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The Unity of Auction Theory: Paul Milgrom’s Masterclass1 
 

Eric Maskin2 
 

1. Introduction 

 By any standard measure, auction theory has been an enormous success.  Even 

after twenty-five years of intensive work, the literature continues to grow at a prodigious, 

even accelerating rate;3 it has spawned much empirical and experimental research;4 its 

tentacles have spread into other disciplines; 5 and auction theorists have been influential 

in the design of mechanisms for the privatization of public assets (such as spectrum 

bands) and for the allocation of electricity and other goods (they have also often served as 

consultants to the bidders in those mechanisms). 

 One explanation for this success is good timing.  Many researchers started 

working seriously on auctions in the late 1970’s and early 1980’s,6 just when the right 

game-theoretic methods for studying this subject - - games of incomplete information 

(John Harsanyi 1967-68) and perfect equilibrium (Reinhard Selten 1975) - - were 

becoming widely known.  Of course, numerous other fields, e.g., industrial organization, 

benefited from the same symbiosis of technique and application; collectively, they 

resulted in the game theory revolution.  But the study of auctions has had more staying 

                                                 
1 Paul Milgrom, Putting Auction Theory to Work, Cambridge: Cambridge University Press, 2004. 
2 Institute for Advanced Study and Princeton University.  I thank the NSF (SES-0318103) for research 
support. 
3 To give just one indication: at the August 2004 joint meeting of the Econometric Society and European 
Economic Association there were seven separate sessions on auction theory, a figure well beyond that for 
any other sort of theory. 
4 Again, to cite only one, conference-related datum, the organizers of the 2005 Econometric Society World 
Congress, who attempt to invite special talks on the most lively and interesting developments in recent 
economics, are planning a set of talks on empirical auctions work. 
5 So, for example, there is now a sizeable computer science literature on auction theory, often focusing on 
computational issues. 
6 Auction theory actually began well before then.  Indeed, the seminal contribution was William Vickrey 
(1961).  But until game theory came into its own fifteen years later, Vickrey’s work—as well as that of 
other early pioneers such as James Griesmer, Richard Levitan, and Martin Shubik (1967), Armando Ortega 
Reichert (1968) and Robert Wilson (1969)—remained largely ignored. 
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power than many other applications of game theory.  Whereas enthusiasm for theoretical 

industrial organization has cooled somewhat since the heady days of twenty years ago, 

research on auctions, as I have noted, continues apace.  There are, I believe, several 

reasons why auction theory has fared comparatively well. 

 

First, theorists of I.O. and other applied fields labor under the constraint that they 

do not know the games that the players they study (e.g. firms or consumers) are actually 

playing; models are at best approximations of reality.  By contrast, auction theorists 

typically know the rules that their players follow precisely.  If, for example, a high-bid 

auction is the object of study, the theorist knows that (i) the bidders submit nonnegative 

real numbers as sealed bids; (ii) the winner is the bidder submitting the highest bid; and 

(iii) the winner pays his bid (of course, there may still be uncertainty about how the 

buyers behave under these rules).  This precision helps put the auction theorist’s findings 

on a relatively strong footing; it also simplifies the job of the experimentalist or 

empiricist. 

 

Second, auction theory appeals to economists’ “social engineering” instincts.  

Many people go into economics at least in part because they want to improve the world.  

The mechanism design 7 aspect of auction theory—tinkering with the rules of the game in 

order to achieve a better outcome—helps gratify that urge. No doubt, one reason why 

William Vickrey’s work is so celebrated is that his famous creation, the Vickrey auction, 

                                                 
7 Of course, auction theory is only a small part of a vast mechanism design/implementation theory, 
literature.  For recent surveys of the literature from a general perspective see Thomas Palfrey (2002), 
Roberto Serrano (2004), and Eric Maskin and Tomas Sjostrom (2002). 
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provides an attractive solution to an important social problem: designing an efficient 

allocation mechanism. 

Third, the basic transaction of an auction—the transfer of a good from seller to 

buyer in exchange for a monetary payment—is, fundamental to all of economics, and so 

auction theory has been nourished by its connection with other theoretical areas.  For 

example, it has sometimes been used as a foundation for understanding the workings of 

competitive markets.8  Of course, there are important differences: competitive theory 

usually supposes that there are large numbers of buyers and sellers, whereas in most 

auction theory numbers are small (indeed, one implication of the papers of footnote 8, is 

that, as numbers grow, most reasonable sorts of auctions converge in performance; only 

in the small numbers case do the differences between auction forms come into their own). 

 

Finally, auction theory is a genuinely beautiful edifice:9 many of its major 

propositions deliver remarkably powerful conclusions from apparently modest 

hypotheses. 

 

Despite all these attractions, auctions might have disappeared from the economic 

theory scene had they not received an important rejuvenating boost from the worldwide 

impulse toward privatization that began in the early 1990’s.  This trend was brought on 

by the fall of communism in the East—and the consequent need to sell off state assets—

and the disenchantment with public ownership in the West.  But state bureaucracy’s loss 

                                                 
8 See for example Milgrom (1981), Pesendorfer and Swinkels (1997), Satterthwaite and Williams (1989), 
and Wilson (1977). 
9 Economists, being a hard-boiled lot, sometimes deny that esthetics have anything to do with what they are 
up to.  But this sentiment belies the fact that the most important economic ideas, e.g., the first welfare 
theorem of competitive theory or the principle of comparative advantage, are things of beauty. 
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proved to be auction theory’s gain, as auction mechanisms, to considerable public 

acclaim, were increasingly invoked to implement the transfer of resources.  More 

recently, online auction enterprises such as eBay have provided further impetus for the 

theory. 

 

2. Milgrom’s Unified View 

Paul Milgrom has played a starring role in auction theory’s success story.  Not 

only has he been a seminal contributor to the theoretical literature (e.g., Milgrom 1981 

and Milgrom and Robert Weber 1982), but together with Robert Wilson, he had a major 

hand in designing the simultaneous ascending auction format used by the Federal 

Communication Commission to sell off much of the radio spectrum in the United States.  

Thus, his book Putting Auction Theory To Work has been eagerly awaited since his 1995 

Churchill lectures, on which it is based. 

 

The wait has clearly been worth it.  The book covers a great deal of theoretical 

material and does so with extraordinary economy (without sacrificing rigor).  This 

economy derives from Milgrom’s conception of auction theory as a subspecies of 

demand theory, in which a few key tools—the envelope theorem in particular—do most 

of the work.  Indeed, once these tools are in place, he establishes most theorems with just 

a few lines of proof.  As the title suggests, he also discusses the extent to which the 

results bear on the design of real auctions. 
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Admittedly, the monograph is not the only current volume of reflections by a 

leading auction expert on theory and practice.10  Nor, despite its unfailing clarity, is it the 

most likely candidate for a graduate text on the subject.11  Rather, its signal contribution 

is to lay out Milgrom’s unified view of the theory.  This vision is notably distinct from 

that of other major auction scholars.  He must, for example, be nearly alone in 

deliberately avoiding the revelation principle as a auction-theoretic technique.  But we 

quickly learn to enjoy seeing things his way.  In this sense, the book is more a 

“masterclass” (to quote Al Roth’s blurb on the back cover) than a text.  And, of course, a 

masterclass is more fun. 

 

As for his ideas on how to apply (or not to apply) the theory to actual auctions, 

these are certainly most welcome and enlightening.  But, as they sometimes depend as 

much on judgment (albeit very well informed judgment) as logic, they occasionally 

contrast jarringly with the authority and precision of the theory.  For example, in 

Milgrom’s opinion, the Vickrey auction (more precisely, its multigood generalization due 

to Theodore Groves 1973 and Edward Clarke 1971) is “unsuitable for most applications” 

- - a conclusion that is far from being a theorem and that I will come back to in section 7. 

 

                                                 
10 Coincidentally, Paul Klemperer—like Milgrom, a theorist of the first rank and also a principal architect 
of the United Kingdom 3G mobile-phone auction—has almost simultaneously produced his own take on 
the subject (Klemperer 2004).  The two books differ markedly in style and substance.  Milgrom’s is 
primarily a compendium of theorems and proofs, together with less formal observations about their 
application to actual auctions.  Except for the appendices of Chapters 1 and 2, Klemperer’s is almost 
wholly nontechnical and consists largely of his views on the design of large-scale auctions in practice 
(although these views are certainly informed by theory). 
11 Indeed, yet another prominent auction theorist, Vijay Krishna has recently produced a beautifully lucid 
treatment (Krishna 2002), that in its organization and coverage may make it more suitable as an 
introductory textbook. 



 6

 But putting such quibbles aside, I should emphasize that Milgrom is 

completely persuasive on the general point that auction theory matters in practice.  In 

chapter one, he shows that the 1990 New Zealand spectrum auction’s failure to raise the 

revenue anticipated can be traced to its seriously flawed design: separate simultaneous 

sealed-bid auctions for each license.  Specifically, he points out why this auction form 

cannot properly accommodate substitutability or complementarity across licenses.  And 

he responds to those who argue that how government assets are sold off is irrelevant for 

efficiency (because, in their view, the “market” will correct any misallocation afterwards) 

with the theoretical riposte that, under incomplete information, there exists no 

nonconfiscatory mechanism (market-based or otherwise) capable of attaining efficiency, 

once the assets are in private hands (see Proposition 5 below). 

The heart of chapters 2-8 consists of a succession of formal results, almost all 

proved in detail.  I will try to reinforce the book’s important lesson that auction theorems 

are easy to prove by stating and proving some of them below (although I will not attempt 

to replicate Milgrom’s rigor or generality). 

 

3. Vickrey Auctions 

 In chapter two, Milgrom turns to the most famous example of modern auction 

design, the Vickrey (or “second-price”) auction (and its Groves-Clarke extension).  

Suppose that there is one unit of an indivisible good for sale.  There are n potential 

buyers, indexed by i = 1,…, n, and each buyer i has a valuation iv  for the good (the most 

he is willing to pay for it).  Thus if he pays p, his net payoff is  

     iv p− . 
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 An auction is a game in which (i) buyers make “bids” for the good (for now we 

will be permissive about what a bid can be), on the basis of which (ii) the good is 

allocated to (at most) one of the buyers, and (iii) buyers make payments (which can in 

principle be negative) to the seller. An auction is efficient if, in equilibrium (we need not 

worry about the precise concept of equilibrium at this point), the winner is the buyer i 

with the highest valuation.12 

 

 Vickrey discovered that efficiency is attained by a second-price auction: an 

auction in which buyers submit nonnegative numbers as bids, the winner is the high 

bidder (ties can be broken randomly), and the winner pays the second-highest bid 

(nobody else pays anything).  Formally, we have 

Proposition 1 (Vickrey 1961, Theorem 2.1 in Milgrom 2004): In a second-price auction, 

it is (weakly) dominant for each buyer i to bid his valuation iv  (i.e., regardless of how 

other buyers bid, it is optimal for buyer i to set a bid of i ib v= ).  Furthermore, the auction 

is efficient. 

Proof: Suppose that buyer i bids i ib v< .  The only circumstance in which the outcome for 

i is changed by his bidding ib  rather than iv  is when the highest bid b by other bidders 

satisfies 

     i iv b b> > . 

                                                 
12 Efficiency is often an important criterion in auction design, particularly in the case of privatization.  
Indeed, the U.S. Congress directed the FCC to choose an auction design for allocating spectrum licenses 
that (to quote Al Gore) puts “licenses into the hands of those who value them the most” (see Milgrom 2004 
p.4). 
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In that event, buyer i loses by bidding ib  (for which his net payoff is 0) but wins by 

bidding iv  (for which his net payoff is iv b− ).  Thus, he is worse off bidding i ib v< .  By 

symmetric argument, he can only be worse off bidding i ib v> .  We conclude that bidding 

his valuation (truthful bidding) is weakly dominant.  Because it is optimal for buyers to 

bid truthfully and the high bidder wins, the second-price auction is efficient. 

 Q.E.D. 

 

 The key to the second-price auction’s dominant-strategy property is the fact that a 

winning buyer’s payment does not depend on his bid.  Next, we show that, under mild 

hypotheses, the second-price auction is the only efficient auction with this property 

(modulo adding a term not depending on ib  to buyer i’s payment): 

Proposition 2 (Jerry Green and Jean–Jacques Laffont 1977, Bengt Holmstrom 1979, 

Laffont and Maskin 1980, Milgrom’s Theorem 2.3): Suppose that, for all i, iv  can 

assume any value in [0, 1].  Then an auction is efficient and bidding truthfully is weakly 

dominant if and only if (a) the high bidder wins and (b) for all i, buyer i’s payment ip  

satisfies 

 

   
( )

( )

max ,  if buyer  wins

  ,  if buyer  loses

j i ij i

i
i i

b t b i
p

t b i

−≠

−

⎧ +
⎪= ⎨
⎪⎩

 

for some function it , where ib−  is the vector of bids other than ib . 
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Proof: Consider an efficient auction in which truthful bidding is dominant.  Then, the 

high bidder must win (property (a)).  As for (b), let ( ),L
i i it b b−  be buyer i’s payment if he 

loses and the bids are ( ),i ib b− .  If 

( ) ( ), ,L L
i i i i i it b b t b b− −′ ′′>  

for bids , maxi i jj i
b b b

≠
′ ′′≤ , then buyer i is better off bidding ib′′when i iv b′= , contradicting 

the dominant-strategy property.  Hence, we can write ( ),L
i i it b b−  as 

(1)    ( ) ( ),L
i i i i it b b t b− −= . 

Similarly, we can write buyer i’s payment ( ),W
i i it b b−  if he wins as 

(2)    ( ) ( )ˆ,W
i i i i it b b t b− −= . 

Now, if maxi jj i
v b

≠
= , buyer i’s winning or losing are both efficient, and so for truthful 

bidding to be dominant, buyer i must be indifferent between them.  From (1) and (2), we 

have 

    ( ) ( )ˆmax j i i i ij i
b t b t b− −≠
− = − . 

Hence, 

    ( ) ( )ˆ maxi i j i ij i
t b b t b− −≠

= + , 

i.e., (b) holds.  Conversely, if (a) and (b) hold, it is immediate that the auction is efficient 

and, from Proposition 1, that truthful bidding is dominant. 

 Q.E.D. 
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 Call the auctions of Proposition 2 “generalized Vickrey” auctions.  It is easy to 

see that there is no generalized Vickrey auction in which payments “balance,” i.e., sum to 

zero. 

Proposition 3 (Green and Laffont 1977, Laffont and Maskin 1980, Milgrom’s Theorem 

2.2): Under the hypotheses of Proposition 2 there exists no generalized Vickrey auction 

in which the payments balance, i.e.,
1

0
n

i
i

p
=

≡∑ . 

Proof: For convenience assume n = 2. Consider a generalized Vickrey auction.  Choose 

1 2v v> .  From Proposition 2  

(3)    ( ) ( )1 2 2 1 2 2 1p p v t v t v+ = + + . 

If the right-hand side of (3) equals zero for all 2v , then  

(4)    ( )1 2 2 1t v v k= − + ,  

where 1k  is a constant.  Similarly, for 2 1v v> , we obtain 

(5)    ( )2 1 1 2t v v k= − + , 

for constant 2k .  From (4) and (5), we can rewrite (3) as  

    1 2 1 2 1p p k k v+ = + − , 

which clearly cannot equal zero for all 1v .  Hence, balanced payments are impossible. 

 Q.E.D. 

 

 As Claude d’Aspremont and Louis-André Gérard-Varet (1979) show, the failure 

of balance in Proposition 3 can be overcome by relaxing the solution concept from 

dominant-strategy to Bayesian equilibrium: 
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Proposition 4 (d’Aspremont and Gérard-Varet 1979) : Suppose that, for all i, iv  is drawn 

independently from a distribution with c.d.f. iF  and support [0, 1].  Then there exists an 

efficient and payment-balanced auction in which bidding truthfully constitutes a Bayesian 

equilibrium. 

Proof: For convenience, assume n = 2. In an auction where the high bidder wins and 

buyer 1 pays ( )1 1P b  if he bids 1b , buyer 1 will choose 1b  to maximize 

   ( ) ( )1

1 2 1 10

b
v dF x P b−∫ , 

if buyer 2 bids truthfully.  The first-order condition for this maximization is  

    ( ) ( )1 2 1 1 1b F b P b′ ′= . 

Thus if we set 

    ( ) ( )1

1 1 20

b
P b xF x dx′= ∫ , 

buyer 1’s best reply to 2 is to bid truthfully (because the first-order condition holds at 

1 1b v= , and so does the second-order condition: ( )2 1 0F v′ > ).  Similarly, truthtelling is a 

best reply for buyer 2 if his payment function is 

    ( ) ( )2

2 2 10

b
P b xF x dx′= ∫ . 

Now take as payment functions 

    
( ) ( ) ( )
( ) ( ) ( )

1 1 2 1 1 2 2

2 1 2 2 2 1 1

,

, .

p b b P b P b

p b P P b P b

= −

= −
 

Then it is evident that the players’ payments sum to zero and that truthtelling remains an 

equilibrium (the latter follows because subtracting ( )2 2P b  from buyer 1’s payment does 

not affect his incentives and similarly for buyer 2). 
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 Q.E.D. 

 

 Although balanced payments are consistent with efficiency once we relax the 

solution concept, we cannot also require individual rationality if one of the players 

already owns the good.  More specifically, let us stay with n = 2 and suppose that player 

1 owns the good.  As usual, an efficient mechanism will transfer the good to player 2 if 

and only if 2 1v v> .  Thus, in a balanced-payment and efficient mechanism, individual 

rationality for player 1 (the “seller”) is the requirement that 

(6) ( ) ( )( ) ( ) ( )
2 1

1 1

2 1 1 2 2 2 2 1 2 2 1 2 10
, 0 for all  (since )

v v
p b v b v dF v v dF v v p p

=
− ≥ = −∫ ∫ , 

whereas individual rationality for player 2 (the “buyer”) is the condition 

(7)  ( ) ( ) ( )( ) ( )2

1

1

2 1 1 2 1 1 2 2 1 1 20 0
, 0 for all 

v

v
v dF v p b v b v dF v v

=
− ≥∫ ∫ , 

where ( )1 1b v  and ( )2 2b v  are the (Bayesian) equilibrium bids by players 1 and 2 when 

their valuations are 1v  and 2v  respectively. 

Proposition 5 (Laffont and Maskin 1979, Roger Myerson and Mark Satterthwaite 1983, 

Milgrom’s Theorem 3.6 ): Let n = 2.  Under the hypotheses of Proposition 4, there exists 

no efficient and payment-balanced mechanism that is individually rational for both 

players when Bayesian equilibrium is the solution concept. 

Proof: The proof is considerably simplified by supposing that 1F  and 2F  are uniform 

distributions on [0, 1].  Consider a balanced-payment and efficient mechanism for which 

( ) ( )( )1 2,b b⋅ ⋅  is a Bayesian equilibrium.  Let 

   ( ) ( ) ( )( )1

1 1 2 1 1 2 2 20
ˆ ,P v p b v b v dv= ∫  

  and 
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   ( ) ( ) ( )( )1

2 2 2 1 1 2 2 20
,P v p b v b v dv= ∫ , 

where ( ) ( )( )2 1 1 2 2,p b v b v  is buyer 2’s equilibrium payment when valuations are ( )1 2,v v .  

Hence, in equilibrium, player 1’s and 2’s maximization problems are respectively 

   ( )
11

1

1 1 1 2ˆˆ
ˆ ˆmax

vv
P v v dv− ∫  

  and 

   ( )2

2

ˆ

2 1 2 20ˆ
ˆmax

v

v
v dv P v−∫ . 

In Bayesian equilibrium, 1 1v̂ v=  and 2 2v̂ v= , and so we obtain first-order conditions 

   ( )1 1 1
ˆ 0P v v′ + =  

and 

   ( )2 2 2 0v P v′− = . 

We conclude that  

(8)   ( )
2
1

1 1 1
ˆ

2
vP v k= − +  

and 

(9)   ( )
2
2

2 2 22
vP v k= + . 

From (6) and (8) when 1 1v = , we obtain 

(10)   1
1
2

k ≥ , 

and from (7) and (9) when 2 0v = , we have 

(11)   2 0k ≤ . 
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By definition of 1̂P  and 2P , 

 ( ) ( )
1 1

1 1 1 2 2 20 0
P̂ v dv P v dv=∫ ∫ . 

Hence, from (8) and (9),we obtain 

 1 2
1 1
6 6

k k− = + , 

which contradicts (10) and (11). 

 Notice the striking contrast between Propositions 1 and 4 on the one hand (which 

exhibit efficient auctions) and Proposition 5 on the other (which denies the existence of 

such a mechanism).  The reason for the difference lies in the issue of ownership.  In the 

former two propositions, no player yet owns the good.  We can interpret the latter 

proposition, however, as applying to the circumstance in which there has already been an 

auction that player 1 won—so that he now has the opportunity to resell.  Together, these 

two sets of propositions validate Milgrom’s refutation of the claim that auctions are 

unnecessary for efficiency, that ex post free trade among the players will ensure the right 

allocation.  According to this claim we might just as well assign assets like spectrum 

licenses randomly; firms can always exchange them later to correct misallocations.  But 

Proposition 5 demonstrates that once the licenses have been distributed, efficiency may 

no longer be attainable. 

 Q.E.D. 

4. Auction Equivalences 

 A major achievement of auction theory is to have established equivalences 

between very different auction forms.  Milgrom presents his view of this material in 
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chapters 3 and 4.  The central result is what he calls the payoff-equivalence theorem 

(which implies the considerably weaker but more familiar revenue-equivalence theorem): 

Proposition 6 (Vickrey 1961, Myerson 1981, John Riley and William Samuelson 1981, 

Milgrom’s Theorem 3.3): Under the hypotheses of Proposition 4, if there are two 

auctions such that, in Bayesian equilibrium, (a) for all i and iv , the probability of winning 

for a buyer i with valuation iv  is the same in both auctions, and (b) for all i, the amount 

that buyer i with valuation 0  pays is the same in both auctions, then, for all i and iv , the 

equilibrium expected payoff for buyer i with valuation iv  is the same in both auctions. 

Proof: Choose one of the two auctions and let ( ) ( )( )1 1 , , n nb v b v…  be Bayesian 

equilibrium bids by the buyers when valuations are ( )1, , nv v… .  Because buyer i has the 

option of behaving as though his valuation is îv  when in fact it is iv , he, in effect, faces 

the maximization problem 

(12)  ( ) ( )
ˆ

ˆ ˆmax
i

i i i i iv
G v v P v⎡ ⎤−⎣ ⎦ , 

where 

  ( )ˆ  buyer 's probability of winningi iG v i=  

and 

  ( )ˆ  buyer 's expected paymenti iP v i=  

if he bids ( )ˆi ib v  and each of the other buyers j bids according to the equilibrium bid 

function ( )jb ⋅ .  By definition of equilibrium, the maximizing choice of îv  in (12) is 

î iv v= , and so we obtain first-order condition  
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(13)  ( ) ( )  for all i i i i iP v G v v i′ ′= . 

Integrating (13), we have 

(14)  ( ) ( ) ( )
0

iv

i i i i i i iP v v G v G x dx k= − +∫ , 

where ik  is a constant of integration.  Notice from (14) that buyer i’s expected payment if 

0iv =  is ik .  By hypothesis (b), this is true of the other auction as well.  Furthermore, by 

hypothesis (a), i’s probability of winning in the other auction is ( )i iG v  for all iv .  Hence, 

from (14), buyer i’s expected payment is ( )i iP v  and his net expected payoff is 

( ) ( )i i i i iG v v P v−  in both auctions. 

 Q.E.D. 

 

 Clearly, the function ( )iG ⋅  must be lie between 0 and 1, but there are other 

restrictions on it as well.  In particular, it must be nondecreasing. 

Proposition 7 (Myerson 1981, Riley and Samuelson 1981, Milgrom’s Theorem 4.1): In 

any Bayesian equilibrium a buyer’s probability of winning is a nondecreasing function of 

his valuation. 

Proof: From (12) and (13), the derivative of buyer i’s equilibrium expected payoff if his 

valuation is iv  but he bids as though it were îv  is 

(15)  ( )( )ˆ ˆi i iG v v v′ − . 

But if ( ) 0iG v′ <  for some iv  then from (15) the second-order condition for a maximum 

( )( )0iG v′ ≥  is violated at î iv v= , a contradiction. 

 Q.E.D. 
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 Notice that 

(16)  ( ) ( )i i j ij i
G v F v

≠
= ×  

in the second-price auction because, from Proposition 1, buyers bid truthfully, and so a 

buyer’s probability of winning is simply the probability that the other buyers all have 

lower valuations (the right-hand side of (16)).  Furthermore, 

(17)  ( )0 0iP =  

in that auction.  But (16) and (17) also hold for the English auction, the mechanism in 

which buyers call out bids openly, each successive bid must be higher than the previous 

one, and the winner is the last buyer to bid (and pays his bid).  To see this, notice that a 

buyer will continue to bid higher in the English auction until the current price reaches his 

valuation, and so the high-valuation buyer will win, i.e., (16) holds.  We have: 

Proposition 8 (Vickrey 1961): The second-price and English auctions are payoff-

equivalent. 

 Remarkably, in the case of ex ante buyer symmetry, i.e., where 1 nF F= =… , all 

the “standard” auctions are equivalent: 

Proposition 9 (Vickrey 1961, Riley and Samuelson 1981, Myerson 1981, Milgrom’s 

Theorems 4.6 and 4.9): When each iv  is drawn independently from a distribution with 

c.d.f. F and support [0, 1], then the high-bid, second-price, English, Dutch and all-pay 

auctions are payoff-equivalent. 

Proof: We have already described the rules of all but the Dutch and all-pay auctions.  In 

the Dutch auction, the auctioneer continuously lowers the price, starting from some high 

level, until some buyer (the winner) agrees to buy at the current price.  Notice that this is 
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formally the same as the high-bid auction, since the price at which a buyer agrees to buy 

in the Dutch auction is the same as the bid he would make in the high-bid auction.13  In 

the all-pay auction, buyers submit sealed bids and the winner is the high bidder, but 

everybody pays his bid. 

 Consider a symmetric equilibrium ( )b ⋅ of the high-bid auction; i.e. ( )b v  is the bid 

any buyer with valuation v makes (a symmetric equilibrium exists because of the ex ante 

symmetry of the buyers).  From Proposition 7, ( )b ⋅  must be nondecreasing.  Suppose it is 

not strictly increasing, i.e., suppose ( )  for all ,b v b v v v∗ ∗ ∗∗⎡ ⎤= ∈⎣ ⎦ .  We have 0v b∗ ∗− ≥  

because, thanks to the atom at b∗ , a bid of b∗  wins with positive probability (and thus if 

0v b∗ ∗− < , the buyer would have a negative payoff).  Hence we obtain 

(18)  0v b∗∗ ∗− > . 

But if a buyer with reservation price bids v b∗∗ ∗ , he ties for the high bid with positive 

probability.  Thus if he slightly increases his bid, he discontinuously raises his chances of 

winning (since ties now have zero probability), which is worthwhile in view of (18).  We 

conclude that ( )b ⋅  must be strictly increasing, which means that the high-valuation buyer 

always wins.  Thus, Proposition 6 implies that the high-bid auction is equivalent to the 

second-price auction.  This same argument applies to the all-pay auction. 

 Q.E.D. 

 

 We next examine how the auctions of Proposition 9 can be modified to maximize 

the seller’s revenue: 

                                                 
13 This equivalence relies on the assumption that buyers obey the usual axioms of expected utility; see 
Nakajima (2004). 
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Proposition 10 (Riley and Samuelson 1981 and Myerson 1981, and Milgrom’s Theorem 

3.9): Assume the hypotheses of Proposition 9 and suppose that 

(19)  ( ) 0J v′ >  for all v, 

where ( ) ( )
( )

1 F v
J v v

F v
−

= −
′

.  Then any of the auctions of Proposition 9 maximizes the 

seller’s expected revenue provided that the seller sets a reserve price v∗  (i.e., he refuses 

to sell for less than v∗ ), where ( ) 0J v∗ = . 

Proof: Given buyers’ ex ante symmetry, (14) implies that, for any symmetric auction (we 

restrict to symmetric auctions without loss of generality), the seller’s expected revenue is  

  ( ) ( ) ( )
1

0 0

v
n vG v G x dx k dF v⎡ ⎤− +⎢ ⎥⎣ ⎦∫ ∫ , 

which can be rewritten as  

(20)  ( ) ( ) ( )
1

0
n J v G v dF v k+∫ . 

We have already noted that ( )G v  must satisfy ( ) 0G v′ ≥  and 

(21)  ( )0 1G v≤ ≤ . 

As Matthews (1984) shows, it must also satisfy  

(22)  ( )( ) ( ) ( )
1 1

0 for all 
n

v
F x G x dF x v

−⎡ ⎤− ≥⎢ ⎥⎣ ⎦∫ . 

Consider the problem of maximizing (20) subject to (21) and (22).  Note from (12) and 

(14) that 0k ≤ , otherwise a buyer with zero valuation has a negative expected payoff (an 

impossibility, since he always has the option of not participating).  Hence the maximizing 

choice of k is 0, i.e., 

(23)  ( )0  payment by a 0-valuation buyer 0P = = . 
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From (19)-(22), the optimal choice of ( )G v  is 

(24)  ( )
( )( ) 1

,  if  

    0         , if   ,

n
F v v v

G v
v v

− ∗

∗

⎧ >⎪= ⎨
≤⎪⎩

 

where ( ) 0J v∗ = .  But all of the auctions of Proposition 9, modified by a reserve price of 

v∗ , satisfy (23) and (24), and so they are solutions to the seller’s problem.14 

 Q.E.D. 

 The fact that the Dutch and high-bid auctions are equivalent is obvious from the 

identical strategic structure of the two forms.  Nor is the equivalence (Proposition 8) 

between the English auction and the second-price auction very deep.  But the sense in 

which all four auctions are equivalent (Proposition 9) is more interesting, as is the idea 

that any of them—modified by setting a reserve price15—can be used to maximize the 

seller’s revenue (Proposition 10). 

5. Departures from the Benchmark Model 

 This deeper equivalence, however, relies on some restrictive hypotheses, viz., (i) 

buyers’ risk neutrality, (ii) private values (to be defined below), (iii) independent 

valuations, (iv) ex ante symmetry, and (v) financially unconstrained buyers.16  We will 

now relax each of (i)-(iii) in turn (for relaxation of (iv), see Milgrom’s Theorems 4.24-

4.27 and Maskin and Riley 2000; for relaxation of (v), see Milgrom’s Theorem 4.17 and 

Che and Gale 1998). 
                                                 
14 We have ignored the constraint 0G′ ≥  because it is satisfied by the solution to the program in which it 
is omitted. 
15 The reason why a reserve price helps the seller is that it puts a lower bound on what buyers pay.  Of 
course, by setting a positive reserve, the seller runs the risk of not selling at all, but this effect is outweighed 
by the lower bound consideration.  To see this, imagine that there were just one buyer.  Then in a high-bid 
auction, that buyer would bid zero; the only way to get him to pay anything is to make the reserve positive. 
16 Even, the efficiency of the second-price auction (Proposition 1) invokes (ii), as we will see in Proposition 
12, although it does not demand (i) or (iii). 
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 Note first that in Propositions 6-10, we suppose that buyer i’s objective function is 

given by (12), i.e., that he is risk neutral.  If we replace risk neutrality with risk aversion, 

then in particular Proposition 9 no longer holds 

Proposition 11 (Holt 1980, Maskin and Riley 1984, Matthews 1983, Milgrom’s Theorem 

4.12): Assume that buyers are risk averse; i.e., that buyer i’s utility from winning is 

( )i i iu v p− , where iu  is strictly concave.  Suppose that buyers are ex ante symmetric, i.e., 

the 'siv  are drawn (independently) from the same distribution with c.d.f. F and support 

[0, 1] and 1 nu u u= = = .  Then the high-bid auction generates higher expected revenue 

than the second-price auction. 

Proof: First, observe that risk aversion does not affect behavior in the second-price 

auction; it is still optimal to bid truthfully.  If ( )b ⋅  is a symmetric-equilibrium bid 

function in the high-bid auction, a buyer with valuation v solves 

  ( )( ) ( )( )1

ˆ
ˆ ˆmax

n

v
F v u v b v

−
− . 

The first-order condition is therefore 

  ( )1 21 0n nF u b n F F u− −′ ′ ′− + − = , 

and so 

(25)  ( ) ( ) ( ) ( )( )
( )( )

1
.

n F v u v b v
b v

Fu v b v

′− −
′ =

′ −
 

Now, if buyers were risk neutral, (25) would become 

  ( ) ( ) ( ) ( )( )
( )

1 RN
RN

n F v v b v
b v

F v

′− −
′ = . 
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But from Proposition 9, the high-bid and second-price auctions are payoff-equivalent 

when buyers are risk neutral and ex ante symmetric.  Hence, ( )RNb v  is also the expected 

payment by a winning v-valuation buyer in the second-price auction (whether he is risk 

averse or not).  Because 0u′′ < , 

  
( )( )
( )( ) ( )

u v b v
v b v

u v b v
−

> −
′ −

, 

and so 

  ( ) ( ) ( ) ( ) whenever .RN RNb v b v b v b v′ ′> =  

Because ( ) ( )0 0 0RNb b= = , we conclude that 

  ( ) ( )  for all 0,RNb v b v v> >  

which implies that, for every 0v > , a buyer pays more in the high-bid than in the second-

price auction. 

 Q.E.D. 

 

 Another important hypothesis in sections 2 and 3 is that buyers actually know 

their valuations (more to the point, that their valuations do not depend on the private 

information of other buyers).  This is called the private values assumption.  Let us now 

relax it to accommodate interdependent values (sometimes called generalized common 

values). Specifically, suppose that each buyer i receives a private signal is  and that his 

valuation is a function of all the signals: i.e., his valuation is ( ),i i iv s s− .  In such a setting, 

the second-price auction will no longer be efficient (Maskin 1992); the problem is that 

because buyers no longer know their valuations, their bids (reflecting their expected 
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valuations) do not guarantee that the high bidder actually has the highest valuation.  

Nevertheless, if the signals are one-dimensional (i.e., scalars) then Crémer and McLean 

(1985) and Maskin (1992) show that there exist mechanisms that ensure efficiency 

(provided that “single crossing” holds, i.e., that buyer i’s signal has a greater marginal 

effect on his own valuation than on other buyers’ valuations:  for ji

i i

vv j i
s s

∂∂
> ≠

∂ ∂
).  More 

concretely, Dasgupta and Maskin (2000) and Perry and Reny (2001), show that, with 

single crossing, there is a way of extending the second-price auction to accommodate 

contingent bids so that efficiency is restored (in a more limited class of cases, Maskin 

1992 and Krishna 2003 show that the English auction is efficient with one-dimensional 

signals).  However, when signals are multidimensional, then efficiency is no longer 

possible. 

Proposition 12 (Maskin 1992, Jehiel and Moldovanu 2001, Milgrom’s Theorem 3.8): 

Suppose that, for some buyer i, ( )1 2,i i is s s= 17 where 

(26)  ( ) ( ) ( ),i i i i i i iv s s s sϕ ψ− −= +  

and  

(27)  1 1

22

j i

j i i i

j i

ij i i

v
s s
v

ss

ϕ

ϕ
≠

≠

∂ ∂
∂ ∂

≠
∂ ∂

∂∂

∑

∑
, 

then, if Bayesian equilibrium is the solution concept, there exists no efficient auction. 

Proof (sketch): Choose parameter values and i is s′ ′′  such that ( ) ( )i i i is sϕ ϕ′ ′′= .  From (26), 

buyer i’s preferences are identical for  and i i i is s s s′ ′′= =  and so he must be indifferent 

                                                 
17 For convenience, suppose that all the other signals are one-dimensional. 
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between the outcomes that result from the two cases.  But, from (27), which of 

 or i i is s s s′ ′′= =  holds will in general lead to different efficient allocations - -e.g., perhaps 

buyer i wins when i is s′=  and loses when i is s′′= .  Thus it will be impossible to keep him 

indifferent between the outcomes. 

 Q.E.D. 

 

 Despite this negative result, matters are not as bleak as they may seem, at least in 

the case of single-good auctions.  Specifically, introduce a one-dimensional “reduced” 

signal ir  for buyer i and, for all j i≠ , define 

  ( ) ( ) ( )( )ˆ , ,
ij i i s j i i i i iv r s E v s s s rϕ− −= = , 

i.e., ( ) ( )ˆ ,  is ,j i i j i iv r s v s s− −  expected over all those values is  such that ( )i i is rϕ = .  

Because we are back to one-dimensional signals, the extended second-price auction 

mentioned above will be efficient with respect to the “reduced” valuations ( ),i i iv r s−  and 

{ }ˆ jv  (assuming that the single-crossing property above holds).  That is, the auction is 

efficient subject to the constraint that buyer i behaves the same way for any signal values 

is  for which ( )i i is rϕ = , i.e., it is incentive efficient (see Dasgupta and Maskin 2000). 

Jehiel and Moldovanu (2001) show, however, that this “reduction” technique does not 

generalize to more than one good. 

 Finally, let us explore what happens when we drop the assumption of 

independence in Proposition 9: 
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Proposition 13 (Milgrom and Weber 1982, Milgrom’s Theorem 4.21): Suppose that 

2n = ,18 and that 1 2and v v  are jointly symmetrically distributed with support [0, 1] and 

affiliated (positively correlated) in the sense that  

(28)  
( )2

2 1

1 2

log
0

F v v
v v

∂
>

∂ ∂
, 

where ( )2 1F v v  is the c.d.f. for 2v  conditional on 1v .  Then, revenue from the second-

price auction exceeds that from the high-bid auction. 

Proof: The expected payments in the two auctions by buyer 1 with valuation 1v  are 

(29)  ( ) ( )1

1 1 2 2 10

vSP v v dF v v= ∫  

and 

(30)  ( ) ( ) ( )1 1 1 1 1
HP v F v v b v= , 

where the superscripts S and H denote second-price and high-bid auctions respectively 

and ( )b ⋅  is the symmetric equilibrium bid function in the high-bid auction.  Clearly, 

( ) ( )1 10 0S HP P= .  We wish to show that ( ) ( )1 1 1 1 1for all 0S HP v P v v> > .  It suffices to 

show that ( ) ( )1 1
1 1

1 1

S HdP dPv v
dv dv

>  whenever ( ) ( )1 1 1 1
S HP v P v= . 

 Differentiating (29) and (30) we obtain 

(31)  ( ) ( )11
1 1 1 1 2 2 2 10

1

S vdP v F v v v dF v v
dv

= + ∫  

and 

                                                 
18 Milgrom and Weber (1982) generalize this result to 3n ≥ . 
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  ( ) ( ) ( ) ( ) ( ) ( )1
1 1 1 1 1 1 1 1 2 1 1

1

HdP F v v b v b v F v v b v F v v
dv

′= + + , 

where subscripts of F denote partial derivations.  The second equation can be rewritten, 

using buyer 1’s first-order condition, as 

(32)  ( ) ( ) ( )1
1 1 1 1 1 2 1 1

1

HdP v F v v b v F v v
dv

= + . 

When ( ) ( )1 1 1 1 ,H SP v P v=  

(33)  ( )
( )

( )

1

2 2 10
1

1 1

v
v dF v v

b v
F v v

= ∫ . 

From (31)-(33), it remains to show that 

(34)  ( )
( ) ( )

( )

1

1 2 2 1 2 2 1 10
2 2 2 10

1 1

v
v v dF v v dv F v v

v dF v v
F v v

> ∫∫  

But (34) follows from affiliation, i.e., from (28). 

 Notice that Propositions 11 and 13 pull in opposite directions: the former favors 

the high-bid auction, the latter the second-price auction.  This tension illustrates one of 

Milgrom’s introductory points: that the kind of auction a seller will want to use depends 

heavily on the circumstances. 

 Q.E.D. 

 

6. Theory versus Practice 

 I have already suggested that some of Milgrom’s observations about auctions in 

practice are less compelling than the book’s theoretical results.  But this contrast is not 

primarily his fault.  In spite of all that it has accomplished, auction theory still has not 



 27

developed far enough to be directly applicable to situations as complex as, say, the 

spectrum auctions. 

 To begin with, those auctions involve multiple goods.  Observe, however, that all 

the results presented above are for single-good auctions.  This is no coincidence; the 

literature on auction theory has overwhelmingly focused on the single-good case.  Apart 

from the efficiency of the multigood second-price auction (the Vickrey-Clarke-Groves 

mechanism - - see section 7) with private values, there are few general results for more 

than one good.  The auction designer can attempt to extrapolate from well-analyzed 

environments (one good) to new circumstances (multiple goods).  But doing so is 

hazardous (see, for example, Perry and Reny 1999). 

 Another difficulty for theory is that real auctions impose constraints that are 

difficult to formalize.  Milgrom notes that prospective bidders and sellers are typically 

nervous about participating in auction mechanisms that seem unfamiliar or complicated.  

But giving a precise meaning to “unfamiliar” or “complicated” is forbiddingly difficult. 

 The upshot is that giving advice on real auction design is, at this stage, far less a 

science than an art.  And the essence of an art is far harder than a science to convey 

convincingly in writing. 

 

7. The Vickrey-Clarke-Groves Mechanism 

 I have noted that Milgrom voices serious criticisms of the Vickrey-Clarke-Groves 

(VCG) mechanism, the generalization of the second-price auction to multiple goods.  

Indeed, his unhappiness with it has led him to collaborate with Lawrence Ausubel 
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(Ausubel and Milgrom 2002) on an interesting and ingenious alternative mechanism, 

reported on in his chapter eight. 

 The VCG mechanisms works as follows: (i) each buyer makes a bid not just for 

each good but for each combination (or “package”) of goods; (ii) goods are allocated to 

buyers in the way that maximizes the sum of the winning bids (a bid for a package is 

“winning” if the buyer making that bid is allocated the package); (iii) each winning buyer 

i pays an amount equal to the difference between (a) the sum of the bids that would win if 

i were not a participant in the auction and (b) the sum of the other buyers’ (actual) 

winning bids.  Following the line of argument in the proof of Proposition 1, one can show 

that truthful bidding (reporting one’s true valuation for each package) is dominant.  Thus 

the auction results in an efficient allocation (an allocation that maximizes the sum of the 

winning valuations). 

 One frequent objection to the VCG mechanism is that it makes heavy demands on 

both buyers (placing bids on every package can be an onerous task) and the auctioneer 

(computing the winning allocation is a potentially difficult maximization problem).  This, 

however, is not the shortcoming that Milgrom dwells on; in fact, the Ausubel-Milgrom 

paper is subject to the same sort of criticism. 

 Instead, Milgrom worries about the following sort of problem.  Assume that there 

are two goods A and B, and two potential buyers 1 and 2.  Suppose that each buyer wants 

these goods only as a package, i.e., his valuation for A or B alone is zero.  Suppose that 

buyer 1 has a valuation of $100 for A and B together, but that buyer 2 has a package 

valuation of $200.  If the buyers bid truthfully in the VCG mechanism, then buyer 2 will 
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win both A and B (and pay $100, the winning bid were 2 not present).  Buyer 1 will come 

away empty-handed. 

 Suppose, however, that buyer 1 enters bids through two different proxy buyers, 1x 

and 1y.  As buyer 1x, he enters a bid of $201 for good A (and zero for both B and the 

package AB).  As 1y, he enters a bid of $201 for good B (and zero for both A and AB).  

Then 1x and 1y will be the winners of A and B respectively, and so 1 will obtain both 

goods.  Furthermore, notice that had 1x not bid at all, 1y would still be the winner of good 

B (good A would just be thrown away), and so the sum of the other buyers’ winning bids 

is the same (namely, $201) whether 1x participates or not.  Thus, by VCG rules, 1x pays 

nothing at all (and similarly neither does 1y), which means that the ploy of passing 

himself off as multiple buyers is worthwhile for 1.  Unhappily, it generates no revenue 

for the seller and leads to an inefficient allocation (1 wins the goods rather than 2), which 

is why Milgrom is led to reject the VCG auction. 

 But notice that having 1x and 1y enter these bids makes sense for 1 only if he is 

quite sure that buyer 2 does not value A and B as single goods.  As soon as there is a 

serious risk that 2 will make single-good bids that add up to $101 or more, buyer 1 will 

come out behind with this strategy (relative to truthful bidding).  If, for example, buyer 2 

bid $51 for each of A and B alone (as well as $200 for the package), 1x and 1y would 

still be awarded A and B with their $201 bids but buyer 1 (through his proxies) would 

now pay $51 + $51 = $102 for a package worth only $100 to him. 

 Indeed, with sufficient uncertainty about how other buyers will bid, it is not hard 

to see that nothing other than truthful bidding makes sense for a buyer in a VCG auction.  

And since I would venture to say that considerable uncertainty is quite common in real 
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auction settings, I believe that Milgrom is too harsh when he deems VCG “unsuitable” 

for most applications. 

 

8. Concluding Remark 

 Still, this is a minor reservation about a volume that covers a cornucopia of 

material in magisterial fashion and gives us deep insight into the thinking of an 

outstanding theorist.  The book is not for everybody; one needs at least enough technique 

to be able to follow the proofs of the propositions above.  But, with that qualification, I 

warmly commend it to all wishing to experience the beauty and power of this remarkable 

theory. 
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