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Abstract

We study fairness in economies with one private good and one par-
tially excludable nonrival good. A social ordering function determines
for each profile of preferences an ordering of all conceivable alloca-
tions. We propose the following Free Lunch Aversion condition: if the
private good contributions of two agents consuming the same quantity
of the nonrival good have opposite signs, reducing that gap improves
social welfare. This condition, combined with the more standard re-
quirements of Unanimous Indifference and Responsiveness, delivers a
form of welfare egalitarianism in which an agent’s welfare at an alloca-
tion is measured by the quantity of the nonrival good that, consumed
at no cost, would leave her indifferent to the bundle she is assigned.
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1 Introduction

We consider an environment where a private good can be used to produce
a nonrival good. We assume that different agents may consume different
quantities of the nonrival good: “partial exclusion” is possible. Examples of
such goods include cable television programs and noncongested parks, roads,
libraries, or sport facilities. The agents are endowed with (large) amounts
of the private good, and they own the production technology in common.
The problem we face is to choose how much nonrival good to produce, how
much of it each agent is allowed to consume, and how much private good
each agent is asked to contribute. We are interested in efficiency as well as
equity.
The standard approach to this problem is to look for allocation rules. An

allocation rule specifies which feasible allocations are the most desirable as a
function of the parameters of the problem, namely, the production technology
and the agents’ preferences over bundles of private and nonrival goods. Con-
tributions to that literature include Foley (1967), Mas-Colell (1980), Moulin
(1987), Sprumont (1998). Quite naturally, all these papers impose Pareto
efficiency. This immediately rules out exclusion: all agents should consume
the entire production of the nonrival good.
An alternative approach is to look for social ordering functions. A (social

ordering) function specifies a complete ranking of all conceivable allocations,
feasible or not, as a function of the parameters of the problem. This paper
deals with such social ordering functions. We are motivated by second-best
considerations. In many circumstances, it is not sufficient to know which
technologically feasible allocations are the most desirable. For instance, if an
allocation has already been chosen and is viewed by all as a legitimate status
quo, any recommended allocation should dominate this status quo (and, in
addition, might have to stay sufficiently close to it). In the same vein, if the
nonrival good production and consumption levels have been fixed and only
individual contributions remain to be chosen, the most desirable allocation
need again not be achievable. Lastly, but most importantly, achievable al-
locations may be restricted by incentive-compatibility constraints. In fact,
the presence of such constraints is a primary motivation for considering al-
locations where agents are partially excluded from the consumption of the
nonrival good: as Moulin (1994) demonstrates, allowing partial exclusion
helps alleviate the free-rider problem.
To sum up, we believe that the set of achievable allocations is often very



uncertain and may have almost any shape. It is therefore very useful, and
perhaps even necessary, to determine a full ordering of the conceivable allo-
cations so as to be able to make a best choice from virtually any set.
We start from three simple principles for ordering allocations. First,

Unanimous Indifference: allocations that leave all agents indifferent should be
equivalent. Second, Responsiveness: a social preference for an allocation over
another should be preserved when all agents’ upper contour sets at the better
allocation shrink and their upper contour sets at the worse allocation expand.
Third, Free Lunch Aversion: if two agents consume the same quantity of the
nonrival good, but one contributes positively to its production whereas the
other contributes negatively –thereby enjoying a “free lunch”–, a transfer
of private good from the latter to the former agent should be regarded as a
social improvement, provided that such a transfer does not reverse the signs
of the agents’ contributions.
We show that these three principles lead to a specific class of egalitarian,

or maximin, social ordering functions: at all profiles, allocations must be
ranked according to the welfare of the worst-off agent measured in terms of
the nonrival good. The nonrival good measure of an agent’s welfare at a given
allocation is defined as the quantity of the nonrival good whose consump-
tion for free would leave her indifferent to her actual bundle. A prominent
social ordering function satisfying our three principles is the nonrival-welfare
leximin function.

2 Setup

One nonrival good may be produced from one private good. There is a
fixed finite set of agents, N = {1, ..., n}, with n ≥ 2. We denote by zi =
(xi, yi) ∈ R×R+ agent i’s consumption bundle. Here xi is the quantity of
the private good that agent i contributes to the production process: a positive
value means that i consumes less than her endowment in the private good,
which is left unspecified. By yi we denote the quantity of the nonrival good
that agent i consumes. This formulation allows different agents to consume
different quantities of the nonrival good: exclusion, complete or partial, is
possible. At the same time, we allow for negative private good contributions:
they might be useful to compensate for exclusion.
A preference for agent i is a binary relation Ri over R×R+ which is

complete, transitive, continuous, strictly decreasing in the private good con-
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tribution level xi, strictly increasing in the nonrival good consumption level
yi, and convex. If zi ∈ R×R+, B(Ri, zi) = {z0i ∈ R×R+ | z0iRizi} is the
upper contour set of Ri at zi. The indifference and strict preference relations
corresponding to Ri are denoted by Ii and Pi. The set of all preferences is
denoted by R. A (preference) profile is a list R ∈ RN .
An allocation is a vector z = (z1, ..., zn) ∈ (R×R+)N . It is admissible for

R if there exists a production level y such that, for each i ∈ N,

(0, y)RiziRi(0, 0). (1)

Thus, no agent prefers her bundle to the opportunity of consuming any quan-
tity of the nonrival good for free, and everyone receives a non-negative share
of the surplus generated by the production of the nonrival good. We let
Zi(Ri) stand for the set of bundles zi satisfying (1) and we denote the set of
admissible allocations for R by Z(R). If i, j ∈ N are two distinct agents, z−i
denotes the restriction of the allocation z to N\{i} and z−ij is the restriction
of z to N\{i, j}.
A social ordering for R is a complete and transitive binary relation de-

fined over Z(R), the set of all admissible allocations for R. A social ordering
function R assigns to each preference profile R ∈ RN a social ordering R(R)
for R. Thus, zR(R)z0 means that the allocation z is at least as desirable
as z0 from a social viewpoint if the preference profile is R. Similarly, we use
I(R) and P(R) to denote social indifference and strict social preference.

One feature of our setup calls for a word of explanation. In contrast to the
literature on allocation rules, we make no assumption regarding technology.
In fact, the production function relating the nonrival good to the private
good contributions is left unspecified. The reason is that we are interested in
defining social objectives rather than recommending choices directly. Since
the social orderings that we discuss do not depend on the technology, there is
no need to incorporate the latter in the model. Of course, the social choices
implicitly recommended by a social ordering R(R) result from constrained
maximization. Thus, if c(y) were the cost of producing a quantity y of the
nonrival good, the recommended allocations would be those that maximize
R(R) subject to the inequality

P
i∈N xi ≥ c(maxi∈N yi).We briefly return to

this issue in the concluding section.
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3 Axioms

The rather uncontroversial idea that social preferences should agree with
individual preferences whenever the latter happen to be unanimous admits
several formulations. We consider the following three versions.

Unanimous Indifference. Let R ∈ RN and z, z0 ∈ Z(R). If ziIiz0i for
all i ∈ N, then zI(R)z0.
Unanimity. Let R ∈ RN and z, z0 ∈ Z(R). If ziRiz0i for all i ∈ N , then

zR(R)z0. If ziPiz0i for all i ∈ N , then zP(R)z0.
Strong Pareto Principle. Let R ∈ RN and z, z0 ∈ Z(R). If ziRiz0i for

all i ∈ N , then zR(R)z0. If ziRiz0i for all i ∈ N and ziPiz
0
i for some i ∈ N ,

then zP(R)z0.

The Strong Pareto Principle implies Unanimity, which in turns implies
Unanimous Indifference; the converse implications do not hold. In what
follows, we will only impose Unanimous Indifference. Combined with the two
axioms defined below, Unanimous Indifference turns out to imply Unanimity.

Our next axiom, Responsiveness, is an inter-profile property requiring a
form of robustness of the social ranking when individual preferences change.
If an allocation z is socially preferred to an allocation z0, that social prefer-
ence should be preserved when z “moves upwards” in all agents’ preferences
whereas z0 “moves downwards”. Upwards and downwards moves are evalu-
ated by looking at upper contour sets. Thus, Responsiveness requires that
the social preference for z over z0 be preserved when all agents’ upper con-
tour sets at (the bundle they are assigned at) z shrink whereas their upper
contour sets at z0 expand. Our axiom imposes this robustness on both the
weak and the strict social preference relations.

Responsiveness. Let R,R0 ∈ RN and z, z0 ∈ Z(R) ∩ Z(R0). Suppose
that for all i ∈ N, B(R0i, zi) ⊆ B(Ri, zi) and B(R0i, z0i) ⊇ B(Ri, z0i). Then,
{zR(R)z0}⇒ {zR(R0)z0} and {zP(R)z0}⇒ {zP(R0)z0}.
This property, which we borrow from Fleurbaey and Maniquet (1996),

is reminiscent of several inter-profile robustness axioms that played a ma-
jor role in social choice and implementation theory, such as Maskin’s (1998)
monotonicity. We refer to Fleurbaey and Maniquet (1996) and Le Breton
and Weymark (2001) for a discussion of such properties. Responsiveness is
appealing from an ethical point of view because it guarantees that unam-
biguous changes in individual preferences are reflected in the social ordering

4



of allocations. As many other robustness axioms, it may also be defended
on grounds of informational simplicity. Note in particular that once a strict
social preference has been established between two allocations, it cannot be
reversed by changes in preferences that leave the individual upper contour
sets at those allocations unchanged.

Finally, we turn to our third axiom, Free Lunch Aversion. Consider a
profile R and an allocation at which two agents, i and j, consume the same
quantity of the nonrival good. Suppose that i’s private good contribution
is positive but j’s contribution is negative. Since j enjoys a “free lunch”, a
transfer of private good from j to i that does not reverse the signs of their
contributions should be deemed to increase social welfare.

Free Lunch Aversion. Let R ∈ RN , (x, y), (x0, y) ∈ Z(R), and i, j ∈ N.
Suppose that x−ij = x0−ij, yi = yj, and xi + xj = x

0
i + x

0
j. Then, {xj < x0j ≤

0 ≤ x0i < xi}⇒ {(x0, y)P(R)(x, y)}.
This axiom is directly inspired by Moulin’s (1987) No Private Transfers

condition. Moulin’s condition, which applies to allocation rules rather than
social ordering functions, requires that everyone contribute a non-negative
quantity of the private good to finance the production of the nonrival good.
In our axiom, the proviso that both agents consume the same quantity of the
nonrival good is crucial. Indeed, as exclusion is possible, it may be fair to let
people contribute less than others if they also consume less of the nonrival
good. Even a negative contribution may be sensible, if it is the required
compensation for being partially excluded.

4 The result

We now state and discuss our result. It concerns a form of welfare egalitar-
ianism under which an agent’s welfare is measured in terms of the nonrival
good, that is, by the quantity of nonrival good which, consumed for free,
would make her indifferent to the bundle she receives.
For each Ri ∈ R and zi ∈ Zi(Ri), there is a unique level of the nonrival

good, y0i ∈ R+, such that ziIi(0, y0i ). We may therefore define the numerical
welfare representation function u(Ri, .) : Zi(Ri)→ R+ by letting

u(Ri, zi) = y
0
i ⇔ ziIi(0, y

0
i ).

The number u(Ri, zi) is agent i’s nonrival good welfare level at bundle zi.
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A social ordering function R is a nonrival-good-welfare maximin function
if, at any profile, the ordering of allocations it prescribes is consistent with
the application of the maximin criterion to the nonrival good welfare levels
generated by these allocations. More precisely: for any R ∈ RN and z, z0 ∈
Z(R),

min
i∈N

u(Ri, zi) > min
i∈N

u(Ri, z
0
i)⇒ zP(R)z0.

A prominent example is the nonrival-good-welfare leximin function RL. Let
<L denote the usual leximin ordering of RN+ : for any w,w0 ∈ RN+ , w < w0 if
and only if the smallest coordinate of w is greater than the smallest coordinate
of w0, or they are equal but the second smallest coordinate of w is greater
than the second smallest coordinate of w0, and so on. The social ordering
function RL ranks the admissible allocations for any given preference profile
by applying the leximin ordering to the corresponding vectors of nonrival
good welfare levels: for any R ∈ RN and z, z0 ∈ Z(R),

zRL(R)z
0 ⇔ (u(R1, z1), ..., u(Rn, zn)) <L (u(R1, z01), ..., u(Rn, z0n)).

This social ordering function meets all of the axioms considered in Section
3. Conversely, these axioms force us to use a nonrival-good-welfare maximin
function.

Theorem.
i) The nonrival-good-welfare leximin function RL satisfies the Strong

Pareto Principle, Responsiveness, and Free Lunch Aversion.
ii) Every social ordering function R satisfying Unanimous Indifference,

Responsiveness, and Free Lunch Aversion is a nonrival-good-welfare maximin
function satisfying Unanimity.

A few comments are in order.

1) At the risk of stressing the obvious, we emphasize that the axioms and
the social ordering functions appearing in our theorem are ordinal. The in-
formation used to define them is entirely contained in the agents’ preferences,
which are simply orderings over consumption bundles: no utility information
is available in our model. Our result is therefore fundamentally different from
the various classical characterizations of the maximin and leximin social wel-
fare orderings surveyed, for instance, in d’Aspremont and Gevers (2001). In
that literature, individual utilities are given and social welfare orderings are
constructed over vectors of individual utilities.
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Having stressed that point, it appears that the contribution of (the second
part of) our theorem is really twofold. Not only do our axioms lead us to rank
allocations by applying the maximin criterion to vectors of corresponding
welfare levels, they also force us to use a specific welfare representation of
preferences, namely, the nonrival-good-welfare representation.

2) (nonrival-good-)welfare maximin functions are radically averse to (non-
rival-good-)welfare inequalities: social welfare may be improved by an arbi-
trarily small increase in the welfare of the worst-off agent obtained at the
cost of possibly huge welfare losses to the others.
It is interesting and somewhat surprising that our axioms deliver such

an extreme conclusion. Clearly, Free Lunch Aversion expresses a form of
welfare inequality aversion. But it is a very mild one. Indeed, Free Lunch
Aversion implies that reducing the nonrival-good-welfare gap between two
agents improves social welfare only when two very specific conditions are
met: the agents must consume the same quantity of the nonrival good, and
the welfare gap reduction must be obtained by a mere private good transfer
from one to the other. This should be contrasted with much more radical
axioms of welfare inequality aversion used in characterizations of the classical
leximin social welfare ordering over utility space, such as Hammond’s (1976)
equity axiom.
Unanimous Indifference and Responsiveness, however, happen to comple-

ment Free Lunch Aversion remarkably. Starting with an allocation where two
agents enjoy different nonrival good welfare levels, Unanimous Indifference al-
lows us, by “sliding along their indifference curves”, to find socially equivalent
allocations where their consumptions of the nonrival good are equal and their
private good contributions have opposite signs. By Free Lunch Aversion, any
welfare inequality reduction resulting from a sufficiently small private good
transfer from the better-off to the worse-off agent improves social welfare. It
turns out that Responsiveness forces us to extend this conclusion to welfare
inequality reductions that involve an arbitrarily small welfare gain against a
large welfare loss, thereby reaching the maximin criterion.

3) The axioms in statement ii) of our theorem are independent.
The function assigning to each preference profile the social ordering ac-

cording to which all allocations are equivalent trivially satisfies Unanimous
Indifference and Responsiveness, but violates Free Lunch Aversion. The
nonrival-good-welfare utilitarian function RU defined by zRU(R) z

0 if and
only if

P
i∈N u(Ri, zi) ≥

P
i∈N u(Ri, z

0
i) is another example; note that it even
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satisfies the Strong Pareto Principle.
The function RV defined by (x, y)RV (R)(x

0, y0) if and only if
P

i∈N |xi| ≤P
i∈N |x0i| satisfies Free Lunch Aversion and Responsiveness, but not Unani-

mous Indifference.
Finally, consider the following social ordering function RL,U . On those

preference profiles where all agents have strictly convex preferences that are
additively separable and linear in the nonrival good, RL,U coincides with
RU . On all other profiles, RL,U coincides with RL. This function satisfies
Unanimous Indifference, Free Lunch Aversion (strict convexity guarantees
that the sum of utilities after a “free lunch transfer” be strictly larger than
before the transfer), but not Responsiveness.

4) Our theorem is not quite a complete characterization.
Regarding statement i), RL is not the only social ordering function sat-

isfying the Strong Pareto Principle, Responsiveness, and Free Lunch Aver-
sion. Other examples include functions that agree with RL whenever the
latter does not declare a tie between two allocations, but break such ties
according to an a priori ordering of the agents. For instance, let <l be the
lexicographic ordering of RN+ corresponding to the natural ordering of the
agents and define zRL,l(R)z

0 if and only if either i) zPL(R)z0 or ii) zIL(R)z0

and (u(R1, z1), ..., u(Rn, zn)) <l (u(R1, z01), ..., u(Rn, z0n)). The social ordering
function RL,l satisfies the Strong Pareto Principle, Free Lunch Aversion and
Responsiveness.
Regarding statement ii), not all nonrival-good-welfare maximin func-

tions respecting Unanimity satisfy Responsiveness or Free Lunch Aversion.
For instance, the function RM defined by zRM(R)z

0 ⇔ mini∈N u(Ri, zi) ≥
mini∈N u(Ri, z0i) violates Free Lunch Aversion. The reader may easily mod-
ify this example to construct nonrival-good-welfare maximin functions that
satisfy the Strong Pareto Principle but violate both Responsiveness and Free
Lunch Aversion.

5) In addition to the properties stated in our theorem, the nonrival-good-
welfare leximin function satisfies many other axioms that may be adapted
from social choice theory to our setting. For instance, it is independent of
the feasible set, in the sense that the ordering of allocations recommended at
any preference profile does not vary with the technology of production of the
nonrival good (see Fleurbaey and Maniquet (2001) for a discussion of such
independence properties). It also possesses properties of separability similar
to those enjoyed by the classical leximin social welfare ordering over utility
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space (see d’Aspremont and Gevers (2001) for a survey).

5 Proof of the result

Unanimity is the conjunction of two conditions which we find useful to sep-
arate and name as follows.

Unanimous Preference. Let R ∈ RN and z, z0 ∈ Z(R). If ziRiz0i for
all i ∈ N , then zR(R)z0.
Unanimous Strict Preference. Let R ∈ RN and z, z0 ∈ Z(R). If

ziPiz
0
i for all i ∈ N , then zP(R)z0.

We proceed by proving two lemmata.

Lemma 1. If a social ordering function R satisfies Unanimous Indiffer-
ence and Responsiveness, then it satisfies Unanimous Preference.

Proof. Let R satisfy Unanimous Indifference and Responsiveness. Sup-
pose that, contrary to the claim, R violates Unanimous Preference. There
must exist a profile R ∈ RN , two allocations z1, z2 ∈ Z(R), and a set of
agents I ⊆ N such that for all i ∈ I, z2i Piz1i , for all i ∈ N \ I, z2i Iiz1i , and
z1P(R)z2. For the sake of simplicity, we may assume that there exists i ∈ N
such that I = {i}, the more than one agent case being treated by simply
reproducing the argument |I| times. Because of Responsiveness, we may as-
sume that Bi(Ri, z

1
i ) is strictly convex, that is, λz

1
i +(1−λ)zi Pi z

1
i whenever

ziIiz
1
i , zi 6= z1i , and 0 < λ < 1.
As illustrated on Figure 1, choose z3i = (x3i , y

3
i ) such that z

3
i Iiz

1
i and

y3i > y
1
i , y

2
i . Let C be the convex hull of {(xi, yi) ∈ B(Ri, z1i ) | yi ≥ y3i )} ∪

B(Ri, z
2
i ) and denote by ∂C the strict south-east frontier of C, that is, ∂C =

{(xi, yi) ∈ C | (x0i, y0i) = (xi, yi) for all (x0i, y0i) ∈ C such that x0i ≥ xi and y0i ≤
yi}. By construction, there exists z4i ∈ ∂C such that z4i Iiz

2
i . By Unanimous

Indifference, (z3i , z
1
−i, )P(R)(z

4
i , z

2
−i).

Now, constructR0i ∈ R such thatB(R0i, z3i ) = C andB(R0i, z1i ) ⊇ B(Ri, z1i ).
Such a construction is possible because Bi(Ri, z

1
i ) is strictly convex. Since

z4i ∈ ∂C, we have z3i I
0
iz
4
i . But by Responsiveness, (z

3
i , z

1
−i)P(R

0)(z4i , z
2
−i), con-

tradicting Unanimous Indifference.

Lemma 2. If a social ordering function R satisfies Unanimous Prefer-
ence and Free Lunch Aversion, then it satisfies Unanimous Strict Preference.
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Proof. Let R satisfy Unanimous Preference and Free Lunch Aversion.
Suppose now, by way of contradiction, that R violates Unanimous Strict
Preference. Let R ∈ RN and z1, z2 ∈ Z(R) be such that z2i Piz1i for all i ∈ N
and

z1R(R)z2. (2)

Without loss of generality, assume that u(R1, z
1
1) ≥ u(Ri, z1i ) for all i ∈ N.

It follows that u(R1, z
2
1) > u(Ri, z

1
i ) for all i ∈ N. As illustrated on Figure

2, we can therefore construct z31 = (x
3
1, y

3) and z32 = (x
3
2, y

3) such that x31 <
0 < x32, z

3
1I1z

2
1 , and z

3
2I2z

1
2. By continuity of R1 and R2, we can find ε > 0

small enough to guarantee that x31 + ε < 0 < x32 − ε, (x31 + ε, y3)P1z
1
1 , and

z22P2(x
3
2 − ε, y3).

By Free Lunch Aversion, Unanimous Indifference, and Unanimous Pref-
erence, ((x31+ ε, y3), (x32− ε, y3), z1−12) P(R) (z

3
1 , z

3
2 , z

1
−12) I(R) (z

3
1 , z

1
−1) R(R)

z1. Recalling (2), we conclude that ((x31 + ε, y3), (x32 − ε, y3), z1−12) P(R) z
2,

contradicting Unanimous Preference.

Proof of the Theorem. The straightforward proof that RL satisfies
the Strong Pareto Principle and Responsiveness is left to the reader. To
check Free Lunch Aversion, let R ∈ RN , (x, y), (x0, y) ∈ Z(R), and i, j ∈ N.
Suppose that x−ij = x0−ij, yi = yj, xi + xj = x0i + x

0
j, and xj < x0j ≤ 0 ≤

x0i < xi. Because preferences are strictly decreasing in private good con-
tributions, (0, yi)Ri(x

0
i, yi)Pi(xi, yi) and (xj, yj)Pj(x

0
j, yj)Rj(0, yj). Therefore

u(Ri, (xi, yi)) < u(Ri, (x
0
i, yi)) ≤ yi = yj ≤ u(Rj, (x

0
j, yj)) < u(Rj, (xj, yj))

and, hence, ( u(R1, (x
0
1, y1)), ..., u(Rn, (x

0
n, yn))) <L (u(R1, (x1, y1)), ...,

u(Rn, (xn, yn))), as desired.

Conversely, let R satisfy Unanimous Indifference, Responsiveness, and
Free Lunch Aversion. By Lemmata 1 and 2,R satisfies Unanimity. It remains
to be shown that R is a nonrival-good-welfare maximin function. Suppose,
by way of contradiction, that there exist R ∈ RN and z, z0 ∈ Z(R) such that

min
i∈N

u(Ri, zi) < min
i∈N

u(Ri, z
0
i) (3)

and
zR(R)z0. (4)

Define M to be the unique subset of N such that

u(Ri, zi) < min
i∈N

u(Ri, z
0
i) ≤ u(Rj, zj) for all i ∈M and all j ∈ N \M, (5)
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and let m denote the cardinality of M. By (3), m > 0. We may further
assume that m < n because (4) and (5) directly conflict with Unanimous
Strict Preference if m = n. We will construct a preference profile R0, two
allocations q, q0 ∈ Z(R0), and a set M 0 of cardinality m+ 1 such that

u(R0i, qi) < min
i∈N

u(R0i, q0i) ≤ u(R0j, qj) for all i ∈M 0 and all j ∈ N\M 0 (6)

and
qR(R0)q0. (7)

Repeating the construction n−m times eventually yields a contradiction to
Unanimous Strict Preference.
The construction is illustrated on Figure 3. Assume, without loss of

generality, that 1 ∈M and 2 ∈ N\M. Assume, furthermore, that
u(R1, z1) < u(R2, z

0
2) = min

i∈N
u(Ri, z

0
i) < u(R1, z

0
1) < u(R2, z2). (8)

This entails no loss of generality: if (8) does not hold, there exist t, t0 ∈ Z(R)
such that u(Ri, zi) ≤ u(Ri, ti) and u(Ri, z0i) ≥ u(Ri, t0i) for all i ∈ N, and the
conditions obtained from (5) and (8) by replacing z and z0 with t and t0 hold.
By Unanimity and (4), tR(R)zR(R)z0R(R)t0, hence, tR(R)t0, and we need
only replace z and z0 with t and t0 in the argument below.
To alleviate notation, let us write u(Ri, zi) = ui and u(Ri, z

0
i) = u0i for

i = 1, 2. By definition of u(Ri, .), and Unanimous Indifference, (4) yields

((0, u1), (0, u2), z−12) R(R) ((0, u01), (0, u
0
2), z

0
−12). (9)

Our continuity and strict monotonicity assumptions on preferences guar-
antee that for any sufficiently small ε > 0 there exist x1(ε) > 0 and x2(ε) < 0
such that

(x1(ε), u2 − ε) I1 (0, u1),

(x2(ε), u2 − ε) I2 (0, u2),

and x1(ε) + x2(ε) > 0. Let us choose ε > 0 small enough to also guarantee
that u02 < u2 − ε and that the quantity y(ε) such that (0, y(ε)) I1 (x1(ε) +
x2(ε), u2 − ε) is strictly between u1 and u

0
2.

By continuity and strict monotonicity of preferences again, there exist
y0(ε), x01(ε) > 0, and x

0
2(ε) < 0 such that

(x01(ε), y
0(ε)) I1 (x1(ε) + x2(ε), u2 − ε),

(x02(ε), y
0(ε)) I2 (0, u02),
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and u1 < y(ε) < y
0(ε) < u02.

Next, choose ε0 > 0 small enough to ensure that x02(ε)+ε
0 < 0 < x01(ε)−2ε0

and (0, u2)P2(x
0
2(ε)− ε0, y0(ε)). Construct a preference R02 such that

B(R02, (0, u
0
2)) = B(R2, (0, u

0
2)),

(x02(ε)− ε0, y0(ε)) I 02 (0, u2 − ε),

(x2(ε), u2 − ε) I 02 (0, u2),

B(R02, (0, u2)) ⊆ B(R2, (0, u2)).
Note that (0, u2) P

0
2 (x

0
2(ε) + ε0, y0(ε)).

Let R0i = Ri for all i ∈ N\2. Using successively Free Lunch Aversion,
Unanimous Indifference, Free Lunch Aversion again, Unanimous Indifference
again, and Responsiveness along with (9), we find the following chain of social
preferences:

((x01(ε)− 2ε0, y0(ε)), (x02(ε) + ε0, y0(ε)), z−12)
P(R0) ((x01(ε), y

0(ε)), (x02(ε)− ε0, y0(ε)), z−12)

I(R0) ((x1(ε) + x2(ε), u2 − ε), (0, u2 − ε), z−12)
P(R0) ((x1(ε), u2 − ε), (x2(ε), u2 − ε)), z−12)

I(R0) ((0, u1), (0, u2), z−12)
R(R0) ((0, u01), (0, u

0
2), z

0
−12).

Denote by q and q0 the first and last allocations in this chain, and define
M 0 =M ∪{2}.We have qR(R0)q0, which is (7). By construction, u(R01, q1) <
u(R02, q2) < u(R

0
2, q

0
2) = mini∈N u(R

0
i, q

0
i) and of course q−12 = z−12 and q

0
−12 =

z0−12. Therefore (5) implies u(R
0
i, qi) < mini∈N u(R0i, q0i) ≤ u(R0j, qj) for all

i ∈M 0 and all j ∈ N\M 0, which is just (6).

6 Concluding comments

Our axiomatic analysis has led us to recommend a particular social order-
ing function, the so-called nonrival-good-welfare leximin function. While our
result concerns the definition of social objectives, it does provide norma-
tive guidelines for actual social choices. Given a preference profile R and
a suitably restricted cost function c, maximizing the social ordering RL(R)
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subject to the technological constraint
P

i∈N xi ≥ c(maxi∈N yi) yields exactly
the egalitarian-equivalent allocations advocated by Moulin (1987).
Incidentally, it is noteworthy that the technological constraint just stated

is the only reason that really forces us to interpret the y good as a nonrival
good. Since this constraint is not part of our formal model, we remain free
to regard the y good as a private good and to reinterpret our axioms and
our theorem in the context of production and cost-sharing of a private good.
In such a context, the recommended choices would result from maximization
subject to the alternative technological constraint

P
i∈N xi ≥ c(

P
i∈N yi).We

focused on the nonrival good interpretation because we find the Free Lunch
Aversion axiom particularly appealing in that context.
Finally, our result provides a systematic tool for recommending second-

best choices. Indeed, we may search for allocations that maximize the social
ordering prescribed by the leximin function subject to any list of constraints
that may be relevant, including incentive-compatibility requirements. We
leave the study of such second-best allocation rules for future research.
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