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ABSTRACT 

Strategy-proofness, requiring that truth-telling is a dominant strategy, is a 

standard concept in social choice theory.  However, this concept has serious 

drawbacks. In particular, many strategy-proof mechanisms have multiple Nash 

equilibria, some of which produce the wrong outcome. A possible solution to this 

problem is to require double implementation in Nash equilibrium and in dominant 

strategies, i.e., secure implementation.  We characterize securely implementable social 

choice functions, and compare our results with dominant strategy implementation.  In 

standard quasi-linear environments with divisible private or public goods, there exist 

Pareto efficient (non-dictatorial) social choice functions that can be securely 

implemented. But in the absence of side-payments, secure implementation is 

incompatible with Pareto efficiency. 
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1. Introduction 

Strategy-proofness, requiring that truth-telling is a dominant strategy, is a 

standard concept in social choice theory. Although it seems natural that an agent will 

tell the truth if it is a dominant strategy to do so, there are some problems.  First, 

announcing one's true preference may not be a unique dominant strategy, and using the 

wrong dominant strategy may lead to the wrong outcome.  Second, many strategy-

proof mechanisms have multiple Nash equilibria, some of which produce the wrong 

outcome.  Third, experimental evidence shows that some strategy-proof mechanisms 

do not work well, that is, very few subjects reveal their true valuations. For example, 

see Attiyeh, Franciosi, and Isaac (2000) and Kawagoe and Mori (2001) for pivotal 

mechanism experiments, and Kagel, Harstad, and Levin (1987) and Kagel and Levin 

(1993) for second price auction experiments with independent private values. 

The first problem can be solved by requiring “full” implementation in 

dominant strategies. That is, all dominant strategy equilibria should yield a socially 

optimal outcome. This may require the use of indirect mechanisms. However, Repullo 

(1985) showed that if a social choice function f is dominant strategy implemented by 

some indirect mechanism, but f is not dominant strategy implemented by its associated 

direct mechanism, then the indirect mechanism does not Nash implement f. This leads 

to the second problem: mechanisms for dominant strategy implementation may have 

“bad” Nash equilibria.  For this reason, Repullo (1985) suggested that the concept of 

dominant strategy implementation should be replaced by Nash or Bayesian Nash 

implementation. We agree that the existence of “bad” (Bayesian) Nash equilibria is 

problematic. However, in the absence of a dominant strategy, a player’s best response 

depends on the other players’ choices, which may be hard to predict. This strategic 

uncertainty may lead to a failure to coordinate on a (Bayesian) Nash equilibrium. 

Moreover,  a problematic aspect of Bayesian Nash implementation is that it typically 

requires the mechanism designer to know the common prior of the players.   
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It seems clear that the standard concepts – dominant strategy implementation 

and (Bayesian) Nash implementation –  cannot provide a robust foundation for 

practical implementation. However, if a mechanism simultaneously implements a 

social choice function in dominant strategies and in Nash equilibria, then we get dual 

advantages.  First, with dominant strategies, strategic uncertainty is not important. 

Second, the mechanism implements the social choice rule in Bayesian Nash equilibria, 

for any common prior the players may hold. There is no possibility of getting stuck at a 

“bad” equilibrium.  

A social choice function is securely implementable if there exists a game form that 

simultaneously implements the social choice function in dominant strategy equilibria 

and in Nash equilibria.  Thus, all Nash equilibria should yield a socially optimal 

outcome.  We characterize securely implementable social choice functions: a social 

choice function is securely implementable if and only if it satisfies strategy-proofness 

and a new property called the rectangular property.  We show that many quasi-linear 

economic environments with continuous private or public goods admit securely 

implementable non-dictatorial social choice functions that maximize social surplus. 

However, in a standard single-peaked voting model without side-payments, any 

securely implementable social choice rule must be either dictatorial or Pareto 

inefficient. This negative result holds even for multi-valued social choice 

correspondences. In a quasi-linear environment with a discrete social decision, such as 

whether or not to implement an indivisible public project, some interesting non-

dictatorial social choice correspondences can be securely implemented, but none of 

them maximizes the social surplus.    

Our hope is that secure implementation may lead to some progress on the third 

problem mentioned above, the rather negative experimental evidence.  We consider 

secure implementation to be a benchmark: if secure mechanisms do not work well in 

experiments, then there is very little hope that anything will work. But if a secure 
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mechanism works well in experiments while implementation using less demanding 

equilibrium concepts fail, then we may be able to pinpoint the reason for the failure by 

comparing with the benchmark of secure implementation. The question of whether 

secure mechanisms work well in experiments is investigated in a companion paper 

(Cason, Saijo, Sjostrom&& && and Yamato (2003)). 

The remainder of the paper is organized as follows. We give notation and 

definitions in Section 2. We characterize secure implementability in Section 3.  In 

Section 4 we discuss the relationship between non-bossiness, dominant strategy 

implementation and secure implementation.  In Section 5, we consider “robust” 

Bayesian Nash implementation.  In Section 6, we show the possibility of secure 

implementation in economies with quasi-linear preferences and divisible public and 

private goods. Sections 7 and 8 discuss the difficulty of secure implementation with 

discrete social decisions, and in the absence of side-payments.  Concluding remarks are 

in Section 9. 

 

2.  Notation and Definitions 

 Let A be an arbitrary set of alternatives, and let I = {1, 2, ..., n} be the set of 

agents, with generic element i.  We assume that n ≥ 2 .  Each agent i is characterized by 

a preference relation defined over A.  We assume that agent i's preference relations 

admit a numerical representation ui : A → ℜ.  For each i, let Ui  be the class of utility 

functions admissible for agent i.  Let u = ( u1 , ..., un ) ∈ U ≡ × ∈i I Ui .    

 A social choice function (SCF) is a function f : U → A that associates with every u 

∈ U a unique alternative f (u) in A.  

 A mechanism (or game form) is a function g: S  → A that assigns to every s ∈ S a 

unique element of A, where S = × ∈i I Si , Si  is the strategy space of agent i.  The list s ∈ S 

will be written as ( si , s i− ), where s i−  = ( s1 , ..., si−1 , si+1 , ..., sn ) ∈ S i−  ≡ × ≠j i S j .  

Given s ∈ S and ′si  ∈ Si , ( ′si , s i− ) is the list ( s1 , ..., si−1 , ′si , si+1 , ..., sn ) obtained by 
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replacing the i-th component of s by ′si .  Let g( Si , s i− ) be the attainable set of agent i at 

s i− , i.e., the set of outcomes that agent i can induce when the other agents select s i− . 

 For i ∈ I, ui  ∈ Ui , and a ∈ A, let L(a, ui ) ≡ {b ∈ A | u a u bi i( ) ( )≥ } be the weak 

lower contour set for agent i with ui  at a.  Given a mechanism g: S → A, the strategy 

profile s ∈ S is a Nash equilibrium of g at u ∈ U if for all i ∈ I, g( Si , s i− ) ⊆  L(g(s), ui ).   

Let N ug ( )  be the set of Nash equilibria of g at u.  Also, let NA
g (u) be the set of Nash 

equilibrium outcomes of g at u, i.e., NA
g (u) ≡ {a ∈ A | there exists s ∈ S such that s ∈ 

N ug ( )  and g(s) = a}.  The mechanism g implements the SCF f in Nash equilibria if for all u 

∈ U, f (u) = NA
g (u).  f is Nash implementable if there exists a mechanism which 

implements f in Nash equilibria. The mechanism g is called the direct revelation 

mechanism associated with the SCF f if S Ui i=  for all i I∈  and g(u) = f (u) for all u U∈ . 

We will sometimes abuse terminology by not distinguishing between the SCF f and the 

direct revelation mechanism associated with f. 

 

 Let a mechanism g: S  → A be given.  The strategy s Si i∈  is a dominant strategy 

for agent i ∈ I of g at u Ui i∈  if for all $s Si i− −∈ , g(Si , $s i− ) ⊆  L(g( si , $s i− ), ui ).  Let 

DS ui
g

i( )  be the set of dominant strategies for i of g at ui .  The strategy profile s S∈  is a 

dominant strategy equilibrium of g at u ∈ U if for all i ∈ I, s DS ui i
g

i∈ ( ) .  Let DS ug ( )  be the 

set of dominant strategy equilibria of g at u.  Also, let DSA
g (u) be the set of dominant 

strategy equilibrium outcomes of g at u, i.e., DSA
g (u) ≡ {a ∈ A | there exists s ∈ S such 

that s ∈ DS ug ( )  and g(s) = a}.  The mechanism g implements the SCF f in dominant 

strategy equilibria if for all u ∈ U, f (u) = DSA
g (u).  f is dominant strategy implementable if 

there exists a mechanism which implements f in dominant strategy equilibria. 

The SCF f is strategy-proof if for all i I∈ , for all u u Ui i i,~ ∈ , for all ~u Ui i− −∈ , 

u f u u u f u ui i i i i i( ( ,~ )) ( (~ ,~ ))− −≥ .  The following result is well-known: 
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Proposition 1 (The Revelation Principle for Dominant Strategy Implementation. Gibbard 

(1973)).  If the SCF f is dominant strategy implementable, then f is strategy-proof. 

 

The converse of Proposition 1 is not true: some strategy-proof  SCF’s cannot be 

dominant strategy implemented (e.g., Dasgupta, Hammond, and Maskin (1979)). 

 

3.  Secure Implementation: A Characterization and a Revelation Principle  

We introduce the following new concept of implementation. 

 

Definition 1. The mechanism g securely implements the SCF f if for all u ∈ U, f (u) =  

DSA
g (u) = N A

g (u).1  The SCF f is securely implementable if there exists a mechanism  

which securely implements f.   

 

Secure implementation requires that for every possible preference profile, the f-

optimal outcome equals the set of dominant strategy equilibrium outcomes as well as 

the set of Nash equilibrium outcomes. 

 Next we characterize the class of securely implementable SCF's.  We use two 

conditions. The first condition is strategy-proofness. As Proposition 1 indicates, 

strategy-proofness is necessary for dominant strategy implementation, and so it is also 

necessary for secure implementation. However, an additional condition is also 

necessary for secure implementation. To see why intuitively, suppose that the direct 

revelation mechanism g = f securely implements the SCF f.  See Figure 1 in which n = 2  

and ( , )u u1 2  is the true preference profile.  Suppose  

(3.1)   u f u u u f u u1 1 2 1 1 2( ( ,~ )) ( (~ ,~ ))= , 

                                                      
1 Secure implementation is identical with double implementation in dominant strategy equilibria and Nash 
equilibria.  It was Maskin (1979) who first introduced the concept of double implementation. See also 
Yamato (1993).  Note that secure implementation can be regarded as multiple (more than double) 
implementation in dominant strategy equilibria, Nash equilibria, and all refinements of Nash equilibria 
whose sets are larger than the set of dominant strategy equilibria. 
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that is, agent 1 is indifferent between reporting the true preference u1  and reporting 

another preference ~u1  when agent 2’s report is ~u2 .  Since reporting u1  is a dominant 

strategy by strategy-proofness, it follows from (3.1) that 

u f u u u f u u u f u u1 1 2 1 1 2 1 1 2( (~ ,~ )) ( ( ,~ )) ( ( ,~ ))= ≥ ′  for all ′ ∈u U1 1 .  

That is, reporting ~u1  is one of agent 1’s best responses at u1  when agent 2 reports ~u2 .   

Next suppose that  

(3.2)      u f u u u f u u2 1 2 2 1 2( (~ , )) ( (~ ,~ ))= . 

By using an argument similar to the above, it is easy to see that 

u f u u u f u u2 1 2 2 1 2( (~ ,~ )) ( (~ , ))≥ ′  for all ′ ∈u U2 1 , that is, reporting ~u2  is one of agent 2’s 

best responses when agent 1 reports ~u1 .  Therefore, f u u(~ ,~ )1 2  is the Nash equilibrium 

outcome.  Moreover, f u u( , )1 2  is the dominant strategy outcome, and by secure 

implementability, the dominant strategy outcome coincides with the Nash equilibrium 

outcome.  Accordingly we conclude that f u u( , )1 2 = f u u(~ ,~ )1 2  if (3.1) and (3.2) holds. 
 

---------------------------------- 
Link to Figure 1

---------------------------------- 
 

 A formal definition of this condition, called the rectangular property, is given as 

follows: 

 

Definition 2.  The SCF f satisfies the rectangular property if for all u u U,~∈ , if 

u f u u u f u ui i i i i i( (~ ,~ )) ( ( ,~ ))− −=  for all i I∈ , then f ( ~u ) = f (u). 

 

 A formal proof of the claim that the rectangular property is necessary for secure 

implementation is given as follows: 

 

Lemma 1.  If the SCF f is securely implementable, then f satisfies the rectangular property. 
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Proof:  Let g: S  → A be a mechanism which securely implements f.  Take any u u U,~∈ .  

Suppose that  

(3.3) u f u u u f u ui i i i i i( (~ ,~ )) ( ( ,~ ))− −=  for all i I∈ . 

 Choose a dominant strategy profile at ~u , s u(~)= ( s u s un n1 1(~ ),... , (~ ) )∈DS ug (~) .  By 

dominant implementability,  

(3.4) g( s u s un n1 1(~ ),... , (~ ) ) = f u(~) . 

 Let i I∈  be given.  Choose a dominant strategy for i  at ui , s ui i( ) ∈DS ui
g

i( ) .  

Then  ( s u s ui i i i( ), (~ )− − )∈ −DS u ug
i i( ,~ ) , where s u s ui i j j j i− − ≠=(~ ) ( (~ )) .  By dominant 

implementability,  

(3.5) g( s u s ui i i i( ), (~ )− − ) = f ( u ui i,~− ). 

By (3.3), (3.4), and (3.5),  

(3.6) ui (g( s u s ui i i i( ), (~ )− − )) = ui (g( s u s un n1 1(~ ),... , (~ ) )). 

Further, since s ui i( ) ∈DS ui
g

i( ) ,  

(3.7) g(Si , s ui i− −(~ ) ) ⊆  L(g( s u s ui i i i( ), (~ )− − ), ui ). 

By (3.6) and (3.7), g(Si , s ui i− −(~ ) ) ⊆  L(g( s u s ui i i i(~ ), (~ )− − ), ui ).  Since this holds for any 

i I∈ ,  ( s u s un n1 1(~ ),... , (~ ) )∈N ug ( ) .  By Nash implementability and (3.4), f u( ) = 

g( s u s un n1 1(~ ),... , (~ ) ) = f u(~) .  Q.E.D. 

 Next we show that strategy-proofness and the rectangular property are not 

only necessary, but also sufficient for secure implementability.  

 

Lemma 2.  If the SCF f satisfies strategy-proofness and the rectangular property, then the 

direct revelation mechanism associated with f securely implements f. 

 

Proof:  By strategy-proofness, for all u U∈ , f(u)∈DS uA
g ( ) .  We will prove that for all 

u U∈ , N uA
g ( )  = f (u).  Since ∅ ≠ ⊆DS u N uA

g
A
g( ) ( ) , that suffices to prove the lemma. 

Let u U∈  be given.  Take any s u N ug= ∈~ ( ) .  We show that g s f u( ) ( )= , i.e., 

f u f u(~) ( )= .  Since ~ ( )u N ug∈ ,  
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(3.8) ui ( f u ui i(~ ,~ )− ) ≥ ui ( f u ui i( ,~ )− ) for all i I∈ . 

Further, since u DS ui i
g

i∈ ( )  by strategy-proofness,  

(3.9)  ui ( f u ui i( ,~ )− ) ≥ ui ( f u ui i(~ ,~ )− ) for all i I∈ . 

By (3.8) and (3.9), ui (f (~ ,~ )u ui i− ) = ui (f ( ,~ )u ui i− ) for all i I∈ .  By the rectangular 

property, f u f u(~) ( )= . Q.E.D. 

 

 By Proposition 1, Lemmas 1 and 2, we have the following characterization of 

securely implementable SCF’s. 

 

Theorem 1.  An SCF is securely implementable if and only if it satisfies strategy-proofness and 

the rectangular property. 

 

 In the early literature on implementation, it was pointed out that even if an SCF 

f is implementable in dominant strategies, it may not be implemented by its associated 

direct revelation mechanism: it may be necessary to use more complicated “indirect” 

mechanisms (Dasgupta, Hammond, and Maskin (1979), Repullo (1985)). However, 

suppose the SCF f is securely implemented by some mechanism. Then by Proposition 1 

and Lemma 1, f satisfies strategy-proofness and the rectangular property. Hence, by 

Lemma 2, f is securely implemented by its associated direct revelation mechanism. 

Thus, we have a revelation principle for secure implementation: 

  

Theorem 2. An SCF is securely implementable if and only if it is securely implemented by its 

associated direct revelation mechanism. 

  

The implication of this revelation principle is that we can limit our attention to 

the set of direct mechanisms. Direct mechanisms are somewhat natural and easy to 

explain to experimental subjects, which may add to their appeal.  
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4. Non-Bossiness, Dominant Strategy Implementation and Secure Implementation 

To further study the set of securely implementable social choice functions, we 

need the idea of non-bossiness. Intuitively, non-bossiness implies that no one can change 

the outcome without changing her own utility. Satterthwaite and Sonnenschein (1981) 

first introduced a definition of non-bossiness for economic environments.2  For general 

environments, consider the following definitions. 

 

Definition 3.  The SCF f satisfies  non-bossiness if for all u u U, ′ ∈  and all i I∈ , if 

f u u f u ui i i i( , ) ( , )− −≠ ′ , then u f u u u f u ui i i i i i( ( , )) ( ( , ))− −≠ ′ . 

 

Definition 4. The SCF f satisfies weak non-bossiness if for all u u U, ′ ∈  and all i I∈ , if 

f u u f u ui i i i( , ) ( , )− −≠ ′ , then there is some ′′−u i  such that u f u u u f u ui i i i i i( ( , )) ( ( , ))′′ ≠ ′ ′′− − . 

 

The rectangular property is stronger than non-bossiness. 

 

Proposition 2. If an SCF satisfies the rectangular property, then it satisfies non-bossiness. 

 
Proof:  Suppose the SCF f satisfies the rectangular property, and 

u f u u u f u uj j j j j j( ( , )) ( ( , ))′ =− −  for some j.  Let ′′u  be such that ′′ = ′ −u u uj j( , ) . We need to 

show f u f u( ) ( )′′ = . Now u f u u f u u u f u u u f u uj j j j j j j j j j( ( )) ( ( , )) ( ( , )) ( ( , ))′′ = ′ = = ′′− − − , and 

( , ) ( , )′′ ′′ = ′′− −u u u ui i i i  for all i j≠ . So we have u f u u u f u ui i i i i i( ( , )) ( ( , ))′′ ′′ = ′′− −  for all i I∈ . By 

the rectangular property, f u f u( ) ( )′′ = . Q.E.D. 

                                                      
2 Our definition of non-bossiness is slightly stronger than Satterthwaite-Sonnenschein's original condition, 
when applied to economic environments. Satterthwaite and Sonnenschein’s original definition was that 
the SCF f satisfies non-bossiness if for all u u U, ′ ∈  and all i I∈ , if f u u f u ui i i i( , ) ( , )− −≠ ′ , then 
f u u f u ui i i i i i( , ) ( , )− −≠ ′ , where f ui( )  denotes the consumption bundle agent i receives at the allocation 
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Thus, any securely implementable SCF must be non-bossy. On the other hand, 

non-bossiness does not imply the rectangular property, even in combination with 

strategy-proofness (an example is provided in Section 6). However, it turns out that 

weak non-bossiness is enough to guarantee that a strategy-proof SCF can be dominant 

strategy implemented. Non-bossiness is a stronger condition than weak non-bossiness, so 

secure implementation is more difficult to achieve than dominant strategy 

implementation. For example, the Vickrey auction discussed in Section 7 satisfies weak 

non-bossiness, but violates non-bossiness.  (Notice that in general, weak non-bossiness 

does not imply that each player will have a unique dominant strategy in the revelation 

mechanism.) 

 

Theorem 3. An SCF is dominant strategy implemented by its associated direct revelation 

mechanism if and only if it satisfies strategy-proofness and weak non-bossiness. 

 

Proof:  Suppose the SCF f satisfies strategy-proofness and weak non-bossiness. 

Consider the associated direct revelation mechanism. Suppose agent i’s true preference 

is ui . By strategy proofness, it is dominant to announce the truth ui . Suppose 

announcing a different preference ′ui  is another dominant strategy. If 

f u u f u ui i i i( , ) ( , )− −≠ ′  for some u i− , then by weak non-bossiness there is ′′−u i  such that 

u f u u u f u ui i i i i i( ( , )) ( ( , ))′′ > ′ ′′− − . Therefore, announcing ′ui  is in fact dominated by 

announcing ui , which is a contradiction. Hence, f u u f u ui i i i( , ) ( , )− −= ′  for all u i−  after 

all, so agent i’s lie (i.e. to say ′ui ) cannot ever affect the outcome. Hence, f is dominant 

strategy implemented.  

 Suppose the SCF f is dominant strategy implemented by its associated direct 

revelation mechanism. By Proposition 1, f is strategy-proof. It remains to show f 

                                                                                                                                                            
f u f ui i I( ) ( ( ))= ∈  recommended by the SCF f for the preference profile u. Mizukami and Wakayama (2004) 

discuss the importance of non-bossiness for dominant strategy implementation in exchange economies. 
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satisfies weak non-bossiness. Take any u u U, ′ ∈  and i I∈ . Suppose f u ui i( , )− ≠  

f u ui i( , )′ − . Then announcing ′ui  is dominated by announcing ui  when agent i’s true 

preference is ui , so that there is ′′−u i  such that u f u u u f u ui i i i i i( ( , )) ( ( , ))′′ > ′ ′′− − .        Q.E.D. 

  

  
5. Robust Bayesian Implementation without Knowledge of the Prior 

In the standard theory of Bayesian mechanism design, the agents are assumed 

to have a common prior over the possible states of the world, and the planner is 

assumed to know this prior. For example, in Myerson’s (1981) theory of optimal 

auctions, the optimal reserve price depends on the prior distribution. It has often been 

argued that the assumption that the planner knows the agents’ common prior is too 

strong (e.g., Bergemann and Morris (2003, 2004)). It turns out that secure 

implementation guarantees that the planner does not need to know anything about the 

agents’ beliefs. If strategy-proofness (i.e. dominant-strategy incentive compatibility) 

and the rectangular property hold, then if the agents play a Bayesian Nash equilibrium 

with any arbitrary prior whatsoever, the outcome will be socially optimal with 

probability one. Thus, the social planner can achieve implementation if the agents are 

Bayesian expected utility maximizers with a common prior, even if the planner is not 

sure about what the prior is. 

Let U be a finite set of possible utility profiles, and let q be a common prior 

distribution over U. Fix a social choice function f U A: → . The direct revelation 

mechanism associated with f, together with the common prior q, define a Bayesian 

game. A strategy for player i is a function σi i iU U: → , with the following 

interpretation: when player i’s true type is ui , then he announces σi iu( ). A strategy 

profile is a function σ:U U→ , with the following interpretation: when the true state is 
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u, the players announce σ( )u = ( ( ), ( ),... , ( ))σ σ σ1 1 2 2u u un n . Similarly, define σ− −i iu( ) in 

the obvious way. We will allow an agent’s beliefs about other agents’ types to depend 

on the agent’s own type. That is, after agent i learns his own preferences, he can update 

his prior belief using Bayes rule. If agent i’s true type is ui , the the probability that he 

assigns to the other agents being u i−  is denoted q u ui i i( | )− .  

Bayesian Nash equilibrium is defined in the standard way. Notice that if the 

agents play a Bayesian Nash equilibrium σ  in the direct revelation game, then if the 

true state is u, the mechanism will implement f u( ( ))σ . Given a prior distribution q, the 

direct revelation mechanism implements f in Bayesian Nash equilibria if the following 

two conditions hold: (i) a Bayesian Nash equilibrium σ  exists, and (ii) for any Bayesian 

Nash equilibrium σ  and any u such that q u( ) > 0 , f u f u( ( )) ( )σ = . Moreover, the direct 

revelation mechanism robustly implements f in Bayesian Nash equilibria if for any prior 

distribution q, the above two conditions hold. That is, robust implementation requires 

that the same mechanism works for all q. 

 We now prove that strategy-proofness and the rectangular property are 

necessary and sufficient for robust Bayesian Nash implementation by the direct 

revelation mechanism: 

 

Theorem 4. An SCF f is robustly implemented in Bayesian Nash equilibria by the direct 

revelation mechanism if and only if f satisfies strategy-proofness and the rectangular property. 

 

Proof: Suppose that f satisfies strategy-proofness and rectangular property. Since f is 

strategy-proof, the truthful strategy σ∗ =( )u u  is certainly a Bayesian Nash equilibrium. 

Now, suppose there is another Bayesian Nash equilibrium σ  which is not truthful. 
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Take any u∗  such that σ( )u u u∗ = ′ ≠ ∗. We need to show that if q u( )∗ > 0 , then 

f u f u( ) ( )′ = ∗ . The Bayes-Nash property implies that  

q u u u f u ui i i
u U

i i i i
i i

( | ) ( ( ( ), ))−
∗

∈

∗
− −

− −
∑ ′σ  ≥ −

∗

∈

∗
− −

∗

− −
∑q u u u f u ui i i

u U
i i i i

i i

( | ) ( ( ( ), ))σ  

for all i. By strategy-proofness, u f u ui i i i
∗

− − ′( ( ( ), ))σ ≤ ∗
− −

∗u f u ui i i i( ( ( ), ))σ  for all u i− . 

Therefore, we must in fact have  

u f u ui i i i
∗

− − ′( ( ( ), ))σ = ∗
− −

∗u f u ui i i i( ( ( ), ))σ   

for all u i−   such that q u ui i i( | )−
∗ > 0 . If each agent uses Bayes rule with the common 

prior q , then q u( )∗ > 0  implies q u ui i i( | )−
∗ ∗ > 0  for all i. Therefore, 

u f u ui i i i
∗

− −
∗ ′( ( ( ), ))σ = ∗

− −
∗ ∗u f u ui i i i( ( ( ), ))σ   

for all i. But σ( )u u∗ = ′ , so 

u f u ui i i
∗

−′ ′( ( , )) = ′∗
−

∗u f u ui i i( ( , )) . 

The rectangular property now implies f u f u( ) ( )′ = ∗ . 

Conversely, suppose that the direct revelation mechanism robustly implements 

f in Bayesian Nash equilibria. Then it follows from Proposition 1 and Lemma 1 that f is 

strategy-proof and satisfies the rectangular property: simply consider the special case 

of Bayesian Nash equilibrium when q(u) = 1 for some u, which corresponds to the case 

of complete information. Q.E.D. 

 

 By Theorems 2 and 4, we have the following equivalence result between secure 

implementability and robust Bayesian Nash implementability: 

 



 15

Corollary 1. An SCF f is robustly implemented in Bayesian Nash equilibria by the direct 

revelation mechanism if and only if it is securely implemented by the direct revelation 

mechanism. 

 

6.  Quasi-Linear Economic Environments 

Let the set of alternatives be 

 A y t t y Y t in i= ∈ ∈ℜ ∀{( , ,... , ) , , }1 , 

where y Y∈  is a social decision, and ti  is a transfer to agent i of a private good called 

“money”. The set of possible social decisions Y is a convex subset of ℜk , for some k. (In 

the next section, we consider the case where Y is a discrete set). The cost of taking 

decision y (in terms of “money”) is given by a differentiable and convex function c(y).  

Each agent i I∈  has quasi-linear preferences: 

 u y t t v y ti n i i i( , ) = ( , )+1,..., θ .  

Here vi  is a valuation function which is differentiable and concave in y, and θi  is a real 

number representing agent i’s “type”. For each i, the function vi  is given once and for 

all and only the type varies, so the preferences of the agents will be represented by the 

profile of types, θ θ θ θ= ( , ..., )1 2 n .  The set of possible types for agent i is Θi . Let 

Θ Θ≡ × ∈i I i .  An SCF f A:Θ→ recommends, for each profile θ , a social decision y f ( )θ  

and a set of transfers. Let ti
f ( )θ  denote the recommended transfer to agent i. Thus, 

f y t t tf f f
n
f( ) ( ( ), ( ), ( )..., ( ))θ θ θ θ θ= 1 2 . The social surplus is defined as  

(6.1) v y c yi ii I ( , ) ( )θ∈∑ −  

To avoid some technical issues, in this section we assume for all θ ∈Θ , a unique y 

maximizes the social surplus (6.1). (This happens, for example, if each vi  is strictly 

concave in y). A direct revelation mechanism f A:Θ→  is a Groves-Clarke mechanism if 

for all θ ∈Θ , y f ( )θ  maximizes the social surplus, and the transfer function is given by, 

for all i I∈ , 

(6.2) t v y c yi
f

j
f

jj i
f

i i( ) ( ( ), ) ( ( )) ( )θ θ θ θ ϕ θ= − +≠ −∑  



 16

Here ϕ i  is some arbitrary function which does not depend on θi . It is well-known that 

Groves-Clarke mechanisms are strategy-proof (Clarke (1971), Groves (1973)). In many 

cases, for example if each vi  is differentiable in θi  and each Θi  is a convex set, any 

strategy-proof SCF that satisfies (6.1) must in fact also satisfy (6.2) (Holmström (1979)).   

 If the social surplus maximizing decision always occurs in the interior of Y 

(denoted intY) then the rectangular property is equivalent to non-bossiness. Both 

properties reduce to the following: no agent should be able to change the profile of 

transfers without changing the social decision. This is shown in the following lemma. 

 

Lemma 3. Suppose for all θ ∈Θ , y Yf ( ) intθ ∈  maximizes the social surplus.  For any 

Groves-Clarke mechanism f A:Θ→ , the following three conditions are equivalent: (i) f 

is non-bossy; (ii) for all θ θ, ′ ∈Θ  and i I∈ , f f i i( ) ( , )θ θ θ= ′ −  whenever 

y yf f
i i( ) ( , )θ θ θ= ′ − ; (iii) f satisfies the rectangular property. 

 

Proof: (i) implies (ii).  Strategy proofness implies that if y yf f
i i( ) ( , )θ θ θ= ′ − , then 

t ti
f

i
f

i i( ) ( , )θ θ θ= ′ − . Non-bossiness then implies f f i i( ) ( , )θ θ θ= ′ − . 

(ii) implies (iii).  Suppose (ii) holds. Fix any profile θ , and let y y f∗= ( )θ .  

Suppose u f u fi i i i( ( , )) ( ( ))′ =−θ θ θ  for all i. Since the surplus maximizing y is always 

unique, it is easy to see, using (6.2), that agent i desires y y= ∗uniquely. Therefore, if 

u f u fi i i i( ( , )) ( ( ))′ =−θ θ θ  then y yf
i i( , )′ = ∗−θ θ . By property (ii), f f i i( ) ( , )θ θ θ= ′ − . Since 

y∗  is interior, and v is differentiable and concave in y, y∗  can be found by solving the 

first order condition for maximizing (6.1).  Since y y yf
i i

f( , ) ( )′ = = ∗−θ θ θ , we have 

∂ ∗ ∂ = ∂ ∗ ′ ∂v y y v y yi i i i( , )/ ( , )/θ θ for all i.   

We know that f fi i( , ) ( )′ =−θ θ θ  for all i. For i = 1 , this yields 

f fn( , ,..., ) ( )′ =θ θ θ θ1 2 .  The first-order condition for maximizing (6.1) must be satisfied 

at y∗  for profile ( , ,..., )′θ θ θ1 2 n . Since ∂ ∗ ∂ = ∂ ∗ ′ ∂v y y v y y2 2 2 2( , )/ ( , )/θ θ , the first order 

condition is also satisfied at y∗  for the profile ( , , ..., )′ ′θ θ θ θ1 2 3 n . Thus, 
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y y yf
n

f
n( , , ..., ) ( , , ..., )′ ′ = ′ = ∗θ θ θ θ θ θ θ θ1 2 3 1 2 3 . Property (ii) now implies 

f f fn n( , , ..., ) ( , , ..., ) ( )′ ′ = ′ =θ θ θ θ θ θ θ θ θ1 2 3 1 2 3 . By sequentially replacing each θi by ′θi  in 

this manner, we find that f f( ) ( )′ =θ θ . Therefore, the rectangular property holds. 

(iii) implies (i). This follows from Proposition 2.  Q.E.D. 

 

Example 1 shows that standard assumptions often guarantee non-bossiness. 

 

Example 1: Production of a divisible public good.  

The public good is one-dimensional,Y = ℜ+ . There are two leading cases that 

have been studied in the literature. Case 1: v y b yi i i( , ) ( )θ θ= , where b is a strictly concave 

function. To guarantee that the surplus maximizing y is strictly positive, suppose 

′ >b ( )0 0  and ′ =c ( )0 0 . Case 2: Let g(x) be a function which is strictly concave, reaching a 

maximum at x = 0, and suppose v y g yi i i( , ) ( )θ θ= − . There is no cost of producing the 

public good, c y( ) = 0 . This is the case of single-peaked preferences, where θi  is agent 

i’s “peak”, i.e., his most preferred level of the public good. As long as all θi  are strictly 

positive, the surplus maximizing level of the public good is strictly positive.  

In both case 1 and case 2 of Example 1, if y yf f
i i( ) ( , )θ θ θ= ′ −  then ′ =θ θi i , so 

obviously f f i i( ) ( , )θ θ θ= ′ − .  From Lemma 3 it follows that all Groves-Clarke 

mechanisms are non-bossy and will securely implement the social surplus maximizing 

decision.  

 

 Example 2 shows that corner solutions do not necessarily mean that secure 

implementation is impossible.  

 

Example 2: Allocation of a divisible private good in fixed supply.  

One unit of a divisible private good called “cake” is to be shared by the agents. 

(In addition, transfers of “money” are possible). The social decision is denoted 
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y y y yn= ( , ,..., )1 2 , where yi  is agent i’s share of the cake. Feasibility requires y ≥ 0 and 

yii∑ = 1. Valuation functions are of the form v y b yi i i i( , ) ( )θ θ= , where b is a strictly 

increasing and strictly concave function, satisfying b(0) = 0. Suppose Θi = [ , ]min maxθ θ , 

where  

(6.3) θ θmin max( ) > ( )′ ′b b0 1 . 

Inequality (6.3) guarantees that the social surplus is never maximized by giving 

all of the cake to one agent. However, with three or more agents, it may be optimal to 

give no cake to some agent, so Lemma 3 does not apply.  The social surplus θi ii b y( )∑  

is to be maximized subject to y ≥ 0 and yii∑ = 1. Let λ > 0  denote the Lagrange 

multiplier for the resource constraint. The maximum is found by solving the first order 

condition,  

(6.4) θ λi ib y′ ≤( ) , yi ≥ 0 , y b yi i i(λ θ− ′( )) = 0 for all i.  

Suppose the function ϕi  in (6.2) is a constant, so the transfer of money to agent i is  

(6.5) t b yi
f

j j
f

j i( ) ( ( ))θ θ θ= +≠∑ constant . 

We claim that in this case the Groves-Clarke mechanism satisfies the rectangular 

property. Indeed, suppose u f u fi i i i( ( )) ( ( , ))θ θ θ= ′ −  for all i. This implies that for all i, 

either ′ =θ θi i or agent i gets no cake, y yi
f

i i i
f( , ) ( )′ = =−θ θ θ 0 . Therefore, the first order 

condition (6.4) still holds when θ  is replaced by ′θ , without changing λ or y, so 

y yf f( ) ( )′ =θ θ . Moreover, (6.5) implies t tf f( ) ( )′ =θ θ , so f f( ) ( )′ =θ θ  (recall that 

b( )0 0= ). Thus, the rectangular property holds, and secure implementation is achieved. 

 

Example 2 illustrates the difference between implementation in strictly 

dominant strategies, and secure implementation. In Example 2, telling the truth is not a 

strictly dominant strategy, because an agent who gets no cake may still get no cake - 

and the same transfer of money - after a small change in his type. However, this does 

not prevent secure implementation, as long as the change in his type does not change 
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anyone else’s transfer. This is why ϕi  must be constant. (If ϕi  is not a constant then it 

can happen that t tf f( ) ( )′ ≠θ θ  even though y yf f( ) ( )′ =θ θ .) 

If (6.3) does not hold, then the Groves-Clarke mechanism with constant ϕi  will 

still be non-bossy. However, the rectangular property will be violated. Since one agent 

may consume all of the cake when (6.3) is violated, u f u fi i i i( ( )) ( ( , ))θ θ θ= ′ −  implies 

either ′ =θ θi i  or  y yi
f

i i i
f( , ) ( )′ = =−θ θ θ 0  or y yi

f
i i i

f( , ) ( )′ = =−θ θ θ 1 . But this no longer 

ensures that the first order condition (6.4) holds when θ is replaced by θ’. Therefore, 

f f( ) ( )′ ≠θ θ  is possible. Intuitively, there can be bad Nash equilibria where one agent 

exaggerates his valuation of cake and receives all of it, while all the other agents report 

very low valuations and receive no cake.  Notice that this example shows that, in 

general, non-bossiness and strategy-proofness together do not imply the rectangular 

property. 

 

Example 3: Serial cost sharing.  

The social decision is y y y yn= ( , ,..., )1 2 , where yi  is agent i’s consumption of 

divisible “cake”. But unlike Example 2, now cake can be produced (using money as 

input). The cost function is c y C yii( ) ( )= ∑ , where C is strictly increasing, differentiable 

and convex. Each valuation function vi  is strictly increasing and strictly concave in yi  

(but doesn’t depend on y j  for j i≠ ). Moulin and Shenker (1992) define serial cost 

sharing and show that this SCF is strategy-proof and can be Nash implemented by an 

indirect mechanism. In general, the two properties of Nash implementability and 

strategy-proofness together do not imply the rectangular property (which requires 

double implementation by the same mechanism). However, serial cost sharing does 

satisfy the rectangular property. Suppose u f u fi i i i( ( )) ( ( , ))θ θ θ∗
−
∗=  for all i I∈ . The 

definition of serial cost sharing implies f f i i( ) ( , )θ θ θ∗
−
∗=  for all i I∈ . This implies that 

if yi
f ( )θ∗ > 0  then ∂ ∂ = ∂ ∂∗ ∗ ∗v y y v y yi

f
i i i

f
i i( ( ), )/ ( ( ), )/θ θ θ θ . If yi

f ( )θ∗ = 0 , then 

∂ ∂ ≤ ′∗ ∗∑v y y C yi
f

i i j
f

j( ( ), )/ ( ( ))θ θ θ  and ∂ ∂ ≤ ′∗ ∗ ∗∑v y y C yi
f

i i j
f

j( ( ), )/ ( ( ))θ θ θ . In either 
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case, f f( ) ( )θ θ∗ = , so serial cost-sharing is securely implementable. Notice that in this 

example, there is no need for any assumptions that rule out corner solutions. 

  

7. Discrete Social Decisions  

The previous section showed that surplus-maximizing social choice functions 

can be securely implemented in many quasi-linear environments with divisible public 

or private goods. In this section, we show that secure implementation is more difficult 

if the set of social decisions is discrete. Consider a quasi-linear environment as in 

Section 6, but now Y is a finite set. For convenience, Y = {0,1}, and c c( ) ( )0 1 0= = . (The 

arguments can be adapted to any discrete Y.) We normalize so vi i( , )0 0θ =  for all θi . 

Thus, agent i’s preferences are characterized by vi i( , )1 θ , the value to him of social 

decision y = 1 . Without loss of generality we may suppose vi i i( , )1 θ θ=  for all θi . We 

assume θi  can be any real number.  

Notice that if by chance i I i∈∑ =θ 0 , then both y = 0  and y = 1  are surplus 

maximizing. In this situation, it may be unreasonable to assume that the social choice 

rule is single-valued. Thus, we will allow f to be a multi-valued social choice 

correspondence (SCC). The definition of secure implementation when f is an SCC is the 

same as Definition 1. (Thus, we require “full” implementation in dominant strategy 

equilibria and Nash equilibria). Notice that for implementation in strictly dominant 

strategies, the issue of multi-valuedness would be moot because a strictly dominant 

strategy must be unique. However, in this paper we consider domination in the weak 

sense, and a given type of player may have several (weakly) dominant strategies. 

Moreover, even if each player has a unique dominant strategy, there may be multiple 

Nash equilibria (some of which are in dominated strategies). Secure implementation 

does not require a unique Nash equilibrium, but it does require that all Nash 

equilibrium outcomes are socially optimal (see Example 4 below). 



 21

We again use the notation f y t t tf f f
n
f( ) ( ( ), ( ), ( )..., ( ))θ θ θ θ θ= 1 2 , but now y f ( )θ  

and ti
f ( )θ  are the sets of optimal decisions and transfers, respectively. The SCC f is 

surplus maximizing if i I i∈∑ <θ 0  implies y f ( ) { }θ = 0 , and i I i∈∑ >θ 0  implies 

y f ( ) { }θ = 1 . No restriction is imposed if i I i∈∑ =θ 0 . For a mechanism g S A: → , let 

g s y s t sg g( ) = ( ( ), ( ))  denote the outcome, where y sg( )  is the chosen public project and 

t sg( )  the profile of transfers.  

To see that some interesting social choice correspondences can be securely 

implemented, even with a discrete set of public decisions, consider the following “veto 

rule”.  

 

Example 4: A veto rule. 

Consider the following SCC. There are no transfers. The public decision y = 0  is 

always socially optimal. The public decision y = 1  is socially optimal if and only if 

θi ≥ 0  for all i. Intuitively, y = 0  is a “status quo” outcome which is always socially 

acceptable, but the social project y = 1  is acceptable to society if and only if all agents 

prefer it to the status quo. (With this interpretation, the SCC is the “individually 

rational” correspondence.) This SCC is securely implemented by the following 

mechanism. Each agent says 0 or 1. If all say 1, y = 1  is implemented. If at least one 

agent says 0, then y = 0  is implemented. Notice that the dominant strategy is to say 0 if 

θi < 0  and 1 if θi > 0 . Both strategies are dominant if θi = 0 . There are no “bad” Nash 

equilibria, because each agent can “veto” the outcome y = 1 . The “veto rule” is non-

dictatorial: for each agent i, there is a profile θ such that agent i strictly prefers y = 1 , 

but the unique socially optimal decision is y = 0 . However, it does not maximize the 

surplus, because y = 0  is socially acceptable even if θi > 0   for all i. We now show that 

in fact surplus maximization cannot be achieved in this environment. Notice that this 

negative result holds, even though we do not require budget balance (i.e., tii I∈∑ ≠ 0  is 

allowed). 
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Theorem 5. Consider the quasi-linear environment with Y = {0,1}. There is no SCC which is 

both securely implementable and surplus-maximizing. 

 

Proof: Suppose f is surplus-maximizing. In order to obtain a contradiction, suppose it is 

securely implemented by a mechanism g.  

Fix a type profile θ and choose s DSj j
g

j∈ ( )θ  for each j. Surplus maximization 

implies that for any i, y sg( ) = 0  if θi  satisfies  

(7.1)  θ θi jj i< ≠∑  . 

If θi  satisfies  

(7.2) θ θi jj i> ≠∑   

then y sg( ) = 1 . Moreover, if (7.1) holds, then any s DSi i
g

i∈ ( )θ  must give agent i the 

same transfer, say t s t si
g

i i( ) ( )= −
0 . (Otherwise, the strategy that gives the lowest transfer 

and the same public decision y sg( ) = 0  could not be a dominant strategy). Similarly, if 

(7.2) holds, then any s DSi i
g

i∈ ( )θ  must give agent i the same transfer, say t s t si
g

i i( ) ( )= −
1 .  

Suppose θ is such that θii I∈∑ > 0 . Define a new profile θ’ as follows. For 

i∈{ , }1 2 , define ′ = − − <≠∑θ θ ε θi j ij i , where ε > 0 . Let ′ =θ θi i  for all i > 2 . For each i, 

choose ′ ∈ ′s DSi i
g

i( )θ . Clearly, ′ <∈∑ θii I 0 . Moreover, for i∈{ , }1 2 , θ θi jj i+ ′ <≠∑ 0 .  For 

all i, we have chosen s DSi i
g

i∈ ( )θ  and ′ ∈ ′s DSi i
g

i( )θ . By surplus maximization, 

y sg( )′ = 0  and y s sg
i i( , )′ =− 0  for i∈{ , }1 2 . We now claim that, for i∈{ , }1 2 , if agent i’s 

true type is θi  then ′ ∈ ′s DSi i
g

i( )θ  is a best response against ′−s i . Indeed, choosing ′si  

would result in payoff t si i
0( )′− , because the social decision would be y sg( )′ = 0 . But this 

is also what is obtained by choosing s DSi i
g

i∈ ( )θ , because y s sg
i i( , )′ =− 0 . Therefore, ′si  

is indeed a best response against ′−s i  for i∈{ , }1 2  when his true type is θi . For all i > 2 , 

′ =θ θi i  and ′ ∈ ′ =s DS DSi i
g

i i
g

i( ) ( )θ θ . Therefore, ′ ∈s N g( )θ .  But y sg( )′ = 0  even though 

θii I∈∑ > 0 , which contradicts the definition of surplus maximization. Q.E.D. 
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Notice that the proof of Theorem 5 in effect replicates the proof that the 

rectangular property is necessary for secure implementation, and then shows that the 

rectangular property is violated.  

 To further illustrate the impossibility of combining secure implementation with 

surplus maximization in the discrete environment, we consider a well-known example. 

 

Example 5: Auctioning an indivisible object.  

Suppose the social decision is to allocate a private indivisible object among two 

agents. Agent i's true value of the object is θi ≥ 0  if she receives it, and 0 otherwise 

( i = 1 2, ). Consider the second price auction (Vickrey (1961)). Suppose θ θ1 2 0> > . In 

order to maximize the surplus, agent 1 should win the object. Figure 1 shows that the 

set of Nash equilibria is quite large.  The lower-right part of the set of Nash equilibria is 

the ”good set” in the sense that agent 1 receives the object.  However, the upper-left 

part of the set of Nash equilibria is ‘’bad’’ in the sense that agent 2 receives the object, 

so the social surplus is not maximized. 
 

---------------------------------- 
Link to Figure 2

---------------------------------- 
 

8. Single-Peaked Voting 

Section 6 showed the possibility of secure implementation when the social 

decision is concerned with continuous variables, such as divisible public or private 

goods. However, the mechanisms relied on the existence of “money” for side-

payments. We now show that if there are no side-payments, the results are negative, 

even if the social decision is a continuous variable. 

Consider a single-peaked voting environment. The set of alternatives is A = [ , ]0 1 , 

and the set of possible preference relations consists of all those that are continuous and 

single-peaked on A.  Let p ui( )  denote the ”peak” of ui , i.e., the top ranked alternative 

in A, which is assumed to be unique. Single-peakedness implies that ui  is strictly 
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increasing before p ui( )  and strictly decreasing afterwards.  Let Range f( ) denote the 

range of f. By Lemma 1 in Barberà and Jackson (1994), Range f( )  is closed. Let 

a x x Range f= ∈min{ : ( )}  and b x x Range f= ∈max{ : ( )} denote the smallest and largest 

elements in Range f( ) , respectively. Notice that f is constant if and only if a = b.  

In the single peaked voting environment one can find dominant strategy 

implementable social choice functions with good properties, the leading example being 

the median voter rule (see Barbera and Jackson (1994)). This SCF is both non-dictatorial 

and Pareto efficient. Unfortunately, if a Pareto efficient social choice rule can be 

securely implemented, then it must be dictatorial. This is true even if we allow the 

social choice rule to be multi-valued. Before proving these negative results for secure 

implementation, we will prove two lemmas. 

 

Lemma 6. Let f be a securely implementable non-constant SCF in the single peaked voting 

environment. There is an agent i and an alternative y Range f∈ ( ) , y a> , such that f u y( ) =  

whenever p u y p ui j( ) ( )≥ ≥  for all j ≠ i. 

 

Proof:  Let ′u  be any profile such that p u ai( )′ =  for all i, and let ′′u  be any profile such 

that p u bi( )′′ =  for all i.  Strategy-proofness implies f u a( )′ =  and f u b( )′′ = , and b ≠ a 

since f is not constant. If f u u ai i( , )′′ ′ =−  for all i, then the rectangular property implies 

that f u a( )′′ = , but this contradicts f u b( )′′ = . Thus, there is an agent, say agent i = 1, 

such that f u u a( , )′′ ′ >−1 1 . Define y f u u≡ ′′ ′−( , )1 1 .  

Now let u1  be any utility function such that p u y( )1 ≥ .  Consider f u u( , )1 1′− . 

If f u u y( , )1 1′ >− , then ′′ ′ > ′′ ′′ ′− −u f u u u f u u1 1 1 1 1 1( ( , )) ( ( , )) , and if f u u y( , )1 1′ <− , then 

u f u u u f u u1 1 1 1 1 1( ( , )) ( ( , ))′′ ′ > ′− − . Since in either case we have a contradiction of strategy-

proofness, we conclude that f u u y( , )1 1′ =− .   

Now, for each j ≥ 2 , let uj  be any utility function such that p u yj( ) ≤ . Consider 

f u u uj j( , , ),1 1′− . If f u u u yj j( , , ),1 1′ >− , then u f u u uj j j( ( , , )),1 1′ ′ >−  u f u u uj j j( ( , , )),1 1′− , and 
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if f u u u yj j( , , ),1 1′ <− , then ′ ′ > ′ ′ ′− −u f u u u u f u u uj j j j j j( ( , , )) ( ( , , )), ,1 1 1 1 . Since in either case we 

have a contradiction of strategy-proofness, we conclude that f u u u yj j( , , ),1 1′ =−  for 

all j ≥ 2 .   

The rectangular property implies that f u y( ) = . Thus, f u y( ) =  whenever  

p u y p uj( ) ( )1 ≥ ≥  for all j ≥ 2 . Q.E.D. 

 

Lemma 7. Let f be a securely implementable non-constant SCF in the single peaked voting 

environment. There is an agent i such that f u a( ) =  whenever p u ai( ) = , and f u b( ) =  

whenever p u bi( ) = . 

 

Proof:  Without loss of generality, suppose agent i = 1 is the agent identified in Lemma 

6, and y the alternative identified in the same lemma. Let ′u be any profile such that 

top u ai( )′ =  for all i , and let ~u  be any profile such that p u yi(~ ) =  for all i. Then f u a( )′ =  

by strategy-proofness, and Lemma 6 implies f u y(~) = . If f u u yi i( ,~ )′ =−  for all i, then the 

rectangular property implies that f u y( )′ = , but this contradicts f u a( )′ = . Thus, there is 

an agent i such that f u u yi i( ,~ )′ ≠− . Lemma 6 implies that in fact i = 1 . Strategy-proofness 

implies f u u y( ,~ )′ <−1 1 .  Let z f u u y≡ ′ <−( ,~ )1 1 . We will show that z a= .  

It is impossible that z a<  because a x x Range f= ∈min{ : ( )} . Suppose z a> . Now 

let $u  be a profile such that p u zi( $ ) =  for all i.  Strategy-proofness implies f u z( $) = . Since 

z f u u= ′ −( ,~ )1 1 , strategy-proofness implies f u u u zi i( , $ ,~ ),′ =−1 1  for all i > 1 . The rectangular 

property then implies f u u z( , $ )′ =−1 1 .  

Now consider f u ui i( , $ )′ −  for i > 1 . Strategy-proofness requires f u u zi i( , $ )′ ≤− . 

Notice that this inequality holds regardless of $u1 , as long as p u z( $ )1 = . Moreover, 

f u ui i( , $ )′ −  is in fact the same alternative for any $u1  such that top u z( $ )1 = . (Otherwise, 

there would exist $u1  and u1  such that p u p u z( $ ) ( )1 1= = , and f u u ui i( $ , , $ ),1 1′ <−  

f u u u zi i( , , $ ),1 1′ ≤− . But then $ ( ( $ , , $ )),u f u u ui i1 1 1′ <− $ ( ( , , $ )),u f u u ui i1 1 1′ − , contradicting 

strategy-proofness.)  Suppose w f u u z yi i≡ ′ < <−( , $ ) .  But now consider $u1  such that 
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p u z( $ )1 =  and $ ( ) $ ( )u y u w1 1> .  Lemma 6 implies that if p u y(~ )1 = , then f u u u yi i(~ , , $ ),1 1′ =− .  

But since $ ( ) $ ( )u y u w1 1>  and w f u ui i= ′ −( , $ ) , strategy-proofness is violated. This 

contradiction implies f u u zi i( , $ )′ =−  for all i > 1 . Since we already have established 

f u u z( , $ )′ =−1 1 , we can apply the rectangular property and conclude that f u z( )′ = . 

However, f u a( )′ = , a contradiction of our hypothesis that z a> . So, we must have 

z a= .   

The previous paragraph established that f u u a( ,~ )′ =−1 1  whenever p u a( )′ =1  and 

p u yi(~ ) = for all i > 1 . Now for all i > 1 , let ~ui  be such that p u yi(~ ) = , and ~ ( ) ~ ( )u x u ai i>  

for all x Range f∈ ( )  such that x a> . Consider any agent i > 1  and any arbitrary ui . If 

f u u u ai i( , ,~ ),′ ≠−1 1 , then ~ ( ( , ,~ )) ~ ( ( ,~ ,~ )), ,u f u u u u f u u ui i i i i i′ > ′− −1 1 1 1 , which contradicts 

strategy-proofness.  Hence, f u u u ai i( , ,~ ),′ =−1 1  for all i > 1 . The rectangular property 

implies f u u a( , )′ =−1 1 .  We conclude that f u u a( , )′ =−1 1  whenever p u a( )′ =1 .  

Exactly the same line of reasoning establishes the existence of an agent i such 

that f u u bi i( , )′ =−  whenever p u bi( )′ = . Obviously, this must be i = 1, or else we 

contradict the already established fact that f u u a( , )′ =−1 1  whenever p u a( )′ =1 . Q.E.D.  

 

 Now we are ready to prove our first negative result for single peaked voting. It 

covers the case of single-valued social choice rules. 

 

Theorem 7. Let f be a securely implementable SCF in the single peaked voting environment. 

There is a dictator on Range f( ) , i.e., an agent i such that for all u and all x Range f∈ ( ) , 

u f ui( ( )) ≥ u xi( ) . 

 

Proof:  Since the result is trivial if f is constant, suppose f is securely implementable but 

not constant. Lemma 7 identifies an agent i such that f u a( ) =  whenever p u ai( ) = , 

and f u b( ) =  whenever p u bi( ) = . Without loss of generality suppose this is true for i = 



 27

1. Fix any x Range f∈ ( ) .  Let ′u be such that p u xi( )′ = for all i, and let u be an arbitrary 

profile. The theorem is proved by showing that f u u x( , )′ =−1 1  must necessarily hold.  

Strategy-proofness implies f u x( )′ = . Fix any i > 1 . We will show that 

f u u xi i( , )′ =− . If p u xi( ) = , then f u u xi i( , )′ =−  by strategy-proofness.  Suppose instead 

that p u xi( ) > . Then strategy-proofness implies f u u xi i( , )′ ≥− . Notice that this inequality 

holds regardless of ′u1 , as long as p u x( )′ =1 . Moreover, f u ui i( , )′−  is in fact the same 

alternative for any ′u1  such that p u x( )′ =1 . (Otherwise, there would exist ′u1  and ′′u1  

such that p u p u x( ) ( )′ = ′′ =1 1 , and f u u ui i( , , ),′ ′ >−1 1 f u u u xi i( , , ),′′ ′ ≥−1 1 . But then 

′ ′ ′ < ′ ′′ ′− −u f u u u u f u u ui i i i1 1 1 1 1 1( ( , , )) ( ( , , )), , , contradicting strategy-proofness.)  

Now suppose z f u u xi i≡ ′ >−( , ) . But consider ′u1  such that p u x( )′ =1 , and 

′ > ′u a u z1 1( ) ( ) .  If ~u1  is such that p u a(~ )1 = , then f u u u ai i(~ , , ),1 1′ =−  by Lemma 8. But then 

′ ′ > ′ ′ ′− −u f u u u u f u u ui i i i1 1 1 1 1 1( (~ , , )) ( ( , , )), , , contradicting strategy-proofness. This 

contradiction shows that we must have f u u xi i( , )′ =−  whenever p u xi( ) > . A similar 

argument establishes that f u u xi i( , )′ =−  whenever p u xi( ) < . We conclude that, for all 

i > 1 , f u u xi i( , )′ =−  for all ui . The rectangular property implies f u u x( , )′ =−1 1 .  Q.E.D. 

 

 As in the previous section, there exist non-dictatorial social choice 

correspondences that can be securely implemented. For example, a “veto rule”, similar 

to Example 4, with some arbitrary alternative designated as status quo, can be securely 

implemented in the single-peaked voting model. However, this SCC is not Pareto 

efficient. More generally, in this environment an SCC is either single-valued, in which 

case it must be dictatorial by Theorem 7, or it is Pareto inefficient. This is our second 

negative result for single-peaked voting.  

 

Theorem 8. Let f be a securely implementable SCC in the single peaked voting environment. 

Then f is either single-valued or Pareto inefficient.  

 



 28

Proof: Suppose f is a securely implementable SCC which is not single-valued. Then 

there is u such that f(u) contains at least two distinct alternatives. If f is securely 

implemented by mechanism g, then there must be two strategy profiles s s DS ug, ( )′ ∈  

such that g s g s( ) ( )≠ ′ . Then, there must necessarily exist alternatives a and b, and an 

agent i, such that g s s s s s ai i i n( , ) =′ ′− +1 1,..., , ,...,  but g s s s s s b ai i i n( , ) =′ ′ ′ ≠− +1 1,..., , ,..., . We 

may choose labeling so that i = 1 , and b a> .  

Thus, we have s DS ug∈ ( ) , g s a( ) = , ( , ) ( )′ ∈−s s DS ug
1 1  and g s s b a( , )′ = >−1 1 . 

Since s s DS ug
1 1 1 1, ( )′ ∈ , it must be the case that a p u b< <( )1  and u a u b1 1( ) ( )= .  

Let L j p u aj= { : ( ) }≤  be the set of agents whose peaks, in the profile u, are 

(weakly) to the left of a. Suppose 2 ∈L , and suppose u2
∗  is such that a p u b< <∗( )2  and 

u a u b2 2
∗ ∗>( ) ( ) . Let s DS ug

2 2 2
∗ ∗∈ ( ) .  

Claim: g s s s a( ) =1 2 1 2, , ,
∗

− . 

To prove the claim, we consider the various possibilities. 

Case 1: a g s s s b< ∗
−( ) <1 2 1 2, , , . Since s s DS ug

1 1 1 1, ( )′ ∈ , we must have 

u g s s s u g s s s1 1 2 1 2 1 1 2 1 2( , , ( , ,, ,( )) = ( ))∗
−

∗
−′ . Therefore, a g s s s b< ′ ∗

−( ) <1 2 1 2, , , . But 

g s s s b( , , ),′ =−1 2 1 2  and 2 ∈L , so u g s s s u g s s s2 1 2 1 2 2 1 2 1 2( , , ( , ,, ,( )) > ( ))′ ′∗
− − . However, this 

contradicts s DS ug
2 2 2∈ ( ) . Therefore, case 1 is impossible.  

Case 2: g s s s a g s( )<1 2 1 2, , ( ),
∗

− = . This case is impossible because p u a( )2
∗ >  and 

s DS ug
2 2 2
∗ ∗∈ ( ) . 

Case 3: g s s s b( )1 2 1 2, , ,
∗

− ≥ . But then, u g s u b u g s s s2 2 2 1 2 1 2
∗ ∗ ∗ ∗

−> ≥( ( )) ( ) ( , , ,( )) , which 

contradicts s DS ug
2 2 2
∗ ∗∈ ( ) .  

Since cases 1,2 and 3 are all impossible, the claim is true.  

The claim establishes g s s s a( ) =1 2 1 2, , ,
∗

− .  Since s s DS ug
1 1 1 1, ( )′ ∈ , it must be the 

case that u g s s s u a1 1 2 1 2 1( , , ( ),( ))′ =∗
− . This means that g s s s( )′ ∗

−1 2 1 2, , ,  can be either a or b. 

Suppose g s s s a( ) =′ ∗
−1 2 1 2, , , . But, g s s b( ) =′ −1 1, . Since 2 ∈L  we have u a u b2 2( ) ( )> , which 

contradicts s DS ug
2 2 2∈ ( ) . Therefore, we must have g s s s b( ) =′ ∗

−1 2 1 2, , , . 
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To summarize, we have shown that ( , ) ( , )s s DS u ug
2 2 2 2
∗

−
∗

−∈ , g s s a( , )2 2
∗

− = , 

( , , ) ( , ),′ ∈∗
−

∗
−s s s DS u ug

1 2 1 2 2 2  and g s s s b a( ) =′ >∗
−1 2 1 2, , , . This puts us back in our original 

position, except that the L set has one fewer member after u2  is replaced by u2
∗  

(because p u a( )2
∗ > ). We can repeat the same argument for each j L∈ : we let uj

∗  be such 

that a p u b< <∗( )2  and u a u bj j
∗ ∗>( ) ( ) , and we pick s DS uj j

g
j

∗ ∗∈ ( ) .  After having exhausted 

all the members of L, we obtain s sL j j L
∗ ∗

∈= { } , where s DS uj j
g

j
∗ ∗∈ ( )  for each j L∈ , and 

g s s aL L( , )−
∗ = . Since g securely implements f, a f u uL L∈ −

∗( , ) . However, by definition of L, 

when the utility profile is ( , )u uL L−
∗ , all agents have peaks strictly to the right of a. 

Therefore, a is not Pareto efficient. Q.E.D.  

 

9. Concluding Remarks 

Many researchers believe that if truth telling is a dominant strategy, then every 

agent will adopt it.  However, we believe this issue should be decided by experiments. 

In Cason, Saijo, Sjostrom&& && and Yamato (2003), we conducted experiments on two 

strategy-proof mechanisms: the pivotal mechanism with two agents and a binary 

public project that has a continuum of Nash equilibria, and a Groves-Clarke 

mechanism with two agents and single-peaked preferences that has a unique Nash 

equilibrium. We found that subjects played dominant strategies significantly more 

frequently in the secure Groves mechanism than in the non-secure pivotal mechanism. 

This makes us optimistic about the future of mechanism design. The negative 

experimental evidence mentioned in the introduction was based on mechanisms that 

are not secure (such as the second price auction). In these experiments, there may have 

been insufficient pressure on the players to adopt their dominant strategies, and 

deviations may not have been punished by big payoff losses (for a discussion, see 

Cason, Saijo, Sjostrom&& && and Yamato (2003)). Imposing stricter requirements than simply 

strategy-proofness may turn out to be the key to successful applications of mechanism 

design.   
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