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1. Introduction

The allocation of resources is an all-pervasive theme in economics.  And, I think it is no

exaggeration to say that the question of whether there exist mechanisms ensuring efficient allocation--

i.e., mechanisms that ensure that resources wind up in the hands of those who value them most--is of

central importance in the discipline.  Indeed, the very word “economics” connotes a preoccupation

with the issue of efficiency.

But economists’ interest in efficiency does not end with the question of existence.  If efficient

mechanisms can be constructed, we want to know what they look like and to what extent they might

resemble institutions used in practice.

Understandably, the question of what will constitute an efficient mechanism has been a major

concern of economic theorists going back to Adam Smith.  But the issue is far from just a theoretical

one.  It is also of considerable practical importance. This is particularly clear when it comes to

privatization, the transfer of assets from the state to the private sector.

In the last fifteen years or so, we have seen a remarkable flurry of privatizations in Eastern

Europe, the former Soviet Union, China, and highly industrialized Western nations such as the United

States, the United Kingdom, and Germany.  An important justification for these transfers has been the

expectation that they will improve efficiency.  But if efficiency is the rationale, an obvious leading

question to ask is: “What sorts of transfer mechanisms will best advance this objective?”

One possible and, of course, familiar answer is “The Market.”  We know from the First

Theorem of Welfare Economics (see Debreu (1959)) that, under certain conditions, the competitive

mechanism (the uninhibited exchange and production of goods by buyers and sellers) results in an

efficient allocation.  A major constraint on the applicability of this result to the circumstances of

privatization, however, is the theorem’s hypothesis of large numbers.  For the competitive mechanism

to work properly--to avoid the exercise of monopoly power--there must be sufficiently many buyers
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and sellers so that no single agent has an appreciable effect on prices.  But privatization often entails

small numbers.  In the recent U.S. “spectrum” auctions--the auctions in which the government sold

rights (in the form of licenses) to use certain radio frequency bands for telecommunications--there

were often only two or three serious bidders for a given license.  The competitive model does not

seem readily applicable to such a setting.

An interesting alternative possibility was raised by William Vickrey forty years ago (Vickrey

(1961)).  Vickrey showed that, if a seller has a single indivisible good for sale, a second-price auction

(see Section 2) is an efficient mechanism—i.e., the winner is the buyer whose valuation of the good is

highest—in the case where buyers have private values (“private values” mean that no buyer’s private

information affects any other buyer’s valuation).  This finding is rendered even more significant by

the fact that it can readily be extended to the sale of multiple goods 1, as shown by Theodore Groves

(Groves (1973)) and Edward Clarke (Clarke (1971)).

Unfortunately, once the assumption of private values is dropped and thus buyers’ valuations

do depend on other buyers’ information (i.e., we are in the world of common2 or interdependent

values), the second-price auction is no longer efficient, as I will illustrate by means of an example

below.  Yet, the common-values case is the norm in practice.  If, say, a telecommunications firm

undertakes a market survey to forecast demand for cell phones in a given region, the results of the

survey will surely be of interest to its competitors and thus turn the situation into one of common

values.

Recently, a literature has developed on the design of efficient auctions in common-values

settings.  The time is not yet ripe for a survey; the area is currently evolving too rapidly for that.  But I

would like to take this opportunity to discuss a few of the ideas from this literature.

                                                                
1 Vickrey himself also treated the case of multiple units of the same good.
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2.  The Basic Model

Because it is particularly simple, I will begin with the case of a single indivisible good.  Later

I will argue that much (but not all) of what holds in the one-good case extends to multiple goods.

Suppose that there are n potential buyers.  It will be simplest to assume that they are risk-

neutral (however, we can accommodate any other attitude toward risk if the model is specialized to

the case in which there is no residual uncertainty about valuations when all buyers’ information is

pooled).  Assume that each buyer i’s private information about the good can be summarized by a real-

valued signal.  That is, buyer i’s information is reduceable to a one-dimensional parameter.3

Formally, suppose that each buyer i’s signal si lies in an interval [ ]ii ss , .  The joint prior distribution

of ( )nss ,,1 K  is given by the c.d.f. ( ).,,1 nssF K  Buyer i’s valuation for the good (i.e., the most he

would be willing to pay for it) is given by the function ( ).,,1 ni ssv K  I shall suppose (with little loss

of generality) that higher values of si correspond to higher valuations, i.e.,

.0>
∂
∂

i

i

s
v

(1)

Let us examine two illustrations of this model.

Example 1: Suppose that

( ) . ,,1 ini sssv =L

                                                                                                                                                                                                        
2 I am using “common values” in the broad sense to cover any instance where one agent’s payoff depends on
another’s information.  The term is sometimes used narrowly to mean that all agents share the same payoff.
3 Later on I will examine the case of multidimensional signals.  As with multiple goods, much will
generalize.  As we will see, the most problematic case is that in which there are both multiple goods
and multidimensional signals.
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In this case, we are in the world of private values, not the interesting setting from the perspective of

this lecture, but a valid special case.

A more pertinent example is:

Example 2: Suppose that the true value of the good to buyer i is yi, which, in turn, is the sum of a

value component that is common to all buyers and a component that is peculiar to buyer i.  That is,

,ii zzy +=

where z  is the common component and zi is buyer i’s  idiosyncratic component.  Suppose, however,

that buyer i does not actually observe yi, but only a noisy signal

, iii ys ε+= (2)

where εi is the noise term, and all the random variables-- z, the zi’s, and the εi’s--are independent.  In

this case every buyer j’s signal sj provides information to buyer i about  his valuation, because sj  is

correlated (via (2) ) with the common component z.  Hence we can express ( )ni ssv ,,1 K  as

( ) [ ], ,,|,, 11 nini ssyEssv KK = (3)

where the right-hand side of (3) denotes the expectation of  yi conditional on the signals ( )nss ,,1 K .
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This second example might be kept in mind as representative of the sort of scenario that the analysis

is intended to apply to.

3. Auctions

 An auction in the model of Section 2 is a mechanism (alternatively termed a “game form” or

“outcome function”) that, on the basis of the bids submitted, determines (i) who wins (i.e., who--if

anyone--is awarded the good), and (ii) how much each buyer pays4.  Let us call an auction efficient

provided that, in equilibrium, buyer i is the winner if and only if

 

  ( ) ( )nj
ij

ni ssvssv ,,max,, 11 KK
≠

≥  (4)

 

 (this definition is slightly inaccurate because of the possibility of ties for highest valuation, an issue

that I shall ignore).  In other words, efficiency demands that, in an equilibrium of the auction, the

winner be the buyer with the highest valuation, conditional on all available information (i.e., on all

buyers’ signals).

 This notion of efficiency is sometimes called ex-post efficiency.  It assumes implicitly that

the social value of the good being sold equals the maximum of the potential buyers’ individual

valuations.  This assumption would be justified if, for example, each buyer used the good (e.g., a

spectrum license) to produce an output (e.g., telecommunication service) that is sold in a competitive

market without significant externalities (market power or externalities might drive a wedge between

individual and social values).

                                                                
4 For some purposes—e.g., dealing with risk-averse buyers (see Maskin and Riley (1984)) or liquidity
constraints (see Che and Gale (1996) or Maskin (2000) or allocative externalities (see Jehiel and Moldovanu
1998))—one must consider auctions in which buyers other than the winner also make payments.  In this lecture,
however, I will not have to deal with this possibility.
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 The reader may wonder why, even if one wants efficiency, it is necessary to insist that the

auction itself be efficient.  After all, the buyers could always retrade afterwards if the auction resulted

in a winner with less than the highest valuation.  The problem with relying on post-auction trade,

however, is much the same as that plaguing competitive exchange in the first place: these

mechanisms do not in general work efficiently when there are only a few traders.  To see this,

consider the following example 5:

 

 Example 3: Suppose that there are two buyers.  Assume that buyer 1 has won the auction and has a

valuation of 1.  If the auction is not guaranteed to be efficient, then there is some chance that buyer

2’s valuation is higher.  Suppose that, from buyer 1’s perspective, buyer 2’s valuation is distributed

uniformly in the interval [0,2].  Now, if there is to be further trade after the auction, someone has to

initiate it.  Let us assume that buyer 1 does so by proposing a trading price to buyer 2.  Presumably,

buyer 1 will propose a price p* that maximizes his expected payoff, i.e., that solves

 ( )( )12
2
1

 max −− pp
p

 . (*)

 (To understand (*) note that ( )p−2
2
1  is the probability that the proposal is accepted—since it is the

probability that buyer 2’s valuation is at least p—and that  p−1 is buyer 1’s net gain in the event of

acceptance.)  But the solution to (*) is . 
2
3* =p  Hence, if buyer 2’s valuation lies between 1 and ,

2
3

the allocation, even after allowing for ex-post trade, will remain inefficient, since buyer 2 will reject

1’s proposal.

 

 I will first look at efficiency in the second-price auction.  This auction form (often called the

Vickrey auction) has the following rules: (i) each bidder i makes a (sealed) bid bi, which is a

                                                                
5 In this example, buyers have private values, but, as Fieseler, Kittsteiner, and Moldovanu (2000) show, resale
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nonnegative number; (ii) the winner is the bidder who has made the highest bid (again ignoring the

issue of ties); (iii) the winner pays the second-highest bid, j
ij

b  max
≠

.  As I have already noted and will

illustrate explicitly below, this auction can readily be extended to multiple goods.

 The Vickrey auction is efficient in the case of private values6.  To see this, note first that it is

optimal--in fact, a dominant strategy--for buyer i to set bi =vi, i.e., to bid his true valuation. In

particular, bidding below vi does not affect buyer i’s payment if he wins (since his bid does not

depend on his own bid); it just reduces his chance of winning—and so is not a good strategy.  Bidding

above vi raises buyer i’s probability of winning, but the additional events in which he wins are

precisely those in which someone else has bid higher than vi.   In such events buyer i pays more than

vi, also not a desirable outcome.  Thus it is indeed optimal to bid bi =vi, which implies that the winner

is the buyer with the highest valuation, the criterion for efficiency.

 Unfortunately, the Vickrey auction does not remain efficient once we depart from private

values.  To see this, consider the following example.

 

 Example 4: Suppose that there are three buyers with valuation-functions

 

( )

( )

( ) .,,
3
2

3
1

,,

3
1

3
2

,,

33213

3123212

3213211

ssssv

ssssssv

ssssssv

=

++=

++=

 Notice that buyers 1 and 2 have common values, i.e., their valuations do not depend only on their own

signals.  Assume that it happens that s1 =s2=1 (of course, buyers 1 and 2 would not know that their

                                                                                                                                                                                                        
can become even more problematic when there are common values.
6 It is easy to show that the “first-price” auction—the auction in which each buyer makes a bid, the high bidder
wins, and the winner pays his bid—is a nonstarter as far as efficiency is concerned.  Indeed, even in the case of
private values, the first-price auction is never efficient except when buyers’ valuations are symmetrically
distributed (see Maskin (1992)).
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signal values are equal, since signals are private information), and suppose that buyer 3’s signal value

is either slightly below or slightly above 1.  In the former case, it is easy to see that

 
,321 vvv >>

 and so, for efficiency, buyer 1 ought to win.  However, in the latter case

 
,312 vvv >>

 and so buyer 2 is the efficient winner.  Thus the efficient allocation between buyers 1 and 2 turns on

whether s3 is below or above 1.  But in a Vickrey auction, the bids made by buyers 1 and 2 cannot

incorporate information about s3 since that signal is private information to buyer 3.  Thus the outcome

of the auction cannot in general be efficient.

4. An Efficient Auction

How should we respond to the shortcomings of the Vickrey auction as illustrated by Example 3?

One possible reaction is to appeal to classical mechanism-design theory.  Specifically, we could have

each buyer i announce a signal value ,îs  award the good to the buyer i for whom ( )ni ssv ˆ,,1̂ K  is

highest, and choose the winner’s payment so as to evoke truth-telling in buyers, i.e., so as to induce

each buyer j to set jŝ  equal to his true signal value .js

The problem with such a “direct revelation” mechanism is that it is utterly unworkable in

practice.  In particular, notice that it requires the mechanism designer to know the physical signal

spaces ,,,1 nSS K  the functional forms ( )⋅iv , and the prior distributions of the signals--an

extraordinarily demanding constraint.  Now, the mechanism designer could attempt to elicit this

information from the buyers themselves using the methods of the implementation literature (see

Palfrey (1993)).  For example, to learn the signal spaces, he could have each buyer announce a

vector ( )nSS ˆ,,1̂ K and assign suitable penalties if the announcements did not match up appropriately.

A major difficulty with such a scheme, however, is that in all likelihood the signal spaces Si are

themselves private information. For analytic purposes, we model Si as simply an interval of numbers.
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But, this abstracts from the reality that buyer i’s signal corresponds to some physical entity--whatever

it is that buyer i observes.  Indeed, the signal may well be a sufficient statistic for data from a variety

of different informational sources. And there is no reason why other buyers should know just what

this array of sources is.

To avoid these complications, I shall concentrate on auction rules that do not make use of such

details as signal spaces, functional forms, and distributions.  Indeed, I will be interested in auctions

that work well irrespective of these details, that is, I will adhere to the “Wilson Doctrine” (after

Robert Wilson, who has been an eloquent proponent of the view that auction institutions should be

“detail-free”).  It turns out that a judicious modification of the Vickrey auction will do the trick.

Before turning to the modification, however, I need to introduce a restriction on valuation

functions that is critical to the possibility of constructing efficient auctions.  Let us assume that

( ),,, all and  and  allfor 1 nssiji K≠

( ) ( ) ( ) ( )n
i

j
n

i

i
njni ss

s

v
ss

s
v

ssvssv ,,,,,,,, 1111 KKKK
∂

∂
>

∂
∂

⇒= .7  (5)

In words, condition (5) says that buyer i’s signal has a greater marginal effect on his own valuation

than on that of any other buyer j (at least at points where buyer i’s and buyer j’s valuations are equal).

Notice that, in view of (1), condition (5) 8 is automatically satisfied by Example 1 (the case of

private values): the right-hand side of the inequality then simply vanishes.  Condition (5) also holds

for Example 2.  This is because, in that example, si conveys relevant information to buyer j(≠i) about

the common component z but tells buyer i not only about z but also his idiosyncratic component zi.

Thus, vi will be more sensitive than vj to variations in si.

But whether or not condition (5) is likely to be satisfied, it is, in any event, essential for

efficiency.  To see what can go wrong without it, consider the following example.

                                                                
7 This condition was introduced by Gresik (1991).
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Example 5: Suppose that the owner of a tract of land wishes to sell off the rights to drill for oil on her

property.  There are two potential drillers who are competing for this right.  Driller 1’s fixed cost of

drilling is 1, whereas his marginal cost is 2.  In contrast, driller 2 has fixed and marginal cost of 2 and

1, respectively.  Assume that driller 1 observes how much oil is

underground.  That is, s1 equals the quantity of oil. Driller 2 obtains no private information.  Then if

the price of oil is 4 we have

( ) ( )
( ) ( ) .23214

12124

1112

1111

−=−−=
−=−−=

sssv
sssv

Observe that ( ) ( )1211 svsv >  if and only if s1<1.  Thus, for efficiency, driller 1 should be awarded drilling

rights provided that ,
2
1

(for    1
2
1

11 <<< ss  there is not enough oil to justify drilling at all).  Driller 2, by

contrast, should get the rights when s1 > 1.

In this example, there is no way (either through a modified Vickrey auction or otherwise) of

inducing driller 1 to reveal the true value s1 in order to allocate drilling rights efficiently.  To see this,

consider, without loss of generality, a direct revelation mechanism and let ( )11 ŝt  be a monetary

transfer (possibly negative) to driller 1 if he announces signal value 1̂s .  Let 11  and ss ′′′  be signal

values such that

.1
2
1

11 ss ′′<<′< (6)

Then for driller 1 to have the incentive to announce truthfully when ,s  11 ′′=s  we must have

( ) ( )11111 12 stsst ′+−′′≥′′ (7)

                                                                                                                                                                                                        
8 Notice that the strictness of the inequality in (5) rules out the case of “pure common values,” where all buyers
share the same valuation.  However, in that case, the issue of who wins does not matter for efficiency.
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(the left-hand side is his payoff when he is truthful, whereas the right-hand side is his payoff when he

pretends that ).11 ss ′=   Similarly, the incentive-constraint corresponding to 11 ss ′=  is

( ) ( ).12 11111 ststs ′′≥′+−′ (8)

Subtracting (8) from (7), we obtain

( ) ,02 11 ≥′′−′ ss

a contradiction of (6).  Hence there exists no efficient mechanism.

The feature that interferes with efficiency in this example is the violation of condition (5),

i.e., the fact that

1

2

1

10
s
v

s
v

∂
∂

<
∂
∂

< . (9)

Inequalities (1) and (9) imply that, as s1 rises, drilling rights become more valuable to driller 1 but

increasingly more likely, from the standpoint of efficiency, to be awarded to driller 2.  This conflict

makes the task of providing proper incentives for driller 1 impossible.

Assuming henceforth that (5) holds, let us reconfront the task of designing an efficient

auction.  In Example 4 we saw that the Vickrey auction failed because buyers 1 and 2 could not

incorporate pertinent information about buyer 3 in their bids (since s3 was private information).  This

suggests that, as in Dasgupta and Maskin (2000), a natural way of amending the Vickrey auction

would be to allow buyers to make contingent bids—bids that depend on other buyers’ valuations.  In

Example 4, this would enable buyer 1 to say, in effect, “I don’t know what buyer 3’s valuation is, but

if it turns out to be x, then I want to bid y.”

Let us examine how contingent bidding would work in the case of two buyers.  Buyer 1

would announce a schedule ( ),ˆ
1 ⋅b  where, for all possible values v2,

( )  s1'buyer ˆ
21 =vb bid if buyer 2 has valuation v2.



12

Similarly, buyer 2 would announce a schedule ( ),ˆ
2 ⋅b  where

( ) =12
ˆ vb buyer 2’s bid if buyer 1’s valuation is v1.

We would then look for a fixed point

( ) ( ))(ˆ),(ˆ, 122121
oooo vbvbvv = , (10)

and 

install buyer 1 as the winner if  and only if  .21
oo vv > (11)

To understand the rationale for (10) and (11), imagine that buyers bid truthfully.  Since

signals are private information and thus buyer 1 will not in general know his own valuation, truthful

bidding means that, if his signal value is s1, he submits a schedule ( ) ( )⋅=⋅ 11
ˆ bb  such that

( ) 22112121  allfor  ),(),( sssvssvb ′′=′ .9 (12)

That is, whatever ) hence (and 22 vs′ turns out to be, buyer 1 bids his true valuation for that signal

value.  Similarly, truthful bidding for buyer 2 with signal value s2 means reporting schedule

( ) ( )⋅=⋅ 22
ˆ bb  such that

( ) . allfor  ),(),( 12122112 sssvssvb ′′=′ (13)

Observe that if buyers bid according to (12) and (13), then the true valuations

( )),(),,( 212211 ssvssv

constitute a fixed point in the sense of (10).10

In view of (10) and (11), this means that if buyers are truthful, the auction will result in an

efficient allocation.  Thus, the remaining critical issue is how to get buyers to bid truthfully.  For this

                                                                
9 I noted in my arguments against direct revelation mechanisms that buyer 1 most likely will not know buyer 2’s
signal space S2.  But this in no way should prevent him from understanding how his own valuation is related to
that of buyer 2, which is what (12) is really expressing ( i.e., (12) still makes sense even if buyer 1 does not
know what values 2s ′  can take).
10 Without further assumptions on valuation functions, there could be additional—non-truthful—fixed points.
Dasgupta and Maskin (2000) and Eso and Maskin (2000a) provide conditions to rule such fixed points out.  But
even if they are not ruled out, the auction rules can be modified so that, in equilibrium, the truthful fixed point
results (see Dasgupta and Maskin (2000)).
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purpose, it is useful to recall the device that the Vickrey auction exploits to induce truthful bidding,

viz., to make the winner’s payment equal, not to his own bid, but to the lowest possible bid he could

have made and still have won the auction.

This trick cannot be exactly replicated in our setting because buyers are submitting schedules

rather than single bids.  But let us try to take it as far as it will go.  Suppose that when buyers repeat

the schedules ( ) ( )( )⋅⋅ 21
ˆ,ˆ bb , the resulting fixed point ( )oo vv 21 ,  satisfies

.21
oo vv >

Then according to our rules, buyer 1 should win.  But rather than having him pay v1
o, we will have

buyer 1 pay ,1
∗v  where

( )*
12

*
1

ˆ vbv = . (14)

This payment rule, I maintain, is the common-values analog of the Vickrey trick in the sense that

∗
1v is the lowest constant bid (i.e., the lowest uncontingent bid) that buyer 1 could make and still win

(or tie for winning) given buyer 2’s bid ( ).2̂ ⋅b  The corresponding payment rule for buyer 2 should he

win is v2
* such that

( ). ˆ *
21

*
2 vbv = (15)

I claim that, given the payment rules (14) and (15), it is an equilibrium for buyers to bid

truthfully.  To see this most easily, let us make use of a strengthened version of (5):

.
i

j

i

i

s

v

s
v

∂

∂
>

∂
∂

(16)

Let us suppose that buyer 2 is truthful, i.e., he bids b2(.) satisfying (13).  I must show that it is optimal

for buyer 1 to bid ( )⋅1b  satisfying (12).

 Notice first that if buyer 1 wins, his payoff is

( ) ( )*
12

*
1

*
1211  where,, vbvvssv =− , (17)
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regardless of how he bids (since neither his valuation nor his payment depends on his bid).  I claim

that if buyer 1 bids truthfully, then he wins if and only if (17) is positive.  Observe that if this claim is

established, then I will in fact have shown that truthful bidding is optimal; because buyer 1’s bid does

not affect (17), the most he can possibly hope for is to win precisely in those cases where the net

payoff from winning is positive.

To see that the claim holds, let us first differentiate (13) with respect to 1s′  to obtain

( ) .  allfor  ),(),(),( 121
1

2
21

1

1
211

1

2 sss
s
v

ss
s
v

ssv
dv
db

′′
∂
∂

=′
∂
∂

′

This identity, together with (1) and (16), implies that

( ) . allfor ,1 11
1

2 vv
dv
db

< (18)

But from (18), (17) is positive if and only if

( ) ( )( ) . allfor  ),(, 1
*
12111

1

2*
1211 vvssvv

dv
db

vssv ′−′>− (19)

Now, from the intermediate value theorem, there exists )],(,[ 211
*
11 ssvvv ∈′  such that

( ) ( ) ( )( )*
12111

1

2*
122112 ),(),( vssvv

dv
db

vbssvb −′=− .

Hence (17) is positive if and only if

( ) ( )*
122112

*
1211 ),(),( vbssvbvssv −>− , (20)

which, since ( )*
12

*
1 vbv = , is equivalent to

).,(),( 212211 ssvssv > (21)

Now suppose that buyer 1 is truthful. Because ( ),(),,( 212211 ssvssv ) is then a fixed point, 1 wins if

and only if (21) holds.  So we can conclude that, when buyer 1 is truthful, his net payoff from
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winning is positive (i.e., (17) is positive) if and only if he wins, which is what I claimed.  That is, the

modified Vickrey auction is efficient.

An attractive feature of the Vickrey auction in the case of private values is that bidding one’s

true valuation is optimal regardless of the behavior of other buyers, i.e., it is a dominant strategy.

Once we abandon private values, however, there is no hope of finding an efficient mechanism with

dominant strategies (this is because, if my payoff depends on your signal, then my optimal strategy

necessarily depends on the way that your strategy reflects your signal value, and so is not independent

of what you do). Nevertheless, equilibrium in our modified Vickery auction has a strong robustness

property.  In particular, notice that although, technically, truthful bidding constitutes only a Bayesian

(rather than dominant-strategy) equilibrium, equilibrium strategies are independent of the prior

distribution of signals F.  That is, regardless of buyers’ prior beliefs about signals, they will behave

the same way in equilibrium.  In particular, this means that the modified Vickrey auction will be

efficient even in the case in which buyers’ signals are believed to be independent of one another.11

One might complain that having a buyer make his bid a function of the other buyer’s

valuation imposes a heavy informational burden on him—what if he doesn’t know anything about the

connection between the other’s valuation and his own?  I would argue, however, that the modified

Vickrey auction should be viewed as giving buyers an additional opportunity rather than as setting an

onerous requirement.  After all, the degree to which a buyer makes his bid contingent is entirely up to

him.  In particular, he always has the option of bidding entirely uncontingently , i.e., of submitting a

constant function.  Thus, contingency is optional (but, of course, the degree to which the modified

Vickrey auction will be more efficient than the ordinary Vickrey will turn on the extent to which

buyers are prepared to bid contingently).

                                                                
11 Crémer and McLean (1988) exhibit a mechanism that attains efficiency if the joint distribution of signals is
common knowledge (including to the auction designer) and exhibits correlation.  In very recent work A.
Postlewaite has shown how this mechanism can be generalized to the case where the auction designer himself
does not know the joint distribution.
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I have explicitly illustrated how the modified Vickrey auction works only in the case of two

bidders, but the logic extends immediately to larger numbers.  For the case of n buyers the rules

become:

i) each buyer i submits a contingent bid schedule ),(ˆ ⋅ib which is a function of v-i, the vector of

valuations excluding that of buyer i;

ii) the auctioneer computes a fixed point ( ) )(ˆ  where,,,1
o
ii

o
i

o
n

o vbvvv −=K  for all i;

iii) the winner is the buyer i for whom o
j

o
i vv ≥  for all ij ≠ ;

iv) the winner pays )(ˆmax *
jj

ij
vb −

≠
 where, for all ).(ˆ satisfies   , ***

jjjj vbvvij −=≠

 Under conditions (1) and (5), an argument similar to the two-buyer demonstration above establishes

that it is an equilibrium in this auction for each buyer to bid truthfully (see Dasgupta and Maskin

(2000))12.  That is, if buyer i’s signal value is si, he should set such that )()(ˆ ⋅=⋅ ii bb

 ( ) . allfor  ),(),( iiiiiiii sssvssvb −−−− ′′=′ 13 (22)

 Furthermore, it is easy to see that, if buyers bid truthfully, the auction results in an efficient allocation.

 One drawback of the modified Vickrey auction that I have exhibited is that a buyer must

report quite a bit of information (this is an issue distinct from that of the buyer’s having to know a

great deal, discussed above)--a bid for each possible vector of valuations that others may have.  Perry

and Reny (1999a) have devised an alternative modification of the Vickrey auction that considerably

reduces the complexity of the buyer’s report.

                                                                
12 The reader may wonder whether, when  (5) is not satisfied and so an efficient auction may not be possible, the
efficiency of  the final outcome could be enhanced by allowing buyers to retrade after the auction is over.
However, any post-auction trading episode could alternatively be viewed as part of a single mechanism that
embraces both it and the auction proper.  That is, in our search for efficient auctions, we need not consider post-
auction trade since such activity could always be folded into the auction itself.  Indeed, permitting post-auction
trade can, in principle interfere with efficiency in the same way that renegotiation can interfere with the
efficiency of a contract (see Dewatripont (1989)).
13It is conceivable—although unlikely—that for a given vector v-i there could exist two different signal vectors

ii ss −− ′′′  and  such that ( ) ( ) ( ) ( )iiiiiiiiiiiii ssvssvvssvssv −−−−−−− ′′≠′=′′=′ ,,but  ,, , in which case (22)

is not well defined.  To see how to handle that possibility see Dasgupta and Maskin (2000).
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 Specifically, the Perry-Reny auction consists of two rounds of bidding.  This means that a

buyer can make his second-round bid depend on whatever he learned about other buyers’ valuations

from their first-round bids, and so the auction avoids the need to report bid schedules. In the first

round, each buyer i submits a bid .0≥ib  In the second round each buyer i submits a bid bj
i  for each

buyer .ij ≠  If some buyer submits a bid of zero in the first round, then the Vickrey rules apply: the

winner is the high bidder, and he pays the second-highest bid.  If all first-round bids are strictly

positive, then the second-round bids determine the outcome.  In particular, if there exists a buyer i

such that

 
ijbb i

j
j

i ≠≥  allfor       (23)

 then buyer i wins and pays .max i
j

ij
b

≠
  If there exists no i satisfying (23), then the good is allocated at

random.

 Perry and Reny show that, under assumption (1) and (5) and provided that the probability a

buyer has a zero valuation is zero, there exists an efficient equilibrium of this auction.  They also

demonstrate that the auction can be readily extended to the case in which multiple identical goods are

sold, provided that a buyer’s marginal utility from additional units is declining.

5.  The English Auction

The reader may wonder why, in my discussion of efficiency, I have not brought up

the English auction, the familiar open format in which (i) buyers call out bids publicly (with the

proviso that each successive bid exceed the one before), (ii) the winner is the last buyer to make a bid,

and (iii) the winner pays his bid.  After all, the opportunity to observe other buyers’ bids in the

English auction would seem to allow a buyer to make a conditional bid in the same way that the

modified Vickrey auction does.

However, as shown in Maskin (1992), Eso and Maskin (2000b) and Krishna (2000), the

English auction is not efficient in as wide a class of cases as the modified Vickrey auction. To see
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this, let us consider a variant of the English auction, sometimes called the “Japanese” auction (see

Milgrom and Weber (1982)), which is particularly convenient analytically:

( i) all buyers are initially in the auction;

(ii) the auctioneer raises the price continuously starting from zero;

(iii) a buyer can drop out (publicly) at any time;

( iv) the last buyer remaining wins;

(v) the winner pays the price prevailing when the penultimate buyer dropped out.

Now, in this auction, a buyer can indeed condition his drop-out point according to when other buyers

have dropped out, allowing bids in effect to be conditional on other buyers’ valuations.  However, a

buyer can condition only on buyers who have already dropped out.  Thus, for efficiency, buyers must

drop out in the “right” order in the equilibrium.  That this might not happen is illustrated by the

following example from Eso and Maskin (2000a):

Example 6: Suppose there are two buyers, where

21211 22),( ssssv −+=

and

 122121 22),( ssssv −+=

and s1 and s2 are distributed uniformly on [0,1].  Notice first that conditions (1) and (5) hold, so that

the modified Vickrey auction results in a efficient equilibrium allocation.  Indeed, buyers’ equilibrium

contingent bids are

( ) 2121 236 vsvb −−=

and

( ) 1212 236 vsvb −−= .

Now, consider the English auction.  For i=1,2 let pi(si) be the price at which buyer i drops out if his

signal value is si.  If the English auction were efficient, then we would have
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s1>s2 if and only if ( ) ( )     .2211 spsp > (w)

Hence,

( ) ( )    then , if 221121 spspsss === (ww)

But from (w) and (ww), pi(s+)s) > pi (s) and so

( )⋅ip  is strictly increasing in si. (www)

Thus,

( ) ( )ssvsp ,11 =

and

( ) ( )ssvsp ,22 =

(if  ( ) ( )spssv 11 , > , then buyer 1 drops out before the price reaches his valuation and so would do

better to stay in a bit longer; if ( ) ( )spssv 11 , < , then buyer 1 stays in for prices above his valuation,

and so would do better to drop out earlier).  But,

( ) sssssv −=−+= 222,1 ,

which is decreasing in s, violating our finding that p1(A) is increasing.  In short, efficiency demands

that a buyer with a lower signal value drop out first.  But if buyer i’s signal value is s, he has the

incentive to drop out when the price equals ( )ssv ,1 , and this function is decreasing in s. So, in

equilibrium buyers will not drop out in the right order.  We conclude that the English auction does not

have an efficient equilibrium in this example.

In Example 6 each buyer’s valuation is decreasing in the other buyer’s signal.  Indeed, this

feature is important: as Maskin (1992) shows, the English auction is efficient in the case n=2 when

valuations are nondecreasing functions of signals (and conditions (1) and (5) hold).  However,

examples due to Perry and Reny (1999b), Krishna (2000), and Eso and Maskin (2000b) demonstrate

that this result does not extend to more than two buyers.  Nevertheless, Krishna (2000) provides some
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interesting conditions (considerably stronger than the juxtaposition of (1) and (5)) under which the

English auction is efficient with three or more buyers (see also Eso and Maskin (2000b)).  Moreover,

the Perry and Reny paper shows that the English auction can be modified (in a way analogous to their

(1999b) alteration of the Vickrey auction) that renders it efficient under the same conditions as the

modified Vickrey auction.  In fact, this modified English auction extends to multiple (identical) units,

as long as buyers’ marginal valuations are decreasing in the number of units consumed (in the

multiunit case, the Perry-Reny auction is actually a modification of the Ausubel (1997) generalization

of the English auction).

 6.  Multiple Goods

 In the same way that the ordinary Vickrey auction extends to multiple goods via the Groves-

Clarke mechanism, so our modified Vickrey auction can be extended to handle more than one good.

It is simplest to consider the case of two buyers, 1 and 2, and two goods, A and B.  If there were

private values, the pertinent information about buyer i would consist of three numbers,

iABiBiA vvv  and , , --his valuations, respectively, for good A, good B, and and both goods together.

 Efficiency would then mean allocating the goods to maximize the sum of valuations.  For example, it

would be efficient to allocate both goods to buyer 1 provided that

 { }.,,max 22121A1 ABABBAB vvvvvv ++≥

 The Groves-Clarke mechanism is the natural generalization of the Vickrey auction to a multi-

good setting.  In this mechanism, buyers submit valuations (in our two-good, private-values model,

each buyer i submits iABiBiA vvv ˆ and ,ˆ,ˆ ); the goods are allocated in the way that maximizes the sum

of the submitted valuations; and each buyer makes a payment equal to his marginal impact on the

other buyers (as measured by their submitted valuations).  Thus, in the private-values model, if buyer

1 is allocated good A, then he should pay

 ,ˆˆ 22 BAB vv −    (24)
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 since ABv2ˆ  would be buyer 2’s payoff were buyer 1 absent, Bv2ˆ  is his payoff given buyer 1’s

presence, and so the difference between the two—i.e., (24)-- is buyer 1’s marginal effect on buyer 2.

 Given private values, bidding one’s true valuation is a dominant strategy in the Vickrey

auction and the same is true in the Groves-Clarke mechanism. Hence, in view of its allocative rule,

the mechanism is efficient in the case of private values.  But, as with the Vickrey auction, the Groves-

Clarke mechanism is not efficient when there are common values.  Hence, I shall examine a

modification of Groves-Clarke analogous to that for Vickrey.

 As in the one-good case, assume that each buyer i (i=1,2) observes a private real-valued

signal si. Buyer i’s valuations are functions of the two signals:   

  ).,(),,( ),,( 212121 ssvssvssv iABiBiA

 The appropriate counterpart to condition (1) is the requirement that if H and H ′  are two bundles of

goods for which, given ( ),, 21 ss buyer i prefers H, then the intensity of that preference rises with .is

That is, for all i=1,2 and for any two bundles ABBAHH ,,,, φ=′

 ( ) 0),(),(0),(),( 21212121 >−
∂
∂

⇒>− ′′ ssvssv
s

ssvssv HiiH
i

HiiH . (25) 

 

 Notice that if, in particular, , and φ=′= HAH  then (25) just reduces to the requirement that if

,0),( 21 >ssv iA  then ,0),( 21 >
∂
∂

ss
s
v

i

iA  i.e., to (1).

 Similarly, the proper generalization of (5) is the requirement that if, for given signal values, two

allocations of goods are equally efficient (i.e., give rise to the same sum of valuations), then an

increase in si leads the allocation that buyer i prefers to become the more efficient. That is, for all

,2,1=i  and any two allocations ( ) ( ),,,, 2121 HHHH ′′
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∑
∂
∂

∑ >
∂
∂

>∑=∑

=
′

=

′
=

′
=

2

1
21

2

1
21

2121

2

1
21

2

1
21

).,(),(hen            t

),,(),( and ),(),(  if    

j jHj
ij jjH

i

iHiiiH
j jHj

j jjH

ssv
s

ssv
s

ssvssvssvssv

(26)

 Notice that, if just one good A were being allocated and the two allocations were

( ) ( ) ( ) ( ),,, and ,, 2121 AHHAHH φφ =′′=  then, when i=1, condition (26) would reduce to the

requirement

 
),,(),(then           

, 0),( and ),(),(   if     

21
1

2
21

1

1

211212211

ss
s

v
ss

s
v

ssvssvssv

AA

AAA

∂
∂

>
∂

∂
>=

(27)

 

 which is just (5).

 An auction is efficient in this setting if, for all ),,( 21 ss the equilibrium allocation ( )oo HH 21 ,

solves

 ( )
.),(max

2

1
21

,H 21
∑
=i

iH
H

ssv
i

 Under assumptions (25) and (26), the following rules constitute an efficient auction:

 ( i) buyer i submits schedules ),(ˆ),(ˆ),(ˆ ⋅⋅⋅ iABiBiA bbb  where for all H=A,B,AB and all vj

 
( )

( ); ,, are luations        va          

)( 'buyer  if for  bid 'buyer  ˆ

jABjBjAj

jiH

vvvv

ijsjHsivb

=

≠=

 

 (ii) the auctioneer computes a fixed point ( )oo vv 21 ,  such that, for all i and H,

 ( )o
jiH

o
iH vbv ˆ=   ;

 

  (iii) goods are divided according to allocation ( ),, 21
oo HH  where
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 ( )
( )

;max arg ,
2

1,
21

21
∑=
=i

o
iH

HH

oo
i

vHH

 (iv) suppose that buyer 1 is allocated good A (i.e., AH o =1 ); if  (a) there exists *
1v  such that

 ( ) ( ), ˆˆ *
12

*
12

*
1 vbvbv ABBA =+  (28)

 then buyer 1 pays

 ( ) ( ); ˆˆ *
12

*
12 vbvb BAB − (29)

 if instead of (28), (b) there exist **
1

o
1A

*
1

*
1  and ) ˆ(with  ˆ vvvv A <  such that

 ( ) ( )*
12

*
1

*
12

*
1 ˆˆˆˆˆˆ vbvvbv ABBA +=+

 and

 ( ) ( )**
12

**
12

**
1

ˆˆ vbvbv ABAB =+ ,

 then buyer 1 pays

 ( ) ( )( ) ( ) ( )( ); ˆˆˆˆˆˆ **
12

**
12

*
12

*
12 vbvbvbvb AABBA −+− (30)

 

(v) if buyer 1 is allocated good B, then his payment is completely analogous to that  of (iv);

(vi) if buyer 1 is allocated goods A and B, then see the Appendix for his payment;

(vii) buyer 2’s payments are completely analogous to those of buyer 1.

Rules (i)-(iii) so closely mirror rules (i)-(iii) of the modified Vickrey auction in section 4 that

they do not require further comment.  Let us, therefore, focus on rule (iv).  If A were the only good

being allocated, then to compute buyer 1’s payment, we would reduce o
AA vv 11  from  to the point *

1Av

where it is no longer uniquely efficient to allocate buyer 1 good A (i.e., it becomes equally efficient to

allocate A to buyer 2) and have him pay his marginal impact at *
1v  on buyer 2: the difference between

buyer 2’s payoff from getting A and that from getting nothing:

( ) ( )∗∗ =− AAAA vbvb 1212
ˆ0ˆ ,
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which is payment rule (14).  Using this same principle in the two-good setting, let us reduce

o
AA vv 11  from  to the first point where it is no longer uniquely efficient to allocate A to buyer 1 and B

to buyer 2.  There are two possible cases.  In case (a), at this first switching point it becomes efficient

to allocate both goods to buyer 2. Let us denote the switching point in this case by *
1Av  (choose

∗
ABB vv 1

*
1  and  to conform with *

1Av , i.e., choose them so that ( )∗∗∗∗ = ABBA vvvv 1111 ,,  lies in the domain

of ( ) ( ) ( )( )). ˆ,ˆ,ˆ
222 ⋅⋅⋅ ABBA bbb  Hence, at *

1Av , buyer 1’s marginal impact on buyer 2 is the difference

between 2’s payoff from getting both goods, ( )*
12

ˆ vb AB , and that from getting just B, ( ),ˆ *
12 vb B  i.e.,

(29).  In case (b) it becomes efficient at the first switching point ∗
Av1ˆ  (choose ∗∗

ABB vv 11 ˆ and ˆ to

conform with ∗
Av1ˆ ) to allocate A to buyer 2 but B to buyer 1.  Hence, at *

1ˆ Av  buyer 1’s marginal

impact on buyer 2 from being allocated A rather than B is the difference between buyer 2’s payoff

from A and that from B:

( ) ( )*
12

*
12 ˆˆˆˆ vbvb BA − .  (31)

But (31) does not represent buyer 1’s full marginal impact on buyer 2 because it compares buyer 2’s

payoff from B with that from good A, rather than from both A and B.  To obtain the latter comparison,

reduce *
BB vv 11 ˆ from  to the point **

1Bv  where it just becomes efficient to allocate both A and B to

buyer 2.  The marginal impact on buyer 2 at **
1Bv  (choose ∗∗∗∗

ABA vv 11  and  to conform with ∗∗
Bv1 ) is

( ) ( ). ˆˆ **
12

**
12 vbvb AAB −  (32)

Adding (31) and (32), we obtain buyer 1’s full marginal impact on buyer 2, viz., (30).  Notice that in

the case of private values, where ( ) ( ), ˆˆˆ *
12

**
12 vbvb AA = (30) reduces to ,ˆˆ

22 BAB bb −  which is buyer 1’s

payment for good A in the ordinary Groves-Clarke mechanism.
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It can be shown (see Dasgupta and Maskin (2000)) that it is an equilibrium for buyers to bid

truthfully in the above auction, i.e., for each i and bundle of goods   ,,, ABBAH = buyer i should set

),()(ˆ ⋅=⋅ iHiH bb  where

( ) jjiiHjijHiH sssvssvb ′′=′  allfor  ),(),(

if buyer i’s signal value is si.  Notice that if, in fact, buyers are truthful, the auction results in an

efficient equilibrium.

7.  Multidimensional Signals

Up until now, the results I have quoted on efficient auctions with common values have

assumed that buyers’ signals are one-dimensional.  This is for good reason—the results are simply not

true otherwise.  Indeed, with multidimensional signals, efficiency in the sense I have defined it is

generally unattainable with any mechanism (a point found in Maskin (1992) and Jehiel and

Moldovanu (1998)). To see this, consider the following example:

Example 7: Suppose that there are two buyers and one good.  Assume that buyer 2’s signal s2 is, as

usual, one-dimensional but that buyer 1’s signal s1 has two components:  s1=(s11,s12).

Let
( ) 21211212111 ,, ssssssv α++=

and

( ) . ,, 12112212112 ssssssv γβ ++=

Because of independence, buyer 1’s objective function is the same for any pairs (s11, s12) that add up

to the same constant, and thus, he will behave the same way for any such pairs.  In particular, if

( )1211, ss ′′  and ( )1211, ss ′′′′  are pairs such that 12111211 ssss ′′+′′=′+′ , then, in any auction, the
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equilibrium outcome must be identical for the two pairs.  But, unless β=γ, the efficient allocation may

turn on which pair obtains—specifically, given s2, we might have

1211221211 ssssss ′+′+>+′+′ γβα (33)

but

, 12112221 ssssss ′′+′′+<+′′+′′ γβα (34)

so that, with ( ) ( )12111211 ,, ssss ′′= , the good should be allocated to buyer 1 and, with

( ) ( ) , ,, 12111211 ssss ′′′′=  it should be allocated to buyer 2 (if β=γ, this conflict does not arise; the

inequality signs in (33) and (34) must be the same).  Hence, an efficient auction is impossible when

β≠γ.

However, since buyer 1 cares only about the sum , 1211 ss +  it is natural to define

12111 ssr +=

and set

( ) 21211 , srsrw α+=

and

( ) [ ]112111211212,11212 |, rsssssEsrw ss =+++= γβ .

Notice that we have reduced the two-dimensional signal s1 to the one-dimensional signal r1.

Furthermore, provided that α,β, and γ are all less than 1 (so that condition (5) holds), our modified

Vickrey auction is efficient with respect to the “reduced” valuation functions

( ) ( )  and 21 ⋅⋅ ww (because all the analysis of Section 4 applies).  Hence, a moment’s reflection should

convince the reader that, although full efficiency is impossible for the valuation functions

( ) ( ) ,  and 21 ⋅⋅ vv  the modified Vickrey auction is constrained efficient, where “constrained” refers to

the requirement that buyer 1 must behave the same way for any pair ( )1211, ss  summing to the same

r1 (in the terminology of Holmstrom and Myerson (1983), the auction is “incentive efficient”).
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Unfortunately, as Jehiel and Moldovanu (1998) show in their important paper, this trick of

reducing a multidimensional signal to one dimension no longer works in general if there are multiple

goods. To see the problem suppose that, as in Section 5, there are two goods A and B, but that now a

buyer i ( i=1,2,3) receives two signals—one for each good.  Specifically, let s1A and s1B be buyer i’s

signals for A and B, respectively, and let his valuation functions be

( ) ( ). ,, and ,, 321321 BBBiBAAAiA sssvsssv

Let us first fix the signal values of buyers 2 and 3 at levels such that, as we vary s1A and s1B,

either (i) it is efficient to allocate good A to buyer 1 and B to 2, or (ii) it is efficient to allocate good A

to 2 and B to 3.  In case (i), we have

( ) ( ) ( ) ( ) , ,,,,,,,, 3213321232123211 BBBBAAAABBBBAAAA sssvsssvsssvsssv +>+

that is,

( )
( ) ( ) ( )BBBBBBBBAAAA

AAAA

sssvsssvsssv
sssv

321232133212

3211

,,,,,,                           
,,

−+
>

(35)

whereas in case (ii) we have

( )
( ) ( ) ( ). ,,,,,,                           

,,

321232133212

3211

BBBBBBBBAAAA

AAAA

sssvsssvsssv
sssv

−+
<

(36)

Notice that buyer 1’s objective function does not depend on s1B (s1B affects only buyer 1’s valuation

for good B, but buyer 1 is not allocated B in either case (i) or (ii)).  Hence, the equilibrium outcome of

any auction cannot turn on the value of this parameter.  But this means that, if an auction is efficient,

which of case (i) or (ii), (i.e., which of (35) or (36)) holds cannot depend on s1B.  We conclude, from

the right-hand sides of  (35) and (36), that  

( ) ( )BBBBBBBB sssvsssv 32123213 ,,,, −

must be independent of s1B.  Expressed differently, we have

( ) ( )BBBB
B

BBBB
B

sssv
s

sssv
s 3212

1
3213

1

,,,,
∂

∂
=

∂
∂

.
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Repeating the argument for all other pairs of buyers and for good B, we have

. , and  allfor  , BAHkij
s
v

s

v

iH

kH

iH

jH =≠≠
∂
∂

=
∂

∂
(37)

Next, let us fix the signal values of buyers 2 and 3 at levels such that, as we vary s1A and s1B,

either (iii) it is efficient to allocate A to buyer 1 and B to 2; or (iv) it is efficient to allocate B to buyer

1 and A to 2.  In case (iii), we have

( ) ( )
( ) ( ) , ,,,,                           

,,,,

32123211

32123211

AAAABBBB

BBBBAAAA

sssvsssv
sssvsssv

+
>+

 (38)

and in case (iv),

( ) ( )
( ) ( ). ,,,,                            

,,,,

32123211

32123211

AAAABBBB

BBBBAAAA

sssvsssv
sssvsssv

+
<+

(39)

To simplify matters, let us assume that valuation functions are linear:

( ) AAAAAAA ssssssv 31321213211 ,, αα ++= (40)

( ) BBBBBBB ssssssv 31321213211 ,, ββ ++= (41)

and similarly for buyers 2 and 3.  Then (38) and (39) can be rewritten as

BBBAAABA ssssssss 32322212132322212111 βββααα −−−++>− (42)

and

BBBAAABA ssssssss 32322212132322212111 βββααα −−−++<− . (43)

Now (because we have fixed 2’s and 3’s signal values), buyer 1’s objective function depends only on

s1A –s1B.  That is, for any value of ), buyer 1 will behave the same way for signal values (s1A, s1B) as

for ( )∆+∆+ BA ss 11 , .  Hence, in any auction, the equilibrium outcome must be the same for any

value of ∆.  In particular, if the auction is efficient, whether (42) or (43) applies cannot depend on ∆’s

value.  But from the right-hand sides of  (42) and (43), this can be the case only if α21=β21, i.e., only if

B

B

A

A

s
v

s
v

1

2

1

2

∂
∂

=
∂
∂

.
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Repeating the argument for the other buyers, we have

iji
s

v

s

v

iB

jB

iA

jA ≠
∂

∂
=

∂

∂
 and  allfor  . (44)

The necessary conditions (37) and (44), due to Jehiel and Moldovanu (1998), are certainly

restrictive.  Nevertheless, as shown in Eso and Maskin (2000a), there is a natural class of cases in

which they are automatically satisfied.  Specifically, suppose that in our two-good model, each buyer

wants at most one good (this is not essential).  Assume that the true value of good A to buyer i, yiA, is

the sum of a component zA common to all buyers and a component of ziA that is idiosyncratic to him.

That is,

iAAiA zzy +=  .

Similarly, assume that buyer i’s true valuation of good B, yiB, satisfies

iBBiB zzy += .

Suppose, however, that buyer i does not directly observe his true valuations but only noisy signals of

them.  That is, he observes siA and siB, where

iAiAiA ys ε+=

and

iBiBiB ys ε+= .

It can be shown (see Eso and Maskin (2000a)) that if the random variables zH, ziH,giH, i=1,2,3,

H=A,B, are independent, normal random variables and if the variances of giH and ziH are proportional

to that of zH, i.e., for all i, there exists kig and k iz such that

BAHzkzzk HiziHHiiH ,  ,var var and var var === εε ,

then (37) and (44) are automatically satisfied and the modified Groves-Clarke mechanism discussed

in Section 6 is an efficient auction.

8.  Further Work
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There is clearly a great deal of work remaining to be done on efficient auctions, including

dealing with the multiple good/multidimensional problem in cases where (37) and (44) do not hold.  I

would like to simply underscore one issue: finding an open auction counterpart to the modified

Groves-Clarke mechanism in the case of multiple goods.  The task of submitting contingent bids is

considerable even for a single good.  For multiple goods, it could be formidable.  For this reason, as I

have already discussed, researchers have sought open auctions –variants of the English auction—as

desirable alternatives.  Perry and Reny (1999b) have exhibited a lovely modification of the Ausubel

(1997) auction (which in turn elegantly extends the English auction to multiple identical goods).

However, efficiency in that auction obtains only when all goods are identical and buyers’ marginal

valuations are declining.  It would be an important step, in my judgment, to find a similar result

without such restrictions on goods or preferences.
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Appendix: Buyer 1’s payment when allocated both goods in a two-good, two-buyer auction.

If

(a) there exists ∗
1v  such that

( )∗∗ = 121
ˆ vbv ABAB ,

then buyer 1 pays

( )∗
12

ˆ vb AB ;

if (a) does not hold and instead

(b) there exists ∗
1v̂ such that

( )∗∗∗ += 1211 ˆˆˆˆ vbvv BAAB ,

then if,

     (b1) there exists such that 1
∗∗v

( ) ( )∗∗∗∗∗∗ =+ 12121
ˆˆ vbvbv ABBA ,

buyer 1 pays

( ) ( ) ( )( )∗∗∗∗∗ −+ 121212
ˆˆˆˆ vbvbvb BABB ;

and if instead

     (b2) there exist ∗∗∗∗∗
11 v̂ and v̂  such that

( ) ( )∗∗∗∗∗∗∗∗ +=+ 121121 ˆˆˆˆˆˆ vbvvbv ABBA

and

( ) ( )∗∗∗∗∗∗∗∗∗ =+ 12121
ˆˆ vbvbv ABAB ,

then buyer 1 pays

( ) ( ) ( )( ) ( ) ( )( )∗∗∗∗∗∗∗∗∗∗∗ −+−+ 1212121212
ˆˆˆˆˆˆˆˆ vbvbvbvbvb AABBAB ;

finally, if
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(c) there exists such that ˆ̂
1
∗v

( )∗∗∗ += 1211
ˆ̂ˆˆ̂ˆ̂ vbvv ABAB

then if

     (c1) there exists such that1
∗∗v

( ) ( )∗∗∗∗∗∗ =+ 12121
ˆˆ vbvbv ABAB ,

buyer 1 pays

( ) ( ) ( )( )∗∗∗∗∗∗ −+ 121212
ˆˆˆ̂ˆ vbvbvb AABA ;

and if instead

     (c2) there exist ∗∗∗∗∗
11 v̂ and ˆ̂v  such that

 ( ) ( )∗∗∗∗∗∗∗∗ +=+ 121121
ˆ̂ˆˆ̂ˆ̂ˆˆ̂ vbvvbv BAAB

and

( ) ( )∗∗∗∗∗∗∗∗∗ =+ 12121
ˆˆ vbvbv ABBA ,

then buyer 1 pays

( ) ( ) ( )( ) ( ) ( )( )∗∗∗∗∗∗∗∗∗∗∗ −+−+ 1212121212
ˆˆˆ̂ˆˆ̂ˆˆ̂ˆ vbvbvbvbvb BABABA .


	Foreward
	Introduction
	The Basic Model
	Auctions
	An Efficient Auction
	The English Auction
	Multiple Goods
	Multidimensional Signals
	Further Work
	References
	Appendix

