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Abstract

In this paper we discuss sensitivity of forecast with respect to the infor-
mation set considered in prediction; we define a sensitivity measure called
impact factor, IF. We calculate this measure in VAR processes integrated of
order 0, 1 and 2. For VAR processes this measure is a simple function of the
impulse response coefficients. For integrated VAR systems this measure is
shown to have a direct interpretation in terms of long-run forecasts. Various
applications of this concept are reviewed, including one on the interpretation
and effectiveness of economic policies and one on the sensitivity of forecasts
with respect to data revisions. A unified approach to inference on the IF is
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1 Introduction

In this paper we discuss a measure of sensitivity of forecast with respect to the
information set considered in prediction, called impact factor, IF. We calculate this
measure in VAR processes integrated of order 0, 1 and 2. For VAR processes this
measure is a simple function of the impulse response coefficients. For integrated VAR
systems this measure is shown to have a direct interpretation in terms of long-run
forecast of the levels of the process. Various applications of this concept are reviewed,
including one on the interpretation and effectiveness of economic policies and one
on the sensitivity of forecasts with respect to data revisions. A unified approach to
inference on the IF is given, showing under what circumstances standard asymptotic
inference can be conducted on the IF also in systems integrated of order 1 and 2.

Sensitivity indicators have long been advocated in econometrics; see Banerjee
and Magnus (1999, 2000) for recent references. The concept of IF is also related
to many standard econometric concepts, like dynamic multipliers and impulse re-
sponses. As a dynamic multiplier, IF measures the sensitivity of a function. However
dynamic multipliers are defined only between some endogenous variables y and some
exogenous variables x; impact factors, instead, are well defined for any dynamic sys-
tems, including VARs. Finally long-run multipliers are usually defined in terms of
the static relation implied by a dynamic model for y and x, see e.g. Hendry (1995,
p. 339), Gourieroux and Monfort (1995 p. 34-35), whereas impact factors measure
the accumulated effects on forecasts of perturbations in past information.

Impact factors are functions of the impulse responses in case of VARs. While
impulse responses are usually interpreted as measuring the effects of shocks, IFs are
defined in terms of changes in observable variables; this difference in interpretation
allows to view these measures also in the perspective of policy analysis and data
revisions.

While the present approach is defined in terms of stationary processes, it is
motivated and applied to non-stationary integrated systems. We consider I(1) and
I(2) processes and compute impact factors for these processes. The present paper
builds on ideas presented in Bedini and Mosconi (2000) for I(1) systems. They
introduced the concept of ‘long-run adjustment coefficients’ with respect to the
disequilibrium associated with an error correction term. We here offer different
insights on the I(1) case and extend the concept to I(2) systems. For the I(1) case
we show how the long-run adjustment coefficients is related to the forecast function,
and more in general to the concept of IF. This concept is linked to the choice of
state vector and the timing of variables, and we discuss the relation among different
choices.

The rest of the paper is organized as follows. Section 2 reports relevant definitions
and relates impact factors to impulse response. Section 3 discusses impact factors in
I(1) and I(2) processes. Section 4 discusses two possible applications of this concept
to the effectiveness of economic policies and to forecast sensitivity with respect to
data revisions. Section 5 discusses the estimation of IF, while Section 6 reports an
application on prices in Australia. Finally Section 7 reports conclusions. All proofs
are placed in 3 Appendices.

In the following a := b and b =: a indicate that a is defined by b; (a : b) indicates
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the matrix obtained by horizontally concatenating a and b. For any full column
rank matrices H, A, B, sp(H) is the linear span of the columns of H, H̄ indicates
H(H ′H)−1 and H⊥ indicates a basis of sp(H)⊥ , the orthogonal complement of sp(H).
‖·‖ indicates a matrix norm and its associated vector norm. Moreover PH := HH̄ ′,
HAB := Ā′HB̄, HAB.C := HAB − HACH−1

CCHCB while HA := H(A′H)−1. Finally
(·)ij indicates the ij-th element of the argument matrix, vec is the column stacking
operator, ⊗ is the Kronecker product (i.e. A ⊗ B is the matrix with generic block
aijB, where A := [aij]) and

w→ indicates weak convergence.

2 Basic definition

Let {Xt}∞t=−∞ be a stationary p-variate time series, which contains the relevant
information for the forecasting exercise. Let Yt be a n × 1 vector of variables of
interest, which are to be forecast. Let Yt+i|t be the optimal forecast of Yt+i based on
available information up and including time t, indicated by X t

−∞ := (Xt, Xt−1, ...),
deemed to be the relevant information set.

The forecast Yt+i|t is a function, g◦i (·) say, of X t
−∞, Yt+i|t = g◦i (X

t
−∞). Under

quadratic loss, for instance, one has Yt+i|t = E(Yt+i|X t
−∞), the conditional expecta-

tion.1 We wish to summarize the sensitivity of the forecast function with respect to
its inputs. Let X̃t be a vector containing the relevant part of the information set
retained in the forecast function, i.e. Yt+i|t = g◦i (X

t
−∞) = gi(X̃t) for some function

gi(·). X̃t is thus a ‘sufficient statistic’ for the information contained in X t
−∞; we call

X̃t the FS statistic (‘Forecast Sufficient’), and indicate its dimension with s.

Let ṽ := X̃c
t − X̃t be a perturbation in the FS statistic which induces a change

ei(ṽ, X̃t) := gi(X̃
c
t )− gi(X̃t) in the forecast function at forecast horizons i = 1, ..., `.

We consider the cumulated changes
∑`

i=1 ei(ṽ, X̃t) up to some finite forecast `. If
the sum converges for ` →∞ we define the total effect, TE, of the perturbation as

TE(ṽ, X̃t) :=
∞∑
i=1

ei(ṽ, X̃t)

The quantity TE depends on ṽ and possibly X̃t; we wish to find a sensitivity measure
of TE with respect to (small) changes ṽ, for fixed X̃t. This reflects the fact that the

actual forecast takes place for given X̃t and the sensitivity is measured locally, i.e.
around a specific value for X̃t. This local sensitivity measure becomes also a global
one when TE only depends on ṽ and not on X̃t.

TE as a function of the perturbation ṽ may be approximated by Taylor expansion
around ṽ = 0 for fixed X̃t; this gives

TE(ṽ, x) = TE(0, x) + F (0, x)ṽ + R(ṽ, x)

where R is a remainder term, which is of order ‖ṽ‖2 if TE is continuously differen-

tiable up to order 2. By definition, TE(0, x) = 0 because ei(0, X̃t) = 0. Hence

TE(ṽ, x) = F (0, x)ṽ + R(ṽ, x).

1Conditional expectations are defined up to a set of measure zero. In the following we will treat
equalities concerning conditional expectations as a.s. equalities.
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We call

F := F (0, X̃t) =
∂TE(ṽ, X̃t)

∂ṽ′

∣∣∣∣∣ev=0

the Impact Factor, IF. It represents the coefficient of the linear approximation of
TE(ṽ, x) as a function of the perturbation ṽ close to ṽ = 0. Under the usual regu-
larity conditions, differentiation and summation within TE may be interchanged; in
this case F =

∑∞
i=1 ∂ei(ṽ, X̃t)/∂ṽ′.

Observe that F is by definition a p×s matrix, where each entry gives a particular
IF. Specifically Fij gives the IF of a perturbation in X̃jt, the j-th entry of X̃t, onto the
forecast function of Yit, the i-th element in Yt. When yt and xt are subvectors of Yt

and X̃t respectively we use the notation Fy,x := Fyt,xt to indicate the corresponding
submatrix of the IF matrix F .

2.1 Linear transformations

Under quite unrestrictive assumptions on the forecast function, the IF matrix F
obeys a simple transformation rule under linear transformations of Yt and/or X̃t.

Let Y ∗
t := NY Yt , X̃∗

t := NXX̃t be linear transformations the original variables,
where the N· matrices are square and non-singular. Let F ∗ be the IF for the starred
variables; we here show that

F ∗ = NY FN−1
X (1)

when the forecast function is equivariant with respect to linear combinations of the
forecasts, i.e. that Y ∗

t+i|t = NY Yt+i|t = NY gi(X̃t) =: g∗i (X̃t). Conditional expecta-
tions e.g. possess this equivariant property.

The perturbation of the the input variables are simply related by ṽ∗ := X̃∗c
t −

X̃∗
t = NX(X̃c

t − X̃t) = NX ṽ; since NX is nonsingular, ṽ = N−1
X ṽ∗, and ṽ = 0 iff

ṽ∗ = 0. Let TE∗(ṽ∗, X̃∗
t ) be the total effect in terms of the starred variables; by the

results above one has

TE∗(ṽ∗, X̃∗
t ) = NY TE(N−1

X ṽ∗, N−1
X X̃∗

t ).

Thus, applying the definition and the chain rule of differentiation,

F ∗ :=
∂TE∗(ṽ∗, X̃∗

t )

∂ṽ∗′

∣∣∣∣∣ev∗=0

= NY
∂TE(ṽ, X̃t)

∂ṽ′
∂ṽ

∂ṽ∗′

∣∣∣∣∣ev∗=0

=

= NY
∂TE(ṽ, X̃t)

∂ṽ′

∣∣∣∣∣ev=0

· ∂N−1
X ṽ∗

∂ṽ∗′
= NY FN−1

X

Hence one can derive from the IF matrix F all the IF implied by linear com-
binations of inputs and outputs applying the transformation (1). We also observe

that one may be interested in just some linear combinations of Yt and/or X̃t, and
not the complete vector; this corresponds to selecting some rows of the N· matrices
in an appropriate way.2

We next specialize the notion of IF to the case of a linear forecast function.

2Note, however, that the complete specification of X̃t is of interest in the interpretation of the
IF, because the idea of perturbating just some linear combinations of X̃t may be inconsistent with
the specification of the other elements of the FS statistic.
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2.2 Linear forecast function

When the forecast function is linear

gi(X̃t) = ai + BiX̃t, (2)

it is simple to note that ei(ṽ, X̃t) := gi(X̃
c
t ) − gi(X̃t) = Bi(X̃

c
t − X̃t) = Biṽ, which

depends on X̃t only through ṽ. Hence in this case, if Bi is summable, one finds
TE(ṽ, X̃t) =TE(ṽ) = (

∑∞
i=1 Bi)ṽ, and

F =
∞∑
i=1

Bi.

Observe that the remainder term R is zero because TE is a linear function of the
perturbation ṽ only. Here IF is a global sensitivity measure, since it is constant for
all possible values of X̃t.

2.3 Stationary VARs

Let Xt be generated by a VAR A(L)Xt = µ∗D∗
t + εt, with deterministic component

µ∗D∗
t , and i.i.d. N(0, Ω) errors εt. Here and in the following we take D∗

t := (t : 1 :
d′t)

′, where dt := (d1,t : ..du−1,t)
′ is a vector of seasonal dummies ‘orthogonal’ to the

constant, i.e. of the form di,t = 1(t mod u = i)− 1/u, 1(·) is the indicator function
and u is the number of seasons.

The associated state space representation is X̃t = AX̃t−1 + ut with state vector
X̃t := (X ′

t : X ′
t−1 : ... : X ′

t−k+1)
′, companion matrix

A :=




A1 A2 ... Ak

I
. . .

I 0


 .

and ut := J(µ∗D∗
t + εt), J := (Ip : 0p×p(k−1))

′, Xt = J ′X̃t.
Let the variables to be forecast Yt coincide with Xt; in this case the forecast

function is Yt+i|t = E(Yt+i|X t
−∞) = J ′AiX̃t +

∑i−1
j=0 J ′AjJµ∗D∗

t+i−j. Note that X̃t

is the FS, and that Yt+h|t = g(X̃t) is a linear function of the FS, as in (2), with

ai :=
∑i−1

j=0 J ′AjJµ∗D∗
t+i−j and Bi = J ′Ai. Hence ei = Biṽ.

Assume also that the VAR process Xt is stationary, which implies that eigenvalue
of A are less or equal to 1 in modulus. Thus

TE =
∞∑
i=1

Biṽ = J ′
( ∞∑

i=1

Ai

)
ṽ = J ′((I − A)−1 − I)ṽ

where the series is convergent because of the stationarity assumption. In this case
the IF is equal to F := J ′((I−A)−1−I), a simple function of the companion matrix.

If the variables to be forecast are all the ones contained in the state vector,
Yt = X̃t, then the previous calculations reveal that TE = ((I − A)−1 − I)ṽ and the
IF is

F = (I − A)−1 − I. (3)
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In the present case of stationary VARs the possibility to consider all of the state
vector as Yt is not very interesting, because Yt contains the same variables Xt at
different lags. This possibility is instead of interest for non-stationary systems of
order 1 and 2, considered in Section 3 below.

2.4 Impulse responses

Pesaran and Shin (1998) and Koop et al (1996) defined the scaled generalized impulse
responses (GIR) for stationary VARs as

ψg(i) := J ′AiJΩ(diag(Ω))−1/2 = J ′AiJΩ∗

where A is the companion matrix and Ω∗ := Ω(diag(Ω))−1/2. This definition of
impulse response does not depend on orthogonalization of shocks.

The cumulated GIR is

Ψg =
∞∑
i=1

ψg(i) =
∞∑
i=1

J ′AiJΩ∗ = J ′((I − A)−1 − I)JΩ∗

which is proportional to the leading block of the IF matrix F in eq. (3). A sim-
ilar derivation applies to the cumulated impulse responses, which converge to an
expression similar to J ′((I −A)−1 − I)JΩ∗ with a different definition of the matrix
Ω∗.

Unlike IF, impulse responses, IR, are usually interpreted as effects of shocks εt

on the variables Xt. Nevertheless the algebra in IR is the same as in IF analysis.
Thus, hopefully, the results presented below for IF in non-stationary VARs may be
used also in association with impulse response analysis; see also Phillips (1998) on
impulse responses in I(1) VARs.

2.5 Linearity and superposition

When the forecast function g is linear, the principle of superposition applies, see
Kailath (1980); this property is reviewed in this subsection. If one considers various
perturbations ṽ1, ..., ṽs, their cumulated effect is equal to TEs = F

∑s
i=1 ṽi. This

equals the effect TE:= F ṽ of a single perturbation ṽ defined as the sum of the
individual perturbations, ṽ :=

∑s
i=1 ṽi. Note that the IF is equal in both cases.

Consider next this equivalence specifically for VARs. Let perturbation ṽj involve
only the variables Xt−j at lag j, and consider various perturbations ṽj of this sort
at different lags j. The equivalence given by superposition simply says that the
same IF matrix applies. In this sense, therefore, impact factors F are insensitive
to the timing of the perturbations. Obviously this does not need to be the case for
non-linear forecast functions.

In the rest of the paper we assume that the forecast function is the conditional
expectation and that Xt is generated by a VAR.
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3 Cointegrated systems

In this section we apply the definition of IF to the stationary subsystems of VAR
integrated of order one and two, I(1) and I(2). We refer to Johansen (1996) for
notation and definitions of I(1) and I(2) VAR systems.

3.1 Cointegrated I(1) VAR

Consider the following equilibrium correction (EC) form of the VAR:

∆Xt = αβ′Xt−2 + Γ∗1∆Xt−1 + ΦUt−1 + µ1t + µDt + εt. (4)

where Γ∗1 := (Γ1 + Π), Φ := (Γ2 : ... : Γk−1) and Ut−1 := (∆X ′
t−2 : ... : ∆X ′

t−k+1)
′ is

m× 1, m := p(k − 2), and µ := (µ0 : µd), Dt := (1 : d′t)
′.

This EC form presents the level term measured in t − 2; this can always be
accomplished by adding and subtracting appropriate terms, even in the case of
k = 1, see Johansen (1996). This representation is chosen in order to simplify
calculations in the following, and it is completely general, because results for any
other EC formulation can be deduced from it, see the following Section 3.3.

We assume that the VAR process satisfies the following condition:

I(1) Assumption

I(1) a : Every root z of the characteristic polynomial of Xt satisfies z = 1 or |z| > 1.

I(1) b : Π := −A(1) = αβ′, where α and β are p× p0 matrices of full rank p0 < p.

I(1) c : µ1 = αβ′0 with β′0 a p0 × 1 vector.

I(1) d : α′⊥Γβ⊥ has full rank p− p0, where Γ := −I +
∑k−1

i=1 Γi.

These assumptions guarantee that ∆Xt and β′Xt + β′0t are stationary processes,
apart from the influence of initial values, and that Xt has at most a linear trend in
all directions, see Johansen (1996).

The associated state space representation is X̃t = AX̃t−1+ut with ut := J(µ∗D∗
t +

εt), J := (Ip : 0)′, and

X̃t :=




∆Xt

β′Xt−1

Ut




p
p0

m
A :=

(
A11 A12

A21 A22

)

p p0 m

A11 :=

(
Γ∗1 α
β′ Ip0

)
p
p0

A12 :=

(
Φ
0

)
p
p0

(5)

p p0 m−p p

A21 :=

(
I 0
0 0

)
p

m− p
A22 :=

(
0 0
I 0

)
p

m− p

where we have reported dimensions alongside blocks of the companion matrix.
The following proposition applies.
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Proposition 1 (IF in I(1) systems) Consider state space form (5) under the I(1)
assumption; then all eigenvalues of A are within the unit circle and the impact factor
F := (I − A)−1 − I has the following form: let

B :=

(
C (CΓ◦ − I)β̄

ᾱ′(Γ◦C − I) ᾱ′(Γ◦CΓ◦ − Γ◦)β̄

)

c1 := c2 ⊗ Ip, with c2 a lower triangular matrix with ones on and below the main

diagonal, Γ◦ := −Γ, C = β⊥ (α′⊥Γ◦β⊥)−1 α′⊥, ψ := (ψ2 : ... : ψk−1), ψi =
∑k−1

j=i Γj;
then

F + I =


 B B

(
ψ
0

)

(ik−2 ⊗ I : 0)B c1 + ik−2 ⊗ Cψ




=




C (CΓ◦ − I)β̄ Cψ
ᾱ′(Γ◦C − I) ᾱ′(Γ◦CΓ◦ − Γ◦)β̄ ᾱ′(Γ◦C − I)ψ

ik−2 ⊗ C ik−2 ⊗ (CΓ◦ − I)β̄ c1 + ik−2 ⊗ Cψ


 .

From this expression one can read the impact factors; in particular Fy,x equals

1. C − I for yt = xt := ∆Xt

2. (CΓ◦ − I)β̄ for yt := ∆Xt, xt := β′Xt−1

3. ᾱ′(Γ◦C − I) for yt := β′Xt−1, xt := ∆Xt

4. ᾱ′(Γ◦CΓ◦ − Γ◦)β̄ for yt = xt := β′Xt−1.

A special interpretation applies to the I(1) case. Consider Fy,x for yt := ∆Xt,

xt := X̃t. The cumulated forecasts on the differences
∑H

i=1 ∆Xt+i|t = Xt+H|t − Xt

give the forecast on the levels minus the initial value. Hence the total effect of a
change in bt is given by TE= Xc

∞|t−X∞|t, where Xc
∞|t indicates the forecast on the

level of X∞ based on X̃c
t . Thus TE measures the change in the long-run forecast

on the levels, and IF is a sensitivity measure of the level forecast with respect to
changes in the FS variables.

This interpretation has been emphasized in Bedini and Mosconi (2000). In par-
ticular they focus on F∆Xt,β′Xt−1 = (CΓ◦− I)β̄, which they call the long-run adjust-
ment coefficients to disequilibrium errors. The approach of the present paper give a
forecasting interpretation of the long-run adjustment coefficients, as well as of other
IF.

3.2 Cointegrated I(2) VAR

Consider the equilibrium correction (EC) representation of the VAR suggested in
Paruolo and Rahbek (1999) for I(2) systems:

∆2Xt = α(β′Xt−1 + δβ′2∆Xt−1) + (ζ1 : ζ2)(β : β1)
′∆Xt−1 + (6)

+Υ1∆
2X ′

t−1 + ΦWt−1 + µ∗D∗
t + εt

9



where Wt−1 := (∆2X ′
t−2 : ... : ∆2X ′

t−k+2)
′, of dimension m × 1, m := p(k − 3),

Φ := (Υ2 : ... : Υk−2). µ∗ := (µ1 : µ0 : µd), D∗
t := (t : 1 : d′t)

′.
We first list some assumptions. Let φ := I −∑k−2

i=1 Υi.

I(2) Assumption

I(2) a : Assumptions I(1) a, I(1) b, I(1) c hold.

I(2) b : Pα⊥ΓPβ⊥ = α1β
′
1 where α1 and β1 are p× p1 matrices of full rank p1 < p− p0,

or, equivalently, α′⊥Γβ⊥ = ξη′ where ξ = α′⊥α1 and η = β′⊥β1 are p − p0 × p1

matrices of full rank p1 < p− p0.

I(2) c : α′2θβ2 has full rank p2 := p − p0 − p1, where α2 = (α : α1)⊥, β2 = (β : β1)⊥
and θ is defined as

θ := Γβ̄ᾱ′Γ + φ. (7)

I(2) d : α′⊥µ0 = ξη′0 + α′⊥Γβ̄β′0, with η′0 a p1 × 1 vector.

Johansen’s I(2) representation theorem, see Johansen (1992) or Johansen (1996)
Theorem 4.6, establishes that under I(2) a that necessary and sufficient conditions
for

∆2Xt, β′Xt + δβ′2∆Xt + β′0t, β′1∆Xt (8)

to be stationary, apart from initial values, and for Xt to have at most a linear trend
in all directions are the conditions I(2) b to d; see e.g. Paruolo (2002b) for a proof.3

In the following ‘I(2) assumption’ and ‘I(2) conditions’ are used as synonyms.
The EC formulation in (6) imposes some of the I(2) restrictions; we refer to

Paruolo and Rahbek (1999) for complete definitions of coefficients and background.
As for the I(1) case we choose a specific timing of the EC terms in order to simplify
later calculations. Again this is done without loss of generality, since results for any
other EC formulation can be deduced from it, see again Section 3.3.

Proposition 7 in the Appendix shows that one of the many possible equivalent
EC formulation of this system is

∆2Xt = α(β′Xt−3 + δβ′2∆Xt−2 + β′0t) + (ζ∗1 : ζ2)(β : β1)
′∆Xt−2 + (9)

+Υ∗∆2X ′
t−1 + ΦWt−1 + µDt + εt,

where we have imposed µ1 = αβ′0. The timing of the EC terms (β′Xt−3+δβ′2∆Xt−2),
(β : β1)

′∆Xt−2 is different from the one in (6) and ζ∗1 := ζ1 +2α and Υ∗
1 := (Υ1 +Γ+

Π). Note that this affects the definition only of ζ∗1 and Υ∗
1 and not of the remaining

coefficients. This timing can always be achieved, also for k = 2.4 We summarize
notation in Table 1.

3Note that the stationarity of the variables in (8) implies that also β′∆Xt is stationary.
4Following the literature, we do not consider k = 1 in the I(2) case.
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symbol dim symbol dim
Γ = αδβ′2 + ζ1β

′ + ζ2β
′
1 p× p Φ := (Υ2 : ... : Υk−2) p× p(k − 3)

ζ∗1 := ζ1 + 2α p× p0 Υ∗
1 := (Υ1 + Γ + αβ′) p× p

φ := I −∑k−2
i=1 Υi p× p φ∗ := φ− Γ− αβ′ p× p

θ := ζ1ᾱ
′Γ + φ p× p θ∗ := ζ∗1 ᾱ

′Γ + φ∗ p× p

C2 := β2 (α′2θβ2)
−1 α′2 p× p τ := (β : β1) p× (p0 + p1)

h := θ∗C2 − I p× p q := ᾱ′(I − ζ2ᾱ
′
1)h p0 × p

ψi :=
∑k−2

j=i Υj p× p ψ := (ψ2 : ... : ψk−2) p× p(k − 3)

Table 1: Symbol definitions for the expression of the IF in the I(2) systems.

The system can be cast in the state space form X̃t = AX̃t−1 + ut with ut :=
J(µ∗D∗

t + εt) and

X̃t :=




∆2Xt

β′∆Xt−1

β′1∆Xt−1

β′Xt−2 + δβ′2∆Xt−1

Wt




p
p0

p1

p0

m

A :=

(
A11 A12

A21 A22

)
,

p p0 p1 p0 m

A11 :=




Υ∗
1 ζ∗1 ζ2 α

β′ Ip0

β′1 Ip1

δβ′2 Ip0 Ip0




p
p0

p1

p0

A12 :=

(
Φ
0

)
p

2p0 + p1

(10)

p 2p0 +p1 m−p p

A21 :=

(
I 0
0 0

)
p

m− p
A22 :=

(
0 0
I 0

)
p

m− p

where we have reported dimensions; 0 entries are not reported unless when needed
for clarity. The following proposition applies.

Proposition 2 (IF in I(2) systems) Consider the state space form (10) under
the I(2) assumption; then all eigenvalues of A are within the unit circle and the
impact factor F := (I − A)−1 − I has the following form: let

B :=




C2 (C2φ
∗ − I)τ̄ −C2ζ1

−δβ′2C2 −δβ′2C2φ
∗τ̄ δβ′2C2ζ1 − I

−α′1h −α′1hφ∗τ̄ α′1hζ∗1
−q −qφ∗τ̄ qζ∗1




where q := ᾱ′(I − ζ2ᾱ
′
1)h, h := I − θ∗C2, q := ᾱ′(I − ζ2ᾱ

′
1)h, τ := (β, β1), θ∗ :=

φ∗ + ζ∗1 ᾱ
′Γ, C2 := β2 (α′2θβ2)

−1 α′2; let also ψ := (ψ2, ..., ψk−2), ψi =
∑k−2

j=i Υj,
c1 := c2⊗ Ip, where c2 is a lower triangular matrix with ones on and below the main
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diagonal; then F + I equals

 B B

(
ψ
0

)

(ik−2 ⊗ I : 0)B c1 + ik−2 ⊗ C2ψ


 (11)

=




C2 (C2φ
∗ − I)τ̄ −C2ζ1 C2ψ

−δβ′2C2 −δβ′2C2φ
∗τ̄ −I + δβ′2C2ζ1 −δβ′2C2ψ

−α′1h −α′1hφ∗τ̄ α′1hζ1 −α′1hψ
−q −qφ∗τ̄ qζ∗1 −qψ

ik−2 ⊗ C2 ik−2 ⊗ (C2φ
∗ − I)τ̄ −ik−2 ⊗ C2ζ1 c1 + (i⊗ Ip)C2ψ




.

From this expression one can read the impact factors; in particular Fy,x equals

1. C2 − I for yt = xt := ∆2Xt;

2. −δβ′2C2 for yt := β′∆Xt, xt := ∆2Xt

3. ᾱ′1(θ
∗C2 − I) for yt := β′1∆Xt, xt := ∆2Xt

4. ᾱ′(I − ζ2ᾱ
′
1)(θ

∗C2 − I) for yt := β′Xt−2 + δβ′2∆Xt−1, xt := ∆2Xt.

Again we note that IF of the type Fb′∆X,x present the level interpretation given
for I(1) systems: they measure the change in the long-run forecast of b′Xt induced by
a change in xt. We observe that there are several long-run adjustment coefficients to
various disequilibrium errors; they appear in the second and third column in formula
(11). One can note that timing of the EC terms used in (9) is perhaps not the most
natural. The following subsection discusses the relation among IF obtained for the
various choices of timing of the EC terms, both for the I(1) and the I(2) cases.

3.3 Timing of the EC terms

The choice of timing of the EC terms in an EC formulation is arbitrary. It is well
known that in the I(1) case the level term β′Xt−1 can be shifted to any lag j,
1 ≤ j ≤ k, by changing the definition of the coefficients to the variables ∆Xt−1, ...,
∆Xt−k+1. The same applies to the EC terms (β, β1)

′∆Xt−1 and (β′Xt−1+δβ′2∆Xt−1)
in the I(2) systems: the level term Xt−j can be shifted to any lag j, 1 ≤ j ≤ k and
the differences ∆Xt−j to any lag j, 1 ≤ j ≤ k− 1. The choices made in the previous
sections were only done for ease of calculations.

Let Zt and St be two possible choices of the state vector X̃t corresponding to
a specific timings of the EC terms. It is simple to see that they are connected
by a linear map Zt = NSt, where N is square and non-singular, see examples
in Appendix B. The two state vectors satisfy recursions Zt = AZZt−1 + ut, and
St = ASSt−1 + ut. Substituting Zt = NSt in the first equation one sees that
NSt = AZNSt−1 + ut or St = N−1AZNSt−1 + N−1ut, i.e. the companion matrices
are related by AS = N−1AZN , or NASN−1 = AZ . This implies a similar relation
between the corresponding IF, which is a special case of the basic property (1), with
NX = NY = N .

Let FZ and FS indicate the IF calculated for state vectors Zt and St. The
following proposition applies.

12



Proposition 3 (timing and IF ) One has FZ = NFSN−1 for Zt := NSt.

The previous proposition shows that one can transform IF just as easily as one
can redefine the timing of EC terms. A few leading examples of transformation N
are described in the Appendix B, which collects also proofs of this subsection. Two
remarks emerge from the analysis of these cases.

• The choice of timing of the EC term involves a transformation matrix N that
contains either known elements (0 and 1s) or cointegrating parameters, β in
the I(1) case and β, β1, β2 and δ in the I(2) case.

• The inverse N−1 of N is easily calculated, and often corresponds to a matrix
with the same entries of N with same sign on the main diagonal and opposite
sign in the rest of the matrix.

It is thus possible to calculate a single set of IF and deduce others possible choices
from this set. The following proposition states which of these IF are invariant with
respect to the choice of lag of the EC terms.

Proposition 4 (IF invariant w.r.t timing of EC terms) 1. In the I(1) case,
for any state space vector of the form

(
∆X ′

t : X ′
t−jβ : U ′

t

)′
, j = 0, 1, . . . , k

the IF Fyt,xt are invariant for yt = ∆Xt, Ut and xt = ∆Xt, β′Xt−j.

2. In the I(2) case for any state space vector of the form

(
∆2X ′

t : ∆X ′
t−iβ : ∆X ′

t−jβ1 : X ′
t−lβ + ∆X ′

t−mβ2δ
′ : W ′

t

)′
,

i, j, m = 1, . . . , k − 2, l = 1, . . . , k − 1

the IF Fyt,xt is invariant for yt = ∆2Xt, Wt and xt = ∆2Xt, β′1Xt−j, β′Xt−l +
δβ′2∆Xt−m.

This shows that some IF are invariant w.r.t choice of lags, while others are not.
Note that in the I(1) case the long-run adjustment coefficient F∆Xt ,βXt−j

is invariant.
In the I(2) case the long-run adjustment coefficient for the multicointegration rela-
tion F∆2Xt

,β′Xt−l+δβ′2∆Xt−m
is also invariant. Note that the other long-run adjustment

coefficient F∆2Xt
,β′1Xt−j

is invariant, whereas F∆2Xt
,β′Xt−j

is not.

4 Areas of application

This section reports two possible areas of applicability interpretation of the IF. They
regard the effectiveness of economic policy in the long run and the impact of data
revisions on forecasts.
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4.1 Policy effectiveness

The analysis of IF can be applied to policy analysis. Perturbations of the input
variables ṽ may be induced by policy interventions; in this case the IF captures the
long-run response of the forecast function to policy interventions. The superposi-
tion principle for linear forecast functions applied here implies that one can restrict
attention to single perturbations ṽ.

We observe that the perturbations ṽ may involve variables at different points
in time: for the policy intervention interpretation to apply, one needs to restrict
attention to perturbations ṽ that regard the most recent time subscript, i.e. of the
form ṽ = Jv, where J := (Ip : 0)′. This type of perturbation corresponds to a factual
experiment, in which some variables (instruments) are changed by the policy maker.
We hence call this type of perturbation “factual”.

On the contrary all perturbations ṽ that are not of the form Jv are “counterfac-
tual”, in the sense that they cannot be obtained by actual policy actions, which affect
variables at a single point in time. The counterfactual perturbations correspond to
a thought experiment where variables at different lags are perturbed simultaneously.
In the following we consider both factual and counterfactual perturbations.

If some perturbation induced by policy action does not affect the accumulated
forecast on some “target” variables, this means that the policy is ineffective in the
long run. If the system is I(1) and the target variable is the growth rate of some non-
stationary variable, policy ineffectiveness is measured with respect to the long-run
forecast of the level associated with the target variable.

Therefore it appears of importance to test if some IF are significantly different
from zero. In this interpretation, insignificant IF would correspond to ineffectiveness
of policies. Inference on the IF is treated in Section 5.

4.2 Data revisions

The perturbations ṽ may be interpreted as induced by data revisions. Several
macroeconomic indicators are first published in preliminary form, and next adjusted,
e.g. on the basis of national account available at the end of the year. Because the
data X̃t containing preliminary data is fed into a forecast function in order to pro-
duce preliminary forecast of major macroeconomic aggregates, IF can be interpreted
in this case as a sensitivity measure of the cumulated forecast profile to (small) re-
visions of the data.

Let X̃c
t be the revised data. The TE can now be interpreted as the cumulated

change in forecasts of Yt+h due to the revision of preliminary figures. IF can thus be
used to measure if the cumulated change in forecasts is significantly different from
zero, and what sort of variability is induced in the forecast profile by the revisions
of the data.

This interpretation can also be combined with the fact that, for cointegrated
I(1) systems, IFs measure the sensitivity of the long-run forecast of the levels of the
variables. A similar comment applies to growth rates in I(2) systems.
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5 Inference on the IF

In this section we consider inference on IF in a unified framework for stationary, I(1)
and I(2) systems. The approach is based on the observation that CI parameters are
estimated super-efficiently. This implies that the inclusion of estimated CI param-
eters in the definition of regressors does not affect the limit distribution of the IF.
Inference on the IF is associated with the one on the companion matrix A. This
matrix is estimated below through a specific regression system, which is specified
in the next subsection for the I(0), I(1) and I(2) cases. In Subsection 5.2, we then
address the issue of inference on the IF F , which is calculated as (I − A)−1 − I.

5.1 Regression setup

In order to estimate the IF, one needs to estimate the companion matrix A. We
define G∗ := J ′A and L := J ′⊥A, where J := (Ip : 0)′ and J⊥ = (0 : I). The matrix
G∗ contains the adjustment coefficients, while L contains only known values, 0 or 1,
and CI parameters in the integrated cases. The matrix A is then reconstructed as
A = (G∗′ : L′)′.

In the stationary case let X0t := J ′X̃t = Xt be the regression dependent variable
and X1t := (X ′

t−1 : ... : X ′
t−k)

′ be the matrix of stochastic regressors. For homogene-
ity with the integrated cases we assume that µ1 = 0, so that the system equations
can be written as

X0t = GX1t + µDt + εt, (12)

where G := (A1 :... : Ak). The likelihood analysis of the stationary VAR in (12)
is simply performed by OLS. For later reference we also set H := I, G∗ := G,
X̂1t := X1t.

Consider now the integrated cases. The I(1) cointegration analysis with the
deterministic specification used above is described in Johansen (1996), while the
corresponding one for the I(2) model is described in Rahbek et al. (1999)5.

Consider the I(1) case. Let X0t := J ′X̃t = ∆Xt be the regression dependent
variable. The I(1) analysis permits to determine the CI rank p0 and to estimate
β∗ := (β′ : β′0)

′. These estimates are at least T consistent, see Johansen (1996). The

estimate of β∗ permits to calculate the regressor vector X̂∗
1t := (∆X ′

t−1 : (β̂′Xt−2 +

β̂′0t)
′ : U ′

t−1), and eq. (4) can be rewritten as

X0t = G∗X̂1t + µDt + ε̂t (13)

where G∗ = (Γ∗1 : α : Φ) and ε̂t := εt−α((β̂−β)′Xt−2 +(β̂0−β0)
′t)′ is the error term.

Here and in the following we indicate with ̂ quantities where the CI coefficients
have been substituted with their estimators.

In the special case k = 1 listed in Appendix C, G∗ has reduced rank because of
the reduced rank of A = ÃH ′, G∗ := J ′A = J ′ÃH ′. In this case define X̂1t := Ĥ ′X̂∗

1t,

5The estimation of the cointegrating coefficients can be accomplished via likelihood techniques
in I(1) and I(2) systems or via the 2SI2 procedure in I(2) systems, see Johansen (1995), Paruolo
(1996), Rahbek et al. (1999).
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G := J ′Ã; otherwise we let H = I and define G := G∗, X̂1t := X̂∗
1t. Eq (13) then

reads
X0t = GX̂1t + µDt + ε̂t. (14)

Consider the I(2) case. We define G∗ := J ′A and let X0t := J ′X̃t = ∆2Xt be
the regression dependent variable. The I(2) analysis permits to determine the II p0

and p1 and to estimate β∗ := (β′ : β′0)
′ and δ, β1, β2. These estimates are at least

T consistent, see Johansen (1997) and Paruolo (2000). These estimates permits to

calculate the regressor vector X̂∗
1t := (∆2X ′

t−1 : ∆X ′
t−2(β̂ : β̂1) : (β̂′Xt−3 + β̂′0t +

δ̂β̂′2∆Xt−2)
′ : W ′

t−1), and eq. (9) can be rewritten as (13) where G∗ = (Υ∗
1 : ζ∗1 : ζ2 :

α : Φ) and the error term ε̂t depends on εt and on the estimation error of the CI
parameters.

In the special case k = 2 listed in Appendix C, G∗ has reduced rank because of
the reduced rank of A = ÃH ′, G∗ := J ′A = J ′ÃH ′. In this case define X̂1t := Ĥ ′X̂∗

1t,

G := J ′Ã; otherwise we let H = I and define G := G∗, X̂1t := X̂∗
1t. Eq (13) can

then be transformed in (14) as in the I(1) case.
In all cases the matrix A is the reconstructed as

A =

(
G∗

L

)
=

(
GH ′

L

)
.

5.2 Inference

Eq. (14) is the regression equation on which we base inference on the IF. For known
CI coefficients the ML estimates of G and Ω are computed by OLS,

Ĝ = Ŝ01Ŝ
−1
11 Ω̂ = Ŝ00.1 := Ŝ00 − Ŝ01Ŝ

−1
11 Ŝ10,

where Sij := T−1
∑T

t=1 RitR
′
jt, Rit := Xit − MiDM−1

DDDt, MiD := T−1
∑T

t=1 XitD
′
t,

MDD := T−1
∑T

t=1 DtD
′
t, and ̂ indicates quantities where the CI coefficients have

been substituted with their estimators. Similarly Ĥ and L̂ indicate the H and L
matrices with CI coefficients have been substituted with their estimators.

The expressions of the regression estimators for the stationary case in (12) are
identical, but obviously do not involve moments with pre-estimated CI coefficients.
An analogous comment applies to the H and L matrices.

The corresponding estimate of A is

Â =

(
ĜĤ ′

L̂

)

and F̂ = (I − Â)−1 − I. We next introduce some notation. Let Z1t := H ′X∗
1t and

Σ := E((Z1t − E(Z1t))((Z1t − E(Z1t))
′

The following theorem states the relevant limit distributions for inference on the
impact factors.

Theorem 5 (limit distribution of IF ) In the I(1) and I(2) cases the estimator

Ĥ and L̂ are superconsistent, i.e. Ĥ −H, L̂− L ∈ Op(T
−1). In the I(0), I(1) and
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I(2) cases the estimator of the adjustment coefficients Ĝ is T 1/2-consistent and has
a Gaussian limit distribution

T 1/2vec(Ĝ′ −G′)
w→ N(0, Ω⊗ Σ−1). (15)

Moreover
T 1/2vec(F̂ ′ − F ′)

w→ N
(
0, KJΩJ ′K ′ ⊗K ′HΣ−1H ′K

)
(16)

where K := (I−A)−1. The asymptotic covariance matrix of the impact factors can be
estimated consistently by substituting parameter matrices with their regression-based
consistent estimators, Σ̂ := Ŝ11, K̂ = F̂ + I, Ω̂ = Ŝ00.1 within (16).

We observe that the asymptotic covariance matrix of F is singular. This singu-
larity is due to several factors. The first source of singularity is due to the fact that
L is known in the I(0) case and it is estimated superconsistenty in the integrated
cases. This singularity is reflected in the matrix J := (I : 0)′ in the expression of the
asymptotic covariance matrix. A similar phenomenon appears in connection with
H for the special cases here H is not the identity matrix.

Other singularities are associated with the singularities of the matrix C in the
I(1) case and of C2 in the I(2) cases. Instead of focusing on these cases we refer to
Paruolo (1997a,b) for inference on C and to Paruolo (2002a) for inference on C2.

The results in the theorem allow to define Wald-type statistics for individual IF.
For simple hypothesis the type Fij = c, for instance, if the corresponding asymptotic

variance σ2 is non-zero, one can define an asymptotically χ2(1) statistic (F̂ij−c)2/σ̂2,

or the corresponding N(0, 1) statistic (F̂ij − c)/σ̂. These statistics are illustrated
with an application in the next section.

6 An application: price mark-up in Australia

As an example of IFs, we consider the data set analyzed by Banerjee et al. (2001).6 It
consists of three Australian macroeconomic data series: the consumer price deflator
at factor cost (lpfc), unit labor costs in the non-farm sector (lulc) and import prices
(lpm). All three variables are quarterly data measured in natural logs, and run from
1970Q1 to 1995Q2 for a total of 102 observations. The variables are graphed in levels
and first differences in Fig. 1. The levels of the variables appear non-stationary, and
also the differences show signs of possible non-stationarity.

We include dummy variables to take account of a number of shocks to the econ-
omy, like the oil shocks. The dummies take value 1 in one quarter and zero otherwise;
the quarters are 1974Q2, 1974Q3, 1982Q1, 1983Q2, 1985Q2 and 1986Q3.7 We fit
an unrestricted VAR in levels with k = 2 lags, seasonal dummies, a constant and
a trend. We employ the package Me2 (Omtzigt, 2002), which performs maximum
likelihood analysis also for the I(2) models.

6The data set is available at the data archive of the Journal of Applied Econometrics:
http://qed.econ.queensu.ca/jae

7Banerjee et al. (2001) condition on a number of stationary variables, but write on page 230
that “The cointegration results are essentially the same if the analysis is repeated with all the
predetermined variables excluded.” Our analysis finds the same selection of II and does not reject
the nominal-to-real transformation, as in their paper.
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Figure 1: Australian data in levels and differences
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Figure 2: Cointegration and multicointegration relationships
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p1+p2 p0

3 0 270.5
(87.6)

161.8
(68.2)

78.8
(53.2)

62.9
(42.7)

2 1 115.0
(47.6)

34.1
(34.4)

30.2
(25.4)

1 2 74.7
(19.9)

11.4
(12.5)

p2 3 2 1 0

Table 2: 2SI2 inference on the integration indices p0, p1. The first unrejected model
is shown in boldface.

We next perform some mis-specification tests for normality and autocorrelation
of the errors proposed by Doornik and Hansen (1994) and Doornik (1996). The
normality test statistic is equal to 7.17 with a p-value of 0.31; the AR1 and AR4 test
statistics are equal to 4.80 and 37.03, with p-values equal to 0.85 and 0.42. These
results indicate that the model appears to be well specified.

6.1 Cointegration analysis

Since I(1) behavior of the growth rates implies that the levels are I(2), see Fig. 1,
we leave open the possibility to select an I(2) model for the data. We first test
for the number of unit roots allowing both I(1) and I(2) behavior, by selecting the
integration indices of the system. This analysis considers all I(1) and I(2) submodels
of the unrestricted VAR.

The selection of the integration indices is based on the 2SI2 estimator (Johansen
1995, Paruolo 1996, Rahbek et al. 1999); the test statistics for the specification
µ1 = αβ′0 are reported in table 2. Below each entry we report the 95% quan-
tile of the asymptotic distribution, taken from Rahbek et al. (1999). We select
(p0, p1) = (1, 1), which corresponds to one I(1) trend and one I(2) trend. The roots
of the characteristics polynomial are 1, 1, 1, 0.35,−0.21 and 0.12 such that there is
no trace of more non-stationary trends.8 The same integration indices were selected
by Banerjee et al. (2001).

We tested the nominal-to-real transformation (Kongsted 1998, 2002), i.e that
lpfc−lulc (the markup of price on unit labor cost) and lpfc−lpm (the markup of price
over import prices) are at most I(1). We used the likelihood ratio statistic; under the
null the test has a χ2(2)-distribution, see Johansen (2002). The test statistic takes
the value 1.242, with a p-value of 0.54, giving ample support to the transformation.
This implies that β = bρ, and β2 = b⊥ = (1 : 1 : 1)′, where

b :=




1 1
−1 0
0 −1


 .

The maximum likelihood, ML, estimates of the cointegration parameters are
reported in Table 3. The CI(2, 1) relations, that is the cointegration relations from

8The roots of the unrestricted polynomial are 1.01, 0.87± 0.04i, 0.41, −0.21 and 0.15.
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lpfc lupc lpm t
ρ 0.7296 b′ 1 −1 0 0.00076

0.2704 1 0 −1 −0.00030
δ 2.6679 β′2 1 1 1

Table 3: Estimates of the cointegration parameters under the nominal to real trans-
formation; b is a basis of sp(τ), β = bρ.

I(2) to I(1), are the two markups, pictured in figure 2; they are I(1). The combined

mark-up on price β, obtained as a linear combination of the two, β̂ = bρ̂, is also
I(1):

β̂′Xt−2 + β̂0t = lpfct−2 − 0.73lulct−2 − 0.27lpmt−2 + 0.0005t.

The remaining relationship β̂1 = b̄ρ̂⊥ is also I(1), where

β̂′1Xt−2 = −0.27lpfct−2 − 0.73lulct−2 + lpmt−2.

The fact that the combined mark-up β̂′Xt, is still I(1) by itself is consistent with
imperfect competition theories, which predict that a high mark-up is associated with
low inflation.9 The combined markup β̂′Xt next cointegrates with the I(1) trend in

the first differences, represented by β̂′2∆Xt = (1 : 1 : 1)∆Xt, proportional to the av-
erage inflation in the 3 series. This gives the following stationary multicointegration
relationship

mect = β̂′Xt−2 + δ̂β̂′2∆Xt−1 + β̂′0t = lpfct−2 − 0.73lulct−2 − 0.27lpmt−2 (17)

+ 2.67
(
∆lpfct−1 + ∆lulct−1 + ∆lpmt−1

)
+ 0.0005t.

6.2 Impact Factors

In Table 4 we report the impact factors of the restricted I(2) model, that is the
model with the nominal-to-real transformation imposed. The first three columns in
Table 4 are the impact factors which correspond to a factual experiment. The last
three columns correspond to counterfactual experiments.

The consequences of a perturbation to the general price level can be read off
from the first column in Table 4. Such a perturbation does not lead to significantly
higher unit labor costs. The same insignificant effect is found for all values in the
same column except the one for the multicointegration relationship (17), whose
accumulated effect is significantly positive, in line with economic expectations.

Conversely a perturbation to unit labor cost and import prices have significant
effects on price inflation, as can be seen from the first entries in the second and third
columns. The impact factors of the second and third column are commented below
in association with the IR and the accumulated IR, AIR, graphed in Fig. 3 and 4.
Standard errors for IR are calculated as in Lütkepohl (1991). IFs appear in these

9For a full overview of the economic theory, we refer to Banerjee et al. (2001).
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∆2lpfct ∆2lulct ∆2lpmt β′∆Xt−1 β′1∆Xt−1 mect

∆2lpfct 0.007
(0.20)

0.08
(12.06)

0.02
(3.76)

−0.77
(−27.85)

0.14
(16.09)

−0.11
(−26.32)

∆2lulct 0.007
(0.20)

0.08
(12.06)

0.02
(3.76)

0.31
(11.13)

0.43
(49.52)

−0.11
(−26.32)

∆2lpmt 0.007
(0.20)

0.08
(12.07)

0.02
(3.76)

0.02
(0.78)

−0.65
(−74.11)

−0.11
(−26.32)

β′∆Xt−1 −0.057
(−0.20)

−0.64
(−12.06)

−0.17
(−3.76)

1.17
(5.31)

0.20
(2.83)

−0.11
(−3.18)

β′1∆Xt−1 −0.211
(−0.30)

−0.59
(−4.52)

1.06
(9.83)

−0.01
(−0.02)

1.96
(11.50)

0.03
(0.40)

mect 14.422
(4.99)

2.67
(5.09)

1.23
(2.82)

9.85
(4.49)

−2.83
(−4.09)

3.29
(9.78)

Table 4: K := F +I: Impact factors (+I) in the Australian mark-up model. t-values
are reported in brackets.
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Figure 3: Effect of perturbation to unit labor cost (lulc): Impulse Response functions
(IR:top) and Accumulated Impulse Response functions (AIR: bottom) with 95%
confidence intervals. Impact Factors with 95% confidence interval are given along
AIR at horizon ∞.
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Figure 4: Effect of perturbation of import prices (lpm): Impulse Response functions
(IR:top) and Accumulated Impulse Response functions (AIR: bottom) with 95%
confidence intervals. Impact Factors with 95% confidence interval are given along
AIR at horizon ∞.

graphs as the limit of the AIR at horizon ∞, indicate as ‘inf’. Note that some of
the IR have sometimes 0 standard errors for the first lead, because of the different
timing of the variables in the state vector.

Figure 3(a) shows the effect on the the second difference of the price level, that
is the acceleration rate of inflation. The initial impact is positive and followed by
a small decline. The accumulated impulse response function shows the effect on
the inflation rate. This effect converges rapidly to 0.08, the impact factor; this
corresponds to a permanent increase in the inflation rate of 0.32% (due to a one
percent perturbation of unit labor costs).

Graphs (b) and (e) show that an increase in unit labor costs leads a decline in
the mark-up lpfc−lulc. Note that the combination of an increase in inflation and a
decrease in this mark-up is completely in the line with the prediction of imperfect
competition models. Graphs (c) and (f) show that influence on the multicointegra-
tion relation.

Figure 4 reports the effect of perturbation to import prices. The adjustment
to the new equilibrium of the multicointegrating relation takes longer than for unit
labor costs. Apart from the effect on relation β′1∆Xt−1, the impact factors have the
same sign as the impact factors above, but are 2 to 4 times smaller in magnitude.
Labor costs thus have a greater impact on the forecast of price inflation than import
prices, a reasonable finding.
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7 Conclusions

In this paper we have defined impact factors as a sensitivity measure on forecasts,
and discussed their relation to impulse responses. We have applied the definition to
vector autoregressive processes, in the stationary, I(1) and I(2) cases. Not surpris-
ingly, the impact factors are functions of the moving average total impact matrix
of the stationary representation of the systems, which is singular in cointegrated
processes. Inference on the impact factors can be addressed exploiting the results
available for the MA impact matrix developed in Paruolo (1997a,b, 2002a).

An application to price mark-up in Australia shows, among other things, how
perturbations to labor cost can have a permanent positive effect on inflation and a
permanent negative effect on the mark-up. This is in line with imperfect competition
models.
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Appendix A: Derivation of the IF

In this appendix we report proofs of the propositions in the paper. The first lemma
gives a well known result on the inversion of a partitioned matrix, see also Faliva
and Zoia (2002).

Lemma 6 Given the p × s matrices a, b of full column rank s < p, and Q any
square p× p matrix, then a necessary and sufficient condition for the matrix

S :=

(
Q a
b′ 0

)

to be invertible is that a′⊥Qb⊥ be of full rank p− s; in this case

S−1 :=

(
Q a
b′ 0

)−1

=

(
R (I −RQ)b̄

ā′(I −QR) ā′(QRQ−Q)b̄

)

where R := b⊥(a′⊥Qb⊥)−1a′⊥.

Proof. We observe that S has the same rank as K := J1SJ2 for Ji invertible
square matrices. Choose J1 and J2 as follows and calculate the resulting product
K := J1SJ2

J1 :=

(
Is

(ā, ā⊥)′

)
, J2 :=

(
(b̄, b̄⊥)

Is

)

K := J1SJ2 =




Is

Qa⊥b Qa⊥b⊥
Qab Qab⊥ Is




where we have used the notation Qcd := c̄′Qd̄, c, d = a, b, a⊥, b⊥. J1SJ2 is block
triangular and it is invertible iff Qa⊥b⊥ , or equivalently if a′⊥Qb⊥ is invertible. If this
is the case, the inverse S−1 can be calculated as S−1 = J2(J1SJ2)

−1J1 = J2K
−1J1.

By straightforward application of the partitioned inverse formula to K, one finds

K−1 := (J1SJ2)
−1 =




Is

−Q−1
a⊥b⊥Qa⊥b Q−1

a⊥b⊥−(Qab −Qab⊥Q−1
a⊥b⊥Qa⊥b) −Qab⊥Q−1

a⊥b⊥ Is


 .

Finally calculating S−1 = J2K
−1J1 one finds the results in the statement.
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Proof. of Prop. 1. We apply partitioned inverses to the matrix (I − A) parti-
tioned conformably to the Aij blocks in (5), using Lemma 6. Let

K :=

(
K11 K12

K21 K22

)
:= (I − A) =

(
I − A11 −A12

−A21 I − A22

)

and indicate by Kij blocks of K−1 conformable with Aij. Note that K11 = K−1
11.2,

where K11.2 := K11 −K12K
−1
22 K21 = I − (A11 + A12(I − A22)

−1A21), where

A12(I − A22)
−1A21 = diag

(
k−1∑
i=2

Γi, 0

)
,

so that

K11.2 = I − (A11 + A12(I − A22)
−1A21) =

(
I − Γ◦ + αβ′ −α

−β′ 0

)
.

where Γ◦ := −Γ = I −∑k−1
i=1 Γi. Applying Lemma 6

K−1
11.2 =

(
C (CΓ◦ − I)β̄

ᾱ′(Γ◦C − I) ᾱ′(Γ◦CΓ◦ − Γ◦)β̄

)
,

where C := β⊥ (α′⊥Γ◦β⊥)−1 α′⊥. The remaining blocks of K−1 can be expressed as
K21 = −K−1

22 K21K
−1
11.2, K12 = −K−1

11.2K12K
−1
22 and K22 = K−1

22 +K−1
22 K21K

−1
11.2K12K

−1
22 ,

where K−1
11.2 has already been calculated and K−1

22 = c⊗ I. Substituting one obtains
the expression in the proposition.

The following EC formulation is convenient in the I(2) case.

Proposition 7 An equivalent EC formulation of (6) is

∆2Xt = α(β′Xt−3 + δβ′2∆Xt−2) + (ζ∗1 : ζ2)(β : β1)
′∆Xt−2 + (18)

+Υ∗
1∆

2Xt−1 + ΦWt−1 + µ∗D∗
t + εt

where ζ∗1 := ζ1 + 2α and Υ∗
1 := (Υ1 + Γ + Π).

Proof. Adding and subtracting Π(Xt−1 − Xt−3) = Π∆Xt−1 + Π∆Xt−2 on the
r.h.s. of (6) one obtains

∆2Xt = ΠXt−3 + (Γ + Π)∆Xt−1 + Π∆Xt−2 + Υ1∆
2Xt−1 + ΦWt + εt.

Further adding and subtracting (Γ + Π)∆Xt−2 on the r.h.s. yields

∆2Xt = ΠXt−3 + (Γ + 2Π)∆Xt−2 + (Υ1 + Γ + Π)∆2Xt−1 + ΦWt + εt

= ΠXt−3 + Γ∗∆Xt−2 + Υ∗
1∆

2Xt−1 + ΦWt + εt, (19)

where Γ∗ := Γ + 2Π, Υ∗
1 := Υ1 + Γ + Π. In order to recover the EC terms within

(19) note that Γ∗β̄2 = (Γ + 2Π)β̄2 = Γβ̄2 = αδ and hence

Γ∗ = Γ∗(Pτ + Pβ2) = (Γ∗τ̄)τ ′ + (Γ∗β̄2)β
′
2 = ζ∗τ ′ + αδβ′2,
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where ζ∗ := Γ∗τ̄ , τ := (β, β1) and we observe that ζ∗2 := Γ∗β̄1 = Γβ̄1 =: ζ2.
Substituting within (19) one finds (18).

Proof. of Prop. 2. Let m := p(k − 3) be the dimension of Wt. In order to
compute (I −A)−1, we apply partitioned inverses to the matrix (I −A) partitioned
conformably to Aij blocks in (5), using Lemma 6. As in the I(1) case let

K :=

(
K11 K12

K21 K22

)
:= (I − A) =

(
I − A11 −A12

−A21 I − A22

)

and indicate by Kij blocks of K−1 conformable with Aij. Note that K11 = K−1
11.2,

where K11.2 := K11 −K12K
−1
22 K21 = I − (A11 + A12(I − A22)

−1A21), where

A12(I − A22)
−1A21 = diag

(
k−1∑
i=2

Υi, 0

)
,

so that

K11.2 = I − (A11 + A12(I − A22)
−1A21) =




φ− Γ− αβ′ −ζ∗1 −ζ2 −α
−β′

−β′1
−δβ′2 −Ip0


 .

where φ := I − ∑k−2
i=1 Υi. In order to calculate K−1

11.2 we express it as K−1
11.2 =

(J3K11.2)
−1J3 where

J3 :=




Ip

Ip0

Ip0

Ip1




J3K11.2 =




φ∗ −ζ∗1
−δβ′2 −Ip0

−ζ2 −α

−β′

−β′1


 =

(
Q a
b′ 0

)
,

where φ∗ := φ−Γ−αβ′ and Q is (p+p0)×(p+p0). We now wish to apply Lemma 6,
observing that b⊥ = diag(β2, Ip0) and a⊥ = diag(α2, Ip0), because ζ2 = αΓαβ1 +α1 ∈
sp(α : α1). Let θ∗ := φ∗ + ζ∗1 ᾱ

′Γ, h := I − θ∗C2 and recall that φ∗ = φ − Γ − αβ′,
ζ∗1 = ζ1 + 2α, τ̄ = (β̄ : β̄1). One finds

(J3K11.2)
−1 =

(
R (I −RQ)b̄

ā′(I −QR) ā′(QRQ−Q)b̄

)
=

=




C2 −C2ζ1 (C2φ
∗ − I)τ̄

−δβ′2C2 δβ′2C2ζ1 − I −δβ′2C2φ
∗τ̄

−α′1h α′1hζ∗1 −α′1hφ∗τ̄
−ᾱ′(I − ζ2ᾱ

′
1)h ᾱ′(I − ζ2ᾱ

′
1)hζ∗1 −ᾱ′(I − ζ2ᾱ

′
1)hφ∗τ̄




where

ā′ =
( −α′1 0
−ᾱ′(I − ζ2ᾱ

′
1) 0

)
b̄ =

( −τ̄
0

)
.
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Thus B := K−1
11.2 = (J3K11.2)

−1J3 corresponds to the expression found above for
(J3K11.2)

−1 with the last 2 blocks of columns interchanged. The rest of the calcula-
tions are exactly the same as in the proof of Proposition 1; this completes the proof.

Appendix B: Timing and IF

In this appendix we illustrate various possible choices of lag for the EC terms, and
report proofs of Section 3.3. In all cases below we adopt the following convention: the
various subvectors of the state vector Zt := NSt or St are numbered consecutively.
Consider the i-th subvector of Zt and the j-th subvector of St, of dimension ni and
nj respectively; the elements of the transformation matrix N corresponding to these
subvectors are indicated with the subscript ij, Nij, of dimension ni× nj. When not
otherwise specified, elements of the N matrix are assumed to be zero.

1. I(1) case, EC in lag 1. Let St be the choice of state vector used above, St :=
(S ′1t : S ′2t : S ′3t)

′ = (∆X ′
t : X ′

t−1β : U ′
t)
′, and consider the following possible

alternative choice of state vector Zt := (Z ′
1t : Z ′

2t : Z ′
3t)

′ = (∆X ′
t : X ′

tβ : U ′
t)
′.

It is simple to see that Zt = NSt with Nii = I, i = 1, 2, 3 and N21 = β′.

2. I(1) case, EC in lag j, where 1 < j ≤ k. Let St be the choice of state vector
used above, and let Zht := Sht, h = 1, 3 and Z2t := β′Xt−j. It is simple to see
that Zt = NSt with Nii = I, i = 1, 2, 3 and N23 = (−i′j−1 ⊗ β′, 0), where ij is
an j × 1 vector of ones.

3. I(2) case, level term in lag 1. Let St be the choice of state vector used above,
St := (S ′1t : ... : S ′5t)

′ = (∆2X ′
t : ∆X ′

t−1β : ∆X ′
t−1β1 : X ′

t−2β +∆X ′
t−1β2δ

′ : W ′
t)
′

and consider the following possible alternative choice of state vector Zt :=
(Z ′

1t : ... : Z ′
5t)

′ where Zht := Sht, h = 1, 2, 3, 5 and Z4t := β′Xt−1 + δβ′2∆Xt−1.
The only term that has been shifted is X ′

sβ form s = t− 2 to s = t− 1. It is
simple to see that Zt = NSt with Nii = I, i = 1, ..., 5 and N42 = Ip0 .

4. I(2) case, level term in lag s, where 2 < s ≤ k. Let St be the choice of
state vector used above and consider the following possible alternative choice
of state vector Zt := (Z ′

1t : ... : Z ′
5t)

′ where Zht := Sht, h = 1, 2, 3, 5 and
Z4t := β′Xt−s + δβ′2∆Xt−1 where the only term that has been shifted is β′Xi

form i = t − 2 to i = t − s. It can be checked that Zt = NSt with Nii = I,
i = 1, ..., 5, N42 = −(s− 2)Ip0 , N45 = (j′ ⊗ β′), j := (s− 3, s− 4, ..., 1, 0, ...,
0)′.

5. I(2) case, differenced term in lag s, where 2 ≤ s ≤ k. Let St be the choice of
state vector used above and consider the following possible alternative choice
of state vector Zt := (Z ′

1t : ... : Z ′
5t)

′ where Zht := Sht, h = 1, 2, 3, 5 and
Z4t := β′Xt−2 + δβ′2∆Xt−s where the only term that has been shifted is β′2∆Xi

form i = t − 1 to i = t − s. It can be checked that Zt = NSt with Nii = I,
i = 1, ..., 5, N45 = (−i′s−2 ⊗ δβ′2, 0).
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Proof. of Prop. 3. By definition

FZ := (I − AZ)−1 − I = (N(I − AS)N−1)−1 − I = N(I − AS)−1N−1 − I =

= N((I − AS)−1 − I)N−1 =: NFSN−1.

Proof. of Proposition 4. Let Zt = NSt indicate the change of state vector,
and let FZ and F := FS indicate the corresponding IF. From Prop. 3 it follows
that FZ = NFN−1. Hence (FZ)y,x =

∑
i

∑
j NyiFijN

jx, where we use subscripts to

indicate blocks. Blocks of N−1 are indicated with N ij := (N−1)ij. Thus if Nyi = 0,
Nyy = I, Njx = 0, Nxx = I, for i 6= y, j 6= x one finds that (FZ)y,x = Fy,x, and that
the IF are invariant.

For the first result we take St :=
(
∆X ′

t : X ′
t−1β : U ′

t

)′
and Zt :=

(
∆Xt : X ′

t−jβ : U ′
t

)′
,

j = 1, . . . , k − 1 and note that Zt = NSt with

N =




Ip

Ip0 (−i′j−1 ⊗ β′ : 0)
Im


 , N−1 =




Ip

Ip0 (i′j−1 ⊗ β′ : 0)
Im




It is thus immediate to note that Fyt,xt is invariant for yt = ∆Xt, Ut and xt = ∆Xt,
β′Xt−j. When Zt includes β′Xt, case j = 0 above, then the transformation matrix
has a similar shape, but N21 = β′, N23 = 0, N21 = −β′, N23 = 0. The same
conclusion thus applies.

For the I(2) results, we take Zt = NSt with

St := St(i, j, l,m) :=
(
∆2X ′

t : ∆X ′
t−iβ : ∆X ′

t−jβ1 : X ′
t−lβ + ∆X ′

t−mβ2δ
′ : W ′

t

)′

and Zt := St(1, 1, 2, 1). One finds

N =




I
I N25

I N35

N42 I N45

I




, N−1 =




I
I −N25

I −N35

−N42 I Q
I




,

where Q := −N45 + N42N25, where N45 := N45a + N45b,

N25 =
(−i′i−1 ⊗ β′ : 0

)
, N35 =

(−i′j−1 ⊗ β′1 : 0
)
, N45a =

(−i′m−1 ⊗ δβ′2 : 0
)
.

If l = 1, one has N42 = Ip0 , N45b = 0 whereas if l ≥ 3, N42 = − (l − 2) Ip0 , N45b =
(g ⊗ β′ : 0), g := (l − 3 : l − 4 : . . . : 1 : 0 : . . . : 0).

From the expressions on N and N−1 we find that Fyt,xt is invariant for yt = ∆2Xt,
Wt and xt = ∆2Xt, β′1Xt−j, β′Xt−l + δβ′2∆Xt−m. We also observe that F∆2Xt,β′1Xt−j

can be simplified as follows

(C2φ
∗ − I)β̄1 = (C2φ− I)β̄1 − C2Γβ̄1 − C2αβ′β̄1 = (C2φ− I)β̄1,

where we have used that C2Γβ̄1 contains the term α′2Γβ1, which equals zero by
assumption I(2) b.
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Appendix C: Inference on the IF

In this appendix we illustrate how the state space representations used for k = 1 in
the I(1) and k = 2 for the I(2) cases are not minimal; proofs of Section 5 are also
provided.

The non-minimality of the state space vectors does not affect the derivations of
IF, although it is relevant for inference. We thus show how the companion matrices
A can be rank-decomposed in A = ÃH ′. In case of no rank reduction of the matrix
A, we take H = I in the decomposition A = ÃH, i.e. A = Ã.

In the I(1) state space formulation, when k = 1 the companion matrix A reduces
to the block A11 in formula (5), where, moreover, Γ1 = 0, i.e. Γ∗1 = Π = αβ′. It is
simple to see that A has in this case reduced rank, since

A :=

(
αβ′ α
β′ I

)
=

(
α
I

) (
β′ I

)
=: ÃH ′, (20)

where Ã := (α′ : I)′, H := (β′ : I)′ are p + p0 × p0 matrices with full column rank
p0.

For the state space representation of I(2) systems, when k = 2 the companion
matrix A reduces to the block A11 in formula (10) above, where, moreover, Υ1 = 0,
i.e. Υ∗

1 = Γ + Π = Γ + αβ′. It can be checked that, similarly to the I(1) case, A has
in this case reduced rank:

A =




Γ + αβ′ Γβ̄ + 2α Γβ̄1 α
β′ Ip0

β′1 Ip1

δβ′2 Ip0 Ip0


 = (21)

=




Γβ̄ + α Γβ̄1 α
Ip0

Ip1

Ip0







β′ Ip0

β′1 Ip1

δβ′2 Ip0 Ip0


 =: ÃH ′,

where

Ã :=




Γβ̄ + α Γβ̄1 α
Ip0

Ip1

Ip0


 =




ζ1 + α ζ2 α
Ip0

Ip1

Ip0


 , H :=




β β1 β2δ
′

Ip0 Ip0

Ip1

Ip0




are (p + 2p0 + p1)× (2p0 + p1) matrices with full column rank (2p0 + p1).

Proof. of Theorem 5. Ĥ −H, L̂ − L ∈ Op(T
−1) because they are functions of

the cointegrating coefficients, which are at least T -consistent. Result (15) follows
by standard regression arguments, after observing that, due to superconsistency,
one can substitute the estimated cointegration coefficients with their true values,
see Paruolo (2002c) for a detailed proof of Ŝij − Sij = Op(T

−1). In fact one has

Ĝ = Ŝ01Ŝ
−1
11 = S01S

−1
11 +Op(T

−1) = G+Sε1S
−1
11 +Op(T

−1), from which T 1/2(Ĝ−G) =

T 1/2Sε1S
−1
11 + op(1), and T 1/2vec(Ĝ−G)′

w→ N(0, Ω⊗ Σ−1).
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In order to show (16) note that differentiating F one has dF = KdAK, so that

T 1/2(F̂ − F ) = T 1/2K(Â− A)K + op(1). (22)

Because Ĥ −H, L̂− L ∈ Op(T
−1) one has

T 1/2(Â− A) =

(
T 1/2(Ĝ−G)H ′

0

)
+ op(1) = JT 1/2(Ĝ−G)H ′ + op(1)

Substituting in (22) one finds T 1/2(F̂ − F ) = T 1/2KJ(Ĝ − G)H ′K + op(1). Trans-
posing and vectorizing one obtains (16) from (15).
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