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Abstract. We study full-implementation in Nash equilibrium under complete information. We

generalize the canonical model (Maskin, 1977) by allowing agents to send evidence or discrimina-

tory signals. A leading case is where evidence is hard information that proves something about

the state of the world. In this environment, an implementable social choice rule need not be

Maskin-monotonic. We formulate a weaker property, evidence-monotonicity, and show that this is

a necessary condition for implementation. Evidence-monotonicity is also sufficient for implemen-

tation if there are three or more agents and the social choice rule satisfies two other properties—no

veto power and non-satiation—that are reasonable in various settings, including “economic envi-

ronments”. We discuss how natural conditions on the cost of discriminatory signals yield possibility

results, in contrast with traditional negative results. Additional results are provided for the case

of one and two agents.
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1. Introduction

The theory of implementation is about designing decentralized mechanisms or game forms to
achieve outcomes that are desired by a planner (who might be a benevolent government or social
planner in a usual sense, but could also be a self-interested principal, or even represent the agents
themselves at some constitutional stage). Abstractly, the planner’s objectives are represented by
a social choice rule (SCR), which specifies a set of desired outcomes in each possible state of the
world. By implementation we mean in this paper full-implementation, where the concern is with
ensuring that every decentralized outcome is desirable.1 In order to determine which outcomes
can emerge from any mechanism, one must adopt a game-theoretic solution concept. Here, we use
the traditional benchmark of Nash equilibrium. Moreover, this paper belongs to the literature on
implementation with complete information, where there are no information asymmetries amongst
agents, so that only the planner does not know the true state.

In his seminal contribution, Maskin (1999, in circulation from 1977) provided a necessary prop-
erty that any SCR must satisfy for it to be implementable in Nash equilibrium. (Hereafter, imple-
mentation without qualification refers to Nash implementation.) He also showed that this property,
which we call Maskin-monotonicity, is sufficient for implementation when there are three or more
agents and the SCR satisfies a further mild condition. While intuitive, Maskin-monotonicity is
known to be quite demanding in many settings, particularly if the SCR is single-valued.2 This
has lead to a substantial research program that examines implementation under solution concepts
that refine Nash equilibrium.3 For some such refinements, permissive results have been obtained
under complete information.4 However, the robustness of these results to the introduction of small
amounts of incomplete information has been recently questioned. In particular, if one requires these
mechanisms to implement in environments with “almost” complete information, Maskin monotonic-
ity is again a necessary condition.5

A maintained assumption in almost all of this literature is that agents can manipulate information
about the state without restraint. Put differently, all messages that are or can be made available
to an agent in any mechanism are assumed to be state independent, and moreover, directly payoff
irrelevant. In this sense, all messages are “cheap talk”, and only matter insofar as they affect
the outcome determined by the mechanism. This paper aims to focus attention on this aspect of

1A substantial literature addresses partial-or weak-implementation, where the goal is only to ensure that at least one
decentralized outcome is desirable.
2For instance, Saijo (1987) shows that over an unrestricted domain of preferences, a social choice function is Maskin-
monotonic if and only if it is constant. In addition, if utility can be measured on a cardinal scale, SCRs that
make interpersonal comparisons (such as those based on utilitarian or related welfare criteria) are generally not
Maskin-monotonic, even on restricted domains.
3An alternative approach to the use of refinements of Nash equilibrium is to weaken the notion of implementation,
in particular to approximate or virtual implementation (Matsushima, 1988; Abreu and Sen, 1991). A now standard
critique of this approach is that — even if it only occurs with small probability — the mechanism may provide an
outcome arbitrarily inefficient, unfair, or, in any meaningful sense, far from the desired alternative.
4For example, Moore and Repullo (1988) and Abreu and Sen (1990) analyze subgame perfection while Palfrey and
Srivastava (1991) study undominated Nash equilibrium.
5See Aghion et al. (2007) and Kunimoto and Tercieux (2009) on the robustness of mechanisms using subgame
perfection and Chung and Ely (2003) for mechanisms using undominated Nash equilibrium.
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the implementation problem, and to generalize the set of environments under consideration. To
motivate our treatment, here are two examples:

(1) A principal is concerned with dividing a fixed sum of money between agents as some function
of their individual output. If only asked to send cheap-talk messages about their output,
agents could claim anything they want. But the principal could also request agents to
provide physical verification of their output. In this case, an agent would be unable to
claim that his output is larger than it in fact is, but he could claim that it is less, just by not
providing all of it.6 If it is costless to provide the physical verification, the setting is one of
certifiability or hard information. If instead agents bear costs as a function of how much
output they carry to the principal’s court (so to speak), then we have a more complicated
costly signaling instrument.

(2) Consider an income taxation problem, where the planner cannot observe agents’ income.
Agents who are legally employed have a document that stipulates their income (a W2
form). If requested by a mechanism to submit such a document, a legally employed agent
can either costlessly submit his true document, or fabricate a false document at some cost.
The cost may take the form of a fixed cost or possibly vary with the degree of falsification.
Illegally employed agents must fabricate a document, or admit to not possessing one. In
this example, the informational signal of a submitted document is heterogeneous across
agents.

The key element in these examples is that some messages are only feasible in some states of the
world, or messages have differential costs in different states. Since this theme naturally arises in
numerous settings, we believe it is important to study implementation in a framework that accom-
modates this feature. Accordingly, this paper adds “evidence” to an otherwise standard implemen-
tation environment. The crucial feature that distinguishes evidence from standard (cheap-talk)
messages is that a piece of evidence is a discriminatory signal about the state of the world. A
mechanism in this setting can not only request agents to send cheap-talk messages as usual, but also
to submit evidence. Naturally, the planner will generally benefit from the availability of evidence;
our interest is in understanding exactly how and to what extent. In particular, which SCRs are
implementable given some evidence structure, and what evidence structure is needed to make a
particular SCR implementable?

We begin in Section 2 by considering environments where evidence takes the form of hard or
non-manipulable information: an agent cannot produce evidence that she does not in fact possess.
Formally, in each state θ, each agent i has a set of evidence, Eθ

i , and can submit evidence ei if
and only if ei ∈ Eθ

i . Providing any feasible evidence is costless. We place no restriction on the
evidence structure,

{
Eθ

i

}
i,θ

, so that the standard environment is a special case where a player’s
evidence set does not vary with the state.

A simple but significant observation is that SCRs that are not Maskin-monotonic can be imple-
mentable under some evidence structures. We identify a necessary condition, evidence-monotonicity,
6Postlewaite and Wettstein (1989) study implementation of the Walrasian correspondence in an exchange economy
setting where agents’ messages about their endowments have a similar assumption.
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that a SCR must satisfy for it to be implementable. Evidence-monotonicity is a joint condition
on the SCR, agents’ preferences, and the evidence structure

{
Eθ

i

}
i,θ

. To provide some sense of
the condition, suppose the SCR is single-valued and the evidence structure is normal in that if
a player can submit evidence a or b, he can also submit both a and b (Bull and Watson, 2007).
This can be interpreted as a “no time constraints” assumption on the evidence structure. In this
case, evidence-monotonicity is satisfied if and only if for any pair of states over which the SCR vio-
lates Maskin-monotonicity, there is some player whose evidence set differs between the two states.
Intuitively, if all agents’ evidence is identical in two states, then a SCR that does not respect
Maskin-monotonicity over these two states cannot be implemented. (Evidence-monotonicity is
more demanding when the restriction to normal evidence is dropped.) Thus, evidence-monotonicity
weakens and generalizes Maskin-monotonicity, reducing to Maskin-monotonicity if, and generally
only if, there is no evidence available.

A central result of this paper is a partial converse: any evidence-monotonic SCR is implementable
if there are three or more players and the SCR satisfies two properties called no veto power and
non-satiation. No veto power was introduced by Maskin (1999) and requires that at any state, if
an outcome is top-ranked by all-but-one or all agents, then the outcome is chosen by the SCR at
that state. Non-satiation requires in any state, no player’s most-preferred outcome should be in
the range of the SCR, i.e. no outcome ever chosen by the SCR should ever be a player’s top-ranked
outcome.7 While these two properties are restrictive, they are satisfied in many settings of interest.
For example, both hold whenever the planner can make arbitrarily small transfers of a private good
between players and the SCR does not give all of the private good to a single player (and there are
three or more players). Thus, in economic environments, as defined by Moore and Repullo (1988)
(and three or more players), evidence-monotonicity is a tight characterization of when a SCR is
implementable.

That implementability of a SCR turns on evidence-monotonicity produces a number of corollaries.
We introduce a notion of when a state and an event (i.e., a set of states) are distinguishable under
a given evidence structure. We show that a SCR satisfies evidence-monotonicity if and only if
appropriate state-event pairs are distinguishable. This yields a partial order on evidence structures
in terms of how informative they are, so that a “more informative” evidence structure implies that a
larger set of SCRs are evidence-monotonic. There is (an equivalence class of) maximally informative
evidence structures, under any of which every SCR is evidence-monotonic, hence implementable
under the aforementioned conditions. It is shown that a normal evidence structure is maximally
informative if and only if for every pair of states there is some player whose evidence set differs
between the two states.

We also use the notion of distinguishability to create a partial ranking of SCRs, so that a SCR is
“easier” to implement if it is evidence-monotonic for a larger set of evidence structures. Naturally,
Maskin-monotonic SCRs are the easiest to implement.

7A significantly weaker version of this condition is in fact sufficient, as we make clear in the analysis, but is more
involved to state.
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In Section 3, we generalize the environment so that a player can fabricate any piece of evidence
in any state of the world. We posit a cost function ci (ei, θ) which specifies the cost for player i of
producing evidence ei when the true state is θ. A player’s preferences are represented by ui (a, θ)−
ci (ei, θ), where a is the outcome. The case of hard information essentially corresponds to the special
case where ci (·, ·) ∈ {0,∞}, with ci (ei, θ) = 0 iff ei ∈ Eθ

i ,8 whereas now we consider arbitrary cost
functions. A generalization of evidence-monotonicity to cost-monotonicity is formulated, and we
derive a sense in which cost-monotonicity is necessary for a SCR to be implementable in this setting.
We also show that if the planner can make sufficiently large transfers off the equilibrium path, any
cost-monotonic SCR is implementable when there are three or more players.

Under some cost structures, any SCR is cost-monotonic. One striking case is where at least one
player has a “small preference for honesty.” Roughly, this is an assumption on the cost structure
so that an honest player would prefer to tell the truth (in terms of a direct message about the state)
rather than lying if he knows that the outcome is not much affected by this decision. A result with
a similar flavor is proved by Matsushima (2008) using a different approach that follows the virtual
implementation literature.

Our analysis makes clear that the precise form of evidence fabrication costs significantly affect
the possibility of implementation. In many settings, the planner may have the power to design
the cost structure (or part of it), perhaps at social cost. For instance, the degree of difficulty or
technological cost of falsifying the income document in the second motivating example above could
be modified by the planner. From the perspective that influencing evidence fabrication costs is an
additional instrument for the planner, our analysis yields insight into how useful such an instrument
can be. Moreover, in the case of hard information, our ranking of evidence structures in terms of
their informativeness may also be useful in this vein.

In proving sufficiency of evidence- or cost-monotonicity (in conjunction with the other conditions)
for implementation, we explicitly construct implementing mechanisms.9 The mechanisms we use
build upon the “integer games” that are standard in the Nash implementation literature. This
reflects our central objective to revisit the classic results of Maskin (1999) in richer environments
with evidence. While we acknowledge that integer games are unappealing in some respects, the
usual justification for considering such mechanisms applies in the present context: it puts an upper
bound on what is implementable, and moreover, permits the construction of a single mechanism
that achieves the goal in every environment in which implementation is possible. We conjecture
that the way in which we utilize evidence to achieve implementation could be adapted to, for
example, “bounded” mechanisms (Jackson, 1992).

This paper contributes to the relatively small but growing literature on mechanism design with
evidence. Most of these studies concern partial-implementation and hard information. An early

8There is one subtlety though, which concerns dynamic mechanisms, discussed in Section 2.9.
9Kartik and Tercieux (2008b) prove that if for each player and each state of the world, utility functions over outcomes
are bounded, then implementation in mixed strategy Nash equilibria is possible under the usual assumptions in the
standard setting with no evidence. Although only pure strategy equilibria are considered here, we can show that
under a similar boundedness assumption, the current results would go through when considering mixed strategy Nash
equilibria.
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reference is Green and Laffont (1986), and a sample of more recent work is Bull (2008), Bull and
Watson (2004, 2007), Deneckere and Severinov (2008), Glazer and Rubinstein (2004, 2006), Sher
(2008), and Singh and Wittman (2001). We should also note the work of Myerson (1982), who
studies partial-implementation in a setting where agents have private decision domains that the
principal/planner cannot control, which is related to our interest in costly evidence fabrication.

Closest to our work is a recent paper by Ben-Porath and Lipman (2008), who also tackle complete
information full-implementation with evidence. While our results were derived independently,
we have benefitted from reading their treatment. The motivations for their work and ours are
similar—particularly with respect to advancing the prior literature—but the analytical focus is
quite different and complementary. In terms of setting, they restrict attention to hard information
and assume that the evidence technology satisfies normality (Bull and Watson, 2007) or full reports
(Lipman and Seppi, 1995). We do not impose this condition on the evidence structure, and also
consider costly evidence fabrication. In terms of results, their primary interest is in subgame
perfect implementation, whereas we are entirely concerned with Nash implementation. Since the
central difficulty in implementation theory is eliminating “bad” equilibria, our results with a weaker
solution concept are stronger in this regard. The tradeoff is that our sufficiency results are proved
using integer games, as already noted.10

Stepping outside mechanism design, there is a large literature on strategic communication games
where evidence plays an important role. The introduction of hard evidence into implementation
may be considered analogous to moving from communication games of cheap talk (Crawford and
Sobel, 1982) to those verfiable/certifiable information (Milgrom, 1981; Okuno-Fujiwara et al., 1990;
Lipman and Seppi, 1995; Forges and Koessler, 2005). Costly evidence fabrication has been studied
in communication games by Kartik et al. (2007) and Kartik (2008), and in contract settings by, for
example, Maggi and Rodriguez-Clare (1995).

2. Hard Evidence

2.1. The Model. There is a non-empty set of agents or players, I = {1, . . . , n}, a set of allocations
or outcomes, A, a set of states of the world, Θ, and a vector of payoff functions, {ui}n

i=1, where
each ui : A×Θ → R.11 To avoid trivialities, |A| > 1 and |Θ| > 1. All agents are assumed to know
the value of the state, whereas the planner does not. The planner’s objectives are given by a social
choice rule (SCR), which is a correspondence f : Θ ⇒ A; a social choice function is a single-valued
SCR.

So far, the setting is standard. Let us now describe how evidence enters the model. In each state
of the world, θ, agent i is endowed with a set of evidence, Eθ

i , which we assume to be non-empty

10Ben-Porath and Lipman’s Theorem 2, which provides sufficient conditions for one-stage subgame perfect imple-
mentation (hence, Nash implementation) also uses an integer game and is strictly subsumed by our results.
11It is common to focus on just ordinal preferences in each state. We could do with ordinal preferences insofar as
only pure strategy Nash equilibria are considered. For the extension to mixed Nash equilibria (see Remark 5), we
would require that in any state θ, ui(·, θ) is an expected utility representation of player i’s preferences over lotteries
on outcomes. Moreover, our formulation allows the possibility of agents having cardinal valuations over outcomes.
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without loss of generality.12 Denote Ei :=
⋃

θ Eθ
i , Eθ := Eθ

1 × · · · × Eθ
n and E := E1 × · · · × En.

We refer to E :=
{
Eθ

i

}
i,θ

as the evidence structure. The interpretation is that any ei ∈ Ei is a
document, piece of evidence, non-falsifiable claim, etc., that is only available to agent i in the set
of states {θ : ei ∈ Eθ

i }. The traditional setting is the special case where for all i, Eθ
i = Ei for all

θ. For convenience, we will often refer to this case as a setting with “no evidence”, even though
Ei is non-empty for all i.

In standard implementation theory, a mechanism consists of a (cheap-talk) message space and an
outcome function which specifies an outcome for every profile of messages. In the current setting,
a mechanism can also take advantage of the evidence that agents might possess by conditioning
the outcome on the evidence that is submitted. Formally, a mechanism is a pair (M, g) , where
M = M1 × · · · ×Mn is a message space, and g : M × E → A is an outcome function that specifies
an outcome for every profile of messages and evidence.13

Remark 1. Our definition of a mechanism entails that every agent must submit some evidence.
This is without loss of generality: if one wants to allow agent i to have the choice of not submitting
evidence, we would just add a new element, say ei, to Eθ

i for all θ, and interpret this ei as submitting
no evidence.

Remark 2. In some cases, it may be reasonable to assume that the planner can prohibit agents
from submitting certain evidence. Our definition does not allow forbidding evidence. This issue
is discussed in Section 2.9.

A mechanism (M, g) induces a strategic game form in each state of the world, where a pure strat-
egy for player i in state θ is si ∈ Mi×Eθ

i . Let NE (M, g, θ) be the set of pure strategy Nash equilib-
ria (NE hereafter) of this game and O (M, g, θ) := {a ∈ A : ∃(m, e) ∈ NE (M, g, θ) s.t. g (m, e) = a}
be the set of equilibrium allocations. For simplicity, we restrict attention to pure strategy equilibria
in the main text; our results can be extended to mixed strategy Nash equilibria as discussed in
Remark 5 following Theorem 2.

We are interested in (full-)implementation in Nash equilibria, defined as follows.

Definition 1 (Implementation). A mechanism (M, g) implements the SCR f if ∀θ, f (θ) =
O (M, g, θ). A SCR is implementable if there exists a mechanism that implements it.

Before turning to the analysis, we wish to emphasize that the current framework allows for differ-
ent states to have identical profiles of agents’ preferences. In contrast, in standard implementation
theory, it is common to identify a state of the world with a profile of preferences. This is be-
cause in the standard model the planner cannot implement different outcomes unless some agent’s
preference ranking changes. Introducing evidence into the picture changes this perspective quite

12Since we will permit the planner to make available cheap-talk messages, one can always assume that for each i,
there is some ei ∈

⋂
θ

Eθ
i , which is just a cheap-talk message.

13Strictly speaking, letting the domain of g be M × E is excessive in the sense that some e ∈ E may not be feasible
in any state. It will be irrelevant what the outcome g(·, e) is for any such e; for later purposes, it is convenient to let
the entire evidence structure be included in the domain of g.
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dramatically (as will be seen), so that a state can reflect anything relevant to the planner beyond
just the agents’ preferences. For example, consider legal settings where neither a plaintiff’s nor
defendant’s preferences over outcomes may vary with the state, but the state of world reflects the
degree of damages that has been caused by the defendant and is thus relevant to the planner.14

In what follows, the symbols ∧ and ∨ are sometimes used to respectively stand for “and” and
“or”.

2.2. Evidence-Monotonicity: Necessity. Maskin (1999) showed that in settings without ev-
idence, SCRs must satisfy a monotonicity condition to be implementable. We will refer to his
now classic condition as Maskin-monotonicity.15 In settings with non-trivial evidence, Maskin-
monotonicity is no longer necessary for a SCR to be implementable.

Example 1. Let Ei = Θ and Eθ
i = {θ} for all i, θ. This can be interpreted as agents never being

able to misrepresent the state of the world. In this case, no matter the specification of agents’
preferences, any social choice function f can be implemented by a mechanism with an arbitrary
message space, M , and the outcome function g(m, (θ, . . . , θ)) = f(θ).

The key to our analysis is the following generalization of Maskin-monotonicity.

Definition 2 (Evidence-monotonicity). A SCR f is evidence-monotonic provided that for all θ

and all a ∈ f(θ), there exists e∗θ,a ∈ Eθ such that for any θ′, if

∀i ∈ I,∀b ∈ A: [ui (a, θ) ≥ ui (b, θ)] =⇒ [ui

(
a, θ′

)
≥ ui

(
b, θ′

)
] (*)

and

e∗θ,a ∈ Eθ′ and Eθ′ ⊆ Eθ, (**)

then a ∈ f
(
θ′

)
.

To get some intuition for the definition, note that without (**), it is just Maskin-monotonicity.
In a setting without evidence, evidence-monotonicity simplifies to Maskin-monotonicity because
when Eθ

i = Ei for all θ, i, condition (**) is satisfied no matter the choice of
{

e∗θ,a

}
θ,a

. Plainly, any

Maskin-monotonic SCR is evidence-monotonic regardless of the evidence structure. In general,
(**) will make it possible for non-Maskin-monotonic SCRs to be evidence-monotonic: for instance,
in Example 1, (**) is not satisfied for any θ 6= θ′ (since Eθ = {(θ, . . . , θ)} for all θ), hence every
SCR is evidence-monotonic, regardless of agents’ preferences.

For any θ and a ∈ f(θ), e∗θ,a can be thought of as the evidence profile that agents are supposed
to provide the planner in state θ to indicate that a should be the outcome. Loosely speaking, one

14We should also note that if two states differ only in agents’ preferences (and all other relevant aspects are identical),
one might argue that no agent’s evidence set should differ between the two states. This depends on whether an
agent can provide some proof about his preferences.
15A SCR is Maskin-monotonic provided that for all θ, θ′ and a ∈ f (θ), if

∀i ∈ I,∀b ∈ A: [ui (a, θ) ≥ ui (b, θ)] =⇒ [ui

(
a, θ′

)
≥ ui

(
b, θ′

)
]

then a ∈ f (θ′).
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should choose e∗θ,a to be an evidence profile that is “most informative” about state θ with respect
to the other states that outcome a is also socially desirable in. In particular, if there is an evidence
profile in state θ that proves more about the state than any other evidence profile available at θ,
then for any a ∈ f(θ), one can take e∗θ,a to be this evidence profile. This is illustrated in the
following example:

Example 2. Consider the first motivating example in the introduction. A principal is concerned
with dividing a fixed sum of money to agents as some function of their individual production. A
state of nature θ is a profile of units of output, i.e. θ = (θ1, ..., θn) ∈ Θ = Rn

+. Each agent can
explicitly show his true output or some subset of it, hence an agent is unable to claim that his output
is larger that it in fact is, but he can claim that it is less. Formally, Ei = Θ and Eθ

i = [0, θi] for
all i, θ. We will now show that any SCR is evidence-monotonic in this setting.

For any θ and a ∈ f(θ), let e∗θ,a = θ. It suffices to argue that for any θ′ 6= θ, condition (**) is
violated. If θ′ 6= θ, there exists an agent i such that θ′i 6= θi. First, if θ′i < θi then e∗i,θ,a = θi /∈
[0, θ′i] = Eθ′

i and so (**) is violated. Second, if θ′i > θi then θ′i ∈ Eθ′
i but θ′i /∈ [0, θi] = Eθ

i , hence
(**) is violated.

Our first result is that evidence-monotonicity is a necessary condition for implementation.

Theorem 1. If a SCR is implementable, it is evidence-monotonic.

Proof. Assume f is implemented by a mechanism (M, g). Then for each θ and a ∈ f (θ), there
exists

(
m∗

θ,a, e
∗
θ,a

)
∈ M × Eθ that is a NE at θ such that g

(
m∗

θ,a, e
∗
θ,a

)
= a. Consider any θ′

satisfying (*) and (**). Since
(
m∗

θ,a, e
∗
θ,a

)
is a NE at θ,

ui

(
g

(
m∗

θ,a, e
∗
θ,a

)
, θ

)
≥ ui

(
g

(
m′

i,m
∗
−i,θ,a, e

′
i,θ, e

∗
−i,θ,a

)
, θ

)
for all i, m′

i ∈ Mi, e
′
i,θ ∈ Eθ

i . By (*),

ui

(
g

(
m∗

θ,a, e
∗
θ,a

)
, θ′

)
≥ ui

(
g

(
m′

i,m
∗
−i,θ,a, e

′
i,θ, e

∗
−i,θ,a

)
, θ′

)
for all i, m′

i ∈ Mi, e
′
i,θ ∈ Eθ

i . Since (**) stipulates e∗θ,a ∈ Eθ′ and Eθ′ ⊆ Eθ, we have

ui

(
g

(
m∗

θ,a, e
∗
θ,a

)
, θ′

)
≥ ui

(
g

(
m′

i,m
∗
−i,θ,a, e

′
i,θ, e

∗
−i,θ,a

)
, θ′

)
for all i, m′

i ∈ Mi, e
′
i,θ ∈ Eθ′

i . Therefore,
(
m∗

θ, e
∗
θ,a

)
is a NE at θ′, and g

(
m∗

θ,a, e
∗
θ,a

)
= a ∈

f
(
θ′

)
. �

The example below illustrates why the Theorem rules out implementation of certain SCRs also
and provides further insight into evidence-monotonicity.

Example 3. Let n = 4, Θ = {w, x, y, z}, A = {a, b, c, d}, and for all i, Ew
i = {α, β} , Ex

i =
{α, β} , Ey

i = {α} , and Ez
i = {α}. For all i, preferences satisfy: ui (b, w) > ui (c, w); ui (c, x) >

ui (b, x); ui (b, y) > ui (c, y); ui (b, z) > ui (c, z). In addition, for agents 1 and 2, in all states, a is
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the unique top-ranked alternative while d is the unique bottom-ranked alternative; analogously, for
agents 3 and 4, in all states, d is the unique top-ranked alternative while a is uniquely bottom-ranked.

Consider the SCR f where f (w) = f (z) = b and f (x) = f (y) = c. f is not evidence-monotonic,
because in Definition 2 we must set e∗y,c = e∗z,c = αααα, and since no agent’s preferences between b

and c switch from state y to state z, evidence-monotonicity requires that c ∈ f (z) because f (y) = c.
Thus, by Theorem 1, f is not implementable.

On the other hand, consider the SCR f∗ where f∗ (w) = b and f∗ (x) = f∗ (y) = f∗ (z) = c.
Even though f∗ is not Maskin-monotonic (because b = f∗ (w) 6= f∗ (y) = c), one can see that f∗ is
evidence-monotonic by using e∗w,b = e∗x,b = ββββ and e∗y,c = e∗z,c = αααα in Definition 2 . We will
show subsequently that f∗ is in fact implementable.

2.3. Evidence-Monotonicity: Sufficiency. In this section, we show that under some conditions,
evidence-monotonicity is also sufficient for implementation when n ≥ 3. First, we observe that
evidence-monotonicity by itself is not generally sufficient, since it reduces to Maskin-monotonicity
without evidence, and it is well-known that Maskin-monotonicity is not sufficient for implementa-
tion in the standard setting (even with n ≥ 3). Maskin introduced the following notion.

Definition 3 (No veto Power). A SCR f satisfies No veto power (NVP) if for all θ ∈ Θ and a ∈ A,[∣∣∣∣{i : a ∈ arg max
b∈A

ui(b, θ)}
∣∣∣∣ ≥ n− 1

]
=⇒ a ∈ f(θ).

NVP says that if at state θ an outcome is top ranked by n−1 individuals, then the last individual
cannot prevent this outcome from being in the socially desired set f(θ), i.e. it cannot be “vetoed”.

From Maskin (1999), we know that when n ≥ 3 and Eθ
i = Ei for all i, θ (a setting without

evidence), a SCR is implementable if it satisfies evidence-monotonicity and NVP. This is no longer
the case with non-trivial evidence structures:

Example 4. n = 4. Θ = {θ1, θ2}. Eθ1
1 = {x}, Eθ2

1 = {x, y}; for i 6= 1, Eθ1
i = Eθ2

i = {z}.
A = {a, b}. For all θ and i ∈ {1, 2} : ui (b, θ) > ui (a, θ). For all θ and i ∈ {3, 4} : ui (a, θ) >

ui (b, θ) . The SCR is f (θ1) = b and f (θ2) = a. This SCR is evidence-monotonic, as seen by
using e∗θ1,b = (xzzz) and e∗θ2,a = (yzzz) in Definition 2. No veto power is also satisfied since
for all θ, there is no outcome that is most-preferred by 3 or more players. Yet, the SCR is not
implementable. To see this, suppose that it is implemented by some mechanism (M, g). Then
g (m∗, e∗) = b for some (m∗, e∗) ∈ NE (M, g, θ1), because b = f (θ1). This implies that there is no
unilateral deviation for either player 3 or player 4 from (m∗, e∗) that leads to outcome a. Since
(m∗, e∗) ∈ M × Eθ1 ⊆ M × Eθ2, (m∗, e∗) is a strategy profile available at state θ2. This implies
that (m∗, e∗) ∈ NE (M, g, θ2), hence b ∈ O (M, g, θ2), a contradiction.

Therefore, some additional condition is needed to guarantee implementability. To get some
insight on the assumption we make below and the role it plays, notice that the difficulty here is that
even though player 1 is able to disprove θ1 when the true state is θ2 (by submitting evidence y), he
has no incentive to do so. Suppose that we modify the setting so that player 1 is “non-satiated”
by any outcome in the range of f . For instance, assume the existence of an outcome c such that
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u1(c, θ) > u1(b, θ) for all θ. Now the mechanism could have player 1 getting outcome c when he
deviates from (m∗, e∗) by submitting e1 = y. In this case, (m∗, e∗) ∈ NE (M, g, θ1), will not be an
equilibrium anymore at state θ2, since at this state player 1 will indeed deviate and announce y to
get outcome c. Note that such a deviation is not available at state θ1.

Accordingly, we introduce the following condition.

Definition 4 (Non-satiation). A SCR f satisfies non-satiation if for all i ∈ I, θ ∈ Θ, and a ∈⋃
θ′∈Θ

f(θ′), there exists ã ∈ A such that ui(ã, θ) > ui(a, θ).

Non-satiation requires that the SCR never choose an outcome that is any agent’s ideal outcome
in some state of the world. Note that Non-satiation does not preclude Pareto-efficiency (fn. 18
gives an example). As we will make clear, substantially weaker versions of this condition will suffice
for our analysis, but for expositional simplicity it is convenient to begin with the above statement.

Both no veto power and non-satiation are reasonable in many settings with three or more play-
ers.16 In particular, they are both automatically satisfied in so-called “economic environments”
where there is a divisible private good which is positively valued by all agents, and the SCR does
not ever allocate all of the private good to a single agent (cf. Moore and Repullo, 1988, condition
EE1). They are also satisfied if the planner can augment outcomes with arbitrarily small transfers
that are never to be used in equilibrium, even if he must maintain off-the-equilibrium-path budget
balance (cf. Benôıt and Ok, 2008; Ben-Porath and Lipman, 2008; Sanver, 2006).17 There are also
interesting pure public goods problems without transfers where both conditions hold.18 On the
other hand, if transfers are not feasible, there are important environments that would not satisfy
the two conditions. For example, classic voting problems would violate non-satiation (but cf.
Remark 7 below).

Remark 3. When non-satiation holds, NVP can only hold if in any state, there is no alternative
that is top-ranked by n−1 or more agents. Thus, non-satiation and NVP together require “enough
disagreement” in any state.

16Instead of NVP, it suffices to assume Moore and Repullo’s (1990) weaker condition of restricted veto power, but
we retain NVP here for ease of exposition. We should note that both non-satiation and, especially, NVP are overly
demanding when there are only one or two agents. Sections 2.7 and 2.8 address implementability when n < 3 without
invoking these conditions.
17To be more precise: consider an underlying outcome space, Ã, with each agent having a payoff function ũi :
Ã × Θ → R, and a SCR f̃ . (Note that Ã itself may include transfers.) Suppose that the planner can impose
an additional vector of transfers (t1, . . . , tn) ∈ X ⊆ Rn, and each agent values his personal transfer quasi-linearly.
Assume that the space of possible transfers satisfies three weak properties: i) (0, . . . , 0) ∈ X; ii) for all i, there exists
(t1, . . . , ti, . . . , tn) ∈ X with ti > 0; iii) for all (t1, . . . , tn) ∈ X, there exists

(
t̃1, . . . , t̃n

)
∈ X and i 6= j such that t̃i > ti

and t̃j > tj . An obvious example would be X =
{
(t1, . . . , ti, . . . , tn) ∈ Rn :

∑
i ti = 0, |ti| ≤ k

}
for some k > 0, i.e.

the planner must balance his budget and cannot reward or punish any player by more than k utility units. We can
then define an extended outcome space A = Ã×Rn, an extended payoff function for each agent ui : A×Θ → R where

ui (ã, t1, θ) = ui (a, θ) + x, and an extended SCR f derived from f̃ by setting f (θ) =
(
f̃ (θ) , 0, . . . , 0

)
. Assuming

that n ≥ 3, this extended environment satisfies both non-satiation and no veto power.
18For example, the decision concerns how much of a public good to produce, a ∈ [0, 1]. Agents are of one of two
types, either they want a = 1 or a = 0. But, motivated by fairness, the planner’s objective is to choose the mean of
the desired levels. So long as n ≥ 4 and there is always at least two agents of each preference type, both non-satiation
and no veto power are satisfied.
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The next result shows that if there are three or more players, and the two aforementioned
conditions hold, evidence-monotonicity is sufficient for implementation. The mechanism we use in
the proof builds on the integer game construction that is standard in the literature.

Theorem 2. Assume n ≥ 3 and let f be a SCR satisfying no veto power and non-satiation. If f

is evidence-monotonic, it is implementable.

Proof. For each θ and a ∈ f (θ), let e∗θ,a be the evidence profile per Definition 2. We will construct
a mechanism that implements f . Fix, for all i, Mi = Θ × A × N, and define g via the following
three rules:

(1) If m1 = · · · = mn = (θ, a, k) with a ∈ f (θ), and e = e∗θ,a, then g (m, e) = a.

(2) If ∃i s.t. ∀j 6= i, ej = e∗j,θ,a and mj = (θ, a, k) with a ∈ f (θ) , and either mi =
(
θ′, b, l

)
6=

(θ, a, k) or ei 6= e∗i,θ,a then

a) if ei ∈ Eθ
i , then g (m, e) =

{
b if ui (a, θ) ≥ ui (b, θ)
a if ui (b, θ) > ui (a, θ)

.

b) if ei /∈ Eθ
i , then g (m, e) = b.

(3) For any other (m, e), letting mi = (θi, ai, ki) and i∗ = mini∈I arg maxj∈I kj , g (m, e) = ai∗ .

Step 1. We first show that for any θ and any a ∈ f (θ), a ∈ O (M, g, θ). It suffices to show
that at state θ, for any k ∈ N, each agent i playing mi = (θ, a, k) and sending ei = e∗i,θ,a is a NE,
since by rule (1) of the mechanism, this results in outcome a. If some agent deviates from this
strategy profile, rule (2) of the mechanism applies. There is no profitable deviation for any player
to rule (2a) since any such deviation yields a weakly worse outcome. A deviation to rule (2b) is
not feasible.

For the remainder of the proof, suppose the true state is θ′, and (m, e) is a NE. We must show
that g (m, e) ∈ f

(
θ′

)
.

Step 2. Assume (m, e) falls into rule (2). Note that any player j 6= i can deviate and by
announcing an integer large enough get any outcome he wants. Since (m, e) is a NE, g (m, e)
must be player j’s most-preferred outcome in state θ for any j 6= i. NVP then implies that
g (m, e) ∈ f

(
θ′

)
. A similar argument applies if (m, e) falls into rule (3) as well.

Step 3. It remains to consider (m, e) falling into rule (1). Here m1 = · · · = mn = (θ, a, k) with
g (m, e) = a ∈ f (θ) and for all i, ei = e∗i,θ,a. Observe that any player i can deviate into rule (2a)
while producing the same evidence (say, by changing his integer announcement), and hence can
induce any outcome in the set L(a, θ) := {b : ui (a, θ) ≥ ui (b, θ)}. Since (m, e) is a NE, this implies
that for any agent i and outcome b ∈ L(a, θ), ui

(
a, θ′

)
≥ ui

(
b, θ′

)
, and consequently condition (*)

is satisfied. If (**) also holds, evidence-monotonicity implies that a ∈ f
(
θ′

)
, and we are done. To

see that (**) must hold, suppose to contradiction that it does not. Then there is some agent i such
that

(
e∗i,θ,a /∈ Eθ′

i

)
or

(
Eθ′

i * Eθ
i

)
. Since ei = e∗i,θ,a and the true state is θ′, we have e∗i,θ,a ∈ Eθ′

i ,

and consequently Eθ′
i * Eθ

i . This implies that there is some ẽi ∈ Eθ′
i such that ẽi /∈ Eθ

i , and by
non-satiation, agent i can profitably deviate into rule (2b), contradicting (m, e) being a NE. �
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To see an illustration of the Theorem, return to Example 3. The SCR f∗ defined there satisfies
both NVP (because there is no alternative that is top-ranked in any state by more than 2 players)
and non-satiation (because for each player and state, either a or d is uniquely top-ranked, but a and
d are not in the range of f∗). Since we argued that f∗ is evidence-monotonic, it is implementable
by Theorem 2.

Remark 4. For evidence structures as in Examples 1 and 2, where every SCR is evidence-monotonic,
Theorem 1 implies that any SCR is implementable if n ≥ 3 and non-satiation and no veto power
hold.

Remark 5. The mechanism used in the proof of Theorem 2 does not work when mixed Nash
equilibria are considered. Kartik and Tercieux (2008b) show that in the standard setting without
evidence, any Maskin-monotonic SCR can be implemented in mixed Nash equilibria (under NVP
and n ≥ 3) so long as for each player i and state θ, ui(·, θ) is bounded from below; see also Maskin
and Sjöström (2002, Section 4.3). These arguments can be adapted to the current setting with
evidence, extending Theorem 2 to mixed Nash equilibria so long as utilities are bounded in each
state.

Remark 6. Neither no veto power nor non-satiation are necessary for implementability (even when
n ≥ 3). This is readily seen by considering evidence structures as in Example 1.

Remark 7. As stated, Theorem 2 is not a strict generalization of Maskin’s (1999) classic suffi-
ciency result, because our non-satiation assumption restricts the domain even when evidence is not
available. This can be remedied as follows.

For each ordered pair of states
(
θ, θ′

)
, let D

(
θ, θ′

)
be the set of agents who can disprove θ at θ′.

Formally,
D

(
θ, θ′

)
:=

{
i ∈ I : Eθ′

i * Eθ
i

}
.

We say that a SCR f satisfies weak non-satiation if for all θ, θ′ ∈ Θ and a ∈ f(θ),[
D

(
θ, θ′

)
6= ∅

]
=⇒

[
∃i ∈ D

(
θ, θ′

)
and ã ∈ A s.t. ui(ã, θ′) > ui(a, θ′)

]
.

It is immediate to verify that the proof of Theorem 2 goes through if we substitute non-satiation
with weak non-satiation — indeed, weak non-satiation is precisely the property needed in Step 3
of the proof. Note that weak non-satiation trivially holds in standard setting without evidence,
since D(θ, θ′) = ∅ for all θ, θ′ in the standard setting. Thus, this version of the Theorem subsumes
Maskin’s sufficiency result. Moreover, it also points out that the full strength of the non-satiation
assumption is unnecessary. What is needed is that there be some outcome that can be used to
reward a player who disproves what others’ claim is the true state.19

2.4. Evidence-monotonicity and Distinguishability.

19Consider a modification of Example 3, where outcome d is deleted from the outcome space, but everything else
stays the same. Non-satiation no longer holds because for players 3 and 4, b and c are top-ranked in some state
and also are also in the range of the f∗. So Theorem 2 would not apply per se. But, weak non-satiation holds
because for all θ, θ′, if D (θ, θ′) 6= ∅ then 1 ∈ D (θ, θ′), and for player 1, outcome a is always uniquely top-ranked
while a /∈ range (f∗). Thus, f∗ is implementable.
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2.4.1. Normal Evidence Structures. Theorems 1 and 2 place no restriction on the evidence struc-
ture. The key condition they identify for implementation, evidence-monotonicity, is therefore
somewhat abstract. It can be simplified considerably if the evidence structure has the following
property that is often assumed in settings with hard information.

Definition 5 (Normality). The evidence structure is normal or satisfies normality if for all i and
θ, there is some ēi,θ ∈ Eθ

i such that
[
ēi,θ ∈ Eθ′

i =⇒ Eθ
i ⊆ Eθ′

i

]
.

The formulation of normality above follows Bull and Watson (2007). It says that for any player
i and state θ, there is some evidence ēi,θ that can be interpreted as a maximal or summary evidence
because it proves by itself what agent i could prove by jointly sending all his available evidence.
Thus it is equivalent to the full reports condition of Lipman and Seppi (1995), and is somewhat
weaker than Green and Laffont’s (1986) nested range condition in their “direct mechanism” set-
ting.20 Ben-Porath and Lipman (2008) assume a slightly stronger condition than normality, viz.
that if an agent i can prove that the true state lies in either set X ⊆ Θ or Y ⊆ Θ, then he can also
prove that it lies in X ∩ Y .21 The literature on strategic communication with hard information
following Milgrom (1981) and Grossman (1981) typically assumes much stronger conditions than
normality.

Example 5 (Example 2 continued). Consider Example 2 where Θ = Rn
+, Ei = Θ and Eθ

i = [0, θi]
for all i, θ. This evidence structure satisfies normality, as seen by setting ēi,θ = θi for all i, θ.
Observe that if ēi,θ = θi ∈ Eθ′

i = [0, θ′i] then it must be that θi ≤ θ′i and so Eθ
i = [0, θi] ⊆ [0, θ′i] = Eθ′

i ,
as required.

Example 6 (Example 3 continued). It is also straightforward to check that Example 3 satisfies
normality: for all i, set ēi,w = ēi,x = β and ēi,y = ēi,z = α.

Under normality, the definition of evidence-monotonicity can be simplified by replacing condition
(**) with

Eθ = Eθ′ . (1)

The reason is that under normality, we can take e∗i,θ,a in Definition 2 to equal ēi,θ of Definition 5,
because normality implies that for any ei ∈ Eθ, if ēi,θ ∈ Eθ′

i , then ei ∈ Eθ′ . This observation leads
to an alternative characterization of evidence-monotonicity under normality. Say that a triplet(
θ, a, θ′

)
where a ∈ f (θ) violates Maskin-monotonicity if a /∈ f

(
θ′

)
and (*) is satisfied. For any θ

20Green and Laffont (1986) take Ei = Θ and assume that θ ∈ Eθ
i . The nested range condition says: if θ′ ∈ Eθ

i and

θ′′ ∈ Eθ′
i , then θ′′ ∈ Eθ

i . This implies normality because one can set, for all i and θ, ēi,θ = θ. To see that normality is

strictly weaker, consider the following example: Θ = {θ1, θ2, θ3}; for all i, Eθ1
i = {θ1, θ2} and Eθ2

i = Eθ3
i = {θ2, θ3}.

Normality holds by choosing for all i: ēi,θ1 = θ1 and ēi,θ2 = ēi,θ3 = θ3. On the other hand, the nested range

condition is violated because for all i, θ2 ∈ Eθ1
i yet θ3 ∈ Eθ2

i and θ3 /∈ Eθ1
i .

21It is clear that Ben-Porath and Lipman’s (2008) assumption implies normality; to see that is strictly stronger,

consider the following example: Θ = {θ1, θ2, θ3, θ4}, Eθ1
i = {x, y, z}, Eθ2

i = {x̃, y, z}, Eθ3
i = {y}, Eθ4

i = {z}. This
structure is normal (set ēi,θ1 = x and ēi,θ2 = x̃) but in state θ1, while any agent can prove that the state lies in
{θ1, θ2, θ3} by sending y or that the state lies in {θ1, θ2, θ4} by sending z, he cannot prove that the state lies in
{θ1, θ2}.
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and a ∈ f (θ), we define

T f (θ, a) :=
{
θ′ ∈ Θ :

(
θ, a, θ′

)
violates Maskin-monotonicity

}
,

and for any θ,
T f (θ) :=

⋃
a∈f(θ)

T f (θ, a) .

In other words, given that one wishes to achieve the outcomes f (θ) in state θ, T f (θ) are precisely
the states that cause a problem for implementation of f in the absence of evidence. In particular,
a SCR f is implementable without evidence only if

⋃
θ∈Θ T f (θ) = ∅.

Proposition 1. Assume that the evidence structure is normal. Then a SCR f is evidence-
monotonic if and only if

∀θ : θ′ ∈ T f (θ) =⇒ Eθ 6= Eθ′. (2)

Proof. Assume normality. For the “only if” part of the result, suppose that (2) fails. Then there
is some θ, θ′, and a such that Eθ = Eθ′ , a ∈ f (θ), a /∈ f

(
θ′

)
, and (*). From Definition 2 and the

simplification of (**) to Eθ = Eθ′ under normality, f is not evidence-monotonic. The “if” part is
similarly straightforward and omitted. �

To see an application of this result, we return to Example 3.

Example 7 (Example 3 continued.). Consider the SCR f from Example 3, where the evidence
structure is normal. One can check that T f (w) = T f (z) = y, T f (x) = ∅, and T f (y) = {w, z}.
Since Ez = Ey, Proposition 1 confirms that f is not evidence-monotonic (as argued directly before).
On the other, consider the SCR f∗ from the example. We have T f∗ (w) = {y, z}, T f∗ (x) = ∅,
T f∗ (y) = T f∗ (z) = w. Since Ew 6= Ey = Ez, (2) is satisfied and hence f∗ is evidence-monotonic
(as argued directly before).

Proposition 1 highlights what evidence structure is needed to implement non-Maskin-monotonic
SCRs. It can be combined with our earlier results to yield useful corollaries.

Corollary 1. Assume n ≥ 3 and that the evidence structure is normal. A SCR f that satisfies
both no veto power and non-satiation is implementable if

∀θ, θ′ : Eθ = Eθ′ =⇒ f(θ) = f(θ′). (3)

Proof. Plainly, (3) implies (2). The result follows from Proposition 1 and Theorem 2. �

Remark 8. Ben-Porath and Lipman (2008) call condition (3) “measurability.” In their Proposition
1, they show that under assumptions of normality and state-independent preferences for all agents
(i.e., ∀i ∈ I, ∀θ, θ′ ∈ Θ, ∀a, b ∈ A, ui (a, θ) ≥ ui (b, θ) =⇒ ui

(
a, θ′

)
≥ ui

(
b, θ′

)
), a SCR is

implementable only if it satisfies (3). This is a special case of our Theorem 1 because under
state-independent preferences, condition (*) is satisfied for all a, θ, and θ′; hence because (**)
simplifies to (1) under normality, Theorem 1 reduces to requiring (3) for an implementable SCR.
Conversely, Corollary 1 says that when n ≥ 3, no veto power, non-satiation and (3) are sufficient
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for implementation under normality. Ben-Porath and Lipman (2008) have also independently
proved a similar result. Note that even under normality, (3) is not necessary for implementation
when preferences are not state-independent, for instance the SCR f∗ in Example 3. The reason is
when hard evidence is the same between two states, the planner can exploit preference reversals to
implement different outcomes.

Motivated by the previous result, consider the following condition on the evidence structure:

∀θ : θ′ 6= θ =⇒ Eθ′ 6= Eθ. (UPD)

Condition (UPD), short for Universal Pairwise Distinguishability, requires that any pair of dis-
tinct states be distinguishable via evidence, i.e. there must be at least one player whose available
evidence differs in the two states. Obviously, if two states θ and θ′ cannot be distinguished in this
sense, implementation requires that no triplet

(
θ, a, θ′

)
violate Maskin-monotonicity. On the other

hand, since (UPD) implies that (3) is trivially satisfied, we also have:

Corollary 2. Assume n ≥ 3 and that the evidence structure is normal. Any SCR that satisfies
both no veto power and non-satiation can be implemented if (UPD) holds.

The above sufficient condition is tight: if (UPD) is violated, we can specify a profile of util-
ity functions and a SCR (satisfying no veto power and non-satiation) such that this SCR is not
evidence-monotonic and therefore not implementable.

2.4.2. Non-Normal Evidence Structures. Despite being a prevalent assumption, normality is a fairly
demanding requirement.22 One interpretation is that it assumes that there is no constraint on time,
effort, space, etc., in providing evidence. The next example introduces some of the issues that
arise with non-normal evidence structures.

Example 8. There are two propositions: a and b. Each member of a group of three or more
experts knows which of the two propositions are true, if any. Due to time or space limitations,
however, each one can provide a proof of at most one proposition. This problem can be represented
by Θ = {φ, a, b, ab}, and for all i, Eφ

i = {φ}, Ea
i = {φ, a}, Eb

i = {φ, b}, and Eab
i = {φ, a, b}, where

φ represents “neither proposition is true” or “no proof provided.” Although this evidence structure
satisfies (UPD), it is not normal, because for any i and x ∈ Eab

i , there exists θ′ ∈ {a, b} such that
x ∈ Eθ

i but Eab
i * Eθ

i . Note that if each expert could prove both a and b when both are true, then
we would augment ab to Eab

i , and normality would be satisfied.

Suppose now that the preferences of the experts over outcomes are state-independent, so that (*)
is always satisfied. Since any choice of {e∗i,ab}n

i=1 will create some θ′ ∈ {a, b} such that (**) is
satisfied with θ = ab, it follows from Theorem 1 that not every SCR is implementable. In particular,
if the SCR is a function, then implementability requires f(ab) ∈ {f(a), f(b)}. On the other hand,
by choosing e∗i,φ = φ, e∗i,a = a, and e∗i,b = b, Theorem 2 implies that f(ab) ∈ {f(a), f(b)} is also
sufficient for the social choice function to be implementable under no veto power and non-satiation.

22Bull and Watson (2007), Glazer and Rubinstein (2001, 2004, 2006), Lipman and Seppi (1995), and Sher (2008)
study problems where normality does not hold.
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This motivates the question of what evidence structures permit non-Maskin-monotonic SCRs to
be implemented even when the evidence structure is not normal. A sharp answer can be provided
by using a general notion of distinguishability.

Definition 6. For any θ and Ω ⊆ Θ, θ and Ω are distinguishable if for any Ω′ ⊆ Ω : Eθ 6=
⋃

θ′∈Ω′

Eθ′.

Thus, a state θ is distinguishable from an event or set of states Ω if for every subset Ω′ of Ω,
either some player can disprove Ω′ when θ is the true state (which requires Eθ

i *
⋃

θ′∈Ω′
Eθ′

i )

or some player can disprove θ when some state in Ω′ is the true state (which requires Eθ
i +⋃

θ′∈Ω′
Eθ′

i ). Notice that if θ is distinguishable from Ω then θ is distinguishable from any subset
of Ω. Consequently, if θ and Ω are distinguishable, then θ must be pairwise distinguishable from
every θ′ ∈ Ω (in particular, θ /∈ Ω). The following result establishes the converse for normal
evidence structures.

Proposition 2. Assume the evidence structure is is normal. For any θ ∈ Θ and Ω ⊆ Θ, if θ is
distinguishable from each θ′ ∈ Ω then θ is distinguishable from Ω.

Proof. Fix θ and Ω and assume that ∀θ′ ∈ Ω : Eθ 6= Eθ′ . Suppose, per contra, that for some
Ω′ ⊆ Ω : Eθ =

⋃
θ′∈Ω′

Eθ′ . Then for all θ′ ∈ Ω′, ēθ′ ∈ Eθ (where ē is from the definition of

normality), and moreover for some θ̃ ∈ Ω′, ēθ ∈ E θ̃. By normality, E θ̃ = Eθ, a contradiction. �

Example 8 shows why normality is key to the above result: in the example, state ab is pairwise
distinguishable from every other state but not distinguishable from the event {φ, a, b}.

We can now state a general characterization of evidence-monotonicity in terms of distinguisha-
bility.

Proposition 3. A SCR f is evidence-monotonic if and only if for all θ and a ∈ f(θ), θ and
T f (θ, a) are distinguishable.

Proof. See Appendix. �

Remark 9. Proposition 1 can be seen as a corollary of Proposition 3, because when the evidence
structure is normal, distinguishability of any θ and Ω reduces to distinguishability of θ from each
θ′ ∈ Ω (Proposition 2).

An immediate implication of Proposition 3 is that the following condition on the evidence struc-
ture guarantees that every SCR is evidence-monotonic, no matter what the agents’ preferences
are:

∀θ : Ω ⊆ Θ� {θ} =⇒ θ is distinguishable from Ω. (UD)

Condition (UD), short for Universal Distinguishability, requires that each state must be distin-
guishable from any event that does not contain it. In general, this will be a stronger requirement
than (UPD), but Proposition 2 implies that they are equivalent under normality.
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Corollary 3. If n ≥ 3. Any SCR that satisfies both No veto power and non-satiation can be
implemented if (UD) holds.

Proof. Let f be an arbitrary SCR. Pick any θ and a ∈ f(θ). Since θ /∈ T f (θ, a), (UD) implies that
θ is distinguishable from T f (θ, a). By Proposition 3, f is evidence-monotonic. Theorem 2 yields
the desired conclusion. �

The Corollary is tight in the sense that if (UD) is violated, we can specify a profile of utility
functions and a SCR (satisfying no veto power and non-satiation) such that the SCR is not evidence-
monotonic and hence not implementable. We illustrate the Corollary with the following example.

Example 9. Θ = {θ1, θ2, θ3}; n = 3; Eθ1
1 = {x, y}, Eθ2

1 = {x}, Eθ3
1 = {y}, Eθ1

2 = {x, y},
Eθ2

2 = {y}, Eθ3
2 = {x}, and Eθ

3 = {z} for all θ. It is easy to see that normality does not hold. (UD)
holds because Eθ1 = {(x, x, z), (x, y, z), (y, x, z), (y, y, z)}, Eθ2 = {(x, y, z)}, and Eθ3 = {(y, x, z)}.
Hence, by Corollary 3, any SCR satisfying no veto power and non-satiation is implementable.

2.5. Ranking Evidence Structures. Since the structure of evidence crucially affects the possibil-
ity of implementation, it is natural to ask whether some evidence structures are “more informative”
than others from a planner’s perspective because they allow for a larger set of implementable SCRs.
Not surprisingly, the notion of distinguishability is key.

Definition 7. Evidence structure Ẽ is more informative than E, denoted Ẽ I E, if any θ ∈ Θ and
Ω ⊆ Θ that are distinguishable under E are also distinguishable under Ẽ.

Thus, I is partial order on the set of possible evidence structures. At one end, if E satisfies
(UD), then for any Ẽ , E I Ẽ . At the other end, if E represents no evidence (∀i, θ : Eθ

i = Ei), then
for any Ẽ , Ẽ I E .

Remark 10. If Ẽ is normal, then Ẽ I E if and only if

{(θ, θ′) : Eθ 6= Eθ′} ⊆ {(θ, θ′) : Ẽθ 6= Ẽθ′}.

Proof. See Appendix. �

The following result shows why I appropriately captures when one evidence structure is “better”
than another.

Proposition 4. Assume that Ẽ I E. If a SCR is evidence-monotonic under E it is also evidence-
monotonic under Ẽ.

Proof. Pick any SCR f that is evidence-monotonic under E , and any θ and a ∈ f(θ). By the “only
if” part of Proposition 3, θ is distinguishable from T f (θ, a). Since Ẽ I E , θ and T f (θ, a) are also
distinguishable under Ẽ . Since θ and a ∈ f(θ) are arbitrary, the “if” part of Proposition 3 implies
that f is evidence-monotonic under Ẽ . �
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Remark 11. The above result is tight in the sense that if Ẽ is not more informative than E , then
there exist preferences for agents and a SCR such that the SCR is evidence-monotonic under E but
not under Ẽ . See the Appendix for an explicit construction.

Proposition 4 and Theorem 2 imply the following.

Corollary 4. Assume that Ẽ I E and n ≥ 3. Let f be a SCR satisfying no veto power and
non-satiation. If f is implementable under E then f is also implementable under Ẽ.

2.6. Ranking Social Choice Rules. Just as the notion of distinguishability allowed us to create
a partial order on evidence structures, it also allows a partial order on SCRs ranking them in terms
of how easy they are to implement. We begin with a definition capturing when a SCR is “more
Maskin-monotonic”.

Definition 8. For SCRs f and h, f is more Maskin-monotonic than h, denoted f D h, if

∀θ, a ∈ f(θ) : ∃a′ ∈ h(θ) s.t. T f (θ, a) ⊆ T h(θ, a′). (4)

Note that this definition is independent of any evidence structure. If f is Maskin-monotonic,
then f D h for any h, and moreover, if h is not Maskin-monotonic, then [not h D f ]. The next
result shows why the relation of more Maskin-monotonic is useful.

Proposition 5. If f D h, then if h is evidence-monotonic under evidence structure E, f is also
evidence-monotonic under E.

Proof. Suppose h is evidence-monotonic under E . Pick any θ and a ∈ f(θ); by the “if” part
Proposition 3, it suffices to show that θ is distinguishable from T f (θ, a). By (4), there exists
a′ ∈ h(θ) such that T f (θ, a) ⊆ T h(θ, a′). By the “only if” part of Proposition 3, θ is distinguishable
from T h(θ, a′), and hence distinguishable from every subset of T h(θ, a′), including T f (θ, a). �

Proposition 5 and Theorem 2 imply the following corollary, which justifies why D ranks SCRs
in terms of their implementability.

Corollary 5. Assume n ≥ 3 and f and h are SCRs satisfying NVP and non-satiation such that
f D h. If h is implementable under evidence structure E, then f is also implementable under E.

2.7. Two Agents. As noted earlier, non-satiation and no veto power are each overly demanding
when there are only two agents; indeed, the two cannot be jointly satisfied (unless there are an
infinite number of alternatives and neither player has a top-ranked alternative in any state).23

Yet the two agent case is quite important in problems of contracting, bargaining, and dispute
resolutions. We thus give it a separate treatment.

In the standard setting without evidence, implementation with only two players is known to be
significantly more demanding than with many players. Maskin (1999) shows that with two players,

23With an infinite number of alternatives, it is not hard to construct an example of a two-player setting where a
SCR is not implementable even though non-satiation, no veto power and evidence-monotonicity are satisfied. Thus,
Theorem 2 does not extend to n = 2.
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a Pareto-efficient SCR defined over an unrestricted domain of preferences is implementable if and
only if it is dictatorial.24 The major complication with two-player implementation is that the
planner faces a severe challenge in identifying which player has deviated when a non-equilibrium
message profile is observed. Dutta and Sen (1991) and Moore and Repullo (1990) provide a full
characterization of implementable SCRs for the two-player case without evidence by introducing a
condition known as condition-β. In particular, Moore and Repullo (1990, Corollary 4) provide con-
ditions under which Maskin-monotonicity is necessary and sufficient for implementation in settings
without evidence. In this section, we derive an analogous result in our setting with evidence.25

Let f(Θ) :=
⋃

θ f(θ) denote the range of f . The following condition of restricted veto power is
due to Moore and Repullo (1990):

Definition 9 (Restricted Veto Power). A SCR f satisfies restricted veto power (RVP) if for all
i, θ, a and b ∈ f(Θ),a ∈

⋂
j 6=i

arg max
c∈A

uj(c, θ)

 ∧ (ui(a, θ) ≥ ui(b, θ))

 =⇒ a ∈ f(θ).

In words, RVP says that if an outcome a is top-ranked at state θ by all players j 6= i, and if there
is an outcome b in the range of f such that i weakly prefers a to b at state θ, then a must belong to
f(θ). Thus, agent i does not have the power to veto outcome a unless it is strictly worse for him
than every outcome in the range of f . Plainly, RVP is a weakening of NVP, trivially coinciding
with NVP when f(Θ) = A. Intuitively, the smaller the range of f , the less demanding is RVP.

We say that there is a bad outcome (relative to a SCR f) if there is some outcome z /∈ f(Θ)
such that for all i, θ : ui(z, θ) < ui(a, θ) for all a ∈ f(Θ). In other words, in any state, outcome
z is strictly worse for all players than any outcome in the the range of the SCR. We are now in
position to generalize a result of Moore and Repullo (1990, Corollary 4) to settings with evidence.

Theorem 3. Assume n = 2 and the existence of a bad outcome. A SCR f satisfying RVP is
implementable if and only if it is evidence-monotonic.

Proof. See Appendix. �

Thus, when n = 2, there is a bad outcome, and RVP holds, evidence-monotonicity precisely char-
acterizes what is implementable. Note that non-satiation plays no role in the above Proposition.26

24In our framework, unrestricted domain of preferences means that for any profile of complete and transitive binary
relations over outcomes, (-1, ..., -n), there exists a state of the world, θ, in which for each player i, x -i y ⇔
ui(x, θ) ≤ ui(y, θ). A SCR f is dictatorial if there is some i such that for all a and θ, a ∈ f(θ) ⇔ a ∈ arg max

b
ui(b, θ).

25In a previous version of this paper, we extended condition-β to condition evidence-β and showed that this property
is necessary and sufficient for implementation of a SCR satisfying the condition of restricted veto-power discussed
below. This characterization is available upon request.
26Indeed, for n = 2, an implication of RVP is that for i ∈ {1, 2} :[(

a ∈ arg max
c∈A

ui(c, θ)

)
∧ (a ∈ f(Θ))

]
=⇒ a ∈ f(θ).

This condition is weaker than non-satiation (since non-satiation requires that the antecedent of the above condition
is not satisfied for any i) but would actually be sufficient to prove Theorem 2. Thus with only two players, RVP
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We also remark that while restrictive, both RVP and existence of a bad outcome are naturally sat-
isfied in some economic environments where there is sufficient conflict between agents.27 Example
10 below provides a non-economic environment satisfying both assumptions.

Combining Proposition 3 and Theorem 3 yields a two-agent counterpart of Corollary 3.

Corollary 6. Assume n = 2 and the existence of a bad outcome. Any SCR that satisfies RVP
can be implemented if (UD) holds.

The following example illustrates an application of this result.

Example 10. Suppose the outcome is how much of some public good to produce, so that A = R+.
There are two agents, each of whom has single-peaked preferences with a bliss point. Specifically,
if an agent has bliss point x, his payoff from amount a of the public good is −(x− a)2. Agent 1’s
possible bliss points are [2, 3] whereas agent 2’s possible bliss points are [5, 6]. A state of the world
is a pair of bliss points, i.e. Θ = [2, 3] × [5, 6]. The SCR f is given by the midpoint of the two
agents’ bliss points.

Observe that f(Θ) = [3.5, 4.5]. Consequently, 0 plays the role of a bad outcome. RVP is also
satisfied because in any state, the bliss point for one agent is strictly worse for the other agent than
any outcome in f(Θ). Note that neither NVP nor non-satiation are satisfied, however.

Now let the evidence structure be such that in any state θ = (θ1, θ2), Eθ
i = {[x, y] : x ≤ θi ≤ y};

in other words, each agent submit evidence that his bliss point lies in any interval containing his
bliss point. (UD) is satisfied because θ ∈ Eθ′ if and only if θ′ = θ.

By Corollary 6, f is implementable, even though f is not Maskin-monotonic.

Remark 12. We should note that both the existence of a bad outcome and RVP are essential to
Theorem 3 and Corollary 6. Examples 16 and 17 in the Appendix show that without either of the
two conditions, the results need not hold.

2.8. One Agent. Finally, we consider the case where there is only one agent. This case is
interesting from the point of view of the “principal-agent” literature. To ease notation, we drop the
agent index in the following theorem, which provides a complete characterization of implementable
SCRs when there is only one agent.

Theorem 4. Assume n = 1. A SCR f is implementable if and only if

[a, b ∈ f (θ)] =⇒ [u(a, θ) = u(b, θ)] , (5)

and for all θ and a ∈ f(θ), there exists e∗θ,a ∈ Eθ such that for all θ′, b ∈ f(θ′)[(
u(a, θ′) ≥ u(b, θ′)

)
∧

(
e∗θ,a ∈ Eθ′

)]
=⇒

[
a ∈ f(θ′)

]
, (6)

(and a fortiori NVP) implies the portion of non-satiation that is essential for our sufficiency argument, but this is
not the case when there are three or more players.
27For example, if the outcome is how much of a divisible private good each agent gets and the SCR provides a strictly
positive amount to each agent, then under usual preferences, (0, 0) is a bad outcome and RVP holds if there is a
feasibility constraint on the total amount of the private good that can be provided.
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and for any T ⊆ Θ such that
⋂

θ′′∈T

Eθ′′ 6= ∅, there exists c ∈ A such that for any θ ∈ T ,

[u(c, θ) < u(b, θ) ∀b ∈ f (θ)] ∨ [c ∈ f (θ)] . (7)

Proof. See Appendix. �

Though seeming complicated, the conditions of the Theorem are intuitive. Condition (5) says
that at any state, the agent must be indifferent between all the socially desired outcomes at that
state. Condition (6) says that if outcome b ∈ f(θ′) is attainable at θ (hence the evidence e∗

θ′,b
∈ Eθ),

but b /∈ f(θ), then the agent must strictly prefer the social desired outcomes at θ to b. It is fairly
straightforward why both these conditions are necessary for implementation. The third condition,
(7), says that if some evidence is common to a set of states, then there is some outcome such that
at any of these states, either the outcome is socially desired, or it is strictly worse for the agent than
the social desired ones. Loosely, this condition is necessary for implementation because otherwise,
any way in which the planner responds to this evidence will lead to an undesired outcome (Example
11 below illustrates).

Remark 13. If there is a bad outcome, call it z, then (7) is satisfied for all θ by setting c = z.
Regarding (6), we observe that for an arbitrary specification of preferences and SCR, (UD) is
not generally sufficient. Instead, what is needed is the much stronger requirement of complete
provability (Lipman and Seppi, 1995): ∀θ, ∃êθ ∈ Eθ s.t. êθ /∈

⋃
θ′ 6=θ

Eθ′ .28 We conclude that

under the demanding conditions of there existing a bad outcome and complete provability, any
single-valued SCR (which trivially satisfies (5)) is implementable with only one agent.

2.9. Discussion. In this section, we address two notable restrictions in the class of mechanisms
we have considered to this point.

2.9.1. Forbidding Evidence. We have assumed that a mechanism cannot constrain the evidence that
agents can submit. In some settings, this assumption may be a priori restrictive. For example,
certain kinds of evidence, such as hearsay, could be prohibited in legal proceedings. Accordingly,
a more general definition of a mechanism would be to specify (M, Ê, g), where Ê = Êi × · · · × Ên

with for each i, Êi ⊆ Ei, and g : M × Ê → A. Here, agent i is only allowed to submit evidence in
the set Êi, i.e. the evidence player i can send when the state is θ is Êθ

i = Êi ∩ Eθ
i . If for some i,

Êi 6= Ei, then the mechanism is said to be forbidding evidence.

The following example shows that forbidding evidence can be useful.

Example 11. Suppose Θ = {θ1, θ2}, A = {b, c}, and for all i: Eθ1
i = {x, y}, Eθ2

i = {x, z}, and
preferences are represented by ui(b, θ1) > u(c, θ1) and ui(c, θ2) > u(b, θ2). Consider the SCR
f(θ1) = c and f(θ2) = b. If a mechanism (M, g) does not forbid evidence, it cannot implement f ,
by the following logic: we must have g(m, (x, . . . , x)) = c for all m ∈ M , otherwise b /∈ f(θ1) would
be a Nash equilibrium outcome in state θ1; but then (m, (x, . . . , x)) is a Nash equilibrium at state

28Complete provability is necessary to guarantee (6) in the sense that if complete provability fails, we can write down
preferences and a SCR such that (6) is violated.
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θ2 which leads to outcome c, hence f is not implemented. Intuitively, the problem is that since
agents can produce evidence x in both states, it is impossible to achieve the outcome they like less
in both states. But if a mechanism can forbid evidence, it is straightforward to implement f : let
agents only submit evidence in Êi = {y, z}, and let the outcome be c if they each submit y, and b

otherwise.

Nevertheless, Theorems 1 and 2 remain valid even when mechanisms that forbid some evidence
are considered. Thus, even if evidence can be forbid, evidence-monotonicity remains necessary
for implementation and is also sufficient when n ≥ 3 and no veto power and non-satiation hold.
(Indeed, Example 11 satisfies evidence-monotonicity but crucially violates NVP.29)

2.9.2. Dynamic Mechanisms. Our treatment of mechanisms thus far implicitly assumes that the
induced game by any mechanism is static, i.e. entails one round of simultaneous moves. In
the standard environment without evidence, sequential or dynamic mechanisms—ones that induce
extensive-form games richer than one round of simultaneous moves—cannot improve on static
mechanisms so long as the solution concept remains Nash equilibrium. However, this is not the
case with hard evidence, as was pointed out in a partial-implementation framework by Bull and
Watson (2007). Consider the following example borrowed from their paper:

Example 12. There are n = 2 players, Θ = {θ1, θ2, θ3} and A = {a, b}. Preferences are state-
independent: for each θ, u1(b, θ) > u1(a, θ) whereas u2(a, θ) > u2(b, θ). Player 1 has only trivial
evidence available in any state, i.e. Eθ1

1 = Eθ2
1 = Eθ3

1 = E1. Player 2’s evidence sets are given
by Eθ1

2 = {x}, Eθ2
2 = {x, y} and Eθ3

2 = {y}. This evidence structure is not normal. The
SCR is given by f(θ1) = f(θ3) = {b} and f(θ2) = {a}. This SCR is not evidence-monotonic,
because T f (θ2) = {θ1, θ3} and Eθ2 = E1×{x, y} = Eθ1 ∪Eθ3, violating the condition for evidence-
monotonicity in Proposition 3. Thus, by Theorem 1, f is not implementable.30

The point we now turn to is that whether dynamic mechanisms can be useful or not depends
critically on the interpretation one has of evidence “not being available” at some state. Thus far,
we have assumed that any ei /∈ Eθ

i is physically unavailable and cannot be produced by agent i at
state θ. An alternative interpretation is that agents can always fabricate or produce any evidence
in any state, but some evidence is more costly than others — hard evidence being an extreme case
where any ei ∈ Eθ

i is costless, whereas any ei /∈ Eθ
i is infinitely costly. (We consider less extreme

cost structures in the subsequent section.) Let us call these two interpretations the feasibility and
cost interpretations respectively. Insofar as static mechanisms are concerned, the distinction is
irrelevant, since in equilibrium, a player would never produce evidence that is either unavailable or
infinitely costly, and there are no out-of-equilibrium considerations.

With dynamic mechanisms, the issue is more subtle. Broadly, the reason that the analysis with
dynamic mechanisms can depend on the feasibility versus cost interpretation is as follows: under
the cost interpretation, at state θ any player i will be able to send any ei /∈ Eθ

i off the equilibrium

29As constructed, the example also violates non-satiation, but that is easily accommodated by adding an outcome
that is uniquely top-ranked in every state by every agent.
30This has already been shown by Bull and Watson (2007) using a different argument.
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path, and this will be a standard incredible threat; on the other hand, such a behavior is precluded
under the feasibility interpretation. Let us illustrate by returning to the example.

Example 13 (Example 12 continued). Consider the following dynamic mechanism:

1st Stage: player 1 can announce any state θ ∈ Θ. Denote this (cheap-talk) announcement
m1.

2nd Stage: after observing m1, player 2 has to submit evidence, e2.

Outcomes: g(m1, e2) = a if m1 = θ2; else

g(m1, e2) =

{
b if e2 ∈ Em1

2

a otherwise.

Thus the mechanism chooses outcome a if player 1 claims (via cheap talk) that the true state is
θ2; if he claims anything else, the mechanism chooses a if player 2 submits evidence contradicting
player 1’s claim, otherwise the mechanism chooses b.

Start with the feasibility interpretation, i.e. assume that when the true state is θ, any ei /∈ Eθ
i is

not available to player i (even at an infinite cost). Then, if the true state is θ1, player 2 can only
send evidence x, hence player 1 can ensure that his preferred outcome b is chosen by announcing
m1 = θ2, and this is the unique Nash equilibrium outcome. If the true state is θ3, a similar
reasoning shows that the only NE outcome is again b. Now assume the true state is θ2, in which
case player 2 has evidence x and y available. By playing the strategy of submitting evidence x if
m1 6= θ1 and submitting evidence y if m1 = θ1, player 2 guarantees that the outcome is a no matter
what player 1 announces. Since a is player 2’s preferred outcome, every Nash equilibrium must
yield outcome a (and a subgame perfect NE exists). Therefore, under the feasibility interpretation,
the SCR is implementable with a dynamic mechanism when it is not with any static mechanism.

Now consider the cost interpretation, where in any state θ, player 2 can send any ei ∈ E2 =
{x, y}, but incurs an infinite cost if ei /∈ Eθ

2 and no cost otherwise. We will argue that the SCR
is no longer implementable by the given dynamic mechanism. If the true state is θ1, then the
following is a Nash equilibrium: player 1 announces θ2; player 2 submits evidence y if m1 = θ1

and submits evidence x otherwise. This NE yields outcome a 6= f(θ1). Note that this NE is not
subgame perfect.

We have thus proved:

Proposition 6. Under the feasibility interpretation, a non-normal evidence structure can permit
implementation with a dynamic mechanism even if evidence-monotonicity fails.

However, it turns out that the necessity of evidence-monotonicity for implementation is preserved
under either: (i) the cost interpretation; or (ii) the feasibility interpretation but with a normal
evidence structure. We formally state and prove these two results in Appendix B.31

31Importantly, these results are proved assuming that extensive forms are restricted to those in which each player
can only send evidence once in the game, as in Bull and Watson (2007). This avoids artificially “transforming” a
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3. Costly Evidence Fabrication

In this section, we consider a more general setting where agents can fabricate any evidence in any
state of the world, but potentially bear differential costs of fabrication across states. Specifically,
in each state of the world, θ, agent i can create evidence ei ∈ Ei but thereby incurs a disutility
of ci(ei, θ) ∈ R+ ∪ {+∞}. We refer to (ci(·, ·))i∈I as the cost structure and we denote Eθ

i =
{ei ∈ Ei : ci(ei, θ) = 0}. Without loss of generality, assume that for all θ, i, Eθ

i 6= ∅.32 This defines
a general costly signaling model. Note in particular that it reduces to the hard evidence model
(with cost interpretation) if the range of each ci(·, ·) is {0,+∞}.

We now explicitly allow the planner to make (monetary) transfers among agents. For the
remainder of this section, a mechanism refers to a mechanism with transfers, which is a tuple
(M, g, τ) , where M = M1 × · · · × Mn is the (cheap-talk) message space, g : M × E → A is the
outcome mapping, and τ : M ×E → Rn is a transfer mapping that is a novel instrument compared
to the setting in Section 2. A mechanism (M, g, τ) induces a strategic game in each state of the
the world, where a pure strategy for player i in state θ is si ∈ Mi × Ei. The payoff for player i

from a profile (m, e) in state θ is

ui(g(m, e), θ)− ci(ei, θ) + τ i(m, e).

Let NE (M, g, τ , θ) be the set of pure strategy Nash equilibria of this game at state θ, and

O (M, g, τ , θ) := {a ∈ A : ∃(m, e) ∈ NE (M, g, τ , θ) s.t. g (m, e) = a}

be the set of equilibrium allocations at state θ. Similarly, let

T (M, g, τ , θ) := {t ∈ Rn : ∃(m, e) ∈ NE (M, g, τ , θ) s.t. τ (m, e) = t}

be the set of equilibrium transfer vectors at state θ.

We are interested in (full-)implementation in Nash equilibria where no transfer occurs at equi-
librium. We will also assume that in addition to no transfers, the planner’s objective is to avoid
any signaling costs, i.e. in equilibrium only costless messages can be used.

Definition 10 (Implementation with transfers). A mechanism (M, g, τ) implements the SCR f if
∀θ, f (θ) = O (M, g, τ , θ) and T (M, g, τ , θ) = {(0, . . . , 0)}. In addition, we require that (m, e) ∈
NE (M, g, τ , θ) =⇒ e ∈ Eθ. A SCR f is implementable if there exists a mechanism that
implements it.

We now define the relevant notion of monotonicity in this setting.

Definition 11 (Cost-monotonicity). A SCR f is cost-monotonic provided that for all θ and all
a ∈ f(θ), there exists e∗θ,a ∈ Eθ such that for all θ′: if

∀i ∈ I, b ∈ A,α ∈ R : [ui(a, θ) ≥ ui(b, θ)− α] =⇒ [ui(a, θ′) ≥ ui(b, θ′)− α] (CM*)

non-normal evidence structure into a normal one, which would happen if an agent could send evidence an unlimited
number of times.
32This is without loss of generality because we are going to allow the planner to add costless (cheap-talk) messages.
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and
∀i ∈ I :

(
e∗i,θ,a ∈ Eθ′

i

)
∧

(
ci(·, θ′) ≥ ci(·, θ)

)
, 33 (CM**)

then a ∈ f(θ′).

Remark 14. Cost-monotonicity is more general than evidence-monotonicity. To see this, note first
that (CM*) implies (*) by considering α = 0. Second, (CM**) implies (**) because ci(·, θ′) ≥
ci(·, θ) implies Eθ′

i ⊆ Eθ
i . Therefore, any evidence-monotonic SCR is cost-monotonic. Moreover,

we note that if ci(·, ·) ∈ {0,+∞} for all i—the case of hard evidence with cost interpretation—
(CM**) reduces to (**), so that if in addition there were no transfers, cost-monotonicity would be
equivalent to evidence-monotonicity.

Example 14. Consider a setting where players have a small “preference for honesty.” To be
precise, assume that for each player i, Ei = Θ and the cost of sending evidence is given by:

ci(θ, θ′) =

{
0 if θ = θ′

ε if θ 6= θ′

where ε > 0 can be arbitrarily small. Note that in this case, for each θ and θ′, ci(θ′, θ′) =
0 < ε = ci(θ′, θ) and so condition (CM**) is violated. In fact, the existence of just one player
having a preference for honesty is enough for (CM**) to be violated. In this case, any SCR is
cost-monotonic.

The following necessity result is analogous to Theorem 1.

Theorem 5. If f is implementable then f is cost-monotonic.

Proof. Since f is implementable, there exists a mechanism (M, g, τ) that implements f . Hence,
for each θ, for each a ∈ f(θ), there exists (mθ,a, eθ,a) ∈ M × Eθ Nash equilibrium at θ such that
g(mθ,a, eθ,a) = a and τ(mθ,a, eθ,a) = 0. Set for each θ : e∗θ,a = eθ,a. Now consider any θ′ satisfying
(CM*) and (CM**) above. Note that because (mθ,a, eθ,a) ∈ M×Eθ is a (costless) Nash equilibrium
at θ :

ui(g(mθ,a, eθ,a), θ) ≥ ui(g(m′
i, e

′
i,m−i,θ,a, e−i,θ,a), θ)− τ i(m′

i, e
′
i,m−i,θ,a, e−i,θ,a)− ci(e′i, θ)

for any (m′
i, e

′
i) ∈ Mi × Ei. By (CM*),

ui(g(mθ,a, eθ,a), θ′) ≥ ui(g(m′
i, e

′
i,m−i,θ,a, e−i,θ,a), θ′)− τ i(m′

i, e
′
i,m−i,θ,a, e−i,θ,a)− ci(e′i, θ)

for any (m′
i, e

′
i) ∈ Mi × Ei. Now by (CM**):ei,θ = e∗i,θ,a ∈ Eθ′

i and ci(., θ′) ≥ ci(., θ), this implies
that (mθ, eθ) ∈ M × Eθ′ and

ui(g(mθ,a, eθ,a), θ′) ≥ ui(g(m′
i, e

′
i, e−i,θ,a,m−i,θ,a), θ′)− τ i(m′

i, e
′
i,m−i,θ,a, e−i,θ,a)− ci(e′i, θ

′)

for any (m′
i, e

′
i) ∈ Mi × Ei and so (mθ,a, eθ,a) is a Nash equilibrium at θ′. Hence a ∈ f(θ′) as

claimed. �

To see how Theorem 5 has bite, consider the following example of education signaling.

33To avoid any confusion: ci(·, θ′) ≥ ci(·, θ) means that for all ei ∈ Ei, ci(ei, θ
′) ≥ ci(ei, θ).
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Example 15. There are n workers, each with an ability level measuring her marginal productivity.
The state of the world is a vector of abilities. For convenience, assume no two workers have the
same ability, i.e. Θ = {θ ∈ Rn

+ : i 6= j =⇒ θi 6= θj}. There is one job that must be allocated to a
single worker along with a wage, so that A = {1, . . . , n} × R+. The SCR is f(θ) = (i∗, θi∗) where
{i∗} = arg maxi θi, i.e. allocate the job to the most able worker and pay her marginal product.
Agent i’s utility from an outcome a = (a1, a2) is state-independent: ui(a, θ) = 0 if a1 6= i (he does
not get the job), and ui(a, θ) = a2 otherwise. Note that consequently, (CM*) is satisfied for all a.

Suppose now that agents can signal their ability through a choice of education, ei ∈ R+. The
cost of education for a worker only depends on his individual type, so that we abuse notation and
write ci(ei, θi). Assume the cost of education is non-negative and satisfies two properties: for all i

and θi, ci(ei, θi) = 0 if and only if ei = 0; and for all i and ei, ci(ei, θi) ≥ ci(ei, θ
′
i) if and only if

θi ≤ θ′i. (While it may be natural to also impose the Spencian property that the marginal cost is
decreasing in individual ability, it is not required.) Then Eθ

i = {0} for all i, θ, and consequently,
(CM**) is satisfied if and only if θ′ ≤ θ (in the sense of the usual vector order). Since we can
make all workers’ ability strictly decrease but change the socially desired outcome, it follows that f

is not cost-monotonic, and by Theorem 5, not implementable.34

On the other hand, consider a modified environment where workers intrinsically enjoy or tolerate
different levels of education as a function of their ability. Specifically, for all i,ei, and θi, ci(ei, θi) =
0 if and only if ei ≤ θi. In other words, a type θi worker finds education costly only if he must
acquire more than θi of it. Further assume, naturally, that if ci(ei, θi) > 0 and θ′i < θi, then
ci(ei, θ

′
i) > ci(ei, θi). It is straightforward to see that by setting e∗i,θ,a = θi, (CM**) is never

satisfied, so that f—or any SCR, for that matter—is now cost-monotonic.

The next result shows that if there are three or more players, cost-monotonicity is also sufficient
for implementation. This is analogous to Theorem 2, noting that because we now allow explicitly for
transfers that must not be used in equilibrium, No veto power and non-satiation are automatically
satisfied.

Theorem 6. Assume n ≥ 3. If f is cost-monotonic then f is implementable.

Proof. The proof is by construction of a mechanism that implements any cost-monotonic SCR f

when n ≥ 3. Fix, for all i, Mi = Θ×A×N×R. The first three components are the same as used
in the proof of Theorem 2, the fourth is a new element where the player requests a transfer to him.
Now define g and τ according to the following rules:

(1) If m1 = · · · = mn = (θ, a, k, α) with a ∈ f (θ), and e = e∗θ,a, then g (m, e) = a and
τ (m, e) = (0, . . . , 0) .

(2) If ∃i s.t. ∀j 6= i, ej = e∗j,θ,a and mj = (θ, a, k, α) with a ∈ f (θ) , and either mi =(
θ′, b, l, α̂

)
6= (θ, a, k, α) or ei 6= e∗i,θ,a then

34Note that this is true even if the allocation only consists of choosing which worker to assign the job to, maintaining
a fixed wage that is independent of ability.
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a) if ei ∈ Eθ
i , then

τ i (m, e) =

{
−α̂ if ui (a, θ) ≥ ui (b, θ)− α̂

0 if ui (b, θ)− α̂ > ui (a, θ) ,

and

g (m, e) =

{
b if ui (a, θ) ≥ ui (b, θ)− α̂

a if ui (b, θ)− α̂ > ui (a, θ) .

In addition, τ−i (m, e) =
(
− τ i(m,e)

n−1 , ...,− τ i(m,e)
n−1

)
.

b) if ei /∈ Eθ
i , then τ i (m, e) = ci (ei, θ), and g (m, e) = a. Here again τ−i (m, e) =(

− τ i(m,e)
n−1 , . . . ,− τ i(m,e)

n−1

)
,

(3) For any other (m, e), letting mi = (θi, ai, ki, αi) and i∗ = mini∈I arg maxj∈I kj , g (m, e) =

ai∗ , τ i∗ (m, e) = αi∗ and τ−i∗ (m, e) =
(
− τ i∗ (m,e)

n−1 , . . . ,− τ i∗ (m,e)
n−1

)
.

Step 1. We wish to show that for any θ and any a ∈ f (θ), a ∈ O (M, g, θ). It suffices to show
that at state θ, for any (k, α) ∈ N× R, all agents i playing mi = (θ, a, k, α) with a ∈ f (θ) and
∀i, ei = e∗i,θ, is a NE. This strategy profile results in outcome a and moreover, since e∗i,θ ∈ Eθ

i :
ci (ei, θ) = 0. If some agent deviates, rule (2) of the mechanism applies. There is no profitable
deviation for any player to rule (2a) since any such deviation yields a weakly worse outcome and
the same evidence cost. There is no profitable deviation to rule (2b) since this yields the same
outcome and exactly compensates the agent for the evidence falsification cost.

For the remainder of the proof, suppose the true state is θ′, and (m, e) is a NE. We must show
that g (m, e) ∈ f

(
θ′

)
.

Step 2. No NE can fall into rule (3). For if it does, note that all players other than i∗ are
receiving a transfer of at most 0, and hence any player j 6= i∗ can deviate and induce the same
outcome at the same evidence cost and increase his monetary transfer to any αj > 0.35 In the
same way, no NE can fall into rule (2). For if it does, any agent j 6= i can deviate and play a
strategy that results in rule (3), induce the same outcome at the same evidence cost and increase
his monetary transfer.

Step 3. It remains to consider the NE falling into rule (1). Here g (m, e) = a. By the usual
Maskin-mechanism argument, condition (CM*) must hold, since a player can always deviate into
rule (2a) while producing the same evidence, a player can always get any outcome b and transfer α̂

such that ui (a, θ) ≥ ui (b, θ)− α̂, because (m, e) is a NE, this implies that ui

(
a, θ′

)
≥ ui

(
b, θ′

)
− α̂

which yields condition (CM*). If condition (CM**) also holds, cost-monotonicity implies that
a ∈ f

(
θ′

)
, and we are done. To see that condition (CM**) must hold, observe that if it were not

the case, this can be due first to the fact that there is some player i : e∗i,θ,a /∈ Eθ′
i , in this case player

i can profitably deviate by announcing e∗
i,θ′,a

∈ Eθ′
i . This is true since, by rule (2a), this induces

the same outcome a and saves on evidence falsification cost and by rule (2b), this induces the same
outcome and saves on evidence falsification cost, and strictly benefits (in case the deviation induces

35Since their is no bound on the set of possible transfers, even player i∗ has an incentive to deviate to a higher
monetary transfer, but this is inessential. This part of the proof would work with an arbitrarily small positive upper
bound on transfers.
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rule (2b) e∗
i,θ′,a

/∈ Eθ
i and so: ci

(
e∗
i,θ′,a

, θ
)

> 0) in monetary transfer. The failure of (CM**) can
also be due to the fact that there is some i and ẽi such that

ci

(
ẽi, θ

′) < ci (ẽi, θ) . (8)

This implies that ẽi /∈ Eθ
i , and since ei = e∗i,θ,a ∈ Eθ

i , ei 6= ẽi. Consider a deviation for agent i to
ẽi and mi = (θ, a, k, α). By rule (2b), this generates a payoff to i of ui(a, θ′) + ci (ẽi, θ)− ci

(
ẽi, θ

′),
which by inequality (8) is greater than i’s equilibrium payoff of ui(a, θ′), a contradiction.

Step 4. Finally, to show that no evidence cost is incurred in equilibrium, we will show e ∈ Eθ
′
,

so that for each i : ci

(
ei, θ

′) = 0. But, we know that any NE is in rule (1), thus, (m, e) ∈
NE

(
M, g, θ′

)
=⇒ e = e∗θ,a for some θ. Since we have shown above that (CM**) must hold, it

follows that and so e = e∗θ,a ∈ Eθ
′
, as needed. �

Remark 15. Even though the definition of implementation did not require it, the proof of Theorem
6 shows that implementation can be achieved while maintaining a global balanced budget, i.e. even
off the equilibrium path.

Remark 16. The proof of the Theorem reveals that it is not essential that transfers be unbounded
when evidence fabrication costs are not. Even if we assumed that for each player i and (m, e) ∈
M × E : 0 ≤ τ i(m, e) ≤ maxei,θ ci (ei, θ), the argument would remain valid.36

Theorem 6 immediately implies the following sharp result.

Corollary 7. If n ≥ 3 and

∀θ, θ′ : θ′ 6= θ =⇒ ∃i, ei s.t. ci(ei, θ
′) < ci(ei, θ), (9)

then any SCR is implementable.

Proof. (9) implies that (CM**) is violated for any θ, θ′. Hence, every SCR is cost-monotonic, and
Theorem (6) delivers the conclusion. �

Condition (9) is satisfied if for every pair of distinct states θ, θ′, there is some i with Eθ
i 6= Eθ′

i .
Thus, when n ≥ 3, any SCR can be implemented if players have a small preference for honesty as
in Example 14, and the planner can make sufficient off-path transfers (which may only need to be
quite small, following Remark 16). Matsushima (2008) obtains a result that is similar in spirit in a
setting where the set of outcomes as well as the set of states is finite. The underlying argument is
quite different because Matsushima (2008) uses proof techniques from the virtual implementation
literature, in particular lotteries over outcomes.

Remark 17. One may wonder whether the permissiveness of Theorem 6 is driven by the assumption
that the planner can make transfers off the equilibrium path or the presence of discriminatory
signals. We refer to Benôıt and Ok (2008) and Sanver (2006) for a detailed discussion of what
is implementable with off-path transfers in the standard environment without evidence. For our
purposes, let us note that if all evidence were costless to all players in all states—which corresponds

36Since ci(·, ·) is defined over R+ ∪ {+∞}, note that the max can be equal to +∞.
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to the standard setting without evidence—then condition (CM**) is necessarily satisfied and can
be dropped altogether from the definition of cost-monotonicity. Theorems 5 and 6 continue to
apply, but evidently this version of cost-monotonicity can be significantly more demanding than
in the presence of evidence costs. For example, if every player’s cardinal preferences are state-
independent (i.e., for all i, a, b, θ, and θ′, ui(a, θ) − ui(b, θ) = ui(a, θ′) − ui(b, θ′)), and there is
no evidence, then only constant SCRs are cost-monotonic. On the other hand, by Corollary 7,
the picture dramatically changes with a small preference for honesty or, more generally, arbitrarily
small costs that satisfy (9).

4. Conclusion

This paper has generalized the implementation problem to incorporate agents’ ability to signal
something about the state of the world. The central idea is that the planner can use either agents’
preferences over outcomes or their signaling technology to discriminate between states of the world.
We have studied both hard evidence, when players can prove that the state lies in some subset of all
possible states, and the costly fabrication of evidence, where the costs of fabrication can vary across
states. The various results we have provided show precisely how a wider class of social choice rules
are implementable as a function of the evidence structure. In particular, we have formulated an
appropriate generalization and weakening of Maskin-monotonicity—evidence-monotonicity in the
case of hard evidence, or even more generally, cost-monotonicity—and shown that this is the key
to implementation in our framework. Natural evidence structures yield quite permissive results
for implementation.

There are a number of directions that this research can be taken in. Our analysis here sub-
stantially exploits the complete information setting, and it is obviously important to understand
how the arguments can be extended when agents have private information. In ongoing work,
Kartik and Tercieux (2008a), we study implementation with hard evidence in Bayesian Nash equi-
librium in incomplete information environments. We extend the notion of evidence-monotonicity
to Bayesian evidence-monotonicity. Bayesian evidence-monotonicity generalizes Jackson’s (1991)
Bayesian monotonicity condition, and together with the usual incentive compatibility condition is
the key for Bayesian implementation with hard evidence.

Within the complete information framework, it would also be useful to understand how evi-
dence changes the implementation problem when one restricts attention to “nice” mechanisms, for
example, “bounded mechanisms” (Jackson, 1992). We are optimistic that based on the current
paper and Ben-Porath and Lipman’s (2008) interesting results for subgame perfect implementation
with hard evidence, this will be a fruitful avenue. A related question is the possibility of (Nash)
implementation without using integer games or similar constructions. One possibility would be to
consider quasi-linear settings where large transfers are available, as Goltsman (2009) has studied in
the standard setting without evidence. We conjecture that when the evidence structure satisfies
Universal Distinguishability (UD), any SCR is implementable in such environments.
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Appendix A. Omitted Proofs

Proof of Proposition 3. We first note that f is evidence-monotonic if and only if

∀θ, a ∈ f(θ), ∃e∗θ,a ∈ Eθ s.t. ∀θ′ ∈ T f (θ, a), ∃i ∈ N :
(
e∗i,θ,a /∈ Eθ′

i

)
∨

(
Eθ′

i * Eθ
i

)
. (10)

In the sequel, we will use this equivalent formulation. For the “if part” of the result, assume
that for each θ, a ∈ f(θ) and Ω ⊆ T f (θ, a) : Eθ 6=

⋃
θ′∈Ω

Eθ′ . Proceed by contradiction and

assume that (10) is false. This implies that there exists θ and a ∈ f(θ) s.t. for all e ∈ Eθ there
exists θ′(e) ∈ T f (θ, a), for which we have that for all i ∈ N :

(
ei ∈ E

θ′(e)
i

)
∧

(
E

θ′(e)
i ⊆ Eθ

i

)
. Set

Ω :=
⋃

e∈Eθ

θ′(e). Note that Ω ⊆ T f (θ, a). Since for each e ∈ Eθ it is the case that e ∈ Eθ′(e), this

shows that Eθ ⊆
⋃

θ′∈Ω

Eθ′ . Finally, for each e ∈ Eθ : Eθ′(e) ⊆ Eθ, hence we have
⋃

θ′∈Ω

Eθ′ ⊆ Eθ,

and so Eθ =
⋃

θ′∈Ω

Eθ′ , a contradiction with the assumption. For the “only if part”, assume that

f satisfies (10) and proceed again by contradiction assuming that for some θ, some a ∈ f(θ) and
some Ω ⊆ T f (θ, a) : Eθ =

⋃
θ′∈Ω

Eθ′ . This implies that for some θ and some a ∈ f(θ) : (i) for all

e ∈ Eθ, there exists θ′(e) ∈ Ω ⊆ T f (θ, a) s.t. e ∈ Eθ′(e) and (ii) Eθ′(e) ⊆ Eθ, which contradicts the
assumption that (10) is true. �

Proof of Remark 10. Necessity is immediate, so we prove sufficiency. Assume

{(θ, θ′) : Eθ 6= Eθ′} ⊆ {(θ, θ′) : Ẽθ 6= Ẽθ′}. (11)

Suppose θ and Ω ⊆ Θ are distinguishable under E . Then θ is distinguishable from any θ′ ∈ Ω
under E , any by (11), θ is distinguishable from any θ′ ∈ Ω under Ẽ . Since Ẽ is normal, Proposition
2 implies that θ and Ω are distinguishable under Ẽ . �

Proof of Remark 11. Suppose [not Ẽ I E ]. Then there exists a state θ∗ and an event Ω∗ ⊆ Θ\{θ∗}
that are distinguishable under E but not under Ẽ . Let outcomes x, y ∈ A. Consider state
independent preferences for all players except player 1, whose preferences are as follows: for any
θ ∈ Ω∗ ∪ {θ∗}, u1(y, θ) > u1(x, θ) > u1(a, θ) for all a /∈ {x, y}; for any θ ∈ Ω \ Ω∗ \ {θ∗},
u1(x, θ) > u1(y, θ) > u1(a, θ) for all a /∈ {x, y}. Consider the SCR f given by f(θ) = {y} for all
θ ∈ Ω∗ and f(θ) = {x, y} for all θ /∈ Ω∗. It can be verified that T f (θ∗, x) = Ω∗ and T f (·, ·) = ∅
otherwise. By Proposition 3, f is evidence-monotonic under E but not under Ẽ . �

Proof of Theorem 3. (Necessity.) This is implied by Theorem 1.

(Sufficiency.) For each θ and a ∈ f (θ), let e∗θ,a be the evidence profile per Definition 2. We will
construct a mechanism that implements f . Fix, for all i,

Mi = {(θ, a, b, r, k) ∈ Θ×A×A× {F,NF} × N : a ∈ f(θ)} ,

where {F,NF} is the set comprising the 2 elements “flag” and “no flag”. Define g via the following
four rules:
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(1) If m1 = (θ, a, b1, NF, k1) and m2 = (θ, a, b2, NF, k2) and e = e∗θ,a then g(m, e) = a.
(2) If m1 = (θ1, a1, b1, NF, k1) and m2 = (θ2, a2, b2, NF, k2) and Rule 1 does not apply then

g(m, e) = z where z is the worst outcome.
(3) If ∃i s.t. mi = (θi, ai, bi, F, ki) and for j 6= i : mj = (θj , aj , bj , NF, kj) then

a) If ei ∈ E
θj

i then g (m, e) =

{
aj if ui (ai, θj) ≥ ui (aj , θj)
ai if ui (aj , θj) > ui (ai, θj)

.

b) if ei /∈ E
θj

i , then g (m, e) = bi.
(4) If m1 = (θ1, a1, b1, F, k1) and m2 = (θ2, a2, b2, F, k2), then g (m, e) = ai∗ where i∗ =

mini∈{1,2} arg maxj∈{1,2} kj .

Step 1. We first show that for any θ and any a ∈ f (θ), a ∈ O (M, g, θ). It suffices to show
that at state θ, for any k ∈ N, each agent i playing mi = (θ, a, a, NF, k) and sending ei = e∗i,θ,a

is a NE, since by rule (1) of the mechanism, this results in outcome a. If some agent i deviates
from this strategy profile, then only cases (2) or (3a) of the mechanism can apply. There is no
profitable deviation for any player to rule (2) or (3a) since any such deviation yields a (weakly)
worse outcome.

For the remainder of the proof, suppose the true state is θ′, and (m, e) is a NE. We must show
that g (m, e) ∈ f

(
θ′

)
.

Step 2. Any (m, e) that falls into Rule (2) is not a NE. To see this, recall that g (m, e) = z and
note that from (m, e), each player i can deviate by raising a flag and reach Rule (3). So consider
a deviation for player 1 to m̃1 = (·, a2, a2, F, ·). This leads to outcome a2 ∈ f(θ2), which player 1
strictly prefers to z since z is a bad outcome.

Step 3. Assume (m, e) falls into rule (3a). Without loss of generality, assume that m1 =
(θ1, a1, b1, F, k1) and m2 = (θ2, a2, b2, NF, k2). Note that player 2 can raise a flag inducing rule
(4). Thus, announcing an integer strictly higher than the one of player 1, he will get any outcome
he wants. Hence, g(m, e) ∈ arg max

c∈A
u2(c, θ′). In addition, player 1 can deviate to (θ1, a2, b1, F, k1)

while producing the same evidence and so get outcome a2 ∈ f(θ2). Hence, we get u1(g(m, e), θ′) ≥
u1(a2, θ

′) and so RVP ensures that g(m, e) ∈ f(θ′). Now, if (m, e) falls into rule (3b), player
i can get any outcome he wants, and his opponent get any outcome he wants by raising a flag
and announcing an integer strictly higher than player i. Hence, g(m, e) ∈

⋂
i∈{1,2}

arg max
c∈A

ui(c, θ′).

Restricted no veto power here again completes the proof. A similar argument applies if (m, e) falls
into rule (4) as well.

Step 4. It remains to consider (m, e) falling into rule (1), i.e. m1 = (θ, a, b1, NF, k1) and
m2 = (θ, a, b2, NF, k2) while e = e∗θ,a. The outcome is g(m, e) = a. Observe that any player i can
raise a flag and deviate into rule (3a) while producing the same evidence, and hence can induce
any outcome in the set L(a, θ) := {b : ui (a, θ) ≥ ui (b, θ)}. Since (m, e) is a NE, this implies that
for any agent i and outcome b ∈ L(a, θ), ui

(
a, θ′

)
≥ ui

(
b, θ′

)
, and consequently condition (*) is

satisfied. If (**) also holds, evidence-monotonicity implies that a ∈ f
(
θ′

)
, and we are done. Now,

in case (**) does not hold, there is some agent i such that
(
e∗i,θ,a /∈ Eθ′

i

)
∨

(
Eθ′

i * Eθ
i

)
. Since
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ei = e∗i,θ,a and the true state is θ′, we have e∗i,θ,a ∈ Eθ′
i , and consequently Eθ′

i * Eθ
i . This implies

that there is some ẽi ∈ Eθ′
i such that ẽi /∈ Eθ

i , and agent i can deviate into rule (3b), and get any
outcome he desires. Hence, in this case, a ∈ arg max

c∈A
ui(c, θ′). Note also that a ∈ f(θ). Hence,

RVP applies and we get that g (m, e) ∈ f
(
θ′

)
. �

Proof of Theorem 4. (Necessity.) Fix any implementing mechanism, (M, g). It is straightforward
that condition (5) must hold. Fix θ and a ∈ f(θ). To see that (6) must also hold, let e∗θ,a be the
evidence sent when the state is θ at some NE (m∗

θ,a, e
∗
θ,a) such that g(m∗

θ,a, e
∗
θ,a) = a. Now pick

any θ′ and b ∈ f(θ′) and assume that u(a, θ′) ≥ u(b, θ′), and e∗θ,a ∈ Eθ′ . Note that since b ∈ f(θ′),
there exists (m∗

θ′,b
, e∗

θ′,b
) NE at θ′ so that g(m∗

θ′,b
, e∗

θ′,b
) = b. Since (m∗

θ,a, e
∗
θ,a) ∈ M ×Eθ′ it is easily

checked that u(a, θ′) ≥ u(b, θ′) implies that (m∗
θ,a, e

∗
θ,a) is a NE at θ′. Hence, a ∈ f(θ′).

Let us now show that condition (7) is also necessary. Fix any T ⊆ Θ such that
⋂

θ′′∈T

Eθ′′ 6= ∅,

and pick any x ∈
⋂

θ′′∈T

Eθ′′ . Set c := g(m,x) for some arbitrary m ∈ M . Fix any θ ∈ T ,

b ∈ f(θ), and assume that c /∈ f (θ). We must show that u(b, θ) > u(c, θ). Since c /∈ f (θ) ,

(m,x) /∈ NE(M, g, θ). Since by construction, (m,x) ∈ M ×Eθ, there exists some (m̃, x̃) ∈ M ×Eθ

such that u(g(m̃, x̃), θ) > u(c, θ). Since b ∈ O(M, g, θ), we have u(b, θ) ≥ u(g(m̃, x̃), θ). Hence,
u(b, θ) > u(c, θ), as claimed.

(Sufficiency.) Set E∗ :=
⋃

θ∈Θ

⋃
a∈f(θ) e∗θ,a. Let M = A, and define the outcome function g

according to the following rules:

(1) If (m, e) ∈ A× E∗

a) If (m, e) = (a, e∗θ,a) for some θ and a ∈ f(θ) then g(m, e) = a;
b) Otherwise, pick any θ and a ∈ f(θ) such that e = e∗θ,a and set g(m, e) = a;

(2) If (m, e) /∈ A× E∗, let T := {θ ∈ Θ : e ∈ Eθ}; since
⋂

θ′∈T

Eθ′ 6= ∅, set g(e) = c where c is as

in (7).

Step 1. We wish to show that for any θ and any a ∈ f (θ), a ∈ O (M, g, θ). To see this,
we show that

(
a, e∗θ,a

)
is an equilibrium strategy. Let us first show that there is no profitable

deviation to (m, e) ∈ A × E∗. Consider a deviation that falls into rule (1a) i.e. (m, e) = (b, e∗
θ′,b

)
for some θ′ and b ∈ f(θ′). If b ∈ f(θ) then, by (5), this is not profitable. If b /∈ f(θ) then, note
that e∗

θ′,b
∈ Eθ and so by condition (6), u(a, θ) > u(b, θ) and so the deviation is not profitable. For

deviations falling into rule (1b), a similar reasoning applies. Finally, consider a deviation falling
into rule (2) i.e. (m, e) /∈ A× E∗. In this case g(e) = c. If c ∈ f(θ) then, by (5), the deviation is
not profitable. If c /∈ f(θ), by condition (7) and by the definition of T above (obviously, e ∈ Eθ

and so θ ∈ T ) that u(a, θ) > u(c, θ) and so here again the deviation is not profitable.

For the remainder of the proof, suppose the true state is θ, and (m, e) is a NE. We must show
that g(m, e) ∈ f(θ).

Step 2. Suppose (m, e) falls into rule (1a) or (1b). Take any θ′ and b ∈ f(θ′) such that
e = e∗

θ′,b
. To show that b ∈ f(θ), observe that if it were not the case, then since e∗

θ′,b
∈ Eθ by
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condition (6), we get that for a ∈ f(θ) : u(a, θ) > u(b, θ) and so there would exist a profitable
deviation to (a, e∗θ,a) where a ∈ f(θ) a contradiction.

Step 3. Suppose (m, e) falls into rule (2). In this case g(m, e) = c. Again to show that
c ∈ f (θ) , note that if it were not the case, by condition (7) and by the definition of T above
(obviously, e ∈ Eθ and so θ ∈ T ) we would have u(a, θ) > u(c, θ) for a ∈ f(θ) and so there would
exist a profitable deviation to (a, e∗θ,a) where a ∈ f(θ) a contradiction. �

Proof of Remark 12. We provide two examples to show that if either existence of a bad outcome
or RVP fails, then an evidence-monotonic SCR may not be implementable when n = 2. The
examples also show that condition (UD) is not sufficient to implement a SCR if either there is no
bad outcome or RVP fails.

Example 16. Θ = {θ1, θ2}. The evidence structure is as follows: Eθ1
1 = {θ1, θ2} and Eθ2

1 = {θ2};
symmetrically, Eθ1

2 = {θ1} and Eθ2
2 = {θ1, θ2}. The set of outcomes is A = {a, b, c, d}. Preferences

are state independent: for all θ, u1 (c, θ) > u1 (b, θ) > u1 (a, θ) > u1 (d, θ) and u2 (d, θ) > u2 (a, θ) >

u2 (b, θ) > u2 (c, θ). The SCR is given by f (θ1) = a and f (θ2) = b. This SCR satisfies RVP (and
non-satiation), but there is no bad outcome. Note that the evidence structure satisfies (UD), so
that f is evidence-monotonic by Proposition 3.

However, f is not implementable. To see this, assume to contradiction that f is implementable.
Let

(
s∗1,θ1

, s∗2,θ1

)
and

(
s∗1,θ2

, s∗2,θ2

)
be NE at state θ1 and state θ2 respectively. We must have

g
(
s∗1,θ1

, s∗2,θ1

)
= a and g

(
s∗1,θ2

, s∗2,θ2

)
= b. Since s∗1,θ2

∈ M1×Eθ2
1 ⊆ M1×Eθ1

1 and
(
s∗1,θ1

, s∗2,θ1

)
is

a NE at state θ1, we must have g
(
s∗1,θ2

, s∗2,θ1

)
∈ {a, d}; otherwise at state θ1, player 1 would have an

incentive to deviate from
(
s∗1,θ1

, s∗2,θ1

)
playing s∗1,θ2

. But note now that s∗2,θ1
∈ M2×Eθ1

2 ⊆ M2×Eθ2
2

and so at state θ2, player 2 can deviate from
(
s∗1,θ2

, s∗2,θ2

)
and get an outcome in {a, d} by playing

s∗2,θ1
, which is strictly better for him than the equilibrium outcome b, a contradiction.

Example 17. n = 2; Θ = {θ1, θ2}; A = {a, b, c}; f(θ1) = a and f(θ2) = b; for i = {1, 2}:
ui(b, θ1) > ui(a, θ1) > ui(c, θ1) and ui(a, θ2) > ui(b, θ2) > ui(c, θ2); for i = {1, 2}: Eθ1

i = {θ1}
and Eθ2

i = {θ1, θ2}. The evidence structure satisfies (UD), hence f is evidence-monotonic by
Proposition 3. Outcome c is a bad outcome, since it is not in the range of the SCR and is the
bottom-ranked outcome for both agents in both states.

The SCR f is not implementable by the following argument: if mechanism (M, g) implements
f , there must exist some m∗ ∈ M such that g(m∗, (θ1, θ1)) = a, since f(θ1) = a. But then,
(m∗, (θ1, θ1)) is a Nash equilibrium at state θ2 since a is top-ranked by both agents in state θ2,
contradicting f(θ2) = b.

�
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Appendix B. Dynamic Mechanisms

Let us first formally define a dynamic mechanism, which we refer to as just “mechanism” here-
after. A mechanism is a tuple (M,H, g). For each player i, there is a set of cheap talk mes-
sages Mi and as before M = M1 × · · · × Mn. We introduce a new message available to the
agent at each state e∅i that is interpreted as “player i sends no evidence”. We will now de-
fine H the set of possible histories. Before doing so, let us define recursively the following
set H̄. First, ∅ ∈ H̄ and second if h = (h1, h2, ..., hk) ∈ H̄ then for any X ⊆ I and hk+1 ∈∏
i∈X

((
Ei ∪ {e∅i }

)
×Mi

)
, (h1, h2, ..., hk, hk+1) ∈ H̄. Given an history h = (h1, ..., hk, hk+1) ∈ H̄,

we know that hk+1 ∈
∏
i∈X

((
Ei ∪ {e∅i }

)
×Mi

)
for some X ⊆ I. In line with this, we will write

hk+1 =
{

(ek+1
i ,mk+1

i )
}

i∈X
.

Now the set of possible histories H is a subset of H̄ satisfying the following properties. First
if h ∈ H it is of finite lenght i.e. there is some k such that h = (h1, ..., hk). Now denote HT

the set of terminal histories in H i.e. the set of histories h = (h1, ..., hk) ∈ H such that there
is no hk+1 such that (h1, h2, ..., hk, hk+1) ∈ H. We assume, as in Bull and Watson (2007), that
extensive forms are restricted to those in which each player sends an evidence exactly once in
every path through the tree37 i.e. for any h = (h1, h2, ..., hk) ∈ HT , and for any i, there exists a
unique k̃ such that ek̃

i 6= e∅i (note that this implies that each player plays at least once along any
history). We will also impose the following consistency condition that if (h1, h2, ..., hk, hk+1) ∈ H,
then (h1, h2, ..., hk) ∈ H. Finally, our assumption that players cannot be compelled or forbidden to
present evidence takes the following form. Let (h1, h2, ..., hk, hk+1) ∈ H and denote X the subset of
I such that hk+1 ∈

∏
i∈X

((
Ei ∪ {e∅i }

)
×Mi

)
. Pick any ĥk+1 ∈

∏
i∈X

((
Ei ∪ {e∅i }

)
×Mi

)
consistent

with the assumption that each player sends an evidence exactly once along any history, i.e. such
that if there is i ∈ X and k′ ≤ k such that ek′

i 6= e∅i then êk+1
i = e∅i . We make the assumption that

in this case, (h1, h2, ..., hk, ĥk+1) ∈ H.

H implicitly defines a function P : H�HT → 2I where P (h) denotes the set of players who
choose messages at history h ∈ H�HT where the interpretation is that players in P (h) move
simultaneously after having observed history h. We also denote P̂ (h) for the set of players in P (h)
who have not sent their piece of evidence yet.

In addition, we have a function g : HT → A specifying the outcome selected by the mechanism
for each terminal node. We now define two notions of Nash equilibrium each corresponding
to one interpretation, i.e. feasibility or cost interpretation. Now for each player i, let Hi =
{h ∈ H : i ∈ P (h)} be the set of histories where player i plays. Define player i’s strategy as a
mapping σi : Hi →

(
Ei ∪ {e∅i }

)
× Mi. For consistency, we assume that a strategy must satisfy

37There is a sense in which this assumption is made for consistency since we may have that evidences {x} and {y}
are available at θ but {x, y} is not. If a player could submit {x} first and then submit {y} at a subsequent point,
it is effectively as though we have enlarged the set of evidence available to a player, which we do not wish to do.
Indeed, if we assumed that players can submit evidence an arbitrary number of times in a dynamic mechanism, then
this would artificially make the evidence structure normal and thereby change the problem fundamentally.
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that for any h ∈ H and i ∈ P (h)�P̂ (h) : σi(h) ∈ {e∅i } ×Mi. Each profile of strategy σ = (σi)i∈I

generates a terminal history h(σ) ∈ HT where h(σ) = (h1(σ), ..., hk(σ)) for some integer k. Recall
that an history h′ = (h′1, ..., h

′
k′) ∈ H is a truncation of history h = (h1, ..., hk) ∈ H if k′ ≤ k and

h′ = (h1, ..., hk′).

Definition 12. Given a mechanism (M,H, g), a profile of strategy σ = (σi)i∈I is a NE under the
cost interpretation at state θ if

(1) ui (g(h(σ), θ) ≥ ui (g(h(σ′
i, σ−i), θ)) for any strategy σ′

i s.t. for any h ∈ Hi : σ′
i(h) ∈((

Eθ
i ∪ {e∅i }

)
×Mi

)
, and

(2) for any truncation h′ of h(σ), σi(h′) ∈
((

Eθ
i ∪ {e∅i }

)
×Mi

)
for each i ∈ P (h′).

The set of NE under the cost interpretation at θ is denoted NE ((M,H, g) , θ). Condition (1)
of the above definition says that one cannot have profitable deviations, in particular to strategies
where the evidence sent is not in Eθ

i . This is consistent with the interpretation that sending
such a message is infinitely costly. Condition (2) imposes no restrictions on histories that are not
truncations of h(σ), i.e. on out-of-equilibrium histories. In particular, for such an history, h, it may
be the case that a player i in P (h) plays σi(h) /∈

(
Eθ

i ×Mi

)
. Again, this definition is consistent

with the interpretation that evidence ei /∈ Eθ
i is always available but is infinitely costly.

Let O ((M,H, g) , θ) := {a ∈ A : ∃σ ∈ NE ((M,H, g) , θ) s.t. g (h(σ)) = a} and say that a mech-
anism (M,H, g) implements a SCR f under the cost interpretation if for all θ : f(θ) = O ((H, g, M) , θ).
A SCR is implementable under the cost interpretation if there exists a mechanism that implements
it under the cost interpretation.

Proposition 7. If a SCR is implementable (in a dynamic mechanism) under the cost interpreta-
tion, it is evidence-monotonic.

Proof. Assume f is implemented under the cost interpretation by a mechanism (M,H, g). Then
for each θ and a ∈ f (θ), there exists σ∗ ∈ NE ((M,H, g) , θ) s.t. g (h(σ∗)) = a. By definition,
for each player i, there is exactly one piece of evidence that is sent along h(σ∗), call the profile of
such evidences e∗θ,a and note that by (2) in the definition of a NE under the cost interpretation,
e∗θ,a ∈ Eθ. Consider any θ′ satisfying (*) and (**). Since σ∗ is a NE at θ,

ui (g (h(σ∗)) , θ) ≥ ui

(
g

(
h(σ′

i, σ
∗
−i)

)
, θ

)
for all i, σ′

i s.t. for any h ∈ Hi : σ′
i(h) ∈

((
Eθ

i ∪ {e∅i }
)
×Mi

)
. By (*),

ui

(
g (h(σ∗)) , θ′

)
≥ ui

(
g

(
h(σ′

i, σ
∗
−i)

)
, θ′

)
for all i, σ′

i s.t. for any h ∈ Hi : σ′
i(h) ∈

((
Eθ

i ∪ {e∅i }
)
×Mi

)
. By (**) Eθ′ ⊆ Eθ, thus we have

ui

(
g (h(σ∗)) , θ′

)
≥ ui

(
g

(
h(σ′

i, σ
∗
−i)

)
, θ′

)
for all i, σ′

i s.t. for any h ∈ Hi : σ′
i(h) ∈

((
Eθ′

i ∪ {e∅i }
)
×Mi

)
. In addition, (**) stipulates that

e∗θ,a ∈ Eθ′ and so for any truncation h′ of h(σ), σ∗
i (h

′) ∈
((

Eθ
′

i ∪ {e∅i }
)
×Mi

)
for each i ∈ P (h′).
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Therefore, σ∗ is a NE (under the cost interpretation) at θ′ and since g (h(σ∗)) = a, we get that
a ∈ f

(
θ′

)
. �

By Theorem 2, evidence-monotonicity is sufficient for implementation in the above sense when-
ever there are three or more players and no veto power and non-satiation are satisfied. Indeed we
do not need to go beyond static games in this case. Thus we get exactly the same type of charac-
terization as in the main text when dynamic mechanisms are allowed but the cost interpretation is
adopted.

Let us turn now to the feasibility interpretation. Here, at each state θ, it is impossible for any
player i to send any evidence not in Eθ

i , even off-the-equilibrium path.

Definition 13. Given a mechanism (M,H, g), a profile of strategy σ = (σi)i∈I is a NE under the
feasibility interpretation at state θ if

(1) ui (g(h(σ), θ) ≥ ui (g(h(σ′
i, σ−i), θ) for any strategy σ′

i s.t. for any h ∈ Hi : σ′
i(h) ∈((

Eθ
i ∪ {e∅i }

)
×Mi

)
, and

(2) for any history h′ ∈ H, σi(h′) ∈
((

Eθ
i ∪ {e∅i }

)
×Mi

)
for each i ∈ P (h′).

The set of NE under the feasibility interpretation at θ is denoted NEF ((M,H, g) , θ). Define
OF ((M,H, g) , θ) :=

{
a ∈ A : ∃σ ∈ NEF ((M,H, g) , θ) s.t. g (h(σ)) = a

}
, and say that a mech-

anism (H, g, M) implements a SCR f under the feasibility interpretation if for all θ : f(θ) =
OF ((M,H, g) , θ). A SCR is implementable under the feasibility interpretation if there exists a
mechanism that implements it under the feasibility interpretation.

As shown in Section 2.9 of the main text, if we use this notion then dynamic mechanisms may
be useful to achieve implementation of a SCR that is not evidence-monotonic. However, we prove
next that if the evidence structure is normal, then again our central analysis remains unchanged.

Proposition 8. Assume the evidence structure is normal. If a SCR is implementable (in a dynamic
mechanism) under the feasibility interpretation, it is evidence-monotonic.

Proof. Recall first that in the case of normality, a SCR f is evidence-monotonic provided that for
all θ and all a ∈ f(θ), for any θ′ satisfying (*) and Eθ = Eθ′ we have a ∈ f

(
θ′

)
. Assume f is

implemented under the feasibility interpretation by a mechanism (H, g, M). Pick θ and a ∈ f (θ),
and an equilibrium σ∗ ∈ NEF ((M,H, g) , θ) s.t. g (h(σ∗)) = a. Consider any θ′ satisfying (*) and
Eθ = Eθ′ . Since σ∗ is a NE at θ,

ui (g (h(σ∗)) , θ) ≥ ui

(
g

(
h(σ′

i, σ
∗
−i)

)
, θ

)
for all i, σ′

i s.t. for any h ∈ Hi : σ′
i(h) ∈

((
Eθ

i ∪ {e∅i }
)
×Mi

)
. By (*),

ui

(
g (h(σ∗)) , θ′

)
≥ ui

(
g

(
h(σ′

i, σ
∗
−i)

)
, θ′

)
for all i, σ′

i s.t. for any h ∈ Hi : σ′
i(h) ∈

((
Eθ

i ∪ {e∅i }
)
×Mi

)
. Because Eθ′ = Eθ, we have

ui

(
g (h(σ∗)) , θ′

)
≥ ui

(
g

(
h(σ′

i, σ
∗
−i)

)
, θ′

)
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for all i, σ′
i s.t. for any h ∈ Hi : σ′

i(h) ∈
((

Eθ′
i ∪ {e∅i }

)
×Mi

)
. In addition, Eθ′ = Eθ implies

that for any history h′ ∈ H, σ∗
i (h

′) ∈
((

Eθ′
i ∪ {e∅i }

)
×Mi

)
for each i ∈ P (h′). Therefore, σ∗ is a

NE (under the feasibility interpretation) at θ′ and since g (h(σ∗)) = a, we get that a ∈ f
(
θ′

)
. �
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