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1 Introduction

Following the pioneering work of Hart and Moore (1988), the limitations that the possibility of
renegotiation brings to the theory of implementation were first explored in Maskin and Moore
(1999) [MM in the sequel]. Instead of allowing arbitrary mechanisms, MM argue that one should
question the use of inefficient outcomes in the mechanism, because they could be renegotiated
by the agents. This is especially compelling when one is considering mechanisms in the form of
contracts between only two completely informed parties.

Watson (2002) [W from now on] challenges the approach taken by MM because, in his view,
in many settings it does not give the right answer in terms of what is the set of implementable
payoffs after renegotiation. His point is that the MM approach, by abstracting from the techno-
logical details of renegotiation, fails to adequately describe the set of implementable payoffs with
renegotiation. In particular, he distinguishes between “public actions” and “inalienable actions”
taken by parties, and argues that the standard approach is misguided in treating inalienable
actions as if they were public. To make his point, he proposes non-forcing contracts as a way
to expand the set of payoffs that are implementable with renegotiation. In his non-forcing con-
tracts, the vehicle that makes the final outcomes be elements of the ex post Pareto frontier is not
renegotiation, but the optimal actions of one agent as part of his inalienable decisions. Thus, W’s
logic implies that renegotiation is not necessary because optimal choices in a one-person decision
problem take care of inefficiencies.

Given the extensive use of the MM methodology in contract theory, W’s claim deserves to
be carefully evaluated.1 We do so in this short paper, and conclude that the interpretation of
renegotiation made in W is far too restrictive. There are plausible ways to model renegotiation
under which the conclusions reached by MM are perfectly valid.

The main example in W features a non-durable trading opportunity (i.e., one that will expire
at some future date). However, this should not affect renegotiation, which can start well before
that expiration date, as soon as an ex post inefficiency is identified by the contracting parties.

Regardless of the durability of the trading opportunity, if one follows the partial implemen-
tation approach, we find that the non-forcing contracts proposed in W to support extra payoffs
do not constitute an intermediate paradigm between “implementation without renegotiation”
and that in MM: effectively, since renegotiation is never used in the analysis, the sets of par-
tially implementable payoffs when using non-forcing contracts and when there is no renegotiation
coincide.

Furthermore, non-forcing contracts give rise to multiple equilibrium outcomes. Since one
possible path of play in the non-forcing contract is inefficient (following a non-optimal action
on the part of an agent), the induced game is not one of constant sum. Therefore, one should
be concerned with full implementation. From this point of view, W’s non-forcing contracts fail
if and only if the payoff to be implemented falls outside of the set identified by MM. That is,
W’s reductionist approach of replacing the renegotiation game with a one-person (inalienable)
decision problem misses that the individual decision problem in question cannot be analyzed in
isolation. Rather, the beliefs of that agent about how the other agent will behave matter and
create the undesired multiplicity of equilibrium outcomes.

1Papers in the literature that adopt this approach include Che and Hausch (1999), Edlin and Reichelstein
(1996), Segal (1999), and Segal and Whinston (2002).
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After his main example, W later extends his criticism by showing that in certain settings the
set of implementable payoffs using only forcing contracts is a strict subset of the one that relies
on both forcing and non-forcing contracts. We choose to concentrate on the example, although
our arguments can also be extended to counter his more general results.

2 Watson’s Example

There are two agents. Agent 1, the buyer, is considering whether she should buy an indivisible
object from agent 2, the seller. The two parties sign a contract that must specify whether or
not trade should take place and a monetary transfer, as a function of verifiable information. In
principle the contract (or mechanism) allows certain messages to be sent or actions to be taken,
as the verifiable pieces of information.

After they sign the contract and before they send any verifiable messages, parties (either the
buyer or the seller) may make an unverifiable investment that will determine the quality of the
relationship. This quality will be observable to both parties, but unverifiable by an outside party.
It is assumed that if there is investment, the quality of the good is high, and it is low otherwise.
The cost of the investment is less than the relationship’s total ex-post surplus in the high state
after investment, which makes investment the efficient decision. However, Watson’s focus is the
characterization of implementable contracts after the investment decision has been made, and
therefore, investment costs are sunk from this point of view.

Thus, there are two states of the relationship: “high” (H) and “low” (L), common knowledge
among the two parties but unknown to outsiders. The design of a contract in such circumstances
falls squarely under implementation with complete information.

In both states, the total surplus after investment generated by “no trade” is 0. If the state is
L, the total surplus after investment associated with “trade” is also 0, while it is 8 in state H, 5
units of which go to the buyer and 3 to the seller.

The payoff to party i (i = 1, 2) is simply the sum of the share in surplus that party i receives
and the monetary transfer (minus the cost of investment, in the case of the investing party).

2.1 Efficient Implementable Payoffs

The first question to address is what payoffs must the contract specify in order to induce ex-post
efficient actions in both states: it will suffice to consider contracts that implement “trade” in
state H and “no-trade” in state L. To simplify, let us add the mild requirement that if the seller
does not invest, both parties can walk away from this relationship with a zero payoff. This will
ensure that there will be no monetary transfer in state L.

We begin with the partial implementation question, i.e., to find a contract where the desired
payoffs in each state can be supported by an equilibrium. One can then appeal to the revelation
principle and restrict attention to direct mechanisms. Thus, after the investment decision, both
parties are asked to submit a simultaneous report of the state. If the report profile is (h, h), trade
is enforced and a monetary transfer of phh from the buyer to the seller must take place. If the
profile is (l, l), “no-trade” and a zero transfer of money are enforced. If the reports are (h, l) or
(l, h), there is no trade and monetary transfers phl or plh take place, respectively.
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We are interested in finding values for phh, phl and plh so that (h, h) is a Nash equilibrium
of the induced game following investment, and (l, l) is a Nash equilibrium of the game following
lack of investment.

Recall that we are referring to the buyer as agent 1, while the seller is agent 2. Then, one can
write down the following conditions:

• For (h, h) to be a Nash equilibrium of the game that follows investment, one must have:

5 − phh ≥ −plh;

3 + phh ≥ phl.

• For (l, l) to be a Nash equilibrium of the game that follows lack of investment:

0 ≥ −phl;

0 ≥ plh.

All these constraints reduce to phh ∈ [−3, 5], thereby yielding ex-post payoff profiles (5 −
β, 3 + β) for any β ∈ [−3, 5].

It is not difficult to see that the same set of efficient payoffs is implementable if one uses the
more demanding requirement of full implementation (given a specific payoff profile in each state,
the contract’s unique equilibrium payoff in each state coincides with it).

2.2 Ex Post Renegotiation

Following MM, one can argue that agents have an incentive to renegotiate those outcomes pre-
scribed by the contract that are ex-post inefficient. Upon reading the contract, agents will be
able to identify its inefficient final outcomes, and communication will take place between them
that will lead to the elimination of such ex post inefficiencies. That is, as soon as an ex-post
inefficient outcome is specified by the contract, the possibility of playing a bargaining game be-
tween both parties opens up. The MM view here, influenced by Coasian logic, is that bargaining
under complete information will eventually yield an efficient outcome. Of course, the possibilities
offered by this renegotiation game are numerous, and the final conclusions will depend on the
specific game adopted. Let us suppose that the two parties’ bargaining weights are exogenously
specified, so that in the bargaining game the buyer will end up with π1 ≥ 0 of the available total
surplus after investment, while the seller will end up with π2 = 1 − π1 ≥ 0. Following MM, it
will be assumed that the renegotiation function (i.e., the value of π1 in this case) is known to the
contract designer.

In the direct contract specified in the previous subsection, there are three inefficient outcomes
that the parties will want to renegotiate: these happen after investment, if the reported profile
is (l, l), (h, l) or (l, h). The question is how this renegotiation will limit the set of implementable
efficient payoffs. To address this, we appeal again to the revelation principle and assume that
the agents play a direct mechanism.

The only difference now is that we have to be careful in specifying the outcomes after the
profiles (l, l), (h, l) or (l, h) are reported, because, if inefficient, they will be renegotiated in state
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H. To make the set of efficient payoffs that are implementable after renegotiation with bargaining
weights (π1, 1 − π1) as large as possible, it turns out that one must require two inequalities.

The first inequality gives us the upper bound for phh and it comes from the buyer’s incentive
constraint:

5 − phh ≥ min{5, 8π1} − plh.

That is, following reports (l, h), we enforce a monetary transfer of plh from the buyer to the seller.
In addition, we enforce trade if π1 ≥ 5/8 and no renegotiation is necessary, while we prescribe
“no-trade” if π1 < 5/8, outcome that is renegotiated. Since from state L, we know that plh ≤ 0,
the above inequality yields

phh ≤ 5 − min{5, 8π1}.

The lower bound on phh comes from the seller’s incentive constraint:

3 + phh ≥ min{3, 8(1 − π1)} + phl.

That is, following reports (h, l), apart from a transfer of phl, the contract must enforce “trade” if
π1 < 5/8, and prescribe “no-trade” otherwise. Using also the fact that phl ≥ 0 as we know from
state L, we obtain that

phh ≥ min{3, 8(1 − π1)} − 3.

Therefore, we end up with the following characterization of efficient implementable payoffs
after renegotiation when the bargaining weights are (π1, 1−π1). To enhance comparison with the
implementable payoffs before renegotiation, we write the typical profile of ex-post payoffs also as
(5 − β, 1 + β):

• When π1 < 5/8: any β ∈ [0, 5 − 8π1].

• When π1 ≥ 5/8: any β ∈ [5 − 8π1, 0].

For example, if π1 = 1/2, as W assumes, the range of βs compatible with efficient imple-
mentable payoffs after renegotiation is the interval [0, 1].

Note that ex-post renegotiation and the quasilinear structure of preferences turn the contract
with renegotiation into a constant sum game. Therefore, the answer to the partial and full
implementation questions continues to be the same.

2.3 Non-Forcing Contracts

W claims that the characterization of implementable payoffs after renegotiation performed by
the MM approach is incorrect. He argues that in situations like in the example it does not give
the right answer, in that one can actually get to implement a larger set of payoffs by making use
of non-forcing trade options as contracts. To illustrate his claim, he assumes that the trading
opportunity is non-durable, i.e., the trade decision, “trade” or “no-trade,” cannot be reversed.

Suppose then that the trading opportunity is non-durable and consider the following contract.
After the investment decision, the buyer decides to take delivery of the good or not. If not, “no-
trade” and no transfer are enforced; and otherwise, “trade” and a monetary transfer of p from
the buyer to the seller are enforced.
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W argues that the reason why the MM approach gives the wrong answer is that it restricts
attention to “forcing contracts.” Further, he asserts that, with renegotiation, one can expand the
set of implementable payoffs if one uses “non-forcing” contracts. This would correspond to the
trade option contract just defined where p ∈ [0, 5]: namely, if p is in this interval, one will see the
outcome “trade” in state H and “no-trade” in state L chosen by the buyer (whereas the buyer
would be “forced” to trade or not to trade, regardless of the state, outside of this interval).

Therefore, although renegotiation is allowed, it is not necessary. It is up to the buyer to
take care of the inefficiency by simply taking delivery in state H. Furthermore, it is in his
incentive to do so as long as p ≤ 5. Note the change in logic with respect to MM: the claim is
that it is the optimal solution to this one-person decision problem (the buyer’s in state H) that
eliminates inefficiencies, leaving no room for renegotiation. By doing this, the non-forcing trade
option contract has expanded the set of efficient partially implementable ex-post payoffs with
renegotiation to be (5 − β, 3 + β) for any β ∈ [0, 5], a strict superset of the interval [0, 1] that
would arise in the MM model if bargaining weights are equal.

Upon comparing the different ranges of βs, it would appear, and this is the way W asserts
it, that the possibility of considering non-forcing contracts creates an intermediate paradigm
between the implementation with no renegotiation of Subsection 2.1 and the MM approach of
Subsection 2.2.

3 Two Replies

3.1 Partial Implementation

Taking W’s partial implementation approach, we first address the question of whether non-forcing
contracts uncover a new paradigm, intermediate between implementation without renegotiation
and MM’s.

To answer this, consider a different trade option contract, where after the investment decision,
it is the seller who must choose whether trade should or should not take place.

Specifically, in this new trade option contract, the seller will be paid nothing if he chooses
not to deliver the good, and will be paid a price p otherwise. Insisting on making this contract
non-forcing, as W does, implies that the possible prices allowed in it are those p ∈ [−3, 0]. Again,
only if p lies outside of this interval, the seller will be “forced” to deliver (if p > 0) or not to
deliver (if p < −3) regardless of the state.

That is, the consideration of non-forcing contracts does not constitute an intermediate para-
digm between no-renegotiation and the MM approaches. Appealing to these two different non-
forcing contracts (trade options exercised by the buyer or by the seller) already yield the entire
set of efficient implementable payoffs with no renegotiation, i.e., the payoffs (5−β, 3+β) for any
β ∈ [−3, 5].

The explanation for this is simple enough. Renegotiation is never used as part of the mech-
anism, and therefore, the set of partially implementable payoffs must be the one identified in
Subsection 2.1.
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3.2 Full Implementation

Although W argues that he is not focusing on full implementation (see his footnote 11), one can
no longer provide for this the argument that the game is one of constant sum, and that therefore,
performing partial implementation is without loss of generality. In particular, in the trade option
contract where the buyer makes the final decision (the contract discussed in our Subsection 2.3),
the outcome “not take delivery” in state H is feasible and inefficient. If renegotiation is precluded
or ineffective, the presence of this outcome turns the game into one where the sum of payoffs is
non-constant. One should then check the implications of full implementability in this contract.

Consider now the trade option where the buyer makes the decision. Let us look at a possible
history in which the seller makes the investment. Suppose we interpret non-durability to mean
that the trade opportunity will expire at some future time t∗, but that until that time, the trade
decision can be reversed. In other words, it is possible for the two parties to play a renegotiation
game in the interval of time prior to t∗. Again, in general it will matter how one specifies this
game, but let us suppose that it will end with the split of the surplus determined by the weights
(π1, 1 − π1) if renegotiation is successful. It is also possible that the buyer will entertain beliefs
about what would happen if he approaches the seller prior to t∗ instead of taking delivery right
away.

Specifically, consider the buyer’s trade option with price p if she takes delivery. Fix the
following extensive form after the investment has been made:

• The buyer chooses to take delivery or not. If she does, the game ends and payoffs (disre-
garding investment cost) are (5 − p, 3 + p). If she does not, the game proceeds to the next
stage.

• Renegotiation: let us compress the possible multi-stage bargaining game of this stage into
the following 2-by-2 game in normal form, in which the buyer and seller can play “tough”
(T) or “soft” (S). Payoffs are as follows: if the buyer plays S, (5− p, 3+ p) regardless of the
seller’s action; if she plays T, payoffs are (8π1, 8(1 − π1)) if the seller plays S and (0, 0) if
the seller plays T.

The interpretation of the payoffs written for the renegotiation subgame is clear. Renegotiation
is not effective if the buyer plays soft. However, if she is tough and insists on not taking delivery,
the seller may give in, in which case renegotiation is successful and the surplus is split using the
weights (π1, 1 − π1), or he also plays tough, in which case they will disagree and trade will not
take place.

Note how for a fixed π1 the renegotiation subgame has multiple equilibrium payoffs if and
only if 5 − p < 8π1. This multiplicity of equilibria in the renegotiation subgame creates multiple
equilibrium payoffs in the entire game that starts after the seller has made the investment. Which
of the multiple equilibria will be played is entirely a matter of players’ expectations. First,
there is an equilibrium of the trade option contract in which the buyer takes delivery because he
anticipates the (S,T) equilibrium in the renegotiation subgame. The second equilibrium, however,
has the buyer not taking delivery, followed by the (T,S) equilibrium in the subgame.

In sum, taking into account the possibility of the inefficient outcome (0, 0) should make one
consider full implementation, and the conclusion one reaches then is that the buyer’s option
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contract fails to achieve full implementation if and only if p > 5− 8π1, i.e., the set of payoffs that
W argues is added to the set identified by the MM approach (the interval (1, 5] if π1 = 1/2).

To solve inefficiencies, W’s replacement of MM’s logic with the buyer’s optimal decision in
the contract seemed to have eliminated the essentiality of the constraint imposed by renegotia-
tion. However, the buyer’s decision problem in the trade options contract cannot be analyzed in
isolation from his own beliefs. That is, he may entertain multiple beliefs as to how the seller will
react if the buyer complains to him regarding the terms of trade; and this multiplicity of beliefs
creates a serious problem from the point of view of full implementation when one is outside of
the range of payoffs identified by MM.

4 Concluding Remarks

As avenues for further Research, W is right in saying that one should pay attention to the
technological detail of contract relationships. However, as we have argued, this should not be
taken to mean that the durability of trading possibilities may interfere with the renegotiation
of contracts. Even in a dynamic setting, as long as agents are capable of foreseeing ex post
inefficiencies, the door to renegotiation is clearly open. We have also argued that W’s non-
forcing contracts do not constitute an intermediate paradigm between the two approaches to
implementation, with and without renegotiation.

On the other hand, the difficulties may be serious if the renegotiation game admits multiple
equilibrium payoffs, if agents are boundedly rational and cannot form rational expectations about
the outcome of renegotiation, or if agents are immerse in an incomplete information environment.
In any of these three cases, one should anticipate that the details of the renegotiation process
may present different limitations to implementability from those studied by MM. Indeed, renego-
tiation processes would not necessarily restore ex post efficiency, thereby questioning the entire
renegotiation program.
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