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1 Introduction

How to provide agents with sufficient motivation to do what society — or its

proxy in the guise of a center or social planner — wants them to do is the subject

of incentive theory. The theory has normative force whenever, metaphorically

speaking, the invisible hand of the market fails to provide such motivation auto-

matically. Market failure can come about either because markets are imperfect

in some way or because they do not exist at all. Indeed, a leading example of a

non-market environment is the internal organization of a large corporation. Al-

fred Chandler (1977) made just this point when he gave his study of the modern

American enterprise the title The Visible Hand.

*A preliminary version of this paper was presented at a symposium in honor of Roy
Radner at Cornell University, June 1992. I thank the NSF for research support and a referee
for helpful comments.
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The study of these large enterprises — which itself is an enterprise that is

currently blossoming — has drawn on incentive theory in a fundamental way.

And it is not surprising that Roy Radner — who had a long-standing fascination

and more than casual personal acquaintance with large organizations — should

have been inspired to make important contributions to this theory.

In this essay, I shall provide an outline of some of the major results in

incentive theory with particular attention to Radner’s work on the subject.

2 A Simple Model of a Team

Let me begin with one of the first formal attempts to model organizations, viz,

team theory, whose creation is due to Marschak and Radner (1972). Let Θ be

the set of possible states of the world, and for each θ ∈ Θ, let p(θ) be the prior

probability of θ. There are n agents, indexed by i = 1, ..., n. Each agent i has

an action space Ai and a private signal space Si. Both of these may in part

be exogenous and in part the choice of the team (or team “designer”). Si can

be thought of as a partition on Θ. That is, each signal si ∈ Si corresponds

to a subset of Θ. Given the vector of signals s = (s1, ..., sn), let π(θ | s) be

the distribution of θ (derived from p(θ) using Bayes’ rule) conditional on s. In

addition to the n agents, the center (or CEO, social planner, etc.), whom we

shall designate as agent 0, may be an active participant, in which case he has

an action space A0 (for simplicity, let us assume, however, that he observes no

private signals, so that we can dispense with S0).
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The team is interested in implementing a collective choice rule, that is, a

rule that specifies all agents’ actions as a function of the available information

s. Thus a collective choice rule f is a mapping

f : S1 × ...× Sn → A0 × ...×An.

Much of team theory concerns the question of what constitutes the best way

for agents to communicate with one another in order to implement the desired

collective choice rule, assuming that communication is costly. A common sim-

plifying assumption in this theory is that all agents and the center share the

same objectives. Incentive theory, however, gains much of its interest from the

presumption the agents have different preferences. Let us suppose that agent

i’s preferences can be represented by the (von Neumann-Morgenstern) utility

function

ui(a, θ),

where a = (a0, ..., an). The fact agent i’s payoff depends on other agents’

actions embodies the idea that there may be externalities to actions. Similarly,

the center has utility function

u0(a, θ),

which, if the center is just a surrogate for the group of agents as a whole, may

take the form

3



nX
i=1

λiui(a, θ).

Here λi is the “welfare weight” for agent i. Usually, in both team and incentive

theory, the function f is chosen to maximize the expectation of u0, i.e.,

f(s) ∈ arg max
a

X
θ∈Θ

u0(a, θ)π(θ | s). (1)

3 Adverse Selection

For the time being, let us drop the actions a1, ..., an (but not a0). Then the

incentive problem is how to ensure that the center’s action a0 properly reflects

agents’ information s (in the sense of satisfying (1)), in view of the fact that

the signals are private information. Models like this, where the major substan-

tive difficulty is the private nature of information, are often called problems of

adverse selection (or hidden information).

The solution to an adverse selection problem is normally formulated as an

incentive mechanism (also variously called a “game form,” “outcome function,”

“contract,” or “constitution”). Suppose that each agent i is allocated a “mes-

sage” space Mi. A message mi ∈Mi can be thought of as agent i’s announce-

ment about his signal si (but this interpretation is not necessary). Then an

incentive mechanism g is a function

g :M1 × ...×Mn → A0.

4



We interpret this mechanism as specifying that the center will take action

g(m) ∈ A0 if the messages are m = (m1, ...,mn). Thus g(m) is called the

outcome of the mechanism. For each vector of signals s, there will be a cor-

responding equilibrium (perhaps more than one) of the incentive mechanism

(where each agent i evaluates the outcome g(m) using his utility function ui).

Of course, exactly what an equilibrium is will depend on the solution concept

that pertains. For a given solution concept, let Eg(s) be the equilibrium out-

come (for simplicity, we suppose that the equilibrium outcome is unique). If,

for all s,

f(s) = Eg(s), (2)

we say that g implements f (or that f is implemented by g) with respect to

the solution concept. Much of the incentive literature consists of characteriz-

ing which social choice rules are implementable in this sense, with respect to

particular solution concepts.

4 Adverse Selection with Dominant Strategies

By far the simplest (and strongest) solution concept is equilibrium in dominant

strategies. Agent i with signal si has a dominant strategy mi(si) for mechanism

g if mi(si) solves

max
mi

X
θ

ui(g(mi,m−i), θ)πi(θ | si) for all m−i,
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where πi(θ | si) is the distribution of θ conditional on si and m−i is the vector

of other agents’ messages.

Having a dominant strategy makes life easy for agent i because it obviates the

need for him to form beliefs about what other players know and how they behave.

Clearly, requiring that an equilibrium be independent of beliefs is demanding.

Nevertheless, Groves (1973) showed that, in a special but important case of the

Marschak-Radner framework, there is a large class of collective choice rules that

are implementable. Specifically, suppose that the center’s action a0 takes the

form

a0 = (x, y1, ..., yn),

where x can be interpreted as the choice of a public good and the yi’s (which

are scalars) are transfers of a private good (or money). Assume, moreover, that

each agent i’s utility takes the form

ui(a0, θ) = vi(x, si) + yi. (3)

That is, utility is quasi-linear. Then, as Groves demonstrated, any f(s) =

(x(s), y1(s), ..., yn(s)) for which

x(s) ∈ arg max
x

nX
i=1

vi(x, si) for all s (4)

is implementable in dominant strategies provided that each yi(s) takes the form
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yi(s) ≡
X
j 6=i

vj(x(s), sj) + ki(s−i), (5)

where s−i is the vector of signals excluding that of agent i and ki(·) is an

arbitrary function of s−i. (Notice that (4) is the requirement that the public

good be chosen to maximize social surplus.)

To see this, suppose that agents are confronted with a mechanism in which

each agent i is asked to report a signal value ŝi ∈ Si and the outcome, given

reports ŝ = (ŝ1, ..., ŝn), is (x(ŝ), y1(ŝ), ..., yn(ŝ)), where x(·) and (y1(·), ..., yn(·))

satisfy (4) and (5) respectively. Then, given (3), agent i’s maximization problem

is

max
ŝi

⎡⎣vi(x(ŝi, ŝ−i), si) +X
j 6=i

vj(x(ŝi, ŝ−i), ŝj) + ki(ŝ−i)

⎤⎦ . (6)

By varying ŝi, agent i can vary x(ŝi, ŝ−i). But, by definition of x(s),

x(si, ŝ−i) = arg max
x

⎡⎣vi(x, si) +X
j 6=i

vj(x, ŝj)

⎤⎦ .
Hence ŝi = si solves (6). That is, it is a dominant strategy for agent i to tell

the truth, establishing that (x(s), y1(s), ..., yn(s)) is implementable.

Green and Laffont (1979) showed, in fact, that any implementable social

choice rule satisfying (4) must satisfy (5). To understand why this is so,1

notice first that if mechanism g : M1 × ... ×Mn → A0 implements a collective

1The following argument is drawn from Laffont and Maskin (1980).
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choice rule f in dominant strategies and if, for all i and all si, mi(si) is agent

i’s dominant strategy when his signal is si, then g∗ where

g∗(s1, ..., sn) ≡ g(m1(s1), ...,mn(sn))

also implements f .2 Observe that g∗ is a “direct revelation” mechanism in the

sense that strategies consist of announcing a signal, and it is a dominant strategy

for agents to announce signals truthfully. Thus, it suffices to restrict attention to

direct revelation mechanisms when searching for mechanisms that implement a

collective choice rule. Now, suppose that f(s) = (x(s), y1(s), ..., yn(s)) satisfies

(4) and is implementable in dominant strategies. Suppose that, for all i, Si is an

open interval of real numbers, vi(·, ·) is a twice differentiable function of x and

si (with ∂vi
∂x > 0, ∂

2vi
∂x2 < 0, and ∂2vi

∂x∂si
> 0), and x(·) and yi(·) are differentiable

functions of si. Since we can restrict attention to direct revelation mechanisms,

the fact that f is implementable implies that, for all si and s−i,

si ∈ arg max
ŝi
[vi(x(ŝi, s−i), si) + yi(ŝi, s−i)] .

Hence

∂vi
∂x

(x(si, s−i) , si)
∂x

∂si
(si, s−i) +

∂yi
∂si

(si, s−i) = 0. (7)

Now from the above analysis, we know that one solution to the differential

2Actually, it is conceivable that, in going from g to g∗, we might introduce additional,
non-optimal equilibria. Although this is potentially a serious problem, we shall ignore it here
(but see Dasgupta, Hammond and Maskin (1979)).
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equation (7) is yi(s) =
P

j 6=i vj(x(s), sj). Moreover, from the theory of differ-

ential equations, we know that all solutions differ by a constant ki(s−i). Hence,

we can conclude that (5) holds.

The form (3) embodies the assumption of private values: agent i’s payoff

depends on θ only through his signal si, i.e., in particular, his payoff does not

depend on s−i. If we relax this assumption and allow s−i to affect vi, we

are in the realm of common values. Radner and Williams (1988) showed that

f(s) = (x(s), y1(s), ..., yn(s)) can be implemented in dominant strategies even

when there are common values, if vi takes the form

vi(x, s) = wi(x, si) + zi(s). (8)

To see this, observe that when (8) holds and agent i is confronted with the direct

revelation mechanism (x(ŝ), y1(ŝ), ..., ŷn(ŝ)) satisfying (4) and

y (ŝ) =
X
j 6=

wj (x(ŝj , ŝ−j), ŝj) + k (ŝ− ) for all ,

his maximization problem is

max
ŝi

⎡⎣wi(x(ŝi, ŝ−i), si) + zi(si, s−i) +
X
j 6=i

wj(x(ŝi, ŝ−i), ŝj) + ki(ŝ−i)

⎤⎦ . (9)

But because zi(si, s−i) does not depend on ŝi, ŝi = si solves (9), establishing

that it is a dominant strategy for i to tell the truth.
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Radner andWilliams went a step further, in fact, and showed that, with com-

mon values, (8)must hold for a collective choice rule f(s) = (x(s), y1(s), ..., yn(s))

satisfying (4) to be implementable. To see this, let us make the same differen-

tiability assumptions as before (with the additional assumption that ∂2vj
∂x∂si

≥ 0

for j 6= i). Suppose that f is implementable by direct revelation mechanism

(x(ŝ), y1(ŝ), ..., yn(ŝ)). Then, analogous to (7), we obtain the following first-

order condition for agent i:

∂vi
∂x

(x(si, ŝ−i) , si, s−i)
∂x

∂si
(si, ŝ−i) +

∂yi
∂si

(si, ŝ−i) (10)

= 0 for all si, s−i, and ŝ−i.

Because ∂2vi
∂x∂si

> 0, ∂
2vi
∂x2 < 0, and ∂2vj

∂x∂si
≥ 0, we have ∂x

∂si
> 0.3 Hence if, given

si and ŝ−i, (10) is to hold for all s−i, we must have ∂2vi
∂x∂s−i

= 0. Hence, vi must

be additively separable between x and s−i, i.e., it takes the form (8).

5 Adverse Selection: Other Solution Concepts

The positive results for dominant strategies in the case of quasi-linear pref-

erences do not readily generalize to significantly broader environments, as the

results of Gibbard (1973), Hurwicz (1972), and Satterthwaite (1975) make clear.

3To see this, note that the first-order condition determining x(s) is
∂vj
∂x

(x(s), s) = 0.
Differentiating this identity with respect to si, we obtain

n

j=1

∂2vj

∂x2
∂x

∂si
+

n

j=1

∂2vj

∂x∂si
= 0,

from which the conclusion follows.
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Accordingly, a large literature has developed in which various species of Nash

equilibrium (see Moore (1992) for a recent survey) or Bayesian equilibrium (see

Palfrey (1992)) are appealed to instead.

One principle that this literature makes clear is that typically the more that

Nash or Bayesian equilibrium is refined — i.e., the more restrictive the definition

of equilibrium — the bigger the class of implementable collective choice rules

becomes. At first this principle may seem at odds with the foregoing discussion.

After all, it was precisely because insufficiently many collective choice rules were

implementable in dominant strategies that the solution concept was relaxed.

The paradox is resolved, however, when one notices that, in order to satisfy

equation (2), not only must there be an equilibrium (a requirement which is

hard to satisfy when dominant strategy equilibrium is the solution concept) but

there must be no equilibrium outcomes other than f(s) (a requirement which

is more problematic for Nash and Bayesian equilibrium). By refining the Nash

and Bayesian concepts (for which the existence of equilibrium is usually not a

problem), there is, therefore, hope of eliminating the unwanted equilibria.

6 Moral Hazard

We temporarily left actions (a1, ..., an) out of the model above in order to con-

centrate on pure adverse selection, but we can readily restore them to that model

if these actions are perfectly observable to the center. Indeed, in that case we

can regard (a1, ..., an) as part of the center’s choice a0, since he can simply “or-
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der” agents to choose the desired actions. The more difficult problem arises

when the ai’s are only imperfectly observable — the case of moral hazard.

Assume, therefore, that the center cannot observe (a1, ..., an) but only a

noisy signal z ∈ Z. Let q(z | a1, ..., an) be the distribution of z conditional

on (a1, ..., an). We will think of the center as choosing a0 contingent on the

realization of z. Hence, it will be convenient to suppose that the agents first

(and simultaneously) choose their actions, and that then, after z is realized, the

center chooses a0. Because I wish to focus on the case of “pure” moral hazard,

I will drop the signals s = (s1, ..., sn). Hence, for i = 0, 1, ..., n, we can write

agent i’s utility as

φi(a0(·), a1, ..., an) =
X
z∈Z

ui(a0(z), a1, ..., an)q(z | a1, ..., an).

7 The Principal-Agent Relationship

Suppose that n = 1 (so that there is just one agent) and that the center’s payoff

depends on a1 only through z:

φ0(a0(·), a1) =
X
z∈Z

r0(a0(z), z)q(z | a1),

where r0(·, ·) is a function of a0 and z. Assume, finally, that A0 consists of the

real numbers and that A1 is a set of nonnegative numbers (we can think of a0

as a monetary transfer and a1 as an effort level). Then we are in the standard

principal-agent framework (the center is the principal).
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Let us first consider the case in which the principal’s and agent’s payoffs are

linear in a0. Specifically suppose that

r0(a0, z) = z − a0

and

u1(a0, a1) = a0 − 1
8a1,

where z is the output produced by the agent (and which accrues to the principal),

and a1 ∈ {0, 1} (i.e., the agent can either “work” and set a1 = 1, or “shirk” and

set a1 = 0). Let us suppose that if the agent works, there is an equal chance

of high (z = 2) or low (z = 0) output. But if he shirks, output is low for sure.

That is,

Pr{z = 2 | a1 = 1} = Pr{z = 0 | a1 = 1} =
1

2
and Pr{z = 0 | a1 = 0} = 1.

Because expected net surplus from the agent’s working
¡
1
2 · 2−

1
8

¢
is positive,

it is efficient for the agent to work (i.e., set a1 = 1). Thus, because payoffs

are linear in a0, the Pareto frontier (the locus of Pareto optimal payoffs) is the

straight line v0+v1 =
7
8 , where v0 and v1 are the principal’s and agent’s payoffs,

respectively. Now for the agent to be induced to work, his monetary payments

when output is high (a0(2)) or low (a0(0)) must be such that

1

2
a0(2) +

1

2
a0(0)−

1

8
≥ a0(0). (11)
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Hence, in particular, the principal and agent can sustain the expected payoffs¡
1
2 ,

3
8

¢
on the Pareto frontier by agreeing on monetary payments a0(2) = 3

4 and

a0(0) =
1
4 .

Next, suppose instead that the Pareto frontier is nonlinear. Specifically,

assume that

r0(a0, z) = z − a0

u1(a0, a1) = a0 − 1
4a
2
0 − 1

8a1,

but that the model is otherwise the same as before. Notice that the agent is

now risk-averse with respect to his monetary payment.

Observe that if a1 = 0 (i.e., the agent shirks), then either the principal’s or

the agent’s payoff must be non-positive. Hence, assuming that a player has

the option not to participate if his payoff is negative, it remains efficient for

the agent to work, i.e., to choose a1 = 1. To derive the Pareto frontier, take

v0 ≡ r0 (a0, 1) = 1 − a0 and v1 ≡ u1 (a0, 1) = a0 − 1
4a
2
0 − 1

8 . Replacing a0 by

1− v0 (using the first equation) in the second equation, we obtain

v1 =
7

8
− v0 −

1

4
(1− v0)

2 .

Because this curve is strictly concave, convex combination of points on the

frontier lie strictly below. This implies that points on the frontier can no longer

be sustained since in order to induce the agent to work it must be the case that

a2(2) > a2(0); i.e., the agent’s payoff is a convex combination of two different

points.
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Suppose, however, that this principal-agent model is repeated infinitely many

times and that players maximize their discounted sum of payoffs using discount

factor δ. Then, the principal maximizes

E
∞X
t=0

δt(zt − at0)

and the agent maximizes

E
∞X
t=0

δt
µ
at0 − (at0)2 −

1

8
at1

¶
,

where, for each t, zt is the period-t realization of z and at0 and a
t
1 are the choices

of a0 and a1 in period t.

Even in the repeated game, Pareto optimal points are unattainable as equi-

libria. To see this, note that if (v0, v1) are the average payoffs4of a Pareto

optimal perfect Bayesian equilibrium of the repeated game, then

(v0, v1) = (1− δ)
¡
v10 , v

1
1

¢
+ δ

µ
1

2
(v0(2), v1(2)) +

1

2
(v0 (0) , v1 (0))

¶
, (12)

where
¡
v10, v

1
1

¢
are the first period equilibrium payoffs and, for z = 0, 2, (v0(z), v1(z))

are the average continuation equilibrium payoffs (i.e., the average equilibrium

payoffs starting in period 2) following the realization of output z in the first

4 If v00, v
0
1 are a pair of total payoffs in the repeated game, then the corresponding average

payoffs (v0, v1) are those that would on average have to accure every period to sum to v00, v
0
1 ,

i.e.,

v00, v
0
1 =

(v0, v1)

1− δ
.
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period. Now if (v0, v1) correspond to a Pareto optimum, then from (12), so

must
¡
v10, v

1
1

¢
and 1

2 (v0(2), v1(2))+
1
2 (v0(0), v1 (0)). But since Pareto optimality

requires that the agent be induced to work in the first period, we must have

v1 (2) > v1 (0). Moreover, because the Pareto frontier is strictly concave, this

implies that 1
2 (v0(2), v1(2)) +

1
2 (v0 (0) , v1 (0)) cannot be Pareto optimal, and

so neither can (v0, v1).

Nevertheless, as Radner (1981) and (1985) showed, any point in the interior

of the utility possibility set (the UPS is the set of payoffs that are feasible–

including those obtained by randomization–in the one-shot model), no matter

how close to the Pareto frontier, can be attained as the average payoffs of a

perfect Bayesian equilibrium (PBE) of the repeated game, provided that δ is

near enough 1. To see this, choose small ε > 0 and consider the interior point¡
1
2 − ε, 516 − ε

¢
near the Pareto optimal point

¡
1
2 ,

5
16

¢
. Let B be the ball of

radius ε around the point
¡
1
2 − ε, 516 − ε

¢
. I will argue that, for δ near enough

1, any point (v0, v1) in B can be “decomposed” in the sense that there exist a10

and

(v0(2), v1(2)) , (v0 (0) , v1 (0)) ∈ B, (13)

such that

(v0, v1) = (1− δ)

µ
1− a10, a

1
0 −

1

4

¡
a10
¢2 − 1

8

¶
+ δ

1

2
(v0 (2) , v1 (2)) +

1

2
(v0 (0) , v1 (0)) (14)

16



and

(1− δ)

µ
a10 −

1

4

¡
a10
¢2 − 1

8

¶
+ δ

µ
1

2
v1 (2) +

1

2
v1 (0)

¶
≥ (1− δ)

µ
a10 −

1

4

¡
a10
¢2¶

+ δv1 (0) . (15)

Establishing that, for given δ, all points in B can be decomposed according

to (13)-(15) allows us to conclude that all points in B correspond to PBE’s for

discount factor δ. Indeed, we can iteratively construct the PBE corresponding

to (v0, v1). Specifically, choose a0 = a10 and a1 = 1 as the first-period actions.

Let (v0(2), v1(2)) and (v0 (0) , v1 (0)) be the continuation payoffs after high and

low output respectively. Because (15) holds, the agent does not have the in-

centive to deviate from working. Hence, the first-period behavior is consistent

with equilibrium. But from (13), both (v0(2), v1(2)) and (v0 (0) , v1 (0)) can be

decomposed à la (13)-(15). These decompositions will determine the equilib-

rium second-period behavior following high and low output. Continuing in the

same way, we can derive the equilibrium behavior for all subsequent periods,

thereby completing the construction.

It remains, therefore, only to show that we can actually perform the decom-

position. Consider the point
¡
1
2 ,

5
16 − ε

¢
in B. Let

a10 = 2−
r
9 + 16ε

2
(16)

17



and

(v0(2), v1(2)) =

µµ
3

2
− δ − (1− δ)

√
9 + 16ε

2

¶
/δ,

5

16
− ε+

1− δ

8δ

¶
(17)

(v0 (0) , v1 (0)) =

µµ
3

2
− δ − (1− δ)

√
9 + 16ε

2

¶
/δ,

5

16
− ε− 1− δ

8δ

¶
. (18)

Simple substitution verifies that (14) and (15) hold when the values given

by (16)-(18) are used. As for (13), note that, because B is a ball, the vertical

distance from the point p =
³³

3
2 − δ − (1−δ)

√
9+16ε
2

´
/δ, 516 − ε

´
to B’s bound-

ary is on the order of the square root of the horizontal distance x from p to¡
1
2 ,

5
16 − ε

¢
, if x is small (see Figure 1). But x = 1−δ

2δ

¡√
9 + 16ε− 3

¢
and so, as

δ tends to 1, x does indeed become small. Furthermore, the vertical distance

from (v0(2), v1(2)) or (v0 (0) , v1 (0)) to p is 1−δ
8δ , which (for δ near 1) is of the

same order as x, and hence less than
√
x. Hence for δ near 1, (v0(2), v1(2)) and

(v0 (0) , v1 (0)) lie in B.

We have shown, therefore, that
¡
1
2 ,

5
16 − ε

¢
can indeed be decomposed for δ

near 1. The argument is similar for the other points of B. Hence repetition

permits points that are nearly efficient to be attained as equilibria.

To summarize, for the agent to be induced to work in a one-shot principal-

agent relationship, his monetary payment contingent on output must be vari-

able. This variability has no adverse consequences if the agent is risk-neutral,
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but interferes with Pareto optimality if he is risk-averse. Once the relationship

is repeated, the agent’s monetary payment no longer need be made variable; the

agent can be “punished” or “rewarded” through variations in his continuation

payoff. Furthermore, if δ is near 1, not much variation in these payoffs is re-

quired to provide adequate incentive –so the equilibrium shortfall from Pareto

optimality is correspondingly small. That is, repetition allows us to exploit the

fact that the Pareto frontier is locally linear.

8 Partnerships

Next let n = 2 but eliminate agent 0 (the center), so that we are now in a part-

nership (double moral hazard) framework, i.e., neither agent can observe the

other’s action. In this setting, an efficient outcome may be impossible to im-

plement even if the Pareto frontier is linear. Specifically, consider the following

model based on an example in Fudenberg, Levine, and Maskin (1994). Sup-

pose that each player’s action ai can equal w (“work”) or s (“shirk”). Working

imposes a disutility of 3, whereas shirking is costless. There are two possible

output levels, z = 0 and z = 12. If both players work, the probability that

z = 12 is 2
3 ; if only one works the probability is

1
3 ; and if neither works it is

0. Output is divisible and can be allocated in any way between the two agents.

Agent i’s utility is

zi − di(ai),
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where zi is his share of total output and di(ai) is his disutility from action

ai (i.e., either 0 or 3).

It is easy to verify that it is efficient for both agents to work and that the

Pareto frontier is the straight line v1 + v2 = 2. Despite the linear preferences,

however, no point on the frontier is implementable. To see this, note that to

induce player i to work (given that the other player is working), his shares —

zi(12) and zi(0) — of the output when z = 12 and z = 0 must satisfy

2

3
zi(12) +

1

3
zi(0)− 3 ≥

1

3
zi(12) +

2

3
zi(0).

Hence

zi(12)− zi(0) ≥ 9 i = 1, 2. (19)

Adding the two inequalities (19) together, we obtain

12 ≥ 18,

a contradiction. Thus efficiency is not implementable.

Informally, to induce an agent to work, the difference between the outputs

allocated to him in the high and low states must be sufficiently big (9, to be

precise, and therefore 18 if we add the two agents’ differences together). But

the difference between high and low total output is only 12. So to get both

agents to work, output has to be “thrown away” in the low state, i.e., output

must be reduced to -6, which is inefficient. An alternative to throwing away
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output is to resurrect the center (agent 0). Imagine that this agent chips in two

units of output in the high state and takes away 4 in the low state. Then, agents

1 and 2 can be induced to work without any expected efficiency loss (the center

breaks even on average: 2
32 −

1
34 = 0). This is basically Holmstrőm’s (1982)

interpretation of the Alchian and Demsetz (1972) rationale for separation of

ownership and management in corporations: the owner can serve as a “budget-

breaker” in setting up an efficient incentive scheme for managers.

In studying the principal-agent model above, we noted that the value of

repeating the game was to exploit the fact that a concave frontier is still locally

linear. In our partnership example, however, efficiency is not implementable

even when the frontier is linear. Consequently, it should not be surprising that

repetition does not help to restore efficiency. Indeed, the partnership example is

closely related to one used by Radner, Myerson, and Maskin (1986) to illustrate

the potential inefficiency of repeated game equilibria when there is double moral

hazard.

The inefficiency in our partnership example, however, turns out to depend

crucially on the fact that there are only two possible observable outcomes (this

is true as well of the Radner-Myerson-Maskin example). Indeed let us now

modify the model so that there are three possible output levels, z = 12, 8, 0. If

both agents work, the probability distribution over these levels is
¡
1
3 ,

1
2 ,

1
6

¢
. If

agent 1 shirks and 2 works, the distribution is
¡
1
3 , 0,

2
3

¢
. If 1 works and 2 shirks,

it is
¡
0, 12 ,

1
2

¢
, and if both shirk it is (0, 0, 1).

Once again, it is efficient for both agents to work, and the Pareto frontier
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is described by v1 + v2 = 2. In this case, however, it is possible to implement

any point on the frontier. Specifically, suppose we let z2(12) = 12, z1(8) = 8,

and set all the other allocations equal to zero. That is, we give agent 2 all the

output when z = 12 and agent 1 all the output when z = 8. It is straightforward

to verify that (w,w), i.e. both agents working, is an equilibrium:

1

3
0 +

1

2
8 +

1

6
0− 3 ≥ 1

3
0 +

2

3
0 (20)

and

1

3
12 +

1

2
0 +

1

6
0− 3 ≥ 1

2
0 +

1

2
0. (21)

Intuitively, it makes sense to allocate agent 1 all the output when z = 8: if

he had shirked, such an output level would not have been possible; and so the

allocation serves as an effective inducement for his working; similarly, assigning

agent 2 all the output when z = 12 is a good way to reward him for working.

Mathematically, the virtue of having sufficiently many output levels (in this

case, 3) is that we can satisfy incentive constraints (20) and (21) together with

the efficiency conditions

z1(0) + z2(0) = 0

z1(8) + z2(8) = 8

z1(12) + z2(12) = 12

simultaneously. More generally, Radner and Williams (1988) and Legros (1988)
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showed that, as long as agents utilities are linear in output, then for generic

partnership games where the number of output levels is at least m1 +m2 − 1

(where mi is the number of actions in Ai), efficiency is implementable. As

Fudenberg, Levine, and Maskin (1994) showed, a similar result obtains for a

repeated partnership (with δ near 1) without the hypothesis that the Pareto

frontier is linear.

9 Conclusion

Roy Radner once expressed the wish that a book as elegant as Debreu’s (1957)

analysis of competitive markets might one day be written about nonmarket

institutions (specifically, the large firm). His own work on teams and incentives

(not to mention his many contributions to our understanding of information,

and organizational structure) constitutes a good start toward making that wish

come true.

23



References

Abreu, D., D. Pearce, and E. Stacchetti (1986), “Optimal Cartel Equilibria with

Imperfect Monitoring,” Journal of Economic Theory, 39, 251-269.

Alchian, A. and H. Demsetz (1972), “Production, Information Costs and Eco-

nomic Organization,” American Economic Review, 62, 777-795.

Chandler, A. (1977), The Visible Hand: The Managerial Revolution in Amer-

ican Business. Cambridge: Harvard University Press.

Dasgupta, P., P. Hammond, and E. Maskin (1979), ”The Implementation of

Social Choice Rules: Some General Results on Incentive Compatibility,” Review

of Economic Studies, 46, 185-216.

Fudenberg, D., D. Levine, and E. Maskin (1994), “The Folk Theorem with

Imperfect Public Information,” Econometrica, 62, 997-1039.

Gibbard, A. (1973), “Manipulation of Voting Schemes. A General Result,”

Econometrica, 41, 587-601.

Green, J. and J.-J. Laffont (1979), Incentives in Public Decision-Making, Ams-

terdam: North-Holland.

Groves, T. (1973), “Incentives in Teams,” Econometrica, 41, 617-631.
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