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Abstract

In partition function form games, the recursive core (r-core) is imple-

mented by a modified version of Perry and Reny’s (1994) non-cooperative

game. Specifically, every stationary subgame perfect Nash equilibrium

(SSPNE) outcome is an r-core outcome. With the additional assumption

of total r-balancedness, every r-core outcome is an SSPNE outcome.

1 Introduction

The core is an important solution concept with intuitive appeal. It is an ap-

propriate solution for situations where players have unhampered ability to sign

binding agreements. Two lines of research have recently been prominent. The

first line of research extends the core concept to situations with externalities

across coalitions. The α- and r-cores are based on a partition function instead

of a characteristic function. Important new solution concepts have been pro-

posed by Ray and Vohra (1997) and Koczy (2003). The second line of research
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concerns non-cooperative implementation of the core for characteristic function

form games. Important contributions to this literature include Kalai, Postle-

waite and Roberts (1979), Chatterjee et. al. (1993), Moldovanu and Winter

(1994, 1995), and Serrano and Vohra (1997). Non-cooperative games of coali-

tion formation in the presence of externalities have been studied by Bloch (1995),

Yi (1997), and Ray and Vohra (1997).

In non-cooperative games of coalition formation, the set of equilibrium pay-

offs often depends on the fine details of the bargaining protocol. Changing the

order in which players make and accept proposals may change the distribution

of bargaining power. This happens, for example, in the very natural game of

Chatterjee et. al. (1993). To address this problem, Moldovanu and Winter

(1995) look at outcomes that are equilibrium outcomes for any order of moves.

This approach is interesting, but differs from the usual concept of implementa-

tion. Serrano and Vohra (1997) implement the core correspondence in economic

environments using a two-stage game. In the first stage, each player proposes

an outcome. In the second stage, a player may propose a coalition, which forms

if all members accept. It is not clear how to generalize this game to the general

partition function form games studied in our paper. At the very least, more

stages would have to be added in order to address the key issue of how outsiders

react when a coalition is formed.

Perry and Reny (1994) introduce a continuous-time game with no fixed pro-

tocol for making offers. Their game seems to capture the spirit of free compe-

tition underlying the core. The outcome does not depend on some arbitrarily

specified order of moves. In their original paper, Perry and Reny did not allow

externalities across coalitions. However, in their game outsiders can react to the

formation of a coalition, so it seems well suited to handle externalities. After

a coalition has “left” the Perry and Reny game, the remaining players enter a

subgame which has the same structure as the original game. Since the original

game implements the core, the subgame naturally implements the core of the

“reduced game” consisting of the players who did not leave. Accordingly, when

the original players leave, they will expect that the remaining players behave in
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a way which is consistent with the core of the reduced game. The self-similar

structure of the Perry and Reny game suggests a connection with the recur-

sive core (briefly, r-core). The recursive core is a solution concept for partition

function form games, where the worth of a coalition is calculated by recursively

computing the cores of the “reduced societies.” The connection between the re-

cursive core and Perry and Reny’s game when there are only three players was

pointed out by Huang and Sjöström (2003). The current paper shows that Perry

and Reny’s game, suitably modified to allow for externalities across coalitions,

provides a non-cooperative implementation of the r-core, with any number of

players. Perry and Reny’s game needs to be modified mainly because, in the

presence of externalities, bargaining cannot be directly over payoffs. In our

game, players instead bargain over sharing rules. We believe these result sheds

some light on how to define the core based on partition functions. Specifically,

it suggests that the r-core is a natural generalization of the core to games with

externalities.

The rest of the paper is organized as follows. Section 2 contains the definition

of the r-core. Section 3 provides an example which illuminates the issues that

arise when the core is extended to allow for externalities. Section 4 describes

the modified Perry and Reny (1994) game. We prove our two main theorems in

the Section 5. Section 6 discusses the assumption of total r-balancedness.

2 The recursive core

Let N = {1, 2, ..., n} be the set of players. A coalition is a non-empty subset

of N . A coalition structure is a partition of N . A transferable utility game in

partition function form is denoted < N,P >, where P is the partition function.

The partition function form is the natural way to model externalities across

coalitions. For any coalition structure PN and for any coalition S in PN , P (S |
PN ) > 0 is the value (or worth) of S when players partition themselves according
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to PN .1 Thus, the worth of S can depend on the coalitional structure formed
by the players in N\S. For any payoff vector x ≡ (xi)i∈N and any coalition

S ⊆ N, let x(S) ≡
P

i∈S xi. A payoff vector x ∈ Rn is feasible under the

partition PN if for every coalition S in PN , x(S) = P (S | PN ). If S ∈ PN , then
we have PN = (S,A1, A2, ..., Ak) for some coalitions A1, A2, ..., Ak. Notice that

PN\S ≡ (A1, A2, ..., Ak) is a partition of N\S. With a slight abuse of notation,
we write PN = (S,PN\S) and P (S | S,PN\S) ≡ P (S | PN ).
Now we can define the recursive core (r-core). Consider any coalition S ⊆ N ,

and suppose the players in N\S have partitioned themselves into PN\S . The
r-core for coalition S given PN\S , denoted C(S | S,PN\S), is defined as follows.
For a single-player society S = {i}, we define C({i} | {i},PN\{i}) to be the set
of payoff vectors feasible under ({i},PN\{i}). Proceeding recursively, suppose
the r-core has been defined for all coalitions with at least s−1 members, and all
partitions on players other than these s− 1 members. Now suppose coalition S

has s members, and other players partition themselves according to PN\S . For
any coalition T ⊆ S, define

V (T | S,PN\S) ≡

⎧⎨⎩ P (S | S,PN\S) if T = S

min{x(T ) : x ∈ C(S\T | S\T, T,PN\S)} if T 6= S

Now, x ∈ C(S | S,PN\S) if and only if there exists some partition PS of S such
that x is feasible under the partition (PS ,PN\S), and x(T ) ≥ V (T | S,PN\S)
for each coalition T ⊆ S. This completes the definition.

The r-core predicts how S will partition itself given that N\S is partitioned
according to PN\S , but the prediction may not be unique. Let P(S | S,PN\S)
denote the set of all r-core partitions of S given PN\S . That is, PS ∈ P(S |
S,PN\S) if and only if there is x ∈ C(S | S,PN\S) which is feasible under the
partition (PS ,PN\S). We will show below that if < N,P > is strictly superad-

ditive, then the r-core makes the unique prediction that S stays together, i.e.,

P(S | S,PN\S) contains only (S).
1Allowing P (S | PN ) ≤ 0 would not change the results, but it would make the exposition

slightly more awkward.
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The final step of the recursive definition occurs when S = N . Although the

method is the same in each step, it is useful to simplify the notation at the last

step. At the last step the worth of T ⊆ N will be denoted V (T ) instead of

V (T | N). Similarly, we write C(N) instead of C(N | N), and P(N) instead of
P(N | N). By a slight abuse of terminology, we refer to C(N) as the r-core of
< N,P >. Notice that x ∈ C(N) if and only if there is some partition PN of

N such that x is feasible under the partition PN , and x(T ) ≥ V (T ) for each

coalition T ⊆ N . This simplified notation should not cause any confusion.

Intuitively, the recursive core may be justified as follows. In a stable outcome,

each coalition must get at least “what it is worth.” However, in partition function

form games the payoff to coalition T ⊆ N depends on the behavior of the players

in N\T . Therefore, in order to give coalition T “what it is worth,” we must

predict what the players in N\T will do if the coalition T forms. The α-core

applies maximal pessimism: the players in T think that what is worst for them

will happen, regardless of the incentives of the members of N\T to hurt the

players in T . The idea behind the recursive core is instead that the players in T

think the players in N\T will apply the solution concept to their own “reduced
game”. Thus, if coalition T forms, every subcoalition of N\T will insist on

getting “what it is worth,” rather than trying to punish the members of T. The

set of payoff vectors that can occur when the players in N\T behave according
to the solution concept is C(N\T | N\T, T ). Accordingly, we define the worth
of coalition T to be V (T ) ≡ min{x(T ) : x ∈ C(N\T | N\T, T )}, and x is in the

r-core of < N,P > if and only if x(T ) ≥ V (T ) for all T ⊆ N. This recursive

logic is less pessimistic than the α-core logic and accordingly computes a higher

worth for any coalition. Thus, the r-core is always a subset of the α-core.

Each characteristic function form corresponds to a “trivial” partition func-

tion form, where the payoff to any coalition S is independent of the behavior of

the players in N\S. If the characteristic function form game is totally balanced,
then the r-core for the corresponding partition function form game is non-empty

and equals the α-core, and also the core of the original characteristic function
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form game (because there is only one possible way to define the worth of a coali-

tion). If the characteristic function form game is not totally balanced, then the

r-core may be empty, because the recursive construction requires all subgames

to have non-empty cores. In the Perry and Reny game, this corresponds to

the requirement of subgame perfection (i.e., an equilibrium must exist in every

subgame).

Peleg (1986) and Tadenuma (1992) characterize the core for characteristic

function form games using a consistency axiom. In their definition of “reduced

game,” a set of “remaining players” may cooperate with a set of “leaving play-

ers.” With externalities, we need to specify the behavior of those “remaining

players” who are not cooperating. It seems natural to assume that they parti-

tion themselves according to the solution concept. We leave for future work a

characterization of the r-core along these lines.

Just like classical cooperative game theory, we assume agreements are fully

binding. To avoid any misunderstanding, suppose contracts are legally binding

and will be enforced by a court of law. Since a coalition can form under a legally

binding contract, they need not worry about destabilizing deviations within the

coalition. Therefore, a coalition can always insist on getting at least “what it is

worth.”

The r-core is non-empty if and only if C(N) is a non-empty set. Of course,

it is easy to construct examples where the r-core is not non-empty. Even if the

r-core is non-empty, the grand coalition may not form. Consider the following

example. Let N = {1, 2}. The grand coalition is worth V (N) ≡ P (N | N) = 1.
Each player i ∈ {1, 2} on his own is worth 2, i.e., V ({i}) = P ({i} | {1}, {2}) = 2.
The r-core is a singleton, C(N) = (2, 2), and the r-core partition structure for

N is P(N) = ({1}, {2}). Here the grand coalition breaks apart by mutual

agreement. This type of situation will complicate the non-cooperative imple-

mentation of the r-core. To simplify the analysis, we would like to be assured

that each coalition S prefers to stick together rather than break apart, i.e.,

P(S | S,PN\S) = (S). Thus, we introduce the following definition.
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Definition 1 The game < N,P > is totally r-balanced if and only if for any S

and PN\S, P(S | S,PN\S) = (S).

We will discuss this assumption in Section 6. This property is not easy to

check as it stands. However, it turns out that strictly superadditive games are

totally r-balanced, provided the r-core is non-empty. Formally, < N,P > is

strictly superadditive if for any two disjoint coalitions S and T and any coali-

tional structure PN\(S∪T ) on the remaining players,

P (S | S, T,PN\(S∪T )) + P (T | S, T,PN\(S∪T )) < P (S ∪ T | S ∪ T,PN\(S∪T )).
(1)

For example, symmetric Bertrand competition with differentiated commodities

(Deneckere and Davidson (1985)) satisfies (1). In strictly superadditive games,

a coalition will maximize its joint payoff by staying together.

Proposition 1. If the game < N,P > is strictly superadditive and the

r-core is non-empty, then < N,P > is totally r-balanced.

Proof. By definition, V (S | S,PN\S) = P (S | S,PN\S). Strict super-

additivity implies that if S breaks up into several coalitions, the sum of the

payoffs of the members of S will be strictly lower than P (S | S,PN\S). But if
x ∈ C(S | S,PN\S) then x(S) ≥ V (S | S,PN\S), which implies that S must
stay together. QED

3 A three-player example

We illustrate some aspects of the recursive core and its implementation in a

symmetric three-player example. Suppose N = {1, 2, 3}, and for i, j, k ∈ N

distinct,

P ({i} | ({i}, {j}, {k})) = 0,

P ({i} | ({i}, {j, k})) = a,

P ({j, k} | ({i}, {j, k})) = b,

P (N | N) = 1.
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To calculate his own worth, player i must predict what players j and k

would do if player i “leaves the game”, i.e., refuses to cooperate with j and

k. If players j and k form a coalition, the resulting structure is ({i}, {j, k}), in
which case players j and k share b while player i gets a. If players j and k break

apart and induce ({i}, {j}, {k}), all three players receive zero. A reasonable

prediction is that players j and k will stick together if b > 0, but break apart

if b < 0. This is indeed what will happen in subgame perfect equilibrium of the

Perry and Reny game. Accordingly, if player i “leaves the game” as a singleton

coalition, he expects to earn V ({i}) = 0 if b < 0 and V ({i}) = a if b > 0.2 If a

two-player coalition {j, k} “leaves the game,” the resulting coalition structure is
({i}, {j, k}), so V ({j, k}) = b. Perry and Reny’s game does not allow any more

moves by players j and k after they have “left,” so coalition {j, k} cannot break
apart and it must get b. (The intuitive justification is that agreements to form

a coalition are legally binding). Finally, V (N) = 1.

There are three cases.

Case 1. If b < 0 then the recursive core C(N) consists of all payoff vectors

such that x1+x2+x3 = 1 and xi ≥ 0 for all i. Notice that C(N) 6= ∅.We predict
that the grand coalition forms even if a+b > 1. The structure ({i}, {j, k}) is not
a possible r-core structure when b < 0 because under this structure, feasibility

implies that players j and k get b in sum. At least one of them would get

strictly less than the worth of a singleton coalition (zero), which is not possible.

In the Perry and Reny game, a player would rather leave on his own than take

a negative payoff.

Case 2. If b > 0 and a+ b < 1, then C(N) consists of all payoff vectors such

that x1 + x2 + x3 = 1, xi ≥ a for all i, and xi + xj ≥ b for all i, j distinct. This

implies that C(N) 6= ∅ as long as a ≤ 1/3 and b ≤ 2/3. If C(N) 6= ∅ then the
prediction is that the grand coalition forms.

Case 3. If b > 0 and a+ b > 1, then C(N) consists of all payoff vectors such

that xi ≥ a for all i, xi + xj ≥ b for all i, j distinct, and there is i such that

xi = a and xj + xk = b for j, k distinct and different from i. This implies that

2 If b = 0, then player i is assumed to have pessimistic expectations, V ({i}) = min{0, a}.
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C(N) 6= ∅ only if a = b/2, in which case two players will form a coalition and

share b, leaving the third player to stand alone and get a.

These r-core predictions seem intuitively plausible. In contrast, according

to the α-core logic, player i must fear that if he refuses to cooperate, the other

two players will induce whatever coalition structure is the worst for player i.

Therefore, player i is worth only min{0, a}, regardless of b. However, these fears
may be unfounded. If a < 0 and b < 0, why would players j and k form a

coalition just to hurt player i? If a > 0 and b > 0, why would players j and

k break up just to hurt player i? The recursive core rules out such incredible

threats.

An important aspect of Perry and Reny’s game is that it does not specify a

fixed order of moves. If a > 0 and b > 0, then each player will insist on at least

a, because he thinks that he can leave, and then the other two will react by

forming a coalition. On the other hand, suppose there is an exogenously given

order of moves (say 1,2,3), as assumed for example by Maskin (2003). Then the

following might be an equilibrium if a is large: player 1 starts by leaving, then

players 2 and 3 merge. Even if player j ∈ {2, 3} gets less than a, when he moves
player 1 has already left, and so player j may be unable to get a. In contrast,

in the Perry and Reny game, player j ∈ {2, 3} can always preempt player 1 by
leaving first. A fixed order of moves would yield predictions even in cases when

the r-core is empty; however, it would not capture the spirit of free competition

underlying the core.

A refinement of the α-core could be obtained by recursively defining stable

coalition structures, starting at the finest and building toward coarser struc-

tures.3 Suppose we postulate that ({i}, {j}, {k}) is always a stable partition,
and then define ({i}, {j, k}) to be stable if and only if players j, k prefer to stay
together rather than induce ({i}, {j}, {k}). Suppose, finally, we postulate that
if player i defects from the grand coalition, he fears the worst of all stable par-

titions. This refined α-core seems more compelling than the original α-core. If

a < 0 and b < 0, it would yield the “correct” prediction that player i on his own

3This discussion was prompted by the comments of a referee.
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is worth 0. However, suppose a > 0 and b > 0. According to the refined α-core

logic, player i fears that by defecting from the grand coalition, he may trigger

the stable structure ({i}, {j}, {k}) and get zero. Here he is too pessimistic, be-
cause if player i leaves then players j and k actually prefer to form a coalition

(and this is what they will do in any equilibrium of the Perry and Reny game).

In general, if we start by postulating that the finest coalition structure is always

stable, and then recursively define stability for coarser structures, and finally

postulate that a deviator fears the worst of all stable coalition structures, then a

deviator may fear structures that are “too fine” to be truly credible. The refined

α-core would be biased in favor of “splitting up” with not enough “re-merging.”

It would not correspond to equilibria of the Perry and Reny game, because that

game has no such bias: players j and k will not fall apart if they prefer to merge.

We end this section by considering the question of internal instability of

coalitions. Although the Perry and Reny game rules it out by assumption, one

can imagine scenarios where a coalition falls apart after it has “left.” There are

in fact two separate issues. First, if (contrary to our assumption) legally binding

contracts cannot be signed, then a coalition member may worry about other

members leaving the coalition, thereby hurting him. The fear of such defections

may prevent the coalition from forming in the first place. Second, even if legally

binding contracts can be signed, one can imagine coalitions breaking apart by

mutual agreement if this is beneficial to all its members. A judge may be

unwilling to stop the break-up of a coalition if its members unanimously agree

to “tear up the contract.” 4 We address these issues in turn.

To be specific, suppose 0 < b ≤ (1 − a)/2 and a < 0 (which is case 2

above). Consider the payoff vector x where a ≤ x1 < 0, b ≤ x2 < b − x1, and

x3 = 1 − x1 − x2 ≥ b. Such x exists (for instance, take x = (a, b, 1 − a − b)).

Since x1+ x2 < b, we have x /∈ C(N). If legally binding contracts are available,

then x will be rejected by players 1 and 2, because they can sign a binding

agreement which guarantees themselves b. However, suppose the players cannot

4Of course, there are many real-world situations where even unanimous consent is not

enough to break a coalition. An example would be certain laws of marriage.
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sign binding agreements. Player 1 certainly cannot improve on x on his own,

because if he refuses to cooperate, then players 2 and 3 will form a coalition

and share b > 0, and player 1 would only get a ≤ x1. Suppose instead player 1

proposes to form coalition {1, 2}, and he offers x2 + ε to player 2, where ε > 0.

Player 1 would get b−(x2+ε) < 0. For ε small enough, b−(x2+ε) > x1 so both

players 1 and 2 would be better off forming coalition {1, 2} than accepting x.

However, without a binding contract, player 2 may suspect that player 1 plans

to break up {1, 2} and induce the finest coalition structure ({1}, {2}, {3}). This
would give each player zero, which is better for player 1 than staying in coalition

{1, 2} (since b− (x2+ε) < 0). Fearing this internal instability of {1, 2}, player 2
may reject player 1’s proposal, preferring to get x2 > 0. Thus, x may be viable

if binding contracts are not available.5 In fact, x is an Equilibrium Binding

Agreement for the grand coalition (Ray and Vohra (1997)).6 By allowing legally

binding contracts, we avoid these issues.

Now consider the issue of break-up by mutual agreement. Suppose b < 0,

and suppose a two-player coalition {i, j} forms, sharing b equally. If instead they
manage to break apart and induce ({1}, {2}, {3}), they are both made better
off. A coalition S is said to be not credible if there is a partition PS of S such
that X

T∈PS

V (T ) > V (S)

Thus, if b < 0 then two-player coalitions are not credible. One might argue

that it is not realistic to assume that non-credible coalitions stick together.

5A potential problem with this argument is the hypothesis that player 1 can induce the

finest coalition structure ({1}, {2}, {3}) by defecting from {1, 2}. Recall that player 1 cannot
block x on his own, because he fears that the other two players will merge. But then, why

does he think he can induce ({1}, {2}, {3}) by defecting from {1, 2}? The argument seems to
put too much emphasis on the breaking apart of coalitions and too little on the possibility of

re-merging.
6No internally stable EBA for the coalition {1, 2} can block x, since x2 ≥ b. More generally,

if 0 < b ≤ 1−a
2

and a < 0, then payoff vector x is an EBA for the grand coalition if xi ≥ a for

each i ∈ N, x1 + x2 + x3 = 1 and either there are at least two distinct players j, k ∈ N such

that xj , xk ≥ b, or xi + xj ≥ b for all distinct i, j ∈ N .
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However, this problem is moot, because if a coalition is not credible, then the

corresponding core constraint is anyway redundant (see Ray (1989)). Notice

that if b < 0, then xi ≥ 0 for all i implies that xj + xk ≥ b for all j, k distinct.

Suppose we modify the example by setting

P ({1} | ({i}, {j}, {k})) = P ({2} | ({i}, {j}, {k})) = c > 0

Otherwise, the partition function is as before. Suppose a < 0, c < b < 2c,

and a + b < 1. Now b > c implies that if player i ∈ {1, 2} leaves, then the
other two will form a coalition. Therefore, V ({i}) = P ({i} | ({i}, {j, k})) = a

for i ∈ {1, 2}. But b < 2c means that if player 3 leaves, the other two will

split up. Therefore, V ({3}) = P ({3} | ({i}, {j}, {k})) = 0. For any two-player
coalition, V ({j, k}) = b, and V (N) = 1. Thus, the recursive core C(N) consists

of all payoff vectors such that x1 + x2 + x3 = 1, x1 ≥ a, x2 ≥ a, x3 ≥ 0

and xi + xj ≥ b for all i, j ∈ N distinct. Intuitively, one might argue as above

that perhaps {1, 2} is unlikely to stick together, because if they split up and
induce ({1}, {2}, {3}), they get c > b/2 each. However, they cannot be assured

that ({1}, {2}, {3}) would be the final outcome. Each player i ∈ {1, 2} fears
that if he stands alone the other two will merge. Coalition {1, 2} is credible
in the sense that V ({1, 2}) = b > 2a = V ({1}) + V ({2}). Accordingly, it is
not unrealistic to assume that {1, 2} sticks together. The recursive method

computes the value of a coalition based on the whole strategic situation, it does

not automatically declare the finest partition stable.

4 The non-cooperative game

We will show that a modified Perry and Reny (1994) extensive form game yields

a natural non-cooperative implementation of the r-core. The modification is

required in order to allow for externalities across coalitions. First, we will in-

formally describe the non-cooperative game, following Section 2 of Perry and

Reny (1994).
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4.1 Informal description

The game starts at t = 0 and time is continuous. At any point in time, a player

can either: 1) make a proposal; 2) accept the current proposal; 3) stay quiet

or 4) leave.7 A proposal ((wi)i∈S , S) by any player who hasn’t left consists of

a division rule (wi)i∈S and a coalition S. Here wi ∈ R+ represents i’s share

of the worth of S. We require
P

i∈S wi = 1 and wi ≥ 0 for all i ∈ S. In

Perry and Reny (1994), a player proposes a payoff vector, but this won’t work

here because the members of S don’t know what payoffs are feasible until all

other coalitions have formed. (In a partition function form game the coalitional

structure determines the value of S.) A division rule does work, because it

implies a feasible distribution of payoffs within S for every possible coalitional

structure that might form.8

When a proposal is made, it is effective as long as no new proposal is made.

Once a new proposal is made, the previous proposal is no longer effective. To

avoid the simultaneous proposals of distinct proposals, when this happens it is

ruled that no new proposal is effective. So there is at most one effective proposal

at any point in time.

If an effective proposal ((wi)i∈S , S) is accepted by all members in S, then the

proposal becomes binding, and S is a binding coalition. If any player in binding

coalition S chooses to leave, then all players in S must leave at the same time.

At any point in time, there might be several binding proposals among the players

who haven’t left. If a new proposal contains any player in any binding coalition,

then it must contain all players in that binding coalition. This reflects the idea

that annulment of a binding agreement has to be approved by every member

in it. To avoid the problem where a player is involved in two different binding

coalitions, if a new proposal ((wi)i∈S , S) becomes binding, then any old binding

proposal that involves members of S is annulled. Hence, at any point in time, all

7At the very beginning of the game when t = 0, players can only choose either 1) or 3).
8We could generalize to allow a proposal pertaining to a coalition S to specify a complete

contingent plan regarding how to divide S’s value under all possible coalitional structures

N\S may form. Allowing this does not change the result of the paper.
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binding coalitions are disjoint. Players consume only after all have left. Notice

that when all players leave, the coalitional structure is uniquely defined. Thus,

the partition function implies a well-defined payoff for each coalition. Players

share the payoff of the coalition to which they belong according to the binding

proposals they have signed.

We now more formally define the rules and the equilibrium concept. Again,

the description closely follows Perry and Reny (1994).

4.2 Histories

A proposal specifies a division rule (wi)i∈S and a coalition S. Thus, the set of

feasible proposals is

P ≡ {((wi)i∈S , S) : S ⊆ N,
X

i∈S
wi = 1 and wi ≥ 0 for all i ∈ S}.

Denote by a the choice to accept the current effective proposal, q the choice

to be quiet and l the choice to leave. A history for player i up to time t > 0 is

a function hi such that

hi : [0, t)→ P ∪ {a, q, l}.

If hi is a history for player i up to time t, and t0 < t, then let hi|t0 denote
the history for player i up to time t0 which is implied by hi (i.e., hi|t0 is the
truncation of hi at time t0).

Since players can only leave once and for all, h−1i (l) is either empty or a

singleton. We follow Perry and Reny (1994) by assuming that h−1i (P ∪ {a}) is
a finite set. At t = 0, since nothing has happened, hi(0) = ∅. For convenience,
denote a history up to time t by the n-tuple of functions h ≡ (h1, h2, ..., hn).
For t0 < t, let h|t0 denote the truncation of h at t0. Let H(t) denote the set of
all histories up to time t and H ≡ ∪∞t=0H(t) the set of all histories.
Let p(h) denote the current effective proposal according to h. To make

it well-defined, if according to h, either no proposal has been made, multiple

distinct proposals are simultaneously made, the current effective proposal has

14



become binding or some member in a binding coalition which is involved in the

current effective proposal has exercised to leave, then p(h) = ∅.9

Let τ(h) for h ∈ H(t) denote the amount of time that has passed up to time

t since p(h) was proposed. Whenever p(h) = ∅, τ(h) measures the time that
has passed since the previous effective proposal becomes binding. When there

is never any effective proposal, τ(h) measures the time that has passed since

time 0.

Let N(h) ⊆ N denote the set of players who have not left and A(h) ⊆ N(h)

the set of players who have accepted p(h). Whenever p(h) = ∅, A(h) = ∅.
Player i is said to have accepted the current effective proposal p(h) for h ∈

H(t) if p(h) is made at time t < t and hi(t0) = a for some t0 ∈ (t, t). If everyone
involved in p(h) has accepted it, then p(h) is binding. The coalitions in binding

proposals are called binding coalitions.

Let Π(h) denote the set of binding proposals among the players in N(h).

Since there are externalities across coalitions, we also need to keep track of

those binding coalitions that have left. LetK(h) denote the coalitional structure

formed by those players that have left, i.e., N\N(h), according to h. Perry and
Reny (1994) do not keep track of K(h) since for characteristic function form

games the remaining players’ values are not affected by the coalitional structure

of the players who left. In our setting, the coalitional structure of the players

who left does affect the values of the remaining players.

9When some member in a binding coalition which is involved in the current effective pro-

posal has exercised to leave, we need to reset p(h) to an empty set to avoid the following from

happening. Suppose players 1, 2 and 3 remain and the current proposal pertains to them.

Suppose player 1 and 2 have accepted the current proposal and 3 hasn’t. Suppose coalition

{3} is binding. If 3 exercises to leave, then by the rules in Perry and Reny, if p(h) is not reset
to an empty set, players 1 and 2 cannot do anything further and they have to stay in the

game forever.
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4.3 Payoffs

If a proposal ((wi)i∈S , S) becomes binding and player i ∈ S leaves, then in

contrast to Perry and Reny (1994) he cannot consume immediately (because the

worth of S depends on the final coalitional structure PN ). All he can guarantee
himself by leaving is that coalition S will be part of the final coalitional structure.

When all players have left, so thatN(h) = ∅, a structure PN of binding coalitions
has formed. Every coalition in PN distributes its value according to its binding

division rule. Thus, if S ∈ PN and its division rule is (wi)i∈S , then player i ∈ S

gets wiP (S | PN ). If there is a player who never leaves the game, then every
player i ∈ N gets −∞.10

4.4 Strategies

A strategy for any player is a function which maps every possible history to an

action. Hence, a strategy for any player i ∈ N , denoted by fi is:

fi : H → P ∪ {a, q, l}.

Denote the n-tuple of strategies by f ≡ (f1, f2, ..., fn). We impose several re-
strictions on the strategies.

(S0) For h ∈ H(0), fi(h) ∈ P ∪ {q}. That is, at the very beginning of the
game, players can only make a proposal or be quiet.

(S1) If i ∈ N(h) has accepted the current effective proposal p(h), then fi(h) =

q. That is, before the current effective proposal becomes binding, an

accepting player can only be quiet. If i ∈ N\N(h), then fi(h) = q. Thus,

a leaving player can only be quiet.

10One can relax this rather strong assumption. For instance, if some binding coalitions have

left while others remain in the game forever, it might be argued that although the remaining

players might get the worst possible payoffs, any leaving coalition should at least get its value

in the coalitional structure where all the leaving coalitions have formed and the remaining

players form into the worst possible coalitional structure for this coalition in consideration.

Allowing this does not change the result.
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(S2) If fi(h) = ((wi)i∈S0 , S
0), then for any binding coalition S, either S∩S0 = ∅

or S ⊆ S0. Moreover, S0 ⊆ N(h). That is, if a new proposal contains

some players in a binding coalition, it has to include all of them. Any new

proposal can only contain players who haven’t left.

(S3) If a player i is not a member of any binding coalition, then fi(h) 6= l.

That is, a player can only leave if he belongs to a binding coalition.

(S4) For all i and all t > 0 and for all h ∈ H(t) and t ∈ [0, t), there exists an
ε > 0 such that fi(h|τ) = q for all τ ≥ 0 and τ ∈ (t− ε, t+ ε)\{t}. That
is, there are two open intervals (t− ε, t) and (t, t+ ε) in which player i is

quiet. This assumption makes sure that players always have enough time

to respond.11

Lastly, denote player i’s payoff induced by the strategy tuple f after h by

ui(f |h). Let Fi denote the set of strategies for i which satisfy (S0) to (S4).

4.5 Equilibrium concept

The equilibrium concept is stationary subgame perfect Nash equilibrium (SSPNE).

By definition, a strategy profile bf ≡ ( bf1, bf2, ...,cfn) is an SSPNE if (E1) and (E2)
are satisfied:

(E1) Perfection: For all i ∈ N , h ∈ H and fi ∈ Fi,

ui( bf |h) ≥ ui((f1, bf2, ...,cfn)|h).
(E2) Stationarity: For h, h0 ∈ H, if

(p(h), τ(h),N(h), A(h),Π(h),K(h)) = (p(h0), τ(h0), N(h0), A(h0),Π(h0),K(h0)),

then bf(h) = bf(h0).
Notice that we have one more state variable K(h) than Perry and Reny

because of externalities across coalitions.
11See Example 1 and the last paragraph on page 806 in Perry and Reny (1994) for a

discussion of this assumption.
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5 Results

We will prove two theorems, corresponding to Theorems 1 and 2 in Perry and

Reny (1994). The first theorem states that every SSPNE outcome of the exten-

sive form game is in the r-core of the partition function game < N,P >. The

second theorem needs some qualification. We will show that for any totally r-

balanced game < N,P >, every r-core outcome can be supported as an SSPNE

outcome of the extensive form game.

The proof of Theorem 1 is more complicated than the corresponding proof in

Perry and Reny (1994). This is because in our model the value of a coalition is

not given by a characteristic function, but instead has to be derived recursively

from the partition function. Thus, we first need to show that if there exists

an SSPNE of the extensive form game, then the value of each coalition is well

defined. After having done this, we show the existence of an r-core outcome

which corresponds to this SSPNE outcome.

The following proposition is used to prove Theorem 1.

Proposition 2. Suppose an SSPNE bf exists. Take any S ⊆ N and any

partition PN\S on N\S. Let x denote the subgame equilibrium outcome induced

by bf where players in N\S have left according to PN\S, i.e. in the subgame
where the states are (p(h), τ(h), N(h), A(h),Π(h),K(h)) = (∅, 0, S, ∅, ∅,PN\S).
The following is true:

(a) C(S | S,PN\S) 6= ∅.
(b) There must exist a y ∈ C(S | S,PN\S) such that xi = yi for all i ∈ S.

(c) The coalitional structure induced by bf must be (PS ,PN\S) where PS ∈
P(S | S, PN\S).

Proof. We will proceed by induction.

Suppose |S| = 1. For any S = {i} and any PN\{i} on N\{i}, C({i} |
{i},PN\{i}) 6= ∅ since by definition, it consists of every payoff vector where i gets
P ({i} | {i},PN\{i}) and every coalition S0 ∈ PN\{i} gets P (S0 | {i},PN\{i}).
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In the subgame where all players in N\{i} have left and formed the coali-
tional structure PN\{i}, player i must first propose ((1), {i}) and then leave
according to bfi. For otherwise, i is staying in the game forever and getting −∞,
which cannot be an equilibrium strategy. Parts (b) and (c) follow immediately.

Thus, we have established that parts (a), (b) and (c) hold for any S such

that |S| = 1 and any partition PN\S on N\S.
To continue the induction, suppose that for any S such that |S| ≤ k− 1 < n

and any partition PN\S on N\S, parts (a), (b) and (c) hold.
Suppose |S| = k. For any partition PN\S on N\S, to show part (a), we

first need to make sure that V (T | S,PN\S) is well defined for all T ⊆ S. By

definition, V (S | S,PN\S) = P (S | S,PN\S). And V (T | S,PN\S) is also
well defined because C(S\T | S\T, T,PN\S) 6= ∅ by the induction hypothesis
(because |S\T | ≤ k − 1).
Suppose by contradiction that C(S | S,PN\S) = ∅. At time t, let h be

any history such that (p(h), τ(h), N(h), A(h),Π(h),K(h)) = (∅, 0, S, ∅, ∅,PN\S).
Consider the continuation equilibrium outcome x induced by bf . Since C(S |
S,PN\S) = ∅, there must exist a coalition S0 ⊆ S such that x(S0) < V (S0 |
S,PN\S). Without loss of generality, suppose S0 = {1, 2, ..., s0} where s0 = |S0|.
Let

yi = xi +
V (S0 | S,PN\S)− x(S0)

|S0| for all i ∈ S0,

and define

wi =
yi

V (S0 | S,PN\S)
for all i ∈ S0.

Consider any time t0 > t, any history h0 ∈ H(t0) such that h0|t = h and i)

p(h0) = ((wi)i∈S0 , S
0), ii) N(h0) = S, iii) A(h0) = {1, 2, ..., s0− 1}, iv) Π(h0) = ∅,

v) K(h0) = PN\S , and vi) bfi(h0) = q for all i ∈ N . Thus, at time t0 player s0

is the only member of S0 = {1, ..., s0} who has not yet accepted the proposal
((wi)i∈S0 , S

0).

Claim: According to bf , player s0 will accept ((wi)i∈S0 , S
0) before any new

proposal is made and thus ((wi)i∈S0 , S
0) will become binding.
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Proof of claim. A feasible action for player s0 is to accept the current effective

proposal ((wi)i∈S0 , S
0) and leave before anything happens. In this case the

whole coalition S0 leaves by the rules of the game. The resulting coalitional

structure will be (PS\S0 , S0,PN\S) for some r-core coalitional structure PS\S0 ∈
P(S\S0 | S\S0, S0,PN\S), according to the induction hypothesis. When S0

is calculating its value V (S0 | S,PN\S), it expects the worst possible r-core
coalitional structure and PS\S0 is not necessarily the worst possible one, so

V (S0 | S,PN\S) ≤ P (S0 | PS\S0 , S0,PN\S),

(If S0 = S, then V (S0 | S,PN\S) = P (S0 | S0,PN\S)). Player s0 gets

ws0P (S
0 | PS\S0 , S0,PN\S) ≥ ys0 > xs0 .

Suppose, according to bf , player s0 never accepts any proposal ever. Then
player s0 gets −∞, which contradicts the assumption that f̂ is an SSPNE, since
we have just shown that by accepting and leaving he can do better. Suppose

instead that, according to bf , some new proposal ((wi)i∈S00 , S
00) is made before

player s0 accepts ((wi)i∈S0 , S
0). In the continuation equilibrium, s0 must get at

least ws0P (S
0 | PS\S0 , S0,PN\S) > xs0 (we have shown that he has a feasible

action which gives him ws0P (S
0 | PS\S0 , S0,PN\S)). By stationarity, this means

whenever any history h0 yields the states

(p(h0), τ(h0), N(h0), A(h0),Π(h0),K(h0)) = (((wi)i∈S00 , S
00), 0, S, ∅, ∅,PN\S),

player s0 gets strictly more than xs0 . But then player s0 could have proposed

((wi)i∈S00 , S
00) at time close enough to t. This is in contradiction to x being

a continuation equilibrium outcome. Hence according to bf , player s0 will ac-
cept ((wi)i∈S0 , S

0) before any new proposal is made and thus ((wi)i∈S0 , S
0) will

become binding. This proves the claim.

Next consider at any time t00 > t, any history h00 ∈ H(t00) such that h00|t = h

and i) p(h00) = ((wi)i∈S0 , S
0), ii) N(h00) = S, iii) A(h00) = {1, 2, ..., s0 − 2}, iv)

Π(h00) = ∅, v) K(h00) = PN\S and vi) bfi(h00) = q for all i ∈ N .
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Claim: According to bf , players s0− 1 and s0 will accept ((wi)i∈S0 , S
0) before

any new proposal is made and ((wi)i∈S0 , S
0) will become binding.

Proof of claim. The argument is virtually the same as the proof of the

previous claim. A feasible action for player s0− 1 is to accept the proposal, and
if he does, then the previous claim applies so s0 will accept as well. Thus player

s0 − 1 can guarantee himself the payoff of

ws0−1P (S
0 | PS\S0 , S0,PN\S) ≥ ys0−1 > xs0−1

by accepting and leaving after s0 accepts. As in the previous claim, suppose to

the contrary that either according to f̂ player s0 − 1 never accepts anything, or
a new proposal is made before player s0 − 1 accepts ((wi)i∈S0 , S

0). In the first

possibility, player s0 − 1 gets −∞, which is a contradiction of the fact that f̂ is
an SSPNE. In the second possibility, by an analogous argument, when the new

proposal is made, player s0− 1 must get strictly more than xs0−1. But he could

have made that proposal at time close enough to t. This proves the claim.

Proceeding stepwise just as in these two claims, we can finally establish

the following claim. Let t000 > t, and consider a history h000 ∈ H(t000) such

that h000|t = h, and suppose: i) p(h000) = ((wi)i∈S0 , S
0), ii) N(h000) = S, iii)

A(h000) = {1}, iv) Π(h000) = ∅, v) K(h000) = PN\S and vi) bfi(h000) = q for all

i ∈ N . Then, according to bf , players 2 to s0 will accept ((wi)i∈S0 , S
0) before

any new proposal is made and ((wi)i∈S0 , S
0) will become binding.

However, this claim contradicts the hypothesis that x is a continuation equi-

librium outcome induced by bf , because player 1 can always propose ((wi)i∈S0 , S
0)

and subsequently accept it at time close enough to t. By this deviation, he gets

at least y1 > x1. Thus C(S | S,PN\S) 6= ∅ and part (a) is proved.

For part (b), suppose x is the continuation equilibrium outcome induced

by bf where players in N\S have left according to PN\S , i.e., in the subgame
where the states are (p(h), τ(h), N(h), A(h),Π(h),K(h)) = (∅, 0, S, ∅, ∅,PN\S).
If there does not exist a y ∈ C(S | S,PN\S) such that

xi = yi for all i ∈ S,
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then there must exist a coalition S0 ⊆ S such that x(S0) < V (S0 | S,PN\S). By
the same argument in the proof of part (a), this leads to a contradiction. Part

(c) follows from part (b) immediately. QED

Proposition 2 directly implies the following theorem, which states that every

SSPNE outcome is in the r-core of < N,P >. This is directly analogous to

Theorem 1 in Perry and Reny (1994).

Theorem 1. Suppose an SSPNE bf induces an equilibrium outcome x.

Then x ∈ C(N), and the coalitional structure induced by bf belongs to the r-core
structure P(N).

Now consider the converse of Theorem 1. For any r-core outcome, we need

strategies that support it as an SSPNE. It turns out that strategies similar to

those used by Perry and Reny (1994) in the proof of their Theorem 2 work here

as well. The main modification is due to the fact that players must propose

division rules instead of payoff vectors. If we assume total r-balancedness, then

analogues of Lemmas 1 and 2 in Perry and Reny (1994) can be readily proved,

and from this we obtain a converse to Theorem 1.

If the r-core exists, then it exists for any reduced society S given any PN\S .
Thus, for any S ⊂ N and PN\S we can select an r-core payoff vector from
C(S | S,PN\S). In the following, we denote this payoff vector by x(S | PN\S),
where

x(S | PN\S) ∈ C(S | S,PN\S).

For the grand coalition, we choose

x(N | PN\N ) ∈ C(N).

Note that when the game is totally r-balanced, for any reduced society S given

any PN\S , P(S | S,PN\S) = (S).
Perry and Reny (1994) construct two continuation equilibrium payoff vec-

tors: one for the continuing equilibrium when the current proposal is rejected,

the other for the continuation equilibrium when the current proposal is accepted.
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For any history h where

Π(h) = {((w1i )i∈S1 , S1), ((w2i )i∈S2 , S2), ..., ((wm
i )i∈Sm , S

m)},

define

zi(h) =

⎧⎪⎨⎪⎩
wk
i

P
j∈Sk

xj(N(h) | K(h)) if i ∈ Sk for some k ∈ {1, 2, ...,m}

xi(N(h) | K(h)) if i ∈ N(h)\(S1 ∪ S2 ∪ ... ∪ Sm).

If the current effective proposal is p(h) = ((wi)i∈S , S), without loss of generality

we can assume that there exists an integer r such that in the current proposal

p(h), the coalition S contains all the coalitions Sk where k ≤ r.12 On the other

hand, S is disjoint from all the coalitions Sk where k ≥ r + 1. Thus when the

current proposal becomes binding, the resulting new set of binding proposals

becomes

bΠ(h) = {((wi)i∈S , S), ((w
r+1
i )i∈Sr+1 , S

r+1), ..., ((wm
i )i∈Sm , S

m)}.

Define

bzi(h) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

wi

P
j∈S xj(N(h) | K(h)) if i ∈ S,

wk
i

P
j∈Sk

xj(N(h) | K(h)) if i ∈ Sk where k ∈ {r + 1, ...,m}

xi(N(h) | K(h)) if i ∈ N(h)\(S ∪ Sr+1 ∪ ... ∪ Sm).

By construction, zi(h) will be player i’s payoff in the continuation equilibrium

if the current effective proposal gets rejected, while bzi(h) will be his payoff if it
gets accepted. When p(h) = ∅, zi(h) = bzi(h).
The equilibrium strategies are defined as follows. For every t ≥ 0, h ∈ H(t)

and i ∈ N(h), if τ(h) is not a positive integer then fi(h) = q. If τ(h) is a

positive integer, then player i behaves as follows:

(a) if p(h) = ((wi)i∈S , S) 6= ∅, and bzj(h) ≥ zj(h) for all j ∈ S\A(h), then

fi(h) =

⎧⎨⎩ a if i ∈ S\A(h)
q otherwise

12Recall that if a new proposal contains any player in any binding coalition, then it must

contain all players in that binding coalition.
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(b) otherwise,

fi(h)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
l if i ∈ N(h) and Π(h) = {(·, N(h))}
((

zj(h)

l∈N(h)

xl(N(h)|K(h)) )j∈N(h), N(h)) if i ∈ N(h)\A(h) and Π(h) 6= {(·, N(h))}

q if i ∈ A(h)

Here Π(h) = {(·, N(h))} means that the binding coalition is N(h)13 and
Π(h) 6= {(·, N(h))} means that the binding coalition is not N(h).

These strategies depend only on the state variable. On the equilibrium path,

all players propose (( xi(N |PN\N)

j∈N
xj(N |PN\N )

)i∈N , N) at time 1, accept at time 2, and

leave at time 3. The equilibrium outcome is x(N | PN\N ) where every i ∈ N

gets xi(N | PN\N ). For any history h where K(h) has left and nothing else has
happened, in the continuing subgame, on the equilibrium path every i ∈ N(h)

gets xi(N(h) | K(h)).
With these strategies, we can easily prove two lemmas analogous to Lemmas

1 and 2 in Perry and Reny (1994). The proof of Lemma 1 shows how total r-

balancedness is used.

Lemma 1. Assume total r-balancedness. For any h ∈ H, if p(h) =

((wi)i∈S , S) and

Π(h) = {((w1i )i∈S1 , S1), ((w2i )i∈S2 , S2), ..., ((wm
i )i∈Sm , S

m)}

then14

(a) for any k ∈ {1, 2, ...,m} and i ∈ Sk,

zi(h) ≥ wk
i

X
j∈Sk

xj(N(h)\Sk | Sk,K(h))

13 In other words, there exists a division rule (wi)i∈N(h) such that Π(h) =

{((wi)i∈N(h),N(h))}.
14Recall that there exists an integer r such that the current proposal S contains all the

coalitions Sk where k ≤ r and is disjoint from all the coalitions Sk where k ≥ r + 1.
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(b) for any k ∈ {1, 2, ...,m},X
i∈Sk

zi(h) =
X
i∈Sk

xi(N(h) | K(h))

(c) X
i∈S

zi(h) =
X
i∈S

bzi(h) =X
i∈S

xi(N(h) | K(h)).

Proof. (a) By definition

zi(h) = wk
i

X
j∈Sk

xj(N(h) | K(h)).

Since x(N(h) | K(h)) belongs to the r-core for N(h) given K(h),X
j∈Sk

xj(N(h) | K(h)) ≥ V (Sk | N(h),K(h))

= P (Sk | Sk, N(h)\Sk,K(h))

The equality follows because by total r-balancedness, when Sk breaks off, the

remaining players in N(h)\Sk stay together in the r-core. Now x(N(h)\Sk |
Sk,K(h)) belongs to the r-core for N(h)\Sk given (Sk,K(h)), and by total
r-balancedness players in N(h)\Sk stay together. So,X

j∈Sk
xj(N(h)\Sk | Sk,K(h)) = P (Sk | Sk, N(h)\Sk,K(h)).

Hence

zi(h) ≥ wk
i

X
j∈Sk

xj(N(h)\Sk | Sk,K(h)).

(b) By definition,X
i∈Sk

zi(h) =
X
i∈Sk

wk
i (
X
j∈Sk

xj(N(h) | K(h)))

=
X
i∈Sk

xi(N(h) | K(h)),

since
P
i∈Sk

wk
i = 1.
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(c) By definition,X
i∈S

zi(h) =
X

k∈{1,...,r}
(
X
i∈Sk

zi(h)) +
X

i∈S\(S1∪...∪Sr)
xi(N(h) | K(h))

=
X
i∈S

xi(N(h) | K(h)),

where the second equality follows because of (b). By definition,X
i∈S

bzi(h) =
X
i∈S

wi(
X
j∈S

xj(N(h) | K(h)))

=
X
i∈S

xi(N(h) | K(h))

because
P
i∈S

wi = 1. QED

Lemma 2. Assume total r-balancedness. For any t ≥ 0, h ∈ H(t) and

A(h) = ∅, the outcome generated by the strategies f ≡ (f1, ..., fn) after h is

such that player i gets zi(h) for all i ∈ N(h).

Proof. Let t1 be the smallest time at least as large as t such that t1 − τ(h)

is an integer. According to the strategies f , if t 6= t1, then all players are quiet

between [t, t1). Denote the history generated by h1 ∈ H(t1). There are four

possible cases depending on what players will do at t1 according to the strategies

f .

Case 1. If fi(h1) = l, then it must be the case that Π(h1) = {(·,N(h1))}.
This implies that there exists a division rule (wi)i∈N(h1) such that Π(h1) =

{((wi)i∈N(h1), N(h1))}. Thus player i gets wi

P
j∈N(h1)

xj(N(h1) | K(h1)) for all

i ∈ N(h1) according to f . If t 6= t1, then since everyone is quiet between [t, t1),

Π(h) = Π(h1), K(h) = K(h1), and N(h) = N(h1). This implies that

zi(h) = wi

X
j∈N(h)

xj(N(h) | K(h))

= wi

X
j∈N(h1)

xj(N(h1) | K(h1)).

Hence player i gets zi(h).15

15 If t = t1 then it is obvious that h = h1 and therefore zi(h) = zi(h1).
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Case 2. If fi(h1) = a for some i ∈ N(h1)\A(h1) and p(h1) = ((wi)i∈N(h1), N(h1)),

since everyone is quiet between [t, t1) and thus A(h1) = A(h) = ∅, then it
implies bzi(h1) ≥ zi(h1) for all i ∈ N(h1) by the construction of the strate-

gies f . So the current proposal becomes binding at t1. By Lemma 1 (c)P
i∈N(h1)

zi(h1) =
P

i∈N(h1)
bzi(h1), hence bzi(h1) = zi(h1) for all i ∈ N(h1). More-

over, N(h1) = N(h) and zi(h1) = zi(h) for all i ∈ N(h) because everyone is

quiet between [t, t1).

By the equilibrium strategies, everyone is quiet between (t1, t1 + 1). Let

t2 = t1 + 1 and denote the history generated by h2 ∈ H(t2). Since everyone

is quiet between (t1, t2), N(h1) = N(h2) and K(h1) = K(h2). At t2, since

Π(h2) = {(·, N(h2))}, so all players leave. Thus player i ∈ N(h2) gets

wi

X
j∈N(h2)

xj(N(h2) | K(h2))

= wi

X
j∈N(h1)

xj(N(h1) | K(h1))

= bzi(h1) = zi(h1) = zi(h).

Case 3. If fi(h1) = ((
zj(h1)

l∈N(h1)

xl(N(h1)|K(h1)) )j∈N(h1), N(h1)), then everyone

is quiet between (t1, t1 + 1). Let t2 = t1 + 1 and denote the history generated

by h2 ∈ H(t2). By definition for all i ∈ N(h1),

bzi(h2) =
zi(h1)P

j∈N(h1)
xj(N(h1) | K(h1))

X
l∈N(h1)

xl(N(h2) | K(h2))

= zi(h1) = zi(h2).

The second equality follows because no one leaves between [t1, t2), so N(h1) =

N(h2) and K(h1) = K(h2). The third equality follows because no new proposal

binds between [t1, t2), so zi(h1) = zi(h2). Thus all players in N(h1) accept

the proposal at time t2. According to the equilibrium strategies, everyone is

quiet between (t2, t2 + 1). Let t3 = t2 + 1 and denote the history generated by

h3 ∈ H(t3). Since no one leaves between [t2, t3), so N(h2) = N(h3). Hence all
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players in N(h3) leave at time t3. Thus player i ∈ N(h3) gets

zi(h1)P
j∈N(h1)

xj(N(h1) | K(h1))
X

l∈N(h3)
xl(N(h3) | K(h3))

= zi(h1) = zi(h).

The first equality follows because no one leaves between [t1, t3) so N(h1) =

N(h3) and K(h1) = K(h3). The second equality follows because nothing hap-

pens between [t, t1).

Case 4. If fi(h1) = a for some i ∈ S\A(h1) and p(h1) = ((wi)i∈S , S)

where S 6= N(h1), since everyone is quiet between [t, t1) and thus A(h1) =

A(h) = ∅, then it implies bzi(h1) ≥ zi(h1) for all i ∈ S by the construction of

the strategies f . So the current proposal becomes binding at t1. By Lemma

1 (c),
P
i∈S

zi(h1) =
P
i∈S

bzi(h1), hence bzi(h1) = zi(h1) for all i ∈ S. Denote

Π(h1) = {((w1i )i∈S1 , S1), ((w2i )i∈S2 , S2), ..., ((wm
i )i∈Sm , S

m)} and without loss
of generality, assume that S contains all the coalitions Sk where k ≤ r and is

disjoint from all the coalitions Sk where k ≥ r+1. Then for all i ∈ N(h1)\(S ∪
Sr+1 ∪ ... ∪ Sm),

bzi(h1) = zi(h1) = xi(N(h1) | K(h1)),

and for all i ∈ Sk where k ≥ r + 1,

bzi(h1) = zi(h1) = wk
i

X
j∈Sk

xj(N(h1) | K(h1)).

Thus bzi(h1) = zi(h1) for all i ∈ N(h1). Note that all players are quiet between

(t1, t1 + 1). Let t2 = t1 + 1 and denote the history generated by h2 ∈ H(t2).

Since no one leaves between [t1, t2), so N(h1) = N(h2).

Since S 6= N(h2), at time t2, for all i ∈ N(h2) fi(h2) = ((
zj(h2)

l∈N(h2)

xl(N(h2)|K(h2)))j∈N(h2), N(h2)).

Everyone is quiet between (t2, t2 + 1). Let t3 = t2 + 1 and denote the history

generated by h3 ∈ H(t3). By definition for all i ∈ N(h2),

bzi(h3) =
zi(h2)P

j∈N(h2)
xj(N(h2) | K(h2))

X
l∈N(h2)

xl(N(h3) | K(h3))

= zi(h2) = zi(h3).
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The second equality follows because no one leaves between [t2, t3), so N(h2) =

N(h3) and K(h2) = K(h3). The third equality follows because no new offers

binds between [t2, t3). Thus all players in N(h2) accept the proposal at time t3.

Everyone is quiet between (t3, t3 + 1). Let t4 = t3 + 1 and denote the history

generated by h4 ∈ H(t4).

Since no one leaves between [t3, t4), so N(h3) = N(h4) and K(h3) = K(h4).

At t4, since Π(h4) = {(·, N(h4))}, so all players leave. Thus player i ∈ N(h4)

gets

zi(h2)P
j∈N(h2)

xj(N(h2) | K(h2))
X

l∈N(h4)
xl(N(h4) | K(h4))

= zi(h2).

However zi(h2) = bzi(h1) because at time t1, p(h1) binds. Combining withbzi(h1) = zi(h1), thus zi(h2) = zi(h1) = zi(h). The last equality follows because

nothing happens between [t, t1).16 Thus player i ∈ N(h) gets zi(h) in the

continuing equilibrium. QED

The following result is the partial converse to Theorem 1.

Theorem 2. If < N,P > is totally r-balanced, then any payoff vector in

the r-core can be supported as an SSPNE outcome.

Proof. We want to show that the strategy f does constitute an equilibrium.

Therefore, we want to show that any player i has no profitable deviation after

any history, given all others are playing according to the equilibrium. For any

t ≥ 0, h ∈ H(t) and i ∈ N(h)\A(h), if fj(h) = l for some j ∈ N(h)\{i},
then according to the equilibrium strategies, it must be the case that Π(h) =

{(·, N(h))}. Hence player i has to leave anyway. So fi(h) = l is clearly optimal.

Thus we only need to show that for any t ≥ 0, h ∈ H(t) and i ∈ N(h)\A(h),
if fj(h) 6= l for all j ∈ N(h)\{i}, then using the equilibrium strategy fi given

all others are using their corresponding equilibrium strategies f−i is optimal for

player i.

16Hence N(h) = N(h1) and K(h) = K(h1).
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Consider another strategy f 0i for player i. Notice that f
0
i and f−i generate a

unique continuation path h0 subsequent to h. Since i gets at least zi(h) > −∞
by following fi, he does no better if he never leaves according to f 0i . Thus

suppose i leaves at time t0 ≥ t with the proposal ((w0j)j∈S0 , S
0). Notice that

since others are following the equilibrium strategies f−i, everyone must leave

the game ultimately. The coalitional structure thus formed, denoted by P 0N ,
must satisfy:

S ∈ P 0N for all S ∈ K(h) and S0 ∈ P 0N .

That is, it must respect the coalitions that have left. Thus player i obtains

the payoff of w0iP (S
0 | P 0N ). Since the proposal ((w0j)j∈S0 , S0) must be binding

before the coalition S0 can leave, thus ((w0j)j∈S0 , S
0) ∈ Π(h0|t0). By Lemma 1

zi(h
0|t0) ≥ w0i

X
j∈S0

xj(N(h
0|t0)\S0 | S0,K(h0|t0))

= w0iP (S
0 | P 0N ).

The equality follows because after S0 has left, since others are playing accord-

ing to the equilibrium strategies, they must stay together and form a grand

coalition of their own. Thus, P 0N = {N(h0|t0)\S0} ∪ {S0} ∪ K(h0|t0). More-
over, the payoff vector x(N(h0|t0)\S0 | S0,K(h0|t0)) is in the core C(N(h0|t0)\S0 |
N(h0|t0)\S0, S0,K(h0|t0)), and by total r-balancedness, P(N(h0|t0)\S0 | N(h0|t0)\S0, S0,K(h0|t0)) =
(N(h0|t0)\S0), hence the sum of payoffs for players in S0 is simply

P
j∈S0

xj(N(h
0|t0)\S0 |

S0,K(h0|t0)) = P (S0 | P 0N ).
There are three exhaustive cases.

Case A: A(h) = ∅.
Case B: p(h) = ((wj)j∈T , T ) and either bzi(h) ≤ zi(h) or bzj(h) < zj(h) for

some j ∈ T\A(h).
Case C: p(h) = ((wj)j∈T , T ), bzi(h) > zi(h) and bzj(h) ≥ zj(h) for all j ∈

T\A(h).
Notice that case B covers the instances where i /∈ T since then bzi(h) = zi(h).

Case A covers the instances where p(h) = ∅. As in Perry and Reny (1994), the
argument applying to cases A and B have a common component, thus we treat
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them together until it is necessary to separate them.

Cases A and B. By Lemma 2, in case A, player i will get zi(h) by using the

equilibrium strategy fi. In case B, by the equilibrium strategies, either player

i does not belong to T , he is the only player who hasn’t accepted the current

proposal p(h) and will accept it or at least a player will reject the proposal by

making a new proposal involving all the players N(h). In any case, player i

gets zi(h). Thus suppose to the contrary that by following f 0i , player i made a

profitable deviation. Thus w0iP (S
0 | P 0N ) > zi(h).

Since zi(h0|t0) ≥ w0iP (S
0 | P 0N ) > zi(h), it must be the case that t0 > t. This

is because h0|t = h. Hence, let

t∗ = inf{bt ∈ [t, t0] | zi(h0|bt) > zi(h)}.

It follows that zi(h) ≥ zi(h
0|t∗). To see this, note if t∗ = t, then since h0|t = h,

the weak inequality is certainly true. If t∗ > t and suppose to the contrary

that zi(h) < zi(h
0|t∗), then by (S4), there exists an ε > 0 small enough so that

t∗ − ε > t and nothing happens between [t∗ − ε, t∗). Hence zi(h
0|t∗ − ε

2 ) =

zi(h
0|t∗) > zi(h). But then t∗ is not the infimum. Hence zi(h) ≥ zi(h

0|t∗). This
implies t∗ 6= t0 because zi(h0|t0) > zi(h). Thus t0 > t∗.

Because zi(h) ≥ zi(h
0|t∗) and t∗ is the infimum, there must exist a sequence

of positive numbers {εn} where limn→∞ εn = 0 and zi(h
0|t∗ + εn) > zi(h) ≥

zi(h
0|t∗) for every εn. By (S4), there must exist an n∗ large enough such that

nothing happens between (t∗, t∗+εn∗). Thus something must happen at time t∗

for otherwise it cannot be the case that zi(h0|t∗ + εn∗) > zi(h
0|t∗). Thus either

the current proposal p(h0|t∗) which contains player i becomes binding at t∗ or
someone leaves at t∗. The latter cannot happen because according to f 0i , player

i leaves at t0 > t∗. Players other than i cannot leave at t∗ either for otherwise,

since they are playing according to the equilibrium strategies f−i, when one

leaves, all must leave, contradicting that player i leaves at t0 > t∗. Therefore,

the current proposal p(h0|t∗) becomes binding at t∗. Let p(h0|t∗) = ((w∗j )j∈S , S).
Notice that i ∈ S as argued.

Since the current proposal p(h0|t∗) becomes binding at t∗ and nothing hap-
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pens between (t∗, t∗+εn∗), this implies that bzi(h0|t∗) = zi(h
0|t∗+εn∗). Because

zi(h
0|t∗ + εn∗) > zi(h

0|t∗), it follows that bzi(h0|t∗) > zi(h
0|t∗). By part (c) of

Lemma 1
P
j∈S

zj(h
0|t∗) =

P
j∈S

bzj(h0|t∗). Because i is in S, this implies that there

exists a player k in S such that bzk(h0|t∗) < zk(h
0|t∗). We now separate the

discussion for cases A and B.

Case A. Since p(h0|t∗) becomes binding at t∗ and at time t no one has

accepted any proposal because A(h) = ∅, thus player k must accept p(h0|t∗) at
some point of time tk ∈ [t, t∗]. At that time, since k is playing according to the
equilibrium strategy, so bzk(h0|tk) ≥ zk(h

0|tk). Note that Π(h0|tk) = Π(h0|t∗),
N(h0|tk) = N(h0|t∗) and K(h0|tk) = K(h0|t∗) since p(h0|tk) = p(h0|t∗). Hencebzk(h0|tk) = bzk(h0|t∗) and zk(h

0|tk) = zk(h
0|t∗). This implies that bzk(h0|t∗) ≥

zk(h
0|t∗), yielding a contradiction. Hence there is no profitable deviation for

case A.

Case B. Note that p(h) = ((wj)j∈T , T ) will not bind. This is because if there

exists some j 6= i where j ∈ T\A(h) such that bzj(h) < zj(h), then he will not

accept the proposal and will make another proposal pertaining to N(h) at the

next integer time if no one has done so. If there exists no j 6= i where j ∈ T\A(h)
such that bzj(h) < zj(h), then either bzi(h) = zi(h) or bzi(h) < zi(h). Whenbzi(h) = zi(h), according to the equilibrium strategies, all j 6= i, j ∈ T\A(h) will
accept the proposal at the next integer time. Thus if player i accepts as well,

the proposal will bind. However, once it binds, say at time t00, then p(h0|t00) = ∅.
Since we have shown in Case A that no profitable deviation is possible, player i’s

optimal strategy is to follow the equilibrium strategy fi from t00 on. This implies

i’s payoff will be bzi(h) = zi(h) by using f 0i . Since bzi(h) = w0iP (S
0 | P 0N ). This

is in contradiction to w0iP (S
0 | P 0N ) > zi(h). When bzi(h) < zi(h), there are two

possibilities. Either there exists an j 6= i where j ∈ T\A(h) or {i} = T\A(h).
In the first situation when there exists a j 6= i, j ∈ T\A(h), then according to
player j’s equilibrium strategy, he will not accept the proposal17 and will make

another proposal pertaining toN(h) if no on has done so. In the second situation

17Because according to the equilibrium strategy, player j will not accept p(h) since zi(h) <

zi(h).
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where {i} = T\A(h), player i will not accept the proposal. For if he did, say
at time t000, then p(h0|t000) = ∅. Again, since we have shown in Case A that no
profitable deviation is possible from t000 on, player i gets bzi(h) < zi(h), yielding

a contradiction. Therefore in all possible situations, p(h) = ((wj)j∈T , T ) will

not bind.

Since p(h0|t∗) becomes binding at t∗ and p(h) = ((wj)j∈T , T ) will not bind,

p(h0|t∗) must be proposed at time t or later but before t∗. Hence player k must
accept p(h0|t∗) at some point of time tk ∈ [t, t∗]. Now apply exactly the same
logic in case A to get a contradiction. Thus there is no profitable deviation for

case B.

Case C. We will show that player i has no profitable deviation. If player i

plays according to the equilibrium strategy fi, since all others are also playing

the equilibrium strategies, his payoff is bzi(h) > zi(h). If instead player i deviates

to another strategy f 0i , there are two possibilities.

In the first possibility p(h) becomes binding. This implies player i accepts

p(h) at some time t00. Since all other players accept p(h) by the equilibrium

strategies at the next integer time, say t000, this implies p(h) becomes binding at

max{t00, t000}. Therefore p(h0|max{t00, t000}) = ∅. By the argument in case A, it
is optimal for player i to follow the equilibrium strategy from time max{t00, t000}
on. Hence player i’s payoff from using f 0i is at most bzi(h).
In the second possibility p(h) does not become binding. This implies either

player i makes another proposal at some time t00 or i leaves before accept-

ing. In the first situation, since others are playing according to the equilibrium

strategies, if the next integer time arrives before than or at t00, all others ac-

cept p(h) at the next integer time except player i. If the next integer time

arrives after t00, this new proposal is made before anyone has accepted it. Both

imply p(h0|t00) = ∅. By the argument in case A, it is optimal for player i to
follow the equilibrium strategy from time t00 on. Hence player i’s payoff from

using f 0i is at most zi(h). In the second situation where i leaves before ac-

cepting, it must be the case that player i is in a binding coalition Sk. After

Sk leaves, all players still play according to the equilibrium strategies. Thus

33



x(N(h)\Sk | Sk,K(h)) is expected in the continuing equilibrium. Hence player
i’s payoff is wk

i

P
j∈Sk

xj(N(h)\Sk | Sk,K(h)) ≤ zi(h) by part (a) of Lemma 1.

Thus there is no profitable deviation for case C. QED

6 Discussion

We note that total r-balancedness indeed guarantees the existence of the r-core.

In fact, it makes a precise prediction that for any S and PN\S , P(S | S,PN\S) =
(S). When there is no externality across coalitions, it naturally boils down to

the standard notion of total balancedness. In addition, total r-balancedness

plays an important role in Theorem 2. More precisely, the assumption of total

r-balancedness is convenient for the following reasons.

First, suppose S1 has become binding. After this history, the relevant par-

tition function game is no longer < N,P >. Since S1 cannot break apart,

we should instead treat S1 as a “composite player” and consider the “derived”

partition function consistent with the fact that members of S1 stay together.

According to Theorem 1, whenever this happens, in the continuing equilibrium

some r-core of this “derived” partition function game must occur. The existence

of the r-core for this “derived” partition function game is not guaranteed, how-

ever, since the existence of the r-core only implies that when every player is on

its own, the r-core for any reduced society exists. For totally r-balanced games,

since the grand coalition for any reduced society always form, treating S1 as

a “composite player” actually reduces the number of the inequalities to check

for the r-core to exist. For instance, suppose S1 = {1, 2} and N = {1, 2, 3, 4}.
When we treat S1 as a “composite player,” for the grand coalition N to form

in the “derived” partition function form game, we do not need to worry, for

instance, whether the sum of payoffs of players 1 and 3 is greater than their

worth. Therefore, if the r-core exists in the original game, then it exists in this

“derived” partition function game. The grand coalition is always the resulting

r-core structure. When the game is not totally r-balanced, existence may be a

problem. Example 2 demonstrates this.
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Example 2 Suppose N = {1, 2, 3, 4}. Suppose

P ({1, 2, 4} | ({1, 2, 4}, {3})) =

P ({1, 2, 3} | ({1, 2, 3}, {4})) =

P ({3, 4} | ({1, 2}, {3, 4})) = 2,

P ({1} | ({1}, {2}, {3, 4})) =

P ({2} | ({1}, {2}, {3, 4})) =

P ({3, 4} | ({1}, {2}, {3, 4})) = 1,

and P (S | PN ) = 0 in all other cases. For this game V ({1, 2, 3}) = V ({1, 2, 4}) =
2, V ({1}) = V ({2}) = V ({3, 4}) = 1 and the values for all other coalitions are
zero. The r-core exists and the unique r-core structure for the society N is

({1}, {2}, {3, 4}).
However, suppose off the equilibrium path {1, 2} has formed. Treating {1, 2}

as a composite player, there exists no r-core in this “derived” partition function

form game. This is because now the value of {3, 4} becomes 2 since players 1
and 2 cannot break apart. Combined with the fact that the values of {1, 2, 3}
and {1, 2, 4} are 2, there is no way to give each coalition its worth. Therefore,
off the equilibrium path, when {1, 2} has formed, no continuation equilibrium
exists.

Second, suppose the r-core structure is not the grand coalition. After some

coalitions in the r-core structure have formed, since we have to treat the formed

coalitions as “composite players,” it is not guaranteed that the resulting r-core

in the “derived” partition function is the original r-core anymore. For the same

reason as argued above, when the game is totally r-balanced, this does not result

in a problem. Example 3 demonstrates this.

Example 3 Suppose N = {1, 2, 3, 4}. Suppose

P ({1, 2} | ({1, 2}, {3}, {4})) = 2,
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P ({1} | ({1}, {2}, {3, 4})) =

P ({2} | ({1}, {2}, {3, 4})) =

P ({3, 4} | ({1}, {2}, {3, 4})) =

P ({3} | ({1, 2}, {3}, {4})) =

P ({4} | ({1, 2}, {3}, {4})) = 1,

P ({3, 4} | ({1, 2}, {3, 4})) = 3,

and P (S | PN ) = 0 in all other cases. For this game, V ({3, 4}) = V ({1}) =
V ({2}) = V ({3}) = V ({4}) = 1 and the values for all other coalitions are

zero. The r-core exists and the unique r-core structure for the society N is

({1, 2}, {3}, {4}).
However, suppose {1, 2} has formed. Treating {1, 2} as a composite player,

the unique r-core structure in this “derived” partition function form game is

({1, 2}, {3, 4}). This is because now the value of {3, 4} becomes 3 since players
1 and 2 cannot break apart.
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