ = v − 1− κ andt− 1− ζ = s− 1− η andλ = κ

2. s = t andt− 1− ζ = s− 1− η = v − 1− λ = v − 1− κ

3. v − 1− κ = s− 1− η 6= v − 1− λ = t− 1− ζ ands = t (also changeκ andλ to
get two combinations in total)

4. s = v − 1 − κ andt = s − 1 − η andv − 1 − λ = t − 1 − ζ (also change bothκ
andλ andζ andη for four combinations)

5. t = v − 1− κ ands = v − 1− λ andt− 1− ζ = s− 1− η (also changeκ andλ,
deriving two expressions)

These five combinations, some of them consisting of subcombinations, shall now be
dealt with one by one:
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A.5.1 Derivation of D31

s = t = v − 1− λ = v − 1− κ andζ = η andλ = κ

− tr

{
1

T 2
E

T∑
t,s,v=1

∞∑

ζ,η,κ,λ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκ

(
εv−1−κε

′
v−1−λ − δκλIn

)
C ′

λΦ
−1Cηεs−1−ηε

′
2s

}

= −tr

{
1

T 2
E

[
T∑

s=1

εsε
′
2sε2sε

′
s −

T∑

s=1κλ

Inε′sεs

]
E

[ ∞∑
κ=0

∞∑
η=0

C ′
κΦ

−1Cηεs−1−ηε
′
s−1−ηC

′
ηΦ

−1Cκ

]}

= −tr

{
1

T 2

(
2T × I∗q

)×
∞∑

κ=0

C ′
κΦ

−1Cκ

}

= − 2

T
tr

{[∑∞
κ=0

C ′
κΦ

−1Cκ

]
22

}

where we defined the(n× n) matrix I∗q as:

I∗q =

[
0 0
0 Iq

]

D31 = − 2
T
tr

{
[
∑∞

κ=0 C ′
κΦ

−1Cκ]22

}

A.5.2 Derivation of D32

s = t andt− 1− ζ = s− 1− η = v − 1− λ = v − 1− κ

− tr

{
1

T 2
E

T∑
t,s,v=1

∞∑

ζ,η,κ,λ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκ

(
εv−1−κε

′
v−1−λ − δκλIn

)
C ′

λΦ
−1Cηεs−1−ηε

′
2s

}

= − 1

T 2
E

[
T∑

s=1

ε′2sε2s

]
E

[ ∞∑
κ=0

∞∑
η=0

ε′uC
′
ηΦ

−1Cκ (εuε
′
u − In) C ′

κΦ
−1Cηεu

]

= − q

T
E

[ ∞∑
κ=0

∞∑
η=0

ε′uC
′
ηΦ

−1Cκεuε
′
uC

′
κΦ

−1Cηεu

]
+

q

T
E

[ ∞∑
κ=0

∞∑
η=0

ε′uC
′
ηΦ

−1CκC
′
κΦ

−1Cηεu

]

= − q

T

∞∑
κ=0

∞∑
η=0

tr
{(

C ′
ηΦ

−1Cκ

)2
}
− q

T

∞∑
κ=0

∞∑
η=0

tr
{(

C ′
ηΦ

−1CκC
′
κΦ

−1Cη

)}

q

T

∞∑
κ=0

∞∑
η=0

tr2
{(

C ′
κΦ

−1Cη

)}
+

q

T

∞∑
κ=0

∞∑
η=0

tr
{(

C ′
ηΦ

−1CκC
′
κΦ

−1Cη

)}

where we have applied lemma 16 in the third passage, such that we conclude that the total
contribution of D32 is equal to:
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D32 = − q
T

∑∞
κ=0

∑∞
η=0 tr

{(
C ′

ηΦ
−1Cκ

)2
}
− q

T

∑∞
κ=0

∑∞
η=0 tr2 {(C ′

κΦ
−1Cη)}

A.5.3 Derivation of D33

First combination This is the way to derive the first combination of D33
v − 1− λ = s− 1− η 6= v − 1− κ = t− 1− ζ ands = t , κ 6= λ
which means that:

ζ + λ = η + κ , κ 6= λ

− tr

{
1

T 2
E

T∑
t,s,v=1

∞∑

ζ,η,κ,λ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκ

(
εv−1−κε

′
v−1−λ − δκλIn

)
C ′

λΦ
−1Cηεs−1−ηε

′
2s

}

= − 1

T

T∑
s

∑

κ+η=λ+ζ
κ6=λ

tr
{
E

[
ε2sε

′
wC ′

ζΦ
−1Cκεwε′uC

′
λΦ

−1Cηεuε
′
2s

]}

= − q

T

∑

κ+η=λ+ζ
κ6=λ

tr
{
C ′

ζΦ
−1Cκ

}
tr

{
C ′

λΦ
−1Cη

}

So the total contribution of the first part of the D33 term is:

− q

T

∑

κ+η=λ+ζ
κ6=λ

tr
{
C ′

ζΦ
−1Cκ

}
tr

{
C ′

λΦ
−1Cη

}

Second combination v− 1−κ = s− 1− η 6= v− 1−λ = t− 1− ζ ands = t , κ 6= λ
Stated alternatively:

ζ + κ = η + λ , κ 6= λ

− tr

{
1

T 2
E

[
T∑

t,s,v=1

∞∑

ζ,η,κ,λ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκ

(
εv−1−κε

′
v−1−λ − δκλIn

)
C ′

λΦ
−1Cηεs−1−ηε

′
2s

]}

= − q

T
tr





E




∑

λ+η=κ+ζ
κ6=λ

ε′t−1−ζC
′
ζΦ

−1Cκεv−1−κε
′
v−1−λC

′
λΦ

−1Cηεs−1−η








(42)

= − q

T

∑

λ+η=κ+ζ
κ6=λ

tr
{
C ′

ζΦ
−1CκC

′
ηΦ

−1Cλ

}
(43)

Total
The total summation ofD33 is equal to:
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D33 = − q
T

∑
κ+η=λ+ζ

κ6=λ
tr

{
C ′

ζΦ
−1Cκ

}
tr {C ′

λΦ
−1Cη}

− q
T

∑
λ+η=κ+ζ

κ6=λ
tr

{
C ′

ζΦ
−1CκC

′
ηΦ

−1Cλ

}

A.5.4 Derivation of D34

First combination s = v − 1− κ andt = s− 1− η andv − 1− λ = t− 1− ζ
Note thatκ 6= λ and

λ = κ + ζ + η + 2

− tr

{
1

T 2
E

[
T∑

t,s,v=1

∞∑

ζ,η,κ,λ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκ

(
εv−1−κε

′
v−1−λ − δκλIn

)
C ′

λΦ
−1Cηεs−1−ηε

′
2s

]}

= −tr

{
1

T 2
E

[
T∑

s=1

∞∑

ζ,η,κ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκεv−1−κε
′
v−1−λC

′
λΦ

−1Cηεs−1−ηε
′
2s

]}

= −tr

{
1

T 2
E

[
T∑

s=1

∞∑

ζ,η,κ=0

ε2sε
′
v−1−κC

′
κΦ

−1Cζεt−1−ζε
′
v−1−λC

′
κ+ζ+η+2Φ

−1Cηεs−1−ηε
′
2t

]}

= − 1

T
tr





[ ∞∑

ζ,η,κ=0

C ′
κΦ

−1CζC
′
κ+ζ+η+2Φ

−1Cη

]

22





The second combination s = v − 1− λ andt = s− 1− η andv − 1− κ = t− 1− ζ
Note thatκ 6= λ and

κ = λ + ζ + η + 2

− tr

{
1

T 2
E

[
T∑

t,s,v=1

∞∑

ζ,η,κ,λ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκ

(
εv−1−κε

′
v−1−λ − δκλIn

)
C ′

λΦ
−1Cηεs−1−ηε

′
2s

]}

= −tr

{
1

T 2

T∑
s=1

∞∑

ζ,η,λ=0

E
[
ε′t−1−ζC

′
ζΦ

−1Cλ+ζ+η+2εv−1−κ

]
E

[
ε2tε

′
s−1−η

]
C ′

ηΦ
−1CλE [εv−1−λε

′
2s]

}

= − 1

T

∞∑

ζ,η,λ=0

tr
{
C ′

ζΦ
−1Cλ+ζ+η+2

}
tr

{[
C ′

ηΦ
−1Cλ

]
22

}

The third combination t = v − 1− κ ands = t− 1− ζ andv − 1− λ = s− 1− η
Note thatκ 6= λ and

λ = κ + ζ + η + 2
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− tr

{
1

T 2
E

[
T∑

t,s,v=1

∞∑

ζ,η,κ,λ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκ

(
εv−1−κε

′
v−1−λ − δκλIn

)
C ′

λΦ
−1Cηεs−1−ηε

′
2s

]}

= −tr

{
1

T 2

T∑
t=1

∞∑

ζ,η,κ=0

E
[
ε2tε

′
v−1−κ

]
C ′

κΦ
−1CζE [εt−1−ζε

′
2s] E

[
ε′v−1−λC

′
κ+ζ+η+2Φ

−1Cηεs−1−η

]
}

= − 1

T

∞∑

ζ,η,κ=0

tr
{[

C ′
κΦ

−1Cζ

]
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}
tr

{
C ′

κ+ζ+η+2Φ
−1Cη

}

The fourth combination t = v − 1− λ ands = t− 1− ζ andv − 1− κ = s− 1− η
Note thatκ 6= λ andκ = λ + ζ + η + 2

− tr

{
1

T 2
E

[
T∑

t,s,v=1

∞∑

ζ,η,κ,λ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκ

(
εv−1−κε

′
v−1−λ − δκλIn

)
C ′

λΦ
−1Cηεs−1−ηε

′
2s

]}

= −tr

{
1

T 2

T∑
t=1

∞∑

ζ,η,λ=0

E
[
ε2tε

′
v−1−λ

]
C ′

λΦ
−1CηE

[
εs−1−ηε

′
v−1−κ

]
C ′

λ+ζ+η+2Φ
−1CζE [εt−1−ζε

′
2s]

}

= − 1

T

∞∑

ζ,η,λ=0

tr
{[

C ′
λΦ

−1CηC
′
λ+ζ+η+2Φ

−1Cζ

]
22

}

Total The total contribution of D34 is therefore:

D34 = − 2
T

∑∞
ζ,η,κ=0 tr

{
[C ′

κΦ
−1Cζ ]22

}
tr

{
C ′

κ+ζ+η+2Φ
−1Cη

}

− 2
T

∑∞
ζ,η,λ=0 tr

{[
C ′

λΦ
−1CηC

′
λ+ζ+η+2Φ

−1Cζ

]
22

}

A.5.5 Derivation of D35

First combination t = v − 1 − κ ands = v − 1 − λ andt − 1 − ζ = s − 1 − η and
κ 6= λ

κ + ζ = η + λ
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− tr

{
1

T 2
E

[
T∑

t,s,v=1

∞∑

ζ,η,κ,λ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκ

(
εv−1−κε

′
v−1−λ − δκλIn

)
C ′

λΦ
−1Cηεs−1−ηε

′
2s

]}

= −tr





1

T 2

T∑
t=1

∑

λ+η=κ+ζ
κ6=λ

E
[
ε2tε

′
v−1−κ

]
C ′

κΦ
−1CζE

[
εt−1−ζε

′
s−1−η

]
C ′

ηΦ
−1CλE [εv−1−λε

′
2s]





− 2

T

∞∑
κ=0

∞∑

λ=κ+1

∞∑
η=0

tr
{[

C ′
κΦ

−1Cλ+η−κC
′
ηΦ

−1Cλ

]
22

}

= − 2

T

∞∑
κ,η,α=0

tr
{[

C ′
κΦ

−1Cα+η−1C
′
ηΦ

−1Cα+κ+1

]
22

}

Second combination t = v − 1− λ ands = v − 1− κ andt− 1− ζ = s− 1− η and
κ 6= λ

κ + η = ζ + λ

− tr

{
1

T 2
E

[
T∑

t,s,v=1

∞∑

ζ,η,κ,λ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκ

(
εv−1−κε

′
v−1−λ − δκλIn

)
C ′

λΦ
−1Cηεs−1−ηε

′
2s

]}

= −tr





1

T 2

T∑
t=1

∑

κ+η=ζ+λ
κ6=λ

E
[
ε2tε

′
v−1−λ

]
C ′

λΦ
−1CηE

[
εs−1−ηε

′
t−1−ζ

]
C ′

ζΦ
−1CκE [εv−1−κε

′
2s]





= − 2

T

∞∑
κ=0

∞∑

λ=κ+1

∞∑

ζ=0

tr
{[

C ′
λΦ

−1Cζ+λ−κC
′
ζΦ

−1Cκ

]
22

}

= − 2

T

∞∑

κ,α,ζ=0

tr
{[

C ′
α+κ+1Φ

−1Cζ+α+1C
′
ζΦ

−1Cκ

]
22

}

The total contribution of D35 is therefore:

D35 = − 2
T

∑∞
κ,η,α=0 tr

{[
C ′

κΦ
−1Cα+η−1C

′
ηΦ

−1Cα+κ+1

]
22

}

− 2
T

∑∞
κ,α,ζ=0 tr

{[
C ′

α+κ+1Φ
−1Cζ+α+1C

′
ζΦ

−1Cκ

]
22

}
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A.6 Derivation of D4

tr

{
E

(
I1 − 1

T
U ′U

)(
1√
T

U ′X
)

Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(
1√
T

X ′U
)}

= tr

{
1

T 3
E

T∑
t,s,r,ν=1

∞∑

ζ,η,κ,λ=0

(ε2rε
′
2r − Iq) ε2tε

′
t−1−ζC

′
ζΦ

−1Cκ

(
εv−1−κε

′
v−1−λ − δκλIn

)
C ′

λΦ
−1Cηεs−1−ηε

′
2s

}

I only find one combination in this case:
t− 1− ζ = s− 1− η andv − 1− λ = v − 1− κ = r which implies thatλ = κ.
Take the four separate terms one by one, starting with the case in which we take both

identity matrices:

tr

{
1

T 3
E

T∑
t,ν=1

∞∑

ζ,λ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1CλC
′
λΦ

−1Cζεs−1−ζε
′
2t

}

=
1

T
qn

Then

− tr

{
1

T 3
E

T∑
t,ν=1

∞∑

ζ,λ=0

ε2rε
′
2rε2tε

′
t−1−ζC

′
ζΦ

−1CλC
′
λΦ

−1Cζεs−1−ζε
′
2t

}

= − 1

T
qn

− tr

{
1

T 3
E

T∑
t,r=1

∞∑

ζ,λ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cλεrε
′
rC

′
λΦ

−1Cζεs−1−ζε
′
2t

}

= − 1

T
qn

and the most complicated one:

tr

{
1

T 3
E

T∑
t,r=1

∞∑

ζ,λ=0

ε2rε
′
2rε2tε

′
t−1−ζC

′
ζΦ

−1Cv−1−λεrε
′
rC

′
v−1−λΦ

−1Cηεs−1−ηε
′
2t

}

= tr

{
1

T 3
E

T∑
t,r=1

∞∑

ζ,λ=0

[ε2tε
′
2t] ε2rε

′
rC

′
v−1−λΦ

−1Cζεt−1−ζε
′
s−1−ζC

′
ηΦ

−1Cv−1−λεrε
′
2r

}

=
2

T
tr

{ ∞∑

ζ=0

[
C ′

ζΦ
−1Cζ

]
22

}
+

1

T
qn

The total expression then becomes equal to:

D4 = 2
T
tr

{∑∞
ζ=0

[
C ′

ζΦ
−1Cζ

]
22

}
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A.7 Derivation of D5

tr

{
E

(
Iq − 1

T
U ′U

)2 (
1√
T

U ′X
)

Φ−1

(
1√
T

X ′U
)}

= tr

{
1

T 3
E

T∑
t,s,y,r=1

∞∑

ζ,η=0

(
ε2yε

′
2y − Iq

)
(ε2rε

′
2r − Iq) ε2tε

′
t−1−ζC

′
ζΦ

−1C ′
ηεs−1−ηε

′
2s

}

Here I find only one combination:
y = r, s− 1− η = t− 1− ζ, t = s

tr

{
1

T 3
E

T∑
t,r=1

∞∑

ζ=0

(ε2rε
′
2r − Iq) (ε2rε

′
2r − Iq) ε2tε

′
t−1−ζC

′
ζΦ

−1C
′
εt−1−ζε

′
2t

}

=
1

T
tr {In} tr {E [(ε2rε

′
2r − Iq) (ε2rε

′
2r − Iq)]}

=
1

T

(
nq + nq2

)

Therefore:

D5 = 1
T

(nq + nq2)

A.8 Derivation of D6

tr

{
E

(
1√
T

U ′X
)

Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(
1√
T

X ′U
)}

=
1

T 3
Etr

{
T∑

t,s,v,w=1

∞∑

ζ,η,κ,λ,α,β=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cv−1−κ

(
εv−1−κε

′
v−1−λ − δκλIn

)
C ′

v−1−λΦ
−1

×Cα

(
εw−1−αε′w−1−β − δαβIn

)
C ′

βΦ−1Cηεs−1−ηε
′
s

}

The combinations, which give non-zero expectations of order1
T

can be logically subdi-
vided in three groups:

1. The
(
εv−1−κε

′
v−1−λ − δκλIn

)
and

(
εw−1−αε′w−1−β − δαβIn

)
all coincide. At the

same times = t andt− 1− ζ = s− 1− η.

2. One ofεv−1−κ andε′v−1−λ coincides with one ofεw−1−α /ε′w−1−β. The two remain-
ing ones then also coincide. Obviously we have two different combinations and
s = t andt− 1− ζ = s− 1− η.
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3. ε′s coincides with one ofεv−1−κ andε′v−1−λ. εs−1−η then coincides with the other.
Similarly εt andε′t−1−ζ each coincide with one ofεw−1−α /ε′w−1−β. Note that there
are eight of such combinations, which are listed one by one below in the derivation
of C63

Each of these possibilities shall now be dealt with in turn.

A.8.1 Derivation of D61

1

T 3
Etr

{
T∑

t,s,v,w=1

∞∑

ζ,η,κ,λ,α,β=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκ

(
εv−1−κε

′
v−1−λ − δκλIn

)
C ′

λΦ
−1

×Cα

(
εw−1−αε′w−1−β − δαβIn

)
C ′

βΦ−1Cηεs−1−ηε
′
2s

}

For the first combination, we havet− 1− ζ = s− 1− η, s = t, v− 1− κ = v− 1− λ =
w − 1− α = w − 1− β = y

which can be rephrased as:

s = t, ζ = η, α = β, κ = λ

w can also vary.
For simplicity we shall just use the

∑
for now.

∑
tr

{
ε2tε

′
t−1−ζC

′
ζΦ

−1Cκ

(
εyε

′
y − In

)
C ′

κΦ
−1

×Cα

(
εyε

′
y − In

)
C ′

αΦ−1Cζεt−1−ζε
′
2t

}

=
q

T
tr

{∑
α,κ

C ′
αΦ−1Cκ

(
εyε

′
y − In

)
C ′

κΦ
−1Cα

(
εyε

′
y − In

)
}

=
q

T

∑
α,κ

tr2
{
C ′

αΦ−1Cκ

}
+

q

T
tr

∑
α,κ

{(
C ′

αΦ−1Cκ

)2
}

So we have that the total is equal to:

D61 = q
T

∑
α,κ tr2 {C ′

αΦ−1Cκ}+ q
T
tr

∑
α,κ

{
(C ′

αΦ−1Cκ)
2
}

A.8.2 Derivation of D62

1

T 3
Etr

{
T∑

t,s,v,w=1

∞∑

ζ,η,κ,λ,α,β=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκ

(
εv−1−κε

′
v−1−λ − δκλIn

)
C ′

λΦ
−1

×Cα

(
εw−1−αε′w−1−β − δαβIn

)
C ′

βΦ−1Cηεs−1−ηε
′
2s

}

There are two combinations:
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1. t = s, η = ζ,
v − 1− κ = w − 1− α
v − 1− λ = w − 1− β
κ 6= λ

2. t = s, η = ζ,
v − 1− λ = w − 1− α
v − 1− κ = w − 1− β
κ 6= λ

First combination This combination implies that:

β + κ = α + λ, κ 6= λ

1

T 3
Etr





T∑
t,v,w=1

∞∑

ζ=0

∑

β+κ=α+λ
κ6=λ

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκεv−1−κε
′
v−1−λC

′
λΦ

−1

×Cαεw−1−αε′w−1−βC ′
α+λ−κΦ

−1Cζεt−1−ζε
′
2t

}

=
q

T
Etr





∑

β+κ=α+λ
κ6=λ

Φ−1Cκεv−1−κε
′
v−1−λC

′
λΦ

−1Cαεw−1−αε′w−1−βC ′
β





=
q

T
tr





∑

β+κ=α+λ
κ6=λ

C ′
βΦ−1CκC

′
αΦ−1Cλ





Note that this expression is exactly the opposite of expression D33. So we conclude
that the expectation of this combination is equal to:

q

T
tr





∑

β+κ=α+λ
κ6=λ

C ′
βΦ−1CκC

′
αΦ−1Cλ





Second combination Combining the conditions, we obtain:

β + λ = α + κ, κ 6= λ
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tr

{
E

(
1√
T

U ′X
)

Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(
1√
T

X ′U
)}

=
1

T 3
Etr

{
T∑

t,v,w=1

∞∑

ζ,κ,λ,α,β=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκεv−1−κε
′
v−1−λC

′
λΦ

−1

×Cαεw−1−αε′w−1−βC ′
α−λ+κΦ

−1Cζεt−1−ζε
′
2t

}

=
q

T

∑

β+λ=α+κ
κ6=λ

tr
{
C ′

βΦ−1Cκ

}
tr

{
C ′

λΦ
−1Cα

}

Total The total expectation of this term is therefore equal to:

D62 = q
T
tr

∑∞
κ,λ,α=0

κ6=λ

{
C ′

α+λ−κΦ
−1CκC

′
αΦ−1Cλ

}

+ q
T

∑
β+λ=α+κ

κ6=λ
tr

{
C ′

βΦ−1Cκ

}
tr {C ′

λΦ
−1Cα}

A.8.3 Derivation of D63

tr

{
E

(
1√
T

U ′X
)

Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(
1√
T

X ′U
)}

=
1

T 3
Etr

{
T∑

t,s,v,w=1

∞∑

ζ,η,κ,λ,α,β=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cκ

(
εv−1−κε

′
v−1−λ − δκλIn

)
C ′

λΦ
−1

×Cα

(
εw−1−αε′w−1−β − δαβIn

)
C ′

βΦ−1Cηεs−1−ηε
′
2s

}

There are eight possible constellations, which give rise to first order terms:
1. s = w − 1− β s− 1− η = w − 1− α t = v − 1− κ t− 1− ζ = v − 1− λ
2. s = w − 1− α s− 1− η = w − 1− β t = v − 1− κ t− 1− ζ = v − 1− λ
3 s = w − 1− β s− 1− η = w − 1− α t = v − 1− λ t− 1− ζ = v − 1− κ
4 s = w − 1− α s− 1− η = w − 1− β t = v − 1− λ t− 1− ζ = v − 1− κ
5 s = v − 1− κ s− 1− η = v − 1− λ t = w − 1− β t− 1− ζ = w − 1− α
6 s = v − 1− λ s− 1− η = v − 1− κ t = w − 1− β t− 1− ζ = w − 1− α
7 s = v − 1− κ s− 1− η = v − 1− λ t = w − 1− α t− 1− ζ = w − 1− β
8 s = v − 1− λ s− 1− η = v − 1− κ t = w − 1− α t− 1− ζ = w − 1− β

In all of these eight constellations we have thatκ 6= λ, α 6= β. We shall now take them
one by one:

First combination This combination implies that:

α = β + η + 1 andλ = κ + ζ + 1

42



1

T 3
Etr

{∑
ε2tε

′
t−1−ζC

′
ζΦ

−1Cκεv−1−κε
′
v−1−λC

′
λΦ

−1

×Cαεw−1−αε′w−1−βC ′
βΦ−1Cηεs−1−ηε

′
2s

}

=
1

T 3
Etr

∑{
ε2tε

′
v−1−κC

′
κΦ

−1Cζεt−1−ζε
′
v−1−λC

′
λΦ

−1Cαεw−1−α

×ε′s−1−ηC
′
ηΦ

−1Cβεw−1−βε′2s

}

=
1

T
tr

{ ∑

β,η,κ,ζ

[
C ′

κΦ
−1CζC

′
κ+ζ+1Φ

−1Cβ+η+1C
′
ηΦ

−1Cβ

]
22

}

Second combination

β = α + η + 1 andλ = κ + ζ + 1

1

T 3
Etr

{∑
ε2tε

′
t−1−ζC

′
ζΦ

−1Cκεv−1−κε
′
v−1−λC

′
λΦ

−1

×Cαεw−1−αε′w−1−βC ′
βΦ−1Cηεs−1−ηε

′
2s

}

=
1

T 3
E

∑
tr

{
ε2tε
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′
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−1Cζεt−1−ζε
′
v−1−λC

′
λΦ
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}×
tr

{
ε′w−1−βC ′
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}

=
1

T

∞∑
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tr
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C ′
κΦ

−1CζC
′
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−1Cα

]
22

}
tr

{
C ′

α+η+1Φ
−1Cη

}

Third combination
α = β + η + 1 andκ = λ + ζ + 1

1

T 3
Etr

{∑
ε2tε
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t−1−ζC

′
ζΦ
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′
v−1−λC

′
λΦ

−1

×Cαεw−1−αε′w−1−βC ′
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′
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}

=
1

T 3
E

∑
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{
ε2tε

′
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′
λΦ

−1Cαεw−1−αε′s−1−ηC
′
ηΦ
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}×
tr

{
ε′t−1−ζC

′
ζΦ
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}

=
1

T

∞∑
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tr
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−1Cβ+η+1C
′
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]
22

}
tr

{
C ′

ζΦ
−1Cλ+ζ+1

}

which incidentally is equal to the second combination
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Fourth combination

β = α + η + 1 andκ = λ + ζ + 1

1

T 3
Etr

{∑
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′
ζΦ
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′
v−1−λC

′
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=
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′
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}
tr
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tr
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tr
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}
tr
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}

Fifth combination
λ = κ + η + 1 andα = β + ζ + 1

1
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Etr

{∑
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′
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′
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=
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tr
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]
22

}

Sixth combination
κ = λ + η + 1 andα = β + ζ + 1

1
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Etr
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tr
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tr
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}
tr

{
C ′
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}

Seventh combination

λ = κ + η + 1 andβ = α + ζ + 1
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αΦ−1Cλεv−1−λε
′
s−1−ηC

′
ηΦ

−1Cβεw−1−β

×ε′t−1−ζC
′
ζΦ

−1Cκεv−1−κε
′
2s

}

=
1

T

∞∑

α,η,κ,ζ=0

tr
{[

C ′
αΦ−1Cκ+η+1C

′
ηΦ

−1Cα+ζ+1C
′
ζΦ

−1Cκ

]
22

}

Eighth combination

κ = λ + η + 1 andβ = α + ζ + 1

1

T 3
Etr

{∑
ε2tε

′
t−1−ζC

′
ζΦ

−1Cκεv−1−κε
′
v−1−λC

′
λΦ

−1

×Cαεw−1−αε′w−1−βC ′
βΦ−1Cηεs−1−ηε

′
2s

}

=
1

T 3
E

∑
tr

{
ε2tε

′
w−1−αC ′

αΦ−1Cλεv−1−λε
′
2s

}

tr
{
εw−1−βε′t−1−ζC

′
ζΦ

−1Cκεv−1−κε
′
s−1−ηC

′
ηΦ

−1Cβ

}

=
1

T

∞∑

α,η,λ,ζ=0

tr
{[

C ′
αΦ−1Cλ

]
22

}
tr

{
C ′

ζΦ
−1Cλ+η+1C

′
ηΦ

−1Cα+ζ+1

}

which is seen to equal the sixth combination

Total The total of theD63 term then becomes:

D63 = 1
T
tr

{∑
β,η,κ,ζ

[
C ′

κΦ
−1CζC

′
κ+ζ+1Φ

−1Cβ+η+1C
′
ηΦ

−1Cβ

]
22

}

+ 2
T

∑∞
α,η,κ,ζ=0 tr

{[
C ′

κΦ
−1CζC

′
κ+ζ+1Φ

−1Cα

]
22

}
tr

{
C ′

α+η+1Φ
−1Cη

}

+ 1
T

∑∞
α,η,λ,ζ=0 tr {[C ′

λΦ
−1Cα]22} tr

{
C ′

ζΦ
−1Cλ+ζ+1

}
tr

{
C ′

α+η+1Φ
−1Cη

}

+ 1
T

∑∞
β,η,κ,ζ=0 tr

{[
C ′

βΦ−1CηC
′
κ+η+1Φ

−1Cβ+ζ+1C
′
ζΦ

−1Cκ

]
22

}

+ 2
T

∑∞
β,η,λ,ζ=0 tr

{[
C ′

βΦ−1CηC
′
λ+η+1Φ

−1CζC
′
β+ζ+1Φ

−1Cλ

]
22

}

+ 1
T

∑∞
α,η,λ,ζ=0 tr {[C ′

αΦ−1Cλ]22} tr
{
C ′

ζΦ
−1Cλ+η+1C

′
ηΦ

−1Cα+ζ+1

}
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A.9 The second term:E
[ 1

2T tr(K2)
]

This term is already of the order1
T

, so we just have to take the nullth order expansion of
F = E [tr(K2)]

tr
{
E

[
K2

]}

= tr

{
E

[(
1

T
U ′U

)−1 (
1√
T

U ′X
)(

1

T
X ′X

)−1 (
1√
T

X ′U
)(

1

T
U ′U

)−1

×
(

1√
T

U ′X
)(

1

T
X ′X

)−1 (
1√
T

X ′U
)]}

0
= tr

{
E

[(
1√
T

U ′X
)

Φ−1

(
1√
T

X ′U
)(

1√
T

U ′X
)

Φ−1

(
1√
T

X ′U
)]}

= tr

{
E

[
1

T

T∑
t,s,m,n=1

∞∑

ζ,η,γ,χ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cηεs−1−ηε
′
2sε2mε′m−1−γC

′
γΦ

−1Cχεn−1−χε′2n

]}

There are three possible combinations:

1. t = s, ζ = η,m = n, γ = χ

2. t = m, ζ = γ, s = n, η = χ

3. t = n, ζ = χ, s = m, γ = η

A.9.1 First combination

tr

{
E

[
1

T 2

T∑
t,s,m,n=1

∞∑

ζ,η,γ,χ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cηεs−1−ηε
′
2sε2mε′m−1−γC

′
γΦ

−1Cχεn−1−χε′2n

]}

=
1

T 2
E

T∑
t,m=1

∞∑

ζ,γ=0

tr {[ε2tε
′
2sε2mε′2n]} tr

{
ε′t−1−ζC

′
ζΦ

−1Cζεs−1−η

}
tr

{
ε′m−1−γC

′
γΦ

−1Cγεn−1−χ

}

= qn2

A.9.2 Second combination

tr

{
E

[
1

T 2

T∑
t,s,m,n=1

∞∑

ζ,η,γ,χ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cηεs−1−ηε
′
2sε2mε′m−1−γC

′
γΦ

−1Cχεn−1−χε′2n

]}

=
1

T 2
E

T∑
t,s=1

∞∑

ζ,η=0

tr {ε2tε
′
2mε2sε

′
2n} tr

{
εn−1−γε

′
t−1−ζC

′
ζΦ

−1Cηεs−1−ηε
′
m−1−χC ′

ηΦ
−1Cζ

}

= qn
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A.9.3 Third combination

tr

{
E

[
1

T 2

T∑
t,s,m,n=1

∞∑

ζ,η,γ,χ=0

ε2tε
′
t−1−ζC

′
ζΦ

−1Cηεs−1−ηε
′
2sε2mε′m−1−γC

′
γΦ

−1Cχεn−1−χε′2n

]}

=
1

T 2
E

T∑
t,s=1

∞∑

ζ,η=0

tr {ε′2nε2tε
′
2sε2m} tr

{
Cζεn−1−χε′t−1−ζC

′
ζΦ

−1Cηεs−1−ηε
′
m−1−γC

′
ηΦ

−1
}

= q2n

So the total contribution of this term is:

1
2T

F = qn
2T

+ q2n+qn2

2T

A.10 Total

Adding up all the terms, we find:

E [LR] = qn +
1

2T

(−4q + qn + q2n + qn2
)

(44)

+
1

T
tr

{∑∞
β,η,κ,ζ=0

[
C ′

κΦ
−1CζC

′
κ+ζ+1Φ

−1Cβ+η+1C
′
ηΦ

−1Cβ

]
22

}

+
2

T

∑∞
α,η,κ,ζ=0

tr
{[

C ′
κΦ

−1CζC
′
κ+ζ+1Φ

−1Cα

]
22

}
tr

{
C ′

α+η+1Φ
−1Cη

}

+
1

T

∑∞
α,η,λ,ζ=0

tr
{[

C ′
λΦ

−1Cα

]
22

}
tr

{
C ′

ζΦ
−1Cλ+ζ+1

}
tr

{
C ′

α+η+1Φ
−1Cη

}

+
1

T

∑∞
β,η,κ,ζ=0

tr
{[

C ′
βΦ−1CηC

′
κ+η+1Φ

−1Cβ+ζ+1C
′
ζΦ

−1Cκ

]
22

}

+
2

T

∑∞
β,η,λ,ζ=0

tr
{[

C ′
βΦ−1CηC

′
λ+η+1Φ

−1CζC
′
β+ζ+1Φ

−1Cλ

]
22

}

+
1

T

∑∞
α,η,λ,ζ=0

tr
{[

C ′
αΦ−1Cλ

]
22

}
tr

{
C ′

ζΦ
−1Cλ+η+1C

′
ηΦ

−1Cα+ζ+1

}

− 2

T

∑∞
ζ,η,κ=0

tr
{[

C ′
κΦ

−1Cς

]
22

}
tr

{
C ′

κ+ζ+η+2Φ
−1Cη

}

− 2

T

∑∞
ζ,η,λ=0

tr
{[

C ′
λΦ

−1CηC
′
λ+ζ+η+2Φ

−1Cς

]
22

}

− 2

T

∑∞
κ,η,α=0

tr
{[

C ′
κΦ

−1Cα+η−1C
′
ηΦ

−1Cα+κ+1

]
22

}

− 2

T

∑∞
κ,ζ,α=0

tr
{[

C ′
α+κ+1Φ

−1Cζ+α+1C
′
ζΦ

−1Cκ

]
22

}

substitutingΓj = E
[
XtX

′
t−j

]
=

∑∞
α=0 Cα+jC

′
α where possible gives the expression

in theorem 1 which is hereby proven.
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A.11 Proof of Theorem 2

For theorem 2 we note that the log-likelihood equals:

lT = −1

2
Tq log 2π − T

2
log |Ω22| − 1

2
tr {Ω22(Y −XA′)′(Y −XA′)}

Thus for a known variance-covariance matrixΩ22 = I , the likelihood ratio statistic equals

−2 ln LR (A = A0) = tr {(Y −XA′
0)
′(Y −XA′

0)} − tr
{

(Y −XÂ′)′(Y −XÂ′)
}

= tr {U ′U} − tr
{

(Y −XA′
0 + X

(
A0 − Â

)
)′(Y −XA′

0 + X
(
A0 − Â

)
)
}

= tr {U ′U} − tr
{

(Y −X (X ′X)
−1

X ′U)′(Y −X (X ′X)
−1

X ′U)
}

= tr
{

(U ′X) (X ′X)
−1

(X ′U)
}

where we have used that̂A = (X ′X)−1 (X ′Y ) = A0 + (X ′X)−1 (X ′U) and defined
U = Y −XA0. We thus obtain:

−2 ln LR (A = A0) = tr
{

(U ′X) (X ′X)
−1

(X ′U)
}

A first order expansion of this expression (using equation(40)) delivers

E
[
tr

{
(U ′X) (X ′X)

−1
(X ′U)

}]

1
= tr

{
E

(
1√
T

U ′X
)

Φ−1

(
1√
T

X ′U
)}

+ tr

{
E

(
1√
T

U ′X
)

Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(
1√
T

X ′U
)}

+ tr

{
E

(
1√
T

U ′X
)

Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(
Φ− 1

T
X ′X

)
Φ−1

(
1√
T

X ′U
)}

or stated differently

E
[
tr

{
(U ′X) (X ′X)

−1
(X ′U)

}]
1
= D1 + D3 + D6

Adding up the expressions for all these terms, which were calculated in the last paragraph,
deliver the result in theorem 2.

A.12 Proof of theorem 10

We take the terms of theorem 1 one by one, substuteCβ = SDβF andD = V ΛV −1 and
then simplify. In this proof all ten terms turn out to be different.

t1′ =
∑∞

β,η,κ,ζ=0
tr

{
C ′

κΦ
−1CζC

′
κ+ζ+1Φ

−1Cβ+η+1C
′
ηΦ

−1CβI22

}

=
∑∞

β,κ=0
tr

{
F ′Dκ′S ′ (SΨS ′)−1

SΨDκ+1′S ′ (SΨS ′)−1
SDβ+1ΨS ′ (SΨS ′)−1

SDβFI22

}

=
∑∞

β,κ=0
tr

{
FI22F

′Dκ′S ′ (SΨS ′)−1
SΨDκ+1′S ′ (SΨS ′)−1

SDβ+1ΨS ′ (SΨS ′)−1
SDβ

}

=
∑∞

β,κ=0
tr

{(
V −1FI22F

′V −1′) Λκ
(
V ′PV −1′Λ

)
Λκ

(
V ′S ′Φ−1SV Λ

)
Λβ

(
V −1P ′V

)
Λβ

}

= tr {A1 (A2 ® A8) A3 (A4 ® A8)}
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t2′ =
∑∞

α,η,κ,ζ=0
tr

{
C ′

κΦ
−1CζC

′
κ+ζ+1Φ

−1CαI22

}
tr

{
C ′

α+η+1Φ
−1Cη

}

=
∑∞

α,κ=0
tr

{
F ′Dκ′S ′Φ−1SΨDκ+1′S ′Φ−1SDαFI22

}
tr

{
S ′Φ−1SΨDα+1′}

=
∑∞

α,κ=0
tr

{(
V ′PV −1′Λ

)
Λα

}
tr

{(
V −1FI22F

′V −1′) Λκ
(
V ′PV −1′Λ

)
Λκ

(
V ′S ′Φ−1SV

)
Λα

}

=
∑∞

α,κ=0
tr

{(
V ′PV −1′Λ

)
Λα ⊗ (

V −1FI22F
′V −1′) Λκ

(
V ′PV −1′Λ

)
Λκ

(
V ′S ′Φ−1SV

)
Λα

}

= tr
{
(A2 ⊗ A1) (I ⊗ (A2 ® (ll′ − ΛcoΛro)) A5) (In2 − Λ⊗ Λ)−1}

=
∑n

i=1
(A2)ii tr {A1 (A2 ® A8) A5A9i}

t3′ =
∑∞

α,η,λ,ζ=0
tr

{
C ′

λΦ
−1CαI22

}
tr

{
C ′

ζΦ
−1Cλ+ζ+1

}
tr

{
C ′

α+η+1Φ
−1Cη

}

=
∑∞

α,λ=0
tr

{
P ′Dλ+1

}
tr

{
PDα+1′} tr

{
FI22F

′Dλ′S ′Φ−1SDα
}

=
∑∞

α,λ=0
tr

{(
ΛV −1P ′V

)
Λλ

}
tr

{(
V ′PV −1′Λ

)
Λα

}
tr

{(
V −1FI22F

′V −1′) Λλ
(
V ′S ′Φ−1SV

)
Λα

}

=
∑∞

α,λ=0
tr

{
A′

2Λ
λ
}

tr {A2Λ
α} tr

{
A1Λ

λA5Λ
α
}

= tr
{
(A′

2 ⊗ A2 ⊗ A1) (I − Λ⊗ I ⊗ Λ)−1 (I ⊗ I ⊗ A5) (I − I ⊗ Λ⊗ Λ)−1}

=
∑n

i,j=1
(A2)ii (A2)jj tr {A1A9iA5A9j}

t4′ =
∑∞

β,η,κ,ζ=0
tr

{
C ′

βΦ−1CηC
′
κ+η+1Φ

−1Cβ+ζ+1C
′
ζΦ

−1CκI22

}

=
∑∞

β,η,κ,ζ=0
tr

{
F ′Dβ′PDκ+1′S ′Φ−1SDβ+1P ′DκFI22

}

=
∑∞

β,κ=0
tr

{(
V −1FI22F

′V −1′) Λβ
(
V ′PV −1′Λ

)
Λκ

(
V ′S ′Φ−1SV Λ

)
Λβ

(
V −1P ′V

)
Λκ

}

=
∑∞

β,κ=0
tr

{
A1Λ

βA2Λ
κA3Λ

βA4Λ
κ
}

=
∑n

i,j,k,m=1

(A1)ij (A2)jk (A3)km (A4)mi

(1− υjυm)(1− υiυk)

t5′ =
∑∞

β,η,λ,ζ=0
tr

{
C ′

βΦ−1CηC
′
λ+η+1Φ

−1CζC
′
β+ζ+1Φ

−1CλI22

}

=
∑∞

β,λ=0
tr

{
F ′Dβ′PDλ+1′PDβ+1′S ′Φ−1SDλFI22

}

=
∑∞

β,λ=0
tr

{(
V −1FI22F

′V −1′) Λκ
(
V ′PV −1′Λ

)
Λλ

(
V ′PV −1′Λ

)
Λκ

(
V ′S ′Φ−1SV

)
Λλ

}

=
∑∞

β,λ=0
tr

{
A1Λ

κA2Λ
λA2Λ

κA5Λ
λ
}

=
∑n

i,j,k,m=1

(A1)ij (A2)jk (A2)km (A5)mi

(1− υjυm)(1− υiυk)
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t6′ =
∑∞

α,η,λ,ζ=0
tr

{
C ′

αΦ−1CλI22

}
tr

{
C ′

ζΦ
−1Cλ+η+1C

′
ηΦ

−1Cα+ζ+1

}

=
∑∞

α,λ=0
tr

{
Dα+1P ′Dλ+1P ′} tr

{
F ′Dα′S ′Φ−1SDλFI22

}

=
∑∞

α,λ=0
tr

{(
ΛV −1P ′V

)
Λα

(
ΛV −1P ′V

)
Λλ

}
tr

{(
V −1FI22F

′V −1′) Λα
(
V ′S ′Φ−1SV

)
Λλ

}

=
∑∞

α,λ=0
tr

{
A′

2Λ
αA′

2Λ
λ
}

tr
{
A1Λ

αA5Λ
λ
}

= tr
{
(A′

2 ⊗ A1) (I − Λ⊗ Λ)−1 (A′
2 ⊗ A5) (I − Λ⊗ Λ)−1}

=
∑n

i,j=1
(A2)ji (A2)ij tr {A1A9iA5A9j}

t7′ =
∑∞

ζ,η,κ=0
tr

{
C ′

κΦ
−1CζI22

}
tr

{
C ′

κ+ζ+η+2Φ
−1Cη

}

=
∑∞

ζ,κ=0
tr

{
Dκ+ζ+2P

}
tr

{
F ′Dκ′S ′Φ−1SDζFI22

}

=
∑∞

ζ,κ=0
tr

{(
V −1PV

)
ΛκΛ2Λζ

}
tr

{(
V −1FI22F

′V −1′) Λκ
(
V ′S ′Φ−1SV

)
Λζ

}

=
∑∞

ζ,κ=0
tr

{
A4Λ

κΛ2Λζ
}

tr
{
A1Λ

κA5Λ
ζ
}

=
∑∞

ζ,κ=0
tr

{
(A4 ⊗ A1) (I − Λ⊗ Λ)−1 (

Λ2 ⊗ A5

)
(I − Λ⊗ Λ)−1}

=
∑n

i=1
(A4)ii υ

2
i tr {A1A9iA5A9i}

t8′ =
∑∞

ζ,η,λ=0
tr

{
C ′

λΦ
−1CηC

′
λ+ζ+η+2Φ

−1CζI22

}

=
∑∞

ζ,λ=0
tr

{
FI22F

′Dλ′PDλ+ζ+2′S ′Φ−1SDζ
}

=
∑∞

ζ,λ=0
tr

{
V −1FI22F

′V −1′ΛκV ′PV −1′ΛκΛ2Λζ′V ′S ′Φ−1SV Λζ
}

=
∑∞

ζ,λ=0
tr

{(
V −1FI22F

′V −1′) Λκ
(
V ′PV −1′) Λκ

(
Λ2

)
Λζ′ (V ′S ′Φ−1SV

)
Λζ

}

=
∑∞

ζ,λ=0
tr

{
A1Λ

κA′
4Λ

κ
(
Λ2

)
Λζ′A5Λ

ζ
}

= tr
{
A1 (A′

4 ® (ll′ − ΛcoΛro))
(
Λ2

)
(A5 ® (ll′ − ΛcoΛro))

}

= tr
{
A1 (A′

4 ® A8)
(
Λ2

)
(A5 ® A8)

}

t9′ =
∑∞

κ,η,α=0
tr

{
C ′

κΦ
−1Cα+η+1C

′
ηΦ

−1Cα+κ+1I22

}

=
∑∞

κ,α=0
tr

{
FI22F

′Dκ′SΦ−1SDα+1P ′Dα+κ+1
}

=
∑∞

κ,α=0
tr

{
Λκ

(
V −1FI22F

′V −1′) Λκ
(
V ′SΦ−1SV Λ

)
Λα

(
V −1P ′V

)
ΛαΛ

}

=
∑∞

κ,α=0
tr {ΛκA1Λ

κA3Λ
αA4Λ

αΛ}
= tr {(A1 ® A8) A3 (A4 ® A8) Λ}
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t10′ =
∑∞

κ,ζ,α=0
tr

{
C ′

α+κ+1Φ
−1Cζ+α+1C

′
ζΦ

−1CκI22

}

=
∑∞

κ,α=0
tr

{
FI22F

′Dα+κ+1′SΦ−1SDα+1P ′Dκ
}

=
∑∞

κ,α=0
tr

{
Λκ

(
V −1FI22F

′V −1′) ΛκΛΛα
(
V ′SΦ−1SV Λ

)
Λα

(
V −1P ′V

)}

=
∑∞

κ,α=0
tr {ΛκA1Λ

κΛΛαA3Λ
αA4}

= tr {(A1 ® A8) Λ (A3 ® A8) A4}
Adding the ten terms up, we obtain the expression in theorem 10:

k = tr {A1 (A2 ® A8) A3 (A4 ® A8)}
+ 2

∑n

i=1
(A2)ii tr {A1 (A2 ® A8) A5A9i}

+
∑n

i,j=1
(A2)ii (A2)jj tr {A1A9iA5A9j}

+
∑n

i,j,k,m=1

(A1)ij (A2)jk (A3)km (A4)mi

(1− υjυm)(1− υiυk)

+ 2
∑n

i,j,k,m=1

(A1)ij (A2)jk (A2)km (A5)mi

(1− υjυm)(1− υiυk)

+
∑n

i,j=1
(A2)ji (A2)ij tr {A1A9iA5A9j}

− 2
∑n

i=1
(A4)ii υ

2
i tr {A1A9iA5A9i}

− 2tr
{
A1 (A′

4 ® A8)
(
Λ2

)
(A5 ® A8)

}

− 2tr {(A1 ® A8) A3 (A4 ® A8) Λ}
− 2tr {(A1 ® A8) Λ (A3 ® A8) A4}

A.13 Proof of theorem 11

Theorem 11 is a special case of 10 withS = I. Inserting this in the expressions in table
3 we see thatP = I and furthermore thatA2 = Λ, A3 = A6Λ, A4 = I, A5 = A6 and for
any diagonal matrixG, G ® A8 = GA7. We substitute this in the ten terms ofk in the
last expression:

t1′ = tr {A1 (A2 ® A8) A3 (A4 ® A8)}
= tr {A1ΛA7A6ΛA7}

t2′ =
∑n

i=1
(A2)ii tr {A1 (A2 ® A8) A5A9i}

=
∑n

i=1
υitr {A1ΛA7A6A9i}

t3′ =
∑n

i,j=1
(A2)ii (A2)jj tr {A1A9iA5A9j}

=
∑n

i,j=1
υiυjtr {A1A9iA6A9j}
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t4′ =
∑∞

β,κ=0
tr

{
A1Λ

βA2Λ
κA3Λ

βA4Λ
κ
}

=
∑∞

β,κ=0
tr

{
A1Λ

β+κ+1A6Λ
β+κ+1

}

= tr {((ΛA1Λ)® A8) (A6 ® A8)}

t5′ =
∑∞

β,λ=0
tr

{
A1Λ

κA2Λ
λA2Λ

κA5Λ
λ
}

=
∑∞

β,λ=0
tr

{
A1Λ

2κ+λ+2A6Λ
λ
}

= tr
{
A1A7Λ

2 (A6 ® A8)
}

t6′ =
∑n

i,j=1
(A2)ji (A2)ij tr {A1A9iA5A9j}

=
∑n

i=1
υ2

i tr {A1A9iA6A9i}

t7′ =
∑n

i=1
(A4)ii υ

2
i tr {A1A9iA5A9i}

=
∑n

i=1
υ2

i tr {A1A9iA6A9i}

t8′ = tr
{
A1 (A′

4 ® A8)
(
Λ2

)
(A5 ® A8)

}

= tr
{
A1A7Λ

2 (A6 ® A8)
}

t9′ =
∑∞

κ,α=0
tr {ΛκA1Λ

κA3Λ
αA4Λ

αΛ}

=
∑∞

κ,α=0
tr

{
A1Λ

κA6Λ
κ+2α+2

}

= tr
{
Λκ+2α+2A6Λ

κA1

}

= tr
{
A1A7Λ

2 (A6 ® A8)
}

t10′ = tr {(A1 ® A8) Λ (A3 ® A8) A4}
= tr {(ΛA1Λ® A8) (A6 ® A8)}

Noting that in this caset′5 = t′8 = t′9, t
′
4 = t′10 andt′6 = t′7 and adding up we find the result

in theorem 11:

k = tr {A1ΛA7A6ΛA7}
+ 2

∑n

i=1
υitr {A1ΛA7A6A9i}

+
∑n

i,j=1
υiυjtr {A1A9iA6A9j}

− tr {((ΛA1Λ)® A8) (A6 ® A8)}
− 2tr

{
A1A7Λ

2 (A6 ® A8)
}

−
∑n

i=1
υ2

i tr {A1A9iA6A9i}

52


