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ABSTRACT 

Strategy-proofness, requiring that truth-telling is a dominant strategy, is a standard 

concept used in social choice theory. Saijo et al. (2003) argue that this concept has serious 

drawbacks.  In particular, many strategy-proof mechanisms have a continuum of Nash 

equilibria, including equilibria other than dominant strategy equilibria. For only a subset of 

strategy-proof mechanisms do the set of Nash equilibria and the set of dominant strategy 

equilibria coincide. For example, this double coincidence occurs in the Groves mechanism when 

preferences are single-peaked.  We report experiments using two strategy-proof mechanisms. 

One of them has a large number of Nash equilibria, but the other has a unique Nash 

equilibrium.  We found clear differences in the rate of dominant strategy play between the two. 

Journal of Economic Literature Classification Number: C92, D71, D78, and H41.  

Keywords: Experiment, Laboratory, Secure Implementation, Groves-Clarke, Pivotal, 

Learning 
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1. Introduction 

Strategy-proofness, requiring that truth-telling is a dominant strategy, is a standard concept that 

has been used in the design of a variety of mechanisms for social choice as well as for eliciting 

values for non-market goods. Its main appeal is that it relies on what would seem to be one of 

the most basic game-theoretic notions and apparently innocuous assumptions for behavior: that 

players adopt dominant strategies. Theorists often fail to recognize, however, that laboratory 

evidence calls into question the descriptive relevance of this assumption. For example, Attiyeh, 

Franciosi, and Isaac (2000) and Kawagoe and Mori (2001) report pivotal mechanism 

experiments in which subjects adopt dominant strategies less than half the time, and Kagel, 

Harstad, and Levin (1987), Kagel and Levin (1993) and Harstad (2000) report second price 

auction experiments in which most bids do not reveal true value. Attiyeh, Franciosi, and Isaac 

(2000) conclude pessimistically (p. 112) “we do not believe that the pivot mechanism warrants 

further practical consideration…This is due to the fundamental failure of the mechanism, in our 

laboratory experiments, to induce truthful value revelation”.   

 Experimentalists sometimes argue that players who use weakly dominated strategies 

must suffer from confusion due to the complexity of the mechanism and the non-transparency 

of the dominant strategy.  But in fact, neither “epistemic” (deductive) nor “evolutive” (dynamic) 

models provide unambiguous support for the elimination of weakly dominated strategies. 

According to the epistemic model, if each player is perfectly rational and can deduce what 

strategies the opponent will use, then the outcome of the game must be a Nash equilibrium 

(Aumann and Brandenburger, 1995), but there is nothing that forces a player to eliminate 

weakly dominated strategies. However, the epistemic model seems almost irrelevant when 

interpreting behavior in experiments, because very few subjects appear to consciously compute 

equilibria. (Consequently, behavior in the first round of play is often far from equilibrium.)  The 
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dynamic perspective may be more relevant because it considers the changing behavior of 

boundedly rational players who play many times.1 The dynamic models do not assume that the 

players deduce the opponent’s action from complete information about payoff functions. 

Convergence to Nash equilibrium is solely based on players reacting to each other’s previous 

actions. Consequently, even if the payoff functions are privately known, the long-run outcome 

may approximate a Nash equilibrium of the corresponding complete information game (see 

Hurwicz, 1972, and Smith, 2002). But while the rest points of dynamic processes such as 

fictitious play must be Nash equilibria, there is no guarantee that weakly dominated strategies 

will be eliminated. Intuitively, the feedback the players receive may be very weak because the 

use of a weakly dominated strategy may not cause any loss in payoff. Binmore, Gale and 

Samuelson (1995) and Kagel and Levin (1993) argue that this weak feedback effect can explain 

some experimental results, and Cabrales and Ponti (2000) discuss the implications for 

mechanism design.  Of course, epistemic and evolutive models do provide clear-cut support for 

the elimination of strictly dominated strategies. The problem is that very few social choice rules 

are implementable in strictly dominant strategies.  

Motivated by this problem, Saijo, Sjöström and Yamato (2003) developed a new concept 

called secure implementation. A social choice function is securely implementable if there exists a 

mechanism (game form) that implements it in dominant strategy equilibria, and the set of 

dominant strategy equilibrium outcomes and the set of Nash equilibrium outcomes coincide.  

That is, all Nash equilibrium outcomes must be socially optimal in a secure mechanism.  The 

current paper takes a first step towards establishing the empirical significance of these ideas. 

We report a new experiment comparing the rate of dominant strategy adoption for the pivotal 

mechanism (where implementation is not secure) and for the Groves-Clarke mechanism when 

                                                      
1 Hurwicz (1972), Muench and Walker (1983), Cabrales and Ponti (2000) and others have looked at mechanism 
design from a dynamic perspective. 
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preferences are single-peaked (where implementation is secure). Our results indicate that 

subjects play dominant strategies significantly more often in the secure Groves-Clarke 

mechanism than in the non-secure pivotal mechanism, even though we have simplified both 

mechanisms with context-free payoff tables. Our findings suggest that the highly pessimistic 

conclusion of Attiyeh, Franciosi, and Isaac (2000) should be modified to allow the possibility 

that a Groves-Clarke mechanism can perform satisfactorily in environments where 

implementation is secure. 

Recently, Chen (2005) argued that mechanisms used for Nash implementation might 

perform better if they induce supermodular games, because supermodularity guarantees 

convergence of standard learning processes. On the other hand, supermodularity is not a 

necessary condition for convergence of these learning processes. In contrast, we study dominant 

strategy mechanisms. In this context, for any learning dynamics with the property that all Nash 

equilibria are rest points, secure implementation is necessary for global convergence to a 

desirable outcome.  In the environment we study in this paper, it is sufficient as well. 

The practical relevance of secure mechanisms is enhanced by the fact that for any 

common prior over the set of possible valuation functions, all Bayesian Nash equilibria will 

produce the socially optimal outcome.  Thus, secure mechanisms will perform well if the agents 

are Bayesian expected utility maximizers with a common prior, but the social planner does not 

know what this prior is.  The importance of this type of consideration will increase as more 

mechanisms are implemented in the field. Auctions provide an important example. The English 

(ascending price) auction is an important mechanism that has been used since at least 500 B.C. 

in Babylon (Cassady, 1967). Theorists have noted the strategic equivalence between English and 

second price auctions since Vickrey (1961), but for some information conditions the second price 

auction is strategy-proof but not securely implementable. Until recently the second price 
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auction has not been adopted in the field, although this is likely to change as online auctions 

grow in importance. Bidders in online auctions at eBay and Amazon can submit a reservation 

price (called a proxy bid) early in the auction, and if this bid is highest then this bidder wins the 

auction and pays only the minimum bid increment above the second-highest submitted price. 

This institution shares a number of incentive features of theoretical second price auctions, 

although as currently implemented submitting one’s reservation price is generally not a 

dominant strategy (Roth and Ockenfels, 2002).  But the adoption of true sealed-bid second price 

auctions may grow over time, particularly for intermediate goods and in procurement 

(“business-to-business”) transactions. As we illustrate in Section 3, however, under some 

information conditions the second price auction for a single indivisible good has “bad” Nash 

equilibrium outcomes in the sense that the agent with the highest value does not receive the 

good. This suggests that proponents of second price auctions may want to be more cautious 

when proposing them for online markets or to elicit valuations for non-market goods. 

The remainder of the paper is organized as follows. Section 2 presents a brief review of 

the laboratory evidence on strategy-proof mechanisms. Section 3 gives examples of two well-

known strategy-proof mechanisms that have a continuum of Nash equilibria, including 

equilibria other than the dominant strategy equilibrium that theorists usually focus on. We 

characterize secure implementability in Section 4 for the case of two agents and quasi-linear 

preferences that is relevant for our experiment (Saijo et al. (2003) presents results for more 

general conditions).  Section 5 describes the experimental environment and Section 6 contains 

the experimental results.  Section 7 provides concluding remarks. 
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2. Experimental Results on Strategy-Proof Mechanisms 

 Until recently, most of the experimental studies of strategy-proof mechanisms have 

considered the second price auction (Vickrey, 1961). For example, Coppinger, Smith and Titus 

(1980) studied the relationship between Dutch, English, first price sealed-bid and second price 

sealed-bid auctions. Bidders in both the English and the second price auction have a dominant 

strategy to fully reveal their resale value in their bid (or reveal their value in their “drop-out 

price” in the case of the English auction). Bidders in Coppinger et al.’s (oral) English auctions 

typically dropped out of the bidding when predicted, so prices corresponded to the equilibrium 

prediction—the second-highest bidders’ resale value. Similarly, Kagel, Harstad and Levin 

(1987) show that bidders in English (clock) auctions lock on to the dominant strategy of bidding 

equal to value after a few periods of initially overbidding. 

Bidders in Coppinger et al.’s second price auctions were prohibited from bidding above 

their resale value. Kagel and Levin (1993) find, however, that 58 to 67 percent of second price 

auction bids are greater than resale value, which they attribute to (1) the equilibrium bidding 

strategy being less transparent than in the English auction and (2) learning feedback to 

discourage overbidding is weak under sealed-bid procedures because typically the overbidding 

is not “punished” with losses.  Harstad (2000) also documents rather severe overbidding in 

second price auctions that does not decline over time but that may be less pronounced when 

subjects first obtain experience in English auctions. Garratt, Walker and Wooders (2002) show 

that bidders who are highly experienced in online auctions are no more likely to overbid than to 

underbid, but as with inexperienced bidders only very few (roughly 20 percent) of bids are 

approximately equal to value. Most bids in the Garratt et al. study vary considerably from the 

bidders’ true values, and consequently less than one half of the auctions result in efficient 

allocations. Overall the data clearly indicate that subjects do not play their dominant strategy, 
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and in all cases the evidence suggests that bidding equal to value is significantly more common 

in English than in second price auctions. 

While the transparency, experience and feedback explanations for the lower frequency 

of dominant strategy play in the second price auction are all plausible, we propose a 

complementary explanation. In English auctions with a stage-game structure, the (sub-game 

perfect) Nash equilibrium outcome coincides with the dominant strategy equilibrium outcome 

in which bids fully reveal values. But in second price sealed-bid auctions with a one-shot game 

structure, Nash equilibria that do not coincide with the dominant strategy equilibrium exist and 

involve overbidding and underbidding. For example, suppose bidder 1 has a value of $555 and 

bidder 2 has a value of $550, and that these values are common knowledge. It is a Nash 

equilibrium for bidder 1 to bid $540 and bidder 2 to bid $560, resulting in the inefficient 

allocation of the object to bidder 2. Kagel and Levin (1993) and others have noted that 

overbidding is not discouraged because bidders can bid above values and not lose money. It is 

precisely this feature of the second price auction institution that causes “bad” Nash equilibria to 

exist.  

More recent experiments have studied the pivotal mechanism, which is a strategy-proof 

social choice mechanism that is strategically equivalent to the second price auction.2,3 In this 

mechanism an agent pays the amount needed to implement his preferred outcome only if his 

report is pivotal and changes the chosen outcome. These studies have also documented that 

subjects frequently do not play dominant strategies. Attiyeh, Franciosi and Isaac (2000) find that 

                                                      
2 Another truth-telling mechanism that has been widely employed in experiments is the Becker-DeGroot-Marshak 
(BDM) mechanism. In this mechanism the subject states a maximum buying price or minimum selling price, but the 
actual buying or selling price is determined by a randomizing device and the transaction is carried out if it is 
acceptable giving the subject’s reported maximum or minimum. This mechanism is not a game so it is not directly 
relevant for our study. 
3 We do not review here other social choice mechanism experiments like the serial cost sharing mechanism because 
the researchers have implemented those mechanisms in environments where the Nash equilibria are not in dominant 
strategies (e.g., Chen, 2003; Dorsey and Razzolini, 1999). 
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less than 10 percent of the bids reveal the subjects’ true value for the public good, in a setting 

where the experimenter explained the mapping of bids to outcomes (and required taxes for the 

pivotal players) for five- and ten-person groups. Part of the poor performance of this 

mechanism might be due to subject confusion and the complexity of the pivotal mechanism. 

Kawagoe and Mori (2001) provide support for this interpretation, using a controlled experiment 

that manipulates the complexity across treatments. They also find that only a small number of 

bids (less than 20 percent) reveal true values when the context and complexity of the pivotal 

mechanism is part of the experiment; but when the mechanism is simplified and represented by 

(detailed) payoff tables then nearly half of the subjects play the dominant strategy.4 In the 

present experiment we also study the pivotal mechanism with detailed payoff tables to help 

simplify the decision environment and promote equilibrium bids. Although confusion and 

complexity may be partly responsible for the poor performance of some mechanisms, we will 

try to go beyond this explanation.   We will argue that the existence of multiple Nash equilibria 

allows us to predict how behavior will deviate from the dominant strategy equilibrium.  That is, 

we will identify systematic rather than random deviations from the dominant strategy 

equilibrium in non-secure mechanisms.  

 

3.  Why do Strategy-Proof Mechanisms Not Work Well? 

 Many of the strategy-proof mechanisms that have been studied in the literature have 

Nash equilibrium outcomes that do not coincide with the dominant strategy equilibrium 

                                                      
4 Charness, Frechette and Kagel (2004) also provide experimental evidence that the use of payoff tables significantly 
affects behavior, but in a very different economic environment that features sequential decisions and the potential for 
reciprocal exchanges. One interpretation they offer for this finding is that the payoff tables clarify the monetary and 
distributional considerations of alternative actions. 
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outcome. These Nash equilibrium outcomes are frequently socially undesirable. This is 

illustrated be the following two well-known strategy-proof mechanisms.5  

  

Example 1: The pivotal mechanism (Clarke, 1971). 

Consider the pivotal mechanism, which is one of the two mechanisms studied in the 

present experiment, for a two-agent economy with a binary non-excludable public good and 

quasi-linear preferences. Two agents 1 and 2 are facing a decision whether or not they should 

produce the public good. Agent i's true net value of the public good is vi  if it is produced, and 

her true net value is 0 otherwise ( i = 1 2, ). In the pivotal mechanism, each agent i reports his net 

value ~vi  and the outcome is determined as follows:  

 

Rule 1: if ~ ~ ,v v1 2 0+ ≥  then the public good is produced, and if not, then it is not produced; and 

Rule 2: each agent i must pay the pivotal tax ti  
 

ti  = −~v j     if ~v j < 0  and ~ ~v v1 2 0+ ≥  

          =  ~v j       if ~v j > 0  and ~ ~v v1 2 0+ <  
                 =  0         otherwise 

where j i≠ .  

That is, an agent pays the amount needed to implement his preferred outcome if his report is 

pivotal and changes the chosen outcome. 

 First, let ( , ) ( , )v v1 2 5 4= −  be the true net value vector. Figure 1-(a) shows that the set of 

Nash equilibria is approximately a half of the two dimensional area.  Notice that the public 

good should be produced because the sum of the net values of the public good is positive.  The 

upper-right part of the set of Nash equilibria is “good” in the sense that constructing the public 

good is recommended.  However, the lower-left part of the set of Nash equilibria is “bad” in the 

sense that producing the public good is not recommended.   

                                                      
5 Other examples of strategy-proof mechanisms where “bad” Nash equilibria lead to inefficient outcomes include the 
Condorcet winner (median voter) scheme with single-peaked preferences, the uniform allocation rule (a fixed-price 
trading rule) with single-peaked preferences, and the top trading cycle rule in a market with indivisible goods. 
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Second, let ( , ) ( , )v v1 2 5 5= be the true net value vector.  In this case, both agents want to 

construct the public good.  However, Figure 1-(b) shows the area of bad Nash equilibria is still 

large. Saijo et al. (2003) generalize this negative result to the case with any arbitrary finite 

numbers of public projects and agents. 

 
---------------------------------- 
Link to Figure 1 

---------------------------------- 
 

Example 2: The second price auction (Vickrey, 1961). 

 Consider a two-agent model with an indivisible good.  Agent i's true value of the good is 

vi ≥ 0 if she receives it, and her true value is 0 otherwise ( i = 1 2, ).  Let (~ ,~ )v v1 2  be a reported 

value vector.  The second price auction consists of two rules:  

 

Rule 1: if ~ ~v vi j> , then agent i receives the good and pays ~v j ( i j i j, , ;= ≠1 2  ); and 

Rule 2: if ~ ~v v1 2= , then agent 1 receives the good and pays ~v2 . 

  

 Let ( , ) ( , )v v1 2 7 5= be the true value vector.  Figure 2 shows that the set of Nash 

equilibria is quite large.  Notice that agent 1 should receive the good because her value is 

greater than agent 2's.  The lower-right part of the set of Nash equilibria is “good” in the sense 

that agent 1 receives the good.  However, the upper-left part of the set of Nash equilibria 

involving overbidding is “bad” in the sense that agent 2 receives the good. 
 

---------------------------------
Link to Figure 2 

---------------------------------- 

We do not dispute the possibility that, in practice, some confused bidders may fail to 

recognize their dominant strategy because it is not transparent (e.g., Harstad, 2000). However, 

our key observation is that the Nash equilibrium areas shown in Figure 2 indicate the possibility 

of systematic rather than random deviations from the dominant strategy equilibrium.  
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4.  Secure Implementation in Public Good Economies 

The previous section presented two examples drawn from many strategy-proof 

mechanisms that may have “bad” Nash equilibria.  They implement the social choice function 

(SCF) in dominant strategies, but not in Nash equilibria. Saijo et al. (2003) introduce a new 

concept of implementation, called secure implementation, which does not share this 

shortcoming. 

We introduce notation and definitions here to describe the concept of secure 

implementation in the context of public good economies with two agents and quasi-linear 

preferences. Denote the set of feasible allocations by 

 A y t t y Y t t= ∈ ∈ℜ{( , , ) , , }1 2 1 2 , 

where Y ⊆ℜ is a production possibility set, y Y∈  is an output level of a public good, and ti  is a 

transfer of a private good to agent i.  For simplicity, we assume that there is no cost involved in 

producing y.  Each agent i’s utility function, ui : A → ℜ, is selfish and quasi-linear: 

 u y t t u y t v y ti i i i i( , , ) ( , ) ( )1 2 = = + ,   i = 1 2, .  

The class of valuation functions, vi  : Y → ℜ, admissible for agent i is denoted by Vi . Following 

Holmström (1979), suppose Vi  is smoothly connected.  Let v = ( , )v v1 2  ∈ V ≡ V V1 2×  be a 

valuation profile.   

A social choice function (SCF) is a function f : V → A that associates with every list of 

valuation functions, v ∈ V, a unique feasible allocation f (v) in A.  The allocation f (v) is said to be 

f-optimal for v. 

 A mechanism (or game form) is a function g: S S1 2× → A that assigns a unique element of 

A to every ( , )s s S S1 2 1 2∈ × , where Si  is the strategy space of agent i. For a strategy profile 

s s s S S= ∈ ×( , )1 2 1 2 , the outcome of g for the profile s is denoted by g s y s t sg g( ) ( ( ), ( ))= , where 

y sg( )  is the level of the public good and t s t s t sg g g( ) ( ( ), ( ))= 1 2  is the transfer vector.   

The strategy profile s s s S S= ∈ ×( , )1 2 1 2 is a Nash equilibrium of g at v ∈ V if 

v y s s t s s v y s s t s sg g g g
1 1 2 1 1 2 1 1 2 1 1 2( ( , )) ( , ) ( ( , )) ( , )+ ≥ ′ + ′  for all ′ ∈s S1 1 , and  
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v y s s t s s v y s s t s sg g g g
2 1 2 2 1 2 2 1 2 2 1 2( ( , )) ( , ) ( ( , )) ( , )+ ≥ ′ + ′  for all ′ ∈s S2 2 . 

Let N vA
g ( )  be the set of Nash equilibrium allocations of g at v, i.e., N vA

g ( )  ≡ {( ( , , )y t t1 2  ∈ A | 

there exists a Nash equilibrium at v, s ∈ S, such that g s y t t( ) ( , , )= 1 2 }.   

The strategy profile s s s S S= ∈ ×( , )1 2 1 2  is a dominant strategy equilibrium of g at v ∈ V if 

v y s s t s s v y s s t s sg g g g
1 1 2 1 1 2 1 1 2 1 1 2( ( , )) ( , ) ( ( , )) ( , )′ + ′ ≥ ′ ′ + ′ ′  for all ′ ∈s S1 1 and ′ ∈s S2 2 ; and  

2 1 2 2 1 2 2 1 2 2 1 2( ( , )) ( , ) ( ( , )) ( , )g g g gv y s s t s s v y s s t s s′ ′ ′ ′ ′ ′+ ≥ +  for all ′ ∈s S1 1 and ′ ∈s S2 2 . 

Let ( )g
AD v  be the set of dominant strategy equilibrium allocations of g at v, i.e., ( )g

AD v  ≡ 

{( ( , , )y t t1 2  ∈ A | there exists a dominant strategy equilibrium at v, s ∈ S, such 

that g s y t t( ) ( , , )= 1 2 }.  

 

Definition 1. The mechanism g implements the SCF f in dominant strategy equilibria if for all v ∈ V, 

f (v) = g
AD (v).  f is implementable in dominant strategy equilibria if there exists a mechanism which 

implements f in dominant strategy equilibria.  

 

Definition 2. The mechanism g securely implements the SCF f if for all v V∈ , f v( ) = g
AD (u) = 

NA
g (u).6  The SCF f is securely implementable if there exists a mechanism which securely 

implements f.   

 

Dominant strategy implementation requires that for every possible preference profile, 

the dominant strategy equilibrium outcome coincides with the f-optimal outcome. In addition to 

this requirement, secure implementation demands that there be no Nash equilibrium outcome 

other than the dominant strategy equilibrium outcome. 

 Saijo et al. (2003) characterize the class of securely implementable SCF's using two 

conditions. The first condition is strategy-proofness.  The allocation recommended by the SCF f 

                                                      
6 Secure implementation is identical to double implementation in dominant strategy equilibria and Nash equilibria.  It 
was Maskin (1979) who first introduced the concept of double implementation. See also Yamato (1993). 
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for the profile v v v= ( , )1 2  is denoted by f v y v t vf f( ) ( ( ), ( ))= , where y vf ( )  is the level of the 

public good and t v t v t vf f f( ) ( ( ), ( ))= 1 2  is the transfer vector. 

 

Definition 3. The SCF f is strategy-proof if  

      v y v v t v v v y v v t v vf f f f
1 1 2 1 1 2 1 1 2 1 1 2( ( ,~ )) ( ,~ ) ( (~ ,~ )) (~ ,~ )+ ≥ +  for all ~v V1 1∈ and ~v V2 2∈ ; and  

      2 1 2 2 1 2 2 1 2 2 1 2( ( , )) ( , ) ( ( , )) ( , )f f f fv y v v t v v v y v v t v v+ ≥ +  for all ~v V1 1∈ and ~v V2 2∈ . 

 

By the Revelation Principle (Gibbard, 1973), strategy-proofness is necessary for dominant 

strategy implementation, and therefore also for secure implementation. However, the following 

additional condition, called the rectangular property, is necessary for secure implementation.  

 

Definition 4.  The SCF f satisfies the rectangular property if for all v v V,~∈ , if 

v y v v t v v v y v v t v vf f f f
1 1 2 1 1 2 1 1 2 1 1 2( ( ,~ )) ( ,~ ) ( (~ ,~ )) (~ ,~ )+ = +  and 

v y v v t v v v y v v t v vf f f f
2 1 2 1 1 2 2 1 2 2 1 2( (~ , )) (~ , ) ( (~ ,~ )) (~ ,~ )+ = + , 

then f v v( , )1 2 = f v v(~ ,~ )1 2  . 

 

 Saijo et al. (2003) show that the rectangular property is necessary and sufficient for sure 

implementation:7 

                                                      
7 To see why the rectangular property is necessary for secure implementation intuitively, suppose that the direct 
revelation mechanism g = f securely implements the SCF f.  Let n = 2  and ( , )v v1 2  be the true preference profile.  
Suppose u f v v1 1 2( ( ,~ )) =  u f v v1 1 2( (~ ,~ )) , i.e., 

 (*) v y v v t v v v y v v t v vf f f f
1 1 2 1 1 2 1 1 2 1 1 2( ( ,~ )) ( ,~ ) ( (~ ,~ )) (~ ,~ )+ = + . 

In other words, agent 1 is indifferent between reporting the true preference v1  and reporting another preference ~v1  
when agent 2’s report is ~v2 .  Since reporting v1  is a dominant strategy by strategy-proofness, it follows from (*) that  

v y v v t v v v y v v t v vf f f f
1 1 2 1 1 2 1 1 2 1 1 2( (~ ,~ )) (~ ,~ ) ( ( ,~ )) ( ,~ )+ = + ≥ ′ + ′v y v v t v vf f

1 1 2 1 1 2( ( ,~ )) ( ,~ )  for all ′ ∈v V1 1 ,  

that is, reporting ~v1  is one of agent 1’s best responses when agent 2 reports ~v2 .   
Next suppose that u f v v u f v v2 1 2 2 1 2( (~ , )) ( (~ ,~ ))= , i.e., 

(**) v y v v t v v v y v v t v vf f f f
2 1 2 1 1 2 2 1 2 2 1 2( (~ , )) (~ , ) ( (~ ,~ )) (~ ,~ )+ = + . 

By using an argument similar to the above, it is easy to see that v y v v t v v v y v v t v vf f f f
2 1 2 2 1 2 2 1 2 2 1 2( (~ ,~ )) (~ ,~ ) ( (~ , )) (~ , )+ = +  

≥ ′ + ′v y v v t v vf f
2 1 2 1 1 2( (~ , )) (~ , ) for all ′ ∈v V2 2 ,  
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Theorem 1.  An SCF is securely implementable if and only if it satisfies strategy-proofness and the 

rectangular property. 

 

 Let us consider an SCF f satisfying the efficiency condition on the public good  

provision: 
 
(4.1) y v v v y v yf

y Y
( , ) arg max[ ( ) ( )]1 2 1 2∈ +

∈
 for all ( , )v v V1 2 ∈ . 

  
The following result is well known: 

 

Proposition 1 (Clarke, 1971; Groves, 1973; Green and Laffont, 1979; Holmström, 1979). An SCF f 

satisfying (4.1) is implementable in dominant strategy equilibria if and only if f satisfies  
 
 (4.2)  t v v v y v v h vf f

1 1 2 2 1 2 1 2( , ) ( ( , )) ( )= + , t v v v y v v h vf f
2 1 2 1 1 2 2 1( , ) ( ( , )) ( )= +  ∀ ∈( , )v v V1 2 , 

 

where hi  is some arbitrary function which does not depend on vi . 

 

A direct revelation mechanism satisfying (4.1) and (4.2) is called a Groves-Clarke mechanism.  

Proposition 1 says that we can focus on the class of Groves-Clarke mechanisms for 

implementation of an SCF satisfying (4.1) in dominant strategy equilibria. In general, Groves-

Clarke mechanisms do not achieve secure implementation. However, if V contains only single-

peaked preferences and y is a continuous variable, then SCF’s satisfying (4.1) are securely 

implementable by Groves-Clarke mechanisms.  Suppose that Y = ℜ and for i = 1 2, ,  

 V v v y y r ri i i i i= ℜ→ℜ = − − ∈ℜ{ : ( ) ( ) , }2 ,  

                                                                                                                                                                           
that is, reporting ~v2  is one of agent 2’s best responses when agent 1 reports ~v1 .  Therefore, f v v(~ ,~ )1 2 =  

( (~ ,~ ), (~ ,~ ))y v v t v vf f
1 2 1 2 is the Nash equilibrium outcome.  Moreover, f v v y v v t v vf f( , ) ( ( , ), ( , ))1 2 1 2 1 2=  is the dominant 

strategy outcome, and by secure implementability, the dominant strategy outcome coincides with the Nash 
equilibrium outcome.  Accordingly we conclude that f v v( , )1 2 = f v v(~ ,~ )1 2  if (*) and (**) hold. 
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where ri  is agent i's most preferred level of the public good.  We can represent these single-

peaked preferences by the ri  instead of the vi .  The optimal output level of the public good 

satisfying (4.1) is given by y r r( , )1 2 = (r1+r2)/2. In this case any SCF f meeting (4.1) and (4.2) 

satisfies the rectangular property and is therefore securely implementable (Saijo et al., 2003). 

 Consider an example that will be used in our experimental design later, in which hi = 0.  

Then,  

 

u r r v y r r t r r1 1 2 1 1 2 1 1 2(~ ,~ ) ( (~ ,~ )) (~ ,~ )= +  = − + − − + −((~ ~ ) / ) ((~ ~ ) / ~ )r r r r r r1 2 1
2

1 2 2
22 2   

   = − − + −(~ ) (~ ) /r r r r1 1
2

2 1
2 2{ }  

where r1  is player 1’s true peak and (~ ,~ )r r1 2  is a vector of reported peaks. Clearly agent 1’s 

payoff is maximized at r1 .  Since the payoff function is quadratic, no other maximizers exist. 

Furthermore, the payoff is maximized at r1  regardless of ~r2 . Figure 3 shows agent 1’s payoff 

when r1 12= .  If ~r2 4= , the maximizer is a, and if ~r2 12= , it is b. Both are maximized at r1 12= .  

Therefore, the best response curve is a line parallel to the ~r2  axis. This indicates that truth-

telling is the dominant strategy.  In fact, it is strictly dominant. However, this is true only as long 

as the public goods level is continuously variable. In our experiment, we will discretize the 

public goods level and the payoff functions, and truth-telling will not be strictly dominant even 

though preferences are single-peaked.8 However, with single-peaked preferences 

implementation will still be secure, because there will be a unique dominant strategy 

equilibrium which is also a unique Nash equilibrium (Treatment S).   When preferences are not 

single peaked, there will be multiple Nash equilibria and implementation is not secure 

(Treatment P). 
 

                                                      
8 In general, with a discrete public good, single-peaked preferences will not assure the existence of a strictly 
dominant strategy. However, secure implementation will be assured. 
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---------------------------------- 
Link to Figure 3

---------------------------------- 
 
 5. The Experiment 

 Our experiment studies the pivotal mechanism and a Groves-Clarke mechanism with 

single-peaked preferences.  It consisted of four sessions with 20 subjects each (80 total subjects). 

We conducted two sessions in Treatment P that corresponded to the pivotal mechanism and 

two sessions in Treatment S that corresponded to a Groves mechanism with single-peaked 

preferences. All sessions employed payoff tables to simplify the presentation of the two 

mechanisms to subjects. As already noted above in Section 2, previous findings by Kawagoe 

and Mori (2001) suggest that this reduction in complexity may improve the performance of the 

mechanisms. We consider the secure mechanisms to be a benchmark, in the sense of having the 

greatest hope of successful implementation, compared to other social choice mechanisms. In 

order to evaluate how this benchmark performs under ideal conditions, we decided in this 

initial experiment to provide favorable, maximally-transparent conditions. The use of payoff 

tables allows for a comparison of the benchmark (secure) mechanism with the non-secure 

alternative, holding their degree of transparency constant.  

Our experiment provides evidence that the existence of Nash equilibria in weakly 

dominated strategies can significantly influence the subjects’ behavior. We suspect that this will 

be the case in many environments, including those where the complexity of the environment 

will lower the performance of any mechanism. This leads us to believe that secure mechanisms 

will perform better in many different environments. Of course, payoff tables are somewhat 

unrealistic for potential applications of these mechanisms in the field. We did not evaluate the 

secure mechanism without payoff tables, so our experiment does not prove that secure 

mechanisms will be successful in the field. Whether or not mechanisms fail in practical 

applications may depend on how well understood they are by the participants. As we discuss 

further in the conclusion, that issue can be addressed in future research.  
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5.1 Design 

 We conducted two sessions (one P and one S) at Tokyo Metropolitan University during 

June of 1998 and two sessions (one P and one S) at Purdue University during February of 2003.  

Each session took approximately one hour to complete.   

 Treatment P implements the pivotal mechanism for a two-person group.  The net true 

value vector ( v1 , v2 ) is equal to ( , )−6 8  if a binary public good is produced and ( v1 , v2 ) = ( , )0 0  

otherwise.  The public good should be produced since v1 + v2 ≥ 0.  Let the strategy space of type 

1 be the set of integers from -22 to 2, and the strategy space of type 2 be the set of integers from -

4 to 20.  According to the rules of the pivotal mechanism described in Section 3, we can 

construct the payoff matrices of types 1 and 2.  

 The payoff tables that we actually distributed to subjects in Treatment P were Tables 1 

and 2 whose basic structures were the same as the original payoff tables, modified as follows. 

First, we changed the names of strategies.  Type 1's strategy "-22" was renamed "1", "-21" was 

renamed "2", and so on.  Similarly, type 2's strategy "-4" was renamed "1", "-3" was renamed "2", 

and so on.  Second, we employed a linear transformation of the valuation functions:  14 2941v + 

for type 1 and 14 1822v +  for type 2.  
 

-------------------------------------------
Link to Table 1 and 2

-------------------------------------------- 

Table 3 is a payoff matrix with both players’ payoffs displayed: the left-hand number is 

type 1’s payoff and the right-hand number is type 2’ payoff in each cell. 9  It also specifies the 

dominant strategy equilibria and the other Nash equilibria. Type 1's dominant strategies are 16 

and 17, and type 2's dominant strategies are 12 and 13. The two dominant strategies are 

equivalent for each type in the sense that her payoffs are identical for every possible strategy 

played by the other type; and although payoffs of the other type could be different depending 

                                                      
9 We did not provide this table to any subject. Type 1 subjects used table 1 only and type 2 subjects employed table 2 
only.  
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on her own choices, she did not know the other’s payoffs. In this sense, there is an essentially 

unique dominant strategy in Treatment P. 

Let us look at the best response structure of each type given a strategy of the other type 

in Table 3. For example, (i) when type 2 chooses 8, the payoffs of type 1 are “high” (252) if she 

chooses less than or equal to 19, and her payoffs are “low” (210) otherwise; (ii) when type 2 

chooses 11, the payoffs of type 1 are the same (210) for all her strategies; and (iii) when type 2 

chooses 15, the payoffs of type 1 are “low” (154) if she chooses less than or equal to 12, and her 

payoffs are “high” (210) otherwise. That is, given each strategy of the other type, either a) the 

payoffs of each type are divided into just two “tiers”: a “high” payoff obtained by choosing 

“good” strategies and a “low” payoff by “bad” strategies; or b) the payoffs are the same for all 

strategies. Because the best response function of each type has such a “flat” feature, there is a 

huge set of Nash equilibria in Table 3. The lower-right region of Nash equilibria is “good” in the 

sense that the public good is produced.  The upper-left region of Nash equilibria is “bad” in the 

sense that the public good is not produced.  The number of good Nash equilibria is 162, while 

the number of bad Nash equilibria is 165.  Implementation is clearly not secure.  
 

--------------------------------- 
Link to Table 3

--------------------------------- 
 

As is well known, the pivotal mechanism sometimes generates a surplus, i.e., the tax 

revenue exceeds the cost of producing the public good. (In general, no dominant strategy 

mechanism can both satisfy condition (4.1) and balance the budget). From the point of view of 

the participants, the budget surplus is wasteful. Suppose type 1 chooses either 8 or 17 and type 

2 chooses either 5 or 12. Then the payoff table is given by Table 4. Notice that (17, 12) is a 

dominant strategy equilibrium and (8, 5) is a bad Nash equilibrium. However, the sum of the 

players’ payoffs is greater under the bad Nash equilibrium than under the dominant strategy 

equilibrium (476>420).  For the original case in which the strategy spaces of both types are the 
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set of 25 integers, see Table 5. It is easy to check that 91% (=10/11) of payoffs in the region of 

bad Nash equilibria are not Pareto dominated by either of the dominant strategy equilibrium 

payoffs ((210, 196) or (210, 210)). The corresponding ratio in the region of good Nash equilibria 

is 92% (=150/163). Moreover, the ratio of Pareto efficient payoffs among bad Nash equilibrium 

payoffs is 45.5% (=5/11), while the corresponding ratio among good Nash equilibrium payoffs 

is 27.6% (=45/163).  

 
------------------------------------------ 
Link to Tables 4 & 5

------------------------------------------ 
 

However, the pivotal mechanism was designed specifically to implement social 

decisions that satisfy the efficiency condition (4.1). This condition has played a central role in 

the literature.  The experiments can shed light on whether or not the outcome will in fact be 

consistent with condition (4.1).  If it is not, then the pivotal mechanism does not perform in the 

way described in the literature on efficient mechanism design, and a new theory may be 

needed.  

Treatment S is the same as Treatment P except for the payoff tables.  The payoff tables 

for Treatment S are based on the following model of a Groves mechanism with single-peaked 

preferences with two players.  Suppose that the true valuation functions of agent types 1 and 2 

are respectively v y y1
212( ) ( )= − −  and v y y2

217( ) ( )= − − , where y ∈ℜ+  is the level of a public 

good.  Each type reports his most preferred level of the public good called a peak.  Given a 

vector of reported peaks (~ ,~ )r r1 2 , the level of the public good, y r r(~ ,~ )1 2 , and the transfer to type i, 

t r ri(~ ,~ )1 2 , are determined by a Groves mechanism: y r r(~ ,~ )1 2  = (~ ~ )/r r1 2 2+  and t r ri(~ ,~ )1 2  = 

− + −((~ ~ )/ ~ )r r rj1 2
22 , i j j i, , ;= ≠1 2 . The payoff functions are therefore given by  

 v y r r t r r1 1 2 1 1 2( (~ ,~ )) (~ ,~ )+  = − + − − + −((~ ~ )/ ) ((~ ~ )/ ~ )r r r r r1 2
2

1 2 2
22 12 2  , 

 v y r r t r r2 1 2 2 1 2( (~ ,~ )) (~ ,~ )+  = − + − − + −((~ ~ )/ ) ((~ ~ )/ ~ )r r r r r1 2
2

1 2 1
22 17 2  . 
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Let the strategy space of each type be the set of integers from 0 to 24.   According to the above 

payoff functions, we can construct the payoff matrices of types 1 and 2. 

 The payoff tables used in Treatment S were Tables 6 and 7 whose basic structures were 

the same as those of the original payoff tables, modified as follows.  First, we changed the 

names of strategies:  strategy "0" was renamed "1", "1" was renamed "2", and so on.  Second, we 

employed a linear transformation of the payoff functions:  10 14 218 5vi / .+  for i = 1 2, . 
 

-------------------------------------------- 
Link to Tables 6 and 7

-------------------------------------------- 
 

 There is a unique dominant strategy in Tables 6 and 7: 13 for Type 1 and 18 for Type 2.  

However, note that because we discretized the possible levels in the payoff tables and rounded 

payoffs to the nearest whole number, neither player type has a strictly dominant strategy. 

Therefore, Treatments S and P cannot be differentiated in terms of strictly dominant strategies. 

However, only Treatment S involves a secure mechanism in which there is no Nash equilibrium 

other than the dominant strategy equilibrium.   

Let us consider the situation from an “evolutive” perspective. It is easy to check from the 

payoff tables that in Treatment S, any number less than 12 or greater than 14 is strictly 

dominated for player 1, while any number less than 17 or greater than 19 is strictly dominated 

for player 2. Moreover, if player 2 chooses a number between 17 and 19, then player 1’s unique 

best response is 13, while if player 1 chooses a number between 12 and 14 then player 2’s 

unique best response is 18. Therefore, in Treatment S, convergence towards (13, 18) should be 

fairly rapid. On the other hand, in Treatment P, any learning dynamics with the property that 

Nash equilibria are rest points can theoretically get “stuck” at a bad Nash equilibrium. In 

practice, convergence in Treatment P may occur but be very slow, due to the very weak 

pressure to adopt weakly dominant strategies. 
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5.2 Procedures 

The sessions in Japan and in the United States involved a variety of procedural 

differences. They were not intended to replicate the same experimental conditions, but instead 

were useful to evaluate the robustness of our findings to different subject pools and procedures. 

Most notably, the sessions in Japan were run “by hand” with pen and paper, and the sessions in 

the U.S. were computerized using zTree (Fischbacher, 1999). If we had observed significant 

differences across experiment sites, then we would not be able to identify the source of those 

differences without further experimentation. Fortunately, the data do not indicate any 

meaningful statistically significant differences across sites within either mechanism treatment.10  

In the Japan sessions the twenty subjects were seated at desks in a relatively large room 

and had identification numbers assigned randomly.  These ID numbers were not publicly 

displayed, however, so subjects could not determine who had which number.  In the U.S. 

sessions the twenty subjects were seated at computer stations in the Vernon Smith Experimental 

Economics Laboratory that were separated with visual partitions.  In every period, each of the 

type 1 subjects was paired with one of the type 2 subjects.  The pairings were determined in 

advance by experimenters so as not to pair the same two subjects more than once (“strangers”).  

Each subject received written instructions, a record sheet, a payoff table, and (in the Japan 

sessions only) information transmission sheets.  Instructions were also given by tape recorder in 

Japan and were read aloud by the experimenter in the U.S.11  Each subject chose her number 

from an integer between 1 and 25 by looking at her own payoff table only.12  No subject knew 

the payoff table of the other type.  Moreover, we provided no explanation regarding the rules of 

the mechanisms or how the payoff tables were constructed.      

                                                      
10 A detailed statistical analysis comparing the Japanese and American sessions results is available from the authors 
upon request. 
11 The experiment instructions are available from the authors upon request. 
12 We required subjects to examine their payoff table for ten minutes before we began the real periods. 
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After deciding which number she chose, each subject marked the number on an 

information transmission sheet (Japan) or typed in her number on her computer (U.S.).  

Experimenters collected these information transmission sheets and then redistributed them to 

the paired subjects in Japan. The computer network handled the message transmission in the 

U.S.  Each period, subjects in both countries were asked to fill out the reasons why they chose 

these numbers.  After learning the paired subject’s choice, subjects calculated their payoffs from 

the payoff tables (Japan) or verified the computer-calculated payoffs (U.S.). Record sheets were 

identical (except for the language translation, of course) at the two sites.  These steps were 

repeated for eight periods in Japan and for ten periods in the U.S. Recall that subjects were 

never paired together for more than one period. 

In the Japan sessions the mean payoff per subject was 1677 yen in Treatment S and it 

was 1669 yen in Treatment P. In the U.S. sessions the mean payoff per subject was $21.04 in 

Treatment S and it was $20.35 in Treatment P. 

Even though each subject can see only her own payoff table, the repeated play allows 

learning to take place. A Nash equilibrium can be interpreted as a rest point of the dynamic 

learning process (Hurwicz, 1972; Smith, 2002), which is one justification for our interest in 

secure implementation. 13  

 

6.  Results 

6.1 Treatment P       

Since each period had 20 pairs of players and each session had 8 or 10 periods, we have 

180 pairs of data.  Denote each pair by ( , )x x1 2  where xi  is a number chosen by a subject of 

                                                      
13 The theoretical prediction can be interesting even in a one-shot game. In fact, another justification for secure 
implementation is that, for any possible prior beliefs about types that the players could have, secure mechanisms 
have the property that any Bayesian Nash equilibrium outcome is socially optimal. We thank an anonymous referee 
for prompting us to think about these issues. 
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type i, i = 1, 2.  Figure 4 shows the frequency distribution of all data in Treatment P.  The 

maximum frequency pair was (16, 12) with 34 pairs, the second was (16, 13) with 27 pairs, the 

third was (17, 13) with 19 pairs, and the fourth was (17, 12) with 10 pairs.  The total frequency of 

the four dominant strategy equilibria (16,12), (16,13), (17,12), and (17,13) was 90—exactly one-

half of the outcomes.14 Sixty-one other outcomes were Nash equilibria other than dominant 

strategy equilibria. The total frequency of Nash equilibria including dominant strategy 

equilibria was 151. Although nearly half (298/621) of the possible strategy pairs shown in Table 

3 that are not dominant strategy equilibrium outcomes are not Nash equilibria, only about one-

third (29/90) of the observed non-dominant-strategy outcomes were not Nash equilibria. This 

suggests that deviations from the dominant strategy equilibria are not random, but are instead 

more likely to correspond to Nash equilibria. The frequency of bad outcomes was 30.15  Only 

one pair in one period played a bad Nash equilibrium. All other Nash equilibrium outcomes 

were good. Why were almost all Nash equilibria good? To see the reason, suppose that a type 1 

subject succeeds in discovering a dominant strategy, say 16, but a type 2 subject fails to find a 

dominant strategy. Even then a good Nash equilibrium is achieved as long as the type 2 subject 

chooses a best response to the type 1’s strategy (her best response to 16 is to choose an integer 

more than or equal to 12). It would be much easier to find a best response to a given strategy 

than a dominant strategy. Therefore, if at least one of two subjects find a dominant strategy, 

then the outcome is likely to lie in the region of good Nash equilibria containing dominant 

                                                      
14 Notice that the dominant strategy equilibria (16, 12) and (16, 13) are Pareto-dominated by the dominant strategy 
equilibria (17, 12) and (17, 13). The frequency of Pareto-dominated dominant strategy equilibria (16,12) and (16,13) 
was 61, while the frequency of the dominant strategy equilibria (17,12) and (17,13) was 29. Seventy-two percent of the 
dominant strategies played by Type 1 subjects were 16 rather than 17, even though these two strategies provide 
identical payoffs. The greater frequency of 16 declines in later periods, however, and only in periods 1 and 3 is 16 
significantly more frequent than 17 at the 5-percent level (two-tailed) according to a binomial test. Recall that each 
subject chose her number by looking at her own payoff table only, without knowing the payoff table of the other 
subject. Therefore, it was not possible for a type 1 subject to know that choosing 16 gives a type 2 subject a worse 
payoff than choosing 17, that is, choosing 16 leads to Pareto dominated equilibria. We think type 1 subjects merely 
happened to choose 16 more frequently in this experiment, without realizing that choosing 16 could result in Pareto 
dominated outcomes.  
15 Because of our linear transformation of payoff functions and renaming of strategies, the areas of good and bad 
outcomes in Table 3 become as follows: the outcome is good if the sum of two types’ numbers is greater than or equal 
to 28; otherwise, it is bad.  
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strategy equilibria. Table 8 of overall data frequency shows this happened in Treatment P. 

Indeed, 88% (=151/171) of type 1 subjects’ choices were their best responses when type 2 

subjects chose dominant strategies and 97% (=166/171) of type 2 subjects’ choices were their 

best responses when type 1 subjects selected dominant strategies.  
 

---------------------------------------------------- 
Links to Figure 4 AND Table 8
-------------------------------------------------- 

 We conducted period by period tests of the hypothesis that the median choice is equal to 

a dominant strategy (16 or 17 for type 1 and 12 or 13 for type 2).  A nonparametric Wilcoxon 

signed rank test rejects the hypothesis that type 1 subjects’ median choice equals the dominant 

strategy of 17 in five out of ten periods (periods 1, 2, 3, 7 and 8), but this test never rejects the 

null hypothesis that the median choice corresponds to the dominant strategy of 16 (two-tailed 

test, five-percent significance level).  Similarly, this nonparametric test rejects the hypothesis 

that type 2 subjects’ median choice equals the dominant strategy of 12 in eight out of ten 

periods (periods 1, 2, 3, 5, 6, 7, 8 and 9), but this test never rejects the null hypothesis that the 

median choice corresponds to the dominant strategy of 13.16  

 These Treatment P results lead to the following observations: 

 

Observation 1: 

(a) The frequency of dominant strategy equilibria was 50% across all periods in Treatment P. 

 (b) The data do not reject the hypothesis that subjects’ median choice is a dominant strategy for either 

type in any period in Treatment P. 

(c) The frequency of Nash equilibria was 84% across all periods in Treatment P. 68% of the observed non-

dominant-strategy outcomes were Nash equilibria. 

                                                      
16 The key advantage of the Wilcoxon test is that it does not require any assumptions regarding the probability 
distribution underlying the data. The test does, however, assume that the observations are statistically independent. 
This assumption is satisfied exactly in period 1, and is satisfied approximately in the later periods because each 
observation used in each test is generated by a different individual. Subjects in the same session interact in earlier 
periods, however, which make their later period choices not strictly independent. 
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(d) The frequency of bad outcomes that did not recommend funding of the public good was 17% across all 

periods in Treatment P. Almost all (98%) of the observed Nash equilibria that involved dominated 

strategies were good Nash equilibria that recommended funding of the public good. 

 

6.2 Treatment S       

 Figure 5 shows the frequency distribution of all data in Treatment S.   The maximum 

frequency pair was the dominant strategy equilibrium (13, 18) with 146 of the 180 outcomes. 

Pairs played no other single outcome more than 4 times.      
 

-------------------------------- 
Link to Figure 5
-------------------------------- 

 We conducted period by period tests of the hypothesis that the median choice equals the 

dominant strategy (13 for type 1 and 18 for type 2).  A Wilcoxon signed rank test never rejects 

the dominant strategy equilibrium hypothesis for any type in any period. 

 Summarizing the above results, we have the following: 

 
Observation 2: 

(a) The frequency of dominant strategy equilibrium was 81% across all periods in Treatment S.   

(b) The data do not reject the hypothesis that subjects' median choice equals the dominant strategy for 

either type in any period in Treatment S. 

  

6.3  Comparing the Two Mechanisms 

 Here we compare the frequency that subjects play dominant strategies and that pairs 

implement dominant strategy equilibria in the two mechanisms. Recall that an advantage of our 

experimental design is that we can compare these two mechanisms while holding constant their 

complexity. We did not present to subjects any explanation on the rules of a mechanism, and 

instead we simply used payoff tables to explain the relationship between choices and outcomes. 
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This is likely to have reduced the confusion experienced by subjects when deciding upon which 

strategies to play, although it is unlikely to have eliminated confusion completely. 

 Figure 6 displays the rates that subjects play dominant strategies separately for all 

periods. Individuals are more likely to play dominant strategies in Treatment S than in 

Treatment P according to Fisher’s exact test in 7 out of 10 periods (periods 2, 6, 7, 8 and 9 at the 

5% significance level, and periods 4 and 5 at the 10% significance level).17 Notice that 

differences are not significant in most early periods, suggesting that confusion may have 

influenced behavior initially while subjects learned how their choices affected their earnings. A 

more powerful parametric test is possible by pooling the data across periods. Since individual 

subjects contribute an observation for each period, the multiple observations generated by 

individuals are not independent and it is appropriate to model the panel nature of the data. We 

do this with a subject random effect specification for the error term εit = ui + vit, where ui 

represents the idiosyncratic error for subject i and vit is iid.18 Column 1 of Table 9 reports a 

probit model of the likelihood that the subject selects a dominant strategy. The positive and 

significant dummy variable for the mechanism treatment indicates that subjects are more likely 

to play a dominant strategy in the secure mechanism.19 

                                                      
17 As discussed in the previous footnote for the Wilcoxon test, Fisher’s exact test also requires statistically-
independent observations. This holds strictly only in the first period, since subjects in the same session interact in 
earlier periods. Our design features multiple periods of decisions, as in the most other experiments, because we are 
interested in decisions when subjects have some experience in order to test equilibrium predictions. This has the 
drawback of clouding the interpretation of some nonparametric statistical tests due to imperfect statistical 
independence. But additional parametric tests, such as those shown in Table 9, explicitly accounts for the 
dependence in the errors and can provide robustness checks on our conclusions. 
18 Session rather than subject random effects provide similar results, also with highly significant estimated 
mechanism treatment effects (dummy treatment variable estimate = 0.644, p-value < 0.01). We also estimated this 
probit model with clustering at the session level and obtained a similar treatment dummy estimate (0.643) that is also 
highly significant (p-value < 0.01). As a further robustness check we also estimated this model with clustering at the 
subject level and also find a significant treatment effect (p-value < 0.01). 
19 Recall that subjects also indicated the reasons for their choices on their record sheets and in a post-experiment 
questionnaire. These responses provide an additional (noisy) source of data revealing subjects’ motivations. We 
reviewed their responses and found that more individual subjects provided explanations that were clearly 
identifiable as dominant strategy arguments (e.g., “This is the highest payoff column no matter what the other person 
chooses.”) in Treatment S (23 individuals) than in Treatment P (13 individuals). This difference is statistically 
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--------------------------------------------------- 
Links to Figure 6 AND Table 9

--------------------------------------------------- 
 

 Figure 7 shows that the differences in the individual dominant strategy rates are 

magnified for the pair rates. Pairs are more likely to play a dominant strategy equilibrium in 

Treatment S according to Fisher’s exact test in 8 out of 10 periods (periods 2, 4, 6, 7, 8 and 9 at 

the 5% significance level, and periods 3 and 5 at the 10% significance level). Column 2 of Table 9 

reports a probit model of the likelihood that pairs play a dominant strategy equilibrium, 

pooling across periods. A random subject effect specification is not possible since the 

composition of the individuals in each pair changes each period. But we include a dummy 

variable for the Purdue sessions to capture any (fixed effect) differences across sessions, and we 

report robust standard errors that account for clustering at the session level. This accounts 

directly for the fact that observations are independent across sessions but not within sessions. 

The mechanism treatment dummy variable is highly significant, indicating the substantially 

greater frequency of dominant strategy equilibrium play in Treatment S. Recall that neither 

Treatment S nor Treatment P have strictly dominant strategies, but only Treatment S involves a 

secure mechanism. 

-------------------------------- 
Link to Figure 7
-------------------------------- 

 Summarizing the above results, we have the following: 

 

Observation 3: 

                                                                                                                                                                           
significant according to Fisher’s exact test (p-value=0.021). Of course, asking for subjects’ reasoning could have 
influenced results, a conjecture that we cannot address with our data because we elicited these responses in all 
sessions. The only choice made by subjects before articulating their motivation was the period 1 choice, but as 
already noted we suspect that at least some subjects may have been confused when making their initial decision, and 
this makes the comparison of period 1 choices with later choices confounded by learning. 
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(a) Individuals play dominant strategies significantly more frequently in Treatment S than in Treatment 

P. 

(b) Pairs implement dominant strategy equilibria significantly more frequently in Treatment S than in 

Treatment P. 

 
6.4 Is the Pivotal Mechanism for Nash Implementation? 

 Figure 7 also illustrates the frequency of Nash equilibrium play at each period for 

Treatment P. The Nash equilibrium rate increased and became close to one as rounds advanced, 

while the dominant strategy equilibrium rate was around 50% across all periods in Treatment P. 

Thus, the concept of Nash equilibrium predicted long-run behavior much better than the 

concept of dominant strategies. Moreover, almost all Nash equilibria that were played were 

good, so in Treatment P the pivotal mechanism can be said to have succeeded in Nash 

implementing the socially efficient outcome. 

Our findings contrast with those in Kawagoe and Mori’s (2001) experiment on the 

pivotal mechanism with five agents. They conducted two different treatments, depending on 

whether or not payoff tables were given to subjects. First, when only the rule of the pivotal 

mechanism was explained, but no payoff table was used, the rate that individual subjects play 

dominant strategies was 16% (= 31/200), the frequency of dominant strategy equilibria was 0% 

(= 0/40), the frequency of Nash equilibria was 63% (=25/40), the frequency of bad outcomes 

was 45% (=18/40), and 44% (=11/25) of Nash equilibrium outcomes were bad. Therefore, the 

pivotal mechanism failed to achieve Nash implementation without using any payoff table. 

On the other hand, when payoff tables were given to subjects in addition to an 

explanation of the rule, the individual dominant strategy play rate as well as the frequency of 

good Nash equilibria increased. The rate that individual subjects play dominant strategies 

became 47% (= 47/100), although the frequency of dominant strategy equilibria was only 5% (= 
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1/20). The frequency of Nash equilibria was 65% (=13/20), the frequency of bad outcomes was 

10% (=2/20), and all Nash equilibrium outcomes were good, which is similar to our result. 

Notice that about two-thirds of the observed non-dominant strategy outcomes were 

Nash equilibria regardless of whether payoff tables were used. That is, deviations from 

dominant strategy equilibria tended to correspond to Nash equilibria in Kawagoe and Mori’s 

experiment, too. In itself, this provides some justification for looking at secure mechanisms. 

But whether the Nash equilibria that involved dominated strategies resulted in good or 

bad outcomes seemed to depend on whether or not payoff tables were employed. The reason 

why all Nash equilibria were good with payoff tables seems to be similar to that why almost all 

Nash equilibria were good in Treatment P, discussed in Section 6.1. If some, but not necessarily 

all, subjects succeed in discovering dominant strategies and the others choose best responses, 

then the outcome is likely to lie in the region of good Nash equilibria containing dominant 

strategy equilibria. The use of payoff tables would help subjects to find dominant strategies and 

best responses more easily. Of course further study is needed to investigate how much 

information on payoff structures is necessary for subjects to discover dominant strategies or 

play good Nash equilibria in the pivotal mechanism. This is left for future research. 

 

7. Conclusion 

Recent experimental and theoretical findings have raised serious questions about the 

viability of dominant strategy mechanisms. A possible solution is the notion of secure 

implementation introduced in Saijo, Sjöström and Yamato (2003). Motivated by this theoretical 

concept this paper presents an experimental study of the pivotal mechanism and a Groves-

Clarke mechanism with single-peaked preferences.  Both mechanisms are strategy-proof. But 
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the pivotal mechanism has Nash equilibria that differ from the dominant strategy equilibria, 

and players adopted dominant strategies significantly less often in the pivotal mechanism. 

 The purpose of this paper is a fairly limited one: we wanted to compare the performance 

of secure and non-secure mechanisms in an idealized laboratory experiment with a high signal-

to-noise ratio. Accordingly, we have tried to minimize "noise" due to subject confusion about 

the payoffs. This is done by describing the payoffs as clearly as possible using payoff tables. In 

such an idealized environment, we find that replacing a non-secure by a secure mechanism 

significantly increases the likelihood that the players will use their dominant strategies. Indeed, 

in the non-secure pivotal mechanism the players failed to use their dominant strategies about 

half of the time. Deviations from dominant strategies were also systematic rather than random: 

they corresponded to Nash equilibria. Although almost all Nash equilibria were “good” in our 

experiment (which used payoff tables only), many Nash equilibria were “bad” in Kawagoe and 

Mori’s (2001) experiment when no payoff table was employed. The performance of the non-

secure mechanism may be unstable, depending on how information on payoff structures is 

given to subjects.  In contrast, we are optimistic about the performance of secure mechanisms, 

where “bad” Nash equilibria are non-existent.  

We believe these findings may have implications for practical applications. Of course, a 

real world application would typically be "noisier" than our laboratory experiment, so the 

performance of both secure and non-secure mechanisms could be worse than in our idealized 

situation. But we this it is unlikely that noise would eliminate all potential problems caused by 

multiple Nash equilibria. Thus, we conjecture that, whatever the environment, secure 

mechanisms are likely to do better. In particular, we would not be surprised to find that non-

secure mechanisms perform poorly in practice, because the players fail to use their dominant 

strategies even in our idealized laboratory environment. Therefore, if the non-secure 

mechanism fails in a practical application, this cannot be simply attributed to confusion due to 

the presentation of payoffs. Of course, using a secure mechanism in a practical application 

would not guarantee good absolute performance either (although it would probably do 
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relatively better than a non-secure one). In a real world application, the subjects may become 

confused about the rules of the game and the payoffs. We leave for the future the task of 

studying how noise can be minimized in practical applications. But we believe that overly 

pessimistic conclusions about the future of mechanism design, which some researchers have 

drawn based on the poor performance of non-secure mechanisms in laboratory experiments, 

may not be justified at this point. Our experiment suggests that there is no inherent flaw in the 

game theoretic predictions that would rule out all possible practical applications.20 

In practical applications, mechanisms should not be too complex, due to the finite 

information processing capacity of the players. It turns out that requiring secure 

implementation does not lead to more complex mechanisms:  attention can be restricted to 

revelation mechanisms without loss of generality (Saijo, Sjöström and Yamato, 2003). By 

Proposition 1, the efficiency condition and strategy-proofness essentially pin down the 

revelation mechanism in the public goods environment. In order to compare the performance of 

two efficient strategy-proof revelation mechanisms, one that is secure and one that is not, the 

environment (specifically, the set of valuation functions) has to vary across treatments (as in 

Treatment P versus Treatment  S). In our experiment, we do not think this matters too much, 

because the presentation of the payoff tables was similar in the two treatments. Still, in other 

situations it may be possible to make interesting comparisons of the performance of secure 

versus non-secure mechanisms in the same environment. This is left for future experiments. 

Recently, Chen (2005) and Chen and Gazzale (2004) study whether mechanisms based 

on supermodularity conditions achieve convergence to Nash equilibria through learning. They 

find supermodular mechanisms converge significantly better than non-supermodular 

mechanisms in experiments.  It would be interesting to investigate the role of supermodularity 

in accomplishing convergence to dominant strategy equilibria.  It is easy to check that 

                                                      
20 In contrast, if the secure mechanism had performed poorly in our experiment, this would have suggested that, no 
matter how well the mechanism could be explained to the participants, practical applications of mechanism design 
would have little hope of success. 
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Treatment S is both secure and supermodular, while Treatment P is neither secure nor 

supermodular.  Therefore, it is not clear from the current analysis which condition, security or 

supermodularity, is more important for dominant strategy play. In Cason, Saijo, Wakayama, 

and Yamato (2004), however, we observe that individuals’ rate of dominant strategy play is 

high in a secure but non-supermodular mechanism experiment. These initial results suggest 

that supermodularity may not be necessary in order to generate dominant strategy play. 

The points we have raised concerning bad Nash equilibria apply equally well to bad 

Bayesian-Nash equilibria in an incomplete information setting. If a social choice function is 

securely implemented, then it can be shown that all Bayesian-Nash equilibria are “good”, no 

matter what the prior distribution over types may be.   We believe that this point is relevant for 

practical mechanism design. For example, for certain prior distributions, the second-price 

(Vickrey) auction has “bad” Bayesian-Nash equilibria that yield different outcomes than the 

(efficient) dominant strategy, truth-telling equilibrium. Most proponents of this auction 

institution have not acknowledged this shortcoming. Before making predictions regarding how 

this institution might perform in the field, it would be valuable to conduct laboratory 

experiments with the information conditions that admit these other inefficient Bayesian-Nash 

equilibria. We suspect that the second price auction and many other strategy-proof mechanisms 

may not function as elegantly as designed on the theorist’s blackboard.  
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Figure 4: Treatment P -- All Pairs Choices
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Figure 5: Treatment S -- All Pairs Choices
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Figure 6: Rates that Individuals Play Dominant Strategies
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Figure 7: Rates that Pairs Play Dominant Strategy and Nash Equilibria

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 1 2 3 4 5 6 7 8 9 10
Period

Treatment S:
Dominant Strategy
Equil. = Nash Equil.

Treatment P:
Dominant Strategy Equil.

Treatment P:
Nash Equil.

Pe
rc

en
t P

la
yi

ng
 D

om
in

an
t S

tra
te

gy
 a

nd
 N

as
h 

Eq
ui

l.



P1
The number which you choose (Type 1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294
2 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294
3 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 182
4 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 196 196
5 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 210 210 210
6 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 210 210 210 210

The number 7 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 210 210 210 210 210
which the 8 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 210 210 210 210 210 210

other person 9 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238 210 210 210 210 210 210 210
chooses 10 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 210 210 210 210 210 210 210 210
(Type 2) 11 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210

12 196 196 196 196 196 196 196 196 196 196 196 196 196 196 196 210 210 210 210 210 210 210 210 210 210
13 182 182 182 182 182 182 182 182 182 182 182 182 182 182 210 210 210 210 210 210 210 210 210 210 210
14 168 168 168 168 168 168 168 168 168 168 168 168 168 210 210 210 210 210 210 210 210 210 210 210 210
15 154 154 154 154 154 154 154 154 154 154 154 154 210 210 210 210 210 210 210 210 210 210 210 210 210
16 140 140 140 140 140 140 140 140 140 140 140 210 210 210 210 210 210 210 210 210 210 210 210 210 210
17 126 126 126 126 126 126 126 126 126 126 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
18 112 112 112 112 112 112 112 112 112 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
19 98 98 98 98 98 98 98 98 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
20 84 84 84 84 84 84 84 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
21 70 70 70 70 70 70 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
22 56 56 56 56 56 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
23 42 42 42 42 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
24 28 28 28 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
25 14 14 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210

Table 1. Payoff Table of Type 1 in Treatment P.



P2
The number which you choose (Type 2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182
2 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182
3 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 14
4 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 28 28
5 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 42 42 42
6 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 56 56 56 56

The number 7 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 70 70 70 70 70
which the 8 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 84 84 84 84 84 84

other person 9 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 98 98 98 98 98 98 98
chooses 10 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 112 112 112 112 112 112 112 112
(Type 1) 11 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 126 126 126 126 126 126 126 126 126

12 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 140 140 140 140 140 140 140 140 140 140
13 182 182 182 182 182 182 182 182 182 182 182 182 182 182 154 154 154 154 154 154 154 154 154 154 154
14 182 182 182 182 182 182 182 182 182 182 182 182 182 168 168 168 168 168 168 168 168 168 168 168 168
15 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182
16 182 182 182 182 182 182 182 182 182 182 182 196 196 196 196 196 196 196 196 196 196 196 196 196 196
17 182 182 182 182 182 182 182 182 182 182 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
18 182 182 182 182 182 182 182 182 182 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
19 182 182 182 182 182 182 182 182 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238
20 182 182 182 182 182 182 182 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252
21 182 182 182 182 182 182 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266
22 182 182 182 182 182 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280
23 182 182 182 182 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294
24 168 168 168 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294
25 154 154 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294

Table 2. Payoff Table of Type 2 in Treatment P.



  Dominant Strategy Equilibrium   Good Nash Equilibrium
  Bad Nash Equilibrium

Type 2's number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 98, 182 84, 182 70, 182 56, 182 42, 182 28, 182 14, 182

2 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 98, 182 84, 182 70, 182 56, 182 42, 182 28, 182 14, 182

3 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 98, 182 84, 182 70, 182 56, 182 42, 182 28, 182 210, 14

4 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 98, 182 84, 182 70, 182 56, 182 42, 182 210, 28 210, 28

5 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 98, 182 84, 182 70, 182 56, 182 210, 42 210, 42 210, 42

6 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 98, 182 84, 182 70, 182 210, 56 210, 56 210, 56 210, 56

7 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 98, 182 84, 182 210, 70 210, 70 210, 70 210, 70 210, 70
Type 1's 8 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 98, 182 84, 182 210, 84 210, 84 210, 84 210, 84 210, 84
number 9 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 210, 98 210, 98 210, 98 210, 98 210, 98 210, 98 210, 98

10 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 210, 112 210, 112 210, 112 210, 112 210, 112 210, 112 210, 112 210, 112

11 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 210, 126 210, 126 210, 126 210, 126 210, 126 210, 126 210, 126 210, 126 210, 126

12 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 210, 140 210, 140 210, 140 210, 140 210, 140 210, 140 210, 140 210, 140 210, 140 210, 140

13 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 210, 154 210, 154 210, 154 210, 154 210, 154 210, 154 210, 154 210, 154 210, 154 210, 154 210, 154

14 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 210, 168 210, 168 210, 168 210, 168 210, 168 210, 168 210, 168 210, 168 210, 168 210, 168 210, 168 210, 168

15 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 210, 182 210, 182 210, 182 210, 182 210, 182 210, 182 210, 182 210, 182 210, 182 210, 182 210, 182 210, 182 210, 182

16 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196

17 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210

18 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244

19 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238

20 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252

21 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266

22 294, 182 294, 182 294, 182 294, 182 294, 182 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280

23 294, 182 294, 182 294, 182 294, 182 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294

24 294, 168 294, 168 294, 168 196, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294

25 294, 154 294, 154 182, 294 196, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294

Table 3.  Dominant Strategy Equilibria and Nash Equilibria in Treatment P.



Type 2

5 12

8 (294, 182) (194, 182)Type 1
17 (294, 182) (210, 210)

Table 4.  The payoff table when type 1 chooses 8 or 17
and type 2 chooses 5 or 12 in Treatment P.



  Dominant Strategy Equilibrium   Good Nash Equilibrium Outcomes Pareto-dominated by Dominanat 

  Pareto Efficient Outcome   Bad Nash Equilibrium  Strategy Equilibrium Outcomes
Type 2's number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 98, 182 84, 182 70, 182 56, 182 42, 182 28, 182 14, 182

2 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 98, 182 84, 182 70, 182 56, 182 42, 182 28, 182 14, 182

3 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 98, 182 84, 182 70, 182 56, 182 42, 182 28, 182 210, 14

4 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 98, 182 84, 182 70, 182 56, 182 42, 182 210, 28 210, 28

5 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 98, 182 84, 182 70, 182 56, 182 210, 42 210, 42 210, 42

6 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 98, 182 84, 182 70, 182 210, 56 210, 56 210, 56 210, 56

7 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 98, 182 84, 182 210, 70 210, 70 210, 70 210, 70 210, 70
Type 1's 8 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 98, 182 84, 182 210, 84 210, 84 210, 84 210, 84 210, 84
number 9 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 112, 182 210, 98 210, 98 210, 98 210, 98 210, 98 210, 98 210, 98

10 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 126, 182 210, 112 210, 112 210, 112 210, 112 210, 112 210, 112 210, 112 210, 112

11 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 140, 182 210, 126 210, 126 210, 126 210, 126 210, 126 210, 126 210, 126 210, 126 210, 126

12 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 154, 182 210, 140 210, 140 210, 140 210, 140 210, 140 210, 140 210, 140 210, 140 210, 140 210, 140

13 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 168, 182 210, 154 210, 154 210, 154 210, 154 210, 154 210, 154 210, 154 210, 154 210, 154 210, 154 210, 154

14 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 182, 182 210, 168 210, 168 210, 168 210, 168 210, 168 210, 168 210, 168 210, 168 210, 168 210, 168 210, 168 210, 168

15 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 196, 182 210, 182 210, 182 210, 182 210, 182 210, 182 210, 182 210, 182 210, 182 210, 182 210, 182 210, 182 210, 182 210, 182

16 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 182 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196 210, 196

17 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 224, 182 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210 210, 210

18 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 238, 182 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244 210, 244

19 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 252, 182 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238 210, 238

20 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 266, 182 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252 210, 252

21 294, 182 294, 182 294, 182 294, 182 294, 182 280, 182 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266 210, 266

22 294, 182 294, 182 294, 182 294, 182 294, 182 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280 210, 280

23 294, 182 294, 182 294, 182 294, 182 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294

24 294, 168 294, 168 294, 168 196, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294

25 294, 154 294, 154 182, 294 196, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294 210, 294

Table 5.  Dominant Strategy Equilibria, Nash Equilibria, Pareto Efficient Outcomes in Treatment P.



Payoff Table (for the Actual Experiment) S1

The number which you choose
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 116 124 131 138 144 150 154 158 161 164 166 167 167 167 166 164 161 158 154 150 144 138 131 124 116
2 124 132 140 146 152 158 162 166 170 172 174 175 175 175 174 172 170 166 162 158 152 146 140 132 124
3 131 140 147 154 160 165 170 174 177 180 181 182 183 182 181 180 177 174 170 165 160 154 147 140 131
4 138 146 154 161 167 172 177 181 184 186 188 189 190 189 188 186 184 181 177 172 167 161 154 146 138
5 144 152 160 167 173 178 183 187 190 192 194 195 196 195 194 192 190 187 183 178 173 167 160 152 144
6 150 158 165 172 178 184 188 192 195 198 200 201 201 201 200 198 195 192 188 184 178 172 165 158 150

The number 7 154 162 170 177 183 188 193 197 200 202 204 205 206 205 204 202 200 197 193 188 183 177 170 162 154
which the 8 158 166 174 181 187 192 197 201 204 206 208 209 210 209 208 206 204 201 197 192 187 181 174 166 158

other person 9 161 170 177 184 190 195 200 204 207 210 211 212 213 212 211 210 207 204 200 195 190 184 177 170 161
chooses 10 164 172 180 186 192 198 202 206 210 212 214 215 215 215 214 212 210 206 202 198 192 186 180 172 164

11 166 174 181 188 194 200 204 208 211 214 216 217 217 217 216 214 211 208 204 200 194 188 181 174 166
12 167 175 182 189 195 201 205 209 212 215 217 218 218 218 217 215 212 209 205 201 195 189 182 175 167
13 167 175 183 190 196 201 206 210 213 215 217 218 219 218 217 215 213 210 206 201 196 190 183 175 167
14 167 175 182 189 195 201 205 209 212 215 217 218 218 218 217 215 212 209 205 201 195 189 182 175 167
15 166 174 181 188 194 200 204 208 211 214 216 217 217 217 216 214 211 208 204 200 194 188 181 174 166
16 164 172 180 186 192 198 202 206 210 212 214 215 215 215 214 212 210 206 202 198 192 186 180 172 164
17 161 170 177 184 190 195 200 204 207 210 211 212 213 212 211 210 207 204 200 195 190 184 177 170 161
18 158 166 174 181 187 192 197 201 204 206 208 209 210 209 208 206 204 201 197 192 187 181 174 166 158
19 154 162 170 177 183 188 193 197 200 202 204 205 206 205 204 202 200 197 193 188 183 177 170 162 154
20 150 158 165 172 178 184 188 192 195 198 200 201 201 201 200 198 195 192 188 184 178 172 165 158 150
21 144 152 160 167 173 178 183 187 190 192 194 195 196 195 194 192 190 187 183 178 173 167 160 152 144
22 138 146 154 161 167 172 177 181 184 186 188 189 190 189 188 186 184 181 177 172 167 161 154 146 138
23 131 140 147 154 160 165 170 174 177 180 181 182 183 182 181 180 177 174 170 165 160 154 147 140 131
24 124 132 140 146 152 158 162 166 170 172 174 175 175 175 174 172 170 166 162 158 152 146 140 132 124
25 116 124 131 138 144 150 154 158 161 164 166 167 167 167 166 164 161 158 154 150 144 138 131 124 116

Table 6.  Payoff Table of Type 1 distributed in Treatment S.



Payoff Table (for the Actual Experiment) S2

The number which you choose
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 12 24 35 45 55 64 72 80 86 92 98 102 106 110 112 114 115 115 115 114 112 110 106 102 98
2 24 36 47 57 67 76 84 91 98 104 110 114 118 121 124 126 127 127 127 126 124 121 118 114 110
3 35 47 58 68 78 87 95 102 109 115 121 125 129 132 135 137 138 138 138 137 135 132 129 125 121
4 45 57 68 79 88 97 105 113 120 126 131 136 140 143 145 147 148 149 148 147 145 143 140 136 131
5 55 67 78 88 98 107 115 122 129 135 141 145 149 152 155 157 158 158 158 157 155 152 149 145 141
6 64 76 87 97 107 116 124 131 138 144 150 154 158 161 164 166 167 167 167 166 164 161 158 154 150

The number 7 72 84 95 105 115 124 132 140 146 152 158 162 166 170 172 174 175 175 175 174 172 170 166 162 158
which the 8 80 91 102 113 122 131 140 147 154 160 165 170 174 177 180 181 182 183 182 181 180 177 174 170 165

other person 9 86 98 109 120 129 138 146 154 161 167 172 177 181 184 186 188 189 190 189 188 186 184 181 177 172
chooses 10 92 104 115 126 135 144 152 160 167 173 178 183 187 190 192 194 195 196 195 194 192 190 187 183 178

11 98 110 121 131 141 150 158 165 172 178 184 188 192 195 198 200 201 201 201 200 198 195 192 188 184
12 102 114 125 136 145 154 162 170 177 183 188 193 197 200 202 204 205 206 205 204 202 200 197 193 188
13 106 118 129 140 149 158 166 174 181 187 192 197 201 204 206 208 209 210 209 208 206 204 201 197 192
14 110 121 132 143 152 161 170 177 184 190 195 200 204 207 210 211 212 213 212 211 210 207 204 200 195
15 112 124 135 145 155 164 172 180 186 192 198 202 206 210 212 214 215 215 215 214 212 210 206 202 198
16 114 126 137 147 157 166 174 181 188 194 200 204 208 211 214 216 217 217 217 216 214 211 208 204 200
17 115 127 138 148 158 167 175 182 189 195 201 205 209 212 215 217 218 218 218 217 215 212 209 205 201
18 115 127 138 149 158 167 175 183 190 196 201 206 210 213 215 217 218 219 218 217 215 213 210 206 201
19 115 127 138 148 158 167 175 182 189 195 201 205 209 212 215 217 218 218 218 217 215 212 209 205 201
20 114 126 137 147 157 166 174 181 188 194 200 204 208 211 214 216 217 217 217 216 214 211 208 204 200
21 112 124 135 145 155 164 172 180 186 192 198 202 206 210 212 214 215 215 215 214 212 210 206 202 198
22 110 121 132 143 152 161 170 177 184 190 195 200 204 207 210 211 212 213 212 211 210 207 204 200 195
23 106 118 129 140 149 158 166 174 181 187 192 197 201 204 206 208 209 210 209 208 206 204 201 197 192
24 102 114 125 136 145 154 162 170 177 183 188 193 197 200 202 204 205 206 205 204 202 200 197 193 188
25 98 110 121 131 141 150 158 165 172 178 184 188 192 195 198 200 201 201 201 200 198 195 192 188 184

Table 7.  Payoff Table of Type 2 distributed in Treatment S.



  Dominant Strategy Equilibrium   Good Nash Equilibrium
  Bad Nash Equilibrium

Type 2's number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 sum

1 1 1 2

2 1 1 2 4

3 0

4 2 1 1 4

5 1 2 1 1 5

6 1 1

7 2 2
Type 1's 8 0
number 9 1 1

10 1 2 3

11 0

12 1 1

13 0

14 2 2

15 2 1 1 4

16 1 1 2 34 27 5 5 4 4 1 1 2 1 1 3 92

17 1 10 19 1 1 1 1 1 35

18 1 3 1 5

19 3 2 5

20 1 1 2

21 5 5

22 1 1

23 0

24 2 2

25 3 1 4

sum 0 0 0 0 1 1 0 1 0 1 2 65 69 5 5 5 4 5 3 4 2 1 0 1 5 180

Table 8. Data Frequency in Treatment P.



 

 

 

 (1) (2) 

 Individuals play dominant 

strategies 

Pairs play dominant 

strategy equilibrium 

Dummy variable=1 for 

Treatment S 

0.720** 

(0.346) 

0.887** 

(0.077) 

Dummy variable=1 for 

sessions at Purdue 

 0.170** 

(0.075) 

Intercept 1.236** 

(0.266) 

-0.095 

(0.064) 

ρ σ σ σ= +2 2 2/( )u v u  

(random effects significance) 

0.627** 

(0.069) 

 

Observations 720 360 

Log-likelihood -247.2 -211.3 

Restricted log-likelihood -344.5 -231.8 

Notes: Standard errors shown in parentheses. ** denotes significantly different from zero 

at five-percent. The model in column (1) is estimated with a random subjects effect error 

term εit = ui + vit, and the model in column (2) is estimated with clustering at the session 

level. 

 
Table 9. Probit Models of Individual and Pair Dominant Strategy Play 
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