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Forecasting Realized Volatility by
Decomposition�

Markku Lanney

European University Institute,
University of Jyväskylä, RUESG and HECER

Abstract

Forecasts of the realized volatility of the exchange rate returns of
the Euro against the U.S. Dollar obtained directly and through de-
composition are compared. Decomposing the realized volatility into
its continuous sample path and jump components and modeling and
forecasting them separately instead of directly forecasting the realized
volatility is shown to lead to improved out-of-sample forecasts. More-
over, gains in forecast accuracy are robust with respect to the details
of the decomposition.
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1 Introduction

Recently, Andersen et al. (2005) suggested modeling and forecasting the

realized volatility of exchange rate, stock and bond returns by extracting

the component due to jumps and including it as an explanatory variable

in a HAR-RV regression model of Müller et al. (1997) and Corsi (2003).

In some cases, the jump component turned out to be highly signi�cant and

considerable increases in the coe¢ cient of determination were observed. This

suggests that gains in forecasting the realized volatility could be made by

separately modeling and forecasting the jump and continuous sample path

components and obtaining forecasts of the realized volatility as their sum

instead of considering the aggregate realized volatility, as conjectured by

Andersen et al. (2005). The purpose of this paper is to study whether such

an approach really would be bene�cial and whether the potential gains in

forecast accuracy depend on the way the decomposition is made. To this

end, we examine the returns of the Euro against the U.S. Dollar. To model

the realized volatility and the continuous components, the mixture-MEM

model previously shown to �t well to comparable exchange rate data by

Lanne (2006) is employed. The jump components are modeled by means of

standard Markov-switching models.

The potential improvement in forecast accuracy due to decompostion

can be seen as resulting from two factors. First, once the variation due to

jumps has been eliminated from the realized volatility series, the process

of the remaining continuous sample path component may be more easily

captured, i.e., its process may be more easily estimable. Second, the jump

component itself may contain predictable variation that contributes toward

the forecast of the realized volatility. We show that at least with these

data, statistically signi�cant gains in out-of-sample forecast accuracy can be
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made by decomposing, and this �nding is fairly robust with respect to the

details of the decomposition. However, if the jump component is very tightly

de�ned, i.e., it takes nonzero values on only the days with the very greatest

jumps, it has very little predictable variation so that virtually all the gains

in forecast accuracy come from the improvements in estimating the process

of the continuous component. Although the results are clear in showing

the bene�ts of the decomposition, the diagnostic tests suggest that as far

as the jump component is concerned, even further improvements might be

attainable by more sophisticated models. While the results are in a sense

speci�c to the chosen econometric models, they should be rather general in

that the mixture-MEM model has previously been shown to �t comparable

exchange rate data at least as well as relevant alternatives in the previous

literature, and also here diagnostic checks indicate its adequacy.

The plan of the paper is as follows. In Section 2 the decomposition meth-

ods put forth by Andersen et al. (2005) are reviewed. Section 3 introduces

the mixture-MEM and Markov-switching models and reports the estimation

results, while Section 4 presents the forecast comparisons. Finally, Section 5

concludes.

2 Decomposition of Realized Volatility

In this section we discuss di¤erent decompositions of the daily return variance

and introduce the data set. As a starting point for the analysis we have

the realized variance of discretely sampled �-period returns rt;� � p (t) �

p (t��) ;

RVt+1 (�) �
1=�X
j=1

r2t+j�;�; (1)
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where p (t) is the price of the asset at time point t. As Barndor¤-Nielsen and

Shephard (2004) have shown, the di¤erence between this measure and the

stardized bi-power variation,

BVt+1 (�) � ��21
1=�X
j=2

jrt+j�;�j
��rt+(j�1)�;���

where �1 �
p
2=�, consistently estimates the component of total return vari-

ation due to discrete jumps. Hence, it is natural to base the decomposition

of RVt+1 (�) on RVt+1 (�) � BVt+1 (�). As this di¤erence can also take

negative values, the measure

Jt+1 (�) � max [RVt+1 (�)�BVt+1 (�) ; 0] (2)

suggested by Bandor¤-Nielsen and Shephard (2004) can be used instead to

ensure nonnegativity of the jump component. The continuous sample path

component Ct+1 (�) simply equals RVt+1 (�)� Jt+1 (�).

One problem with Jt+1 (�) is that it typically takes positive values too

frequently to be characterized as a component due to jumps. Instead, it would

be desirable to identify only the signi�cant jumps. To this end, Andersen et

al. (2005) suggest employing the following test statistic

Zt+1 (�) � ��1=2 [RVt+1 (�)�BVt+1 (�)]RVt+1 (�)�1��
��41 + 2��21 � 5

�
max

�
1; TQt+1 (�)BVt+1 (�)

�2�	1=2
(3)

whose distribution Huang and Tauchen (2005) �nd well approximated by

the standard normal distribution. Here TQt+1 (�) is the standized realized

tri-power quarticity,

TQt+1 (�) � ��1��34=3

1=�X
j=3

jrt+j�;�j4=3
��rt+(j�1)�;���4=3 ��rt+(j�2)�;���4=3 ;

�4=3 � 22=3� (7=6) � (1=2)�1 and � (�) is the gamma function. The idea is

that the jump component de�ned by signi�cance level �, Jt+1;� (�), takes
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positive values only on days on which the above test statistic is signi�cant

and equals zero otherwise, i.e.,

Jt+1;� (�) � I [Zt+1 (�) > ��] [RVt+1 (�)�BVt+1 (�)] ; (4)

where I (�) denotes the indicator function and �� is the critical value at the

signi�cance level �. This means that the de�nition of Jt+1;� (�) depends

on the chosen signi�cance level, or in other words, on how big jumps are

considered signi�cant. In order to make sure that the components sum to

RVt+1 (�), the continuous sample path component has to be rede�ned ac-

cordingly,

Ct+1;� (�) � I [Zt+1 (�) � ��]RVt+1 (�) + I [Zt+1 (�) > ��]BVt+1 (�) .

(5)

Note that Jt+1;0:5 (�) and Ct+1;0:5 (�) equal Jt+1 (�) and Ct+1 (�), respec-

tively. Following Andersen et al. (2005), instead of BVt+1 (�) and TQt+1 (�)

de�ned above we use the corresponding measures based on staggered returns,

BV1;t+1 (�) � ��21 (1� 2�)�1
1=�X
j=3

jrt+j�;�j
��rt+(j�2)�;���

and

TQ1;t+1 (�) � ��1��34=3 (1� 4�)
�1

1=�X
j=5

jrt+j�;�j4=3
��rt+(j�2)�;���4=3 ��rt+(j�4)�;���4=3

in the empirical analysis to mitigate the e¤ects of microstructure noise. Oth-

erwise the statistic (3) tends to �nd too few jumps, as pointed out by Huang

and Tauchen (2005).

The data set consists of thirty-minute returns (� = 1=48 in the above

formulas) of the Euro against the U.S. Dollar covering the period October

1, 1994 to September 30, 2004.1 Thirty-minute returns are used, following
1For the period until the end of 1998, the returns are computed from the

Deutschemark/Dollar rate.
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Andersen et al. (2003) and Lanne (2006), as a compromise between the

theoretical considerations recommending sampling at very high frequencies

and the desire to avoid contamination by microstructure e¤ects. The returns

are computed from a �ve-minute return data set compiled by Olsen and

Associates. These returns are based on interbank bid and ask quotes displayed

on Reuters FXFX screen. The quotes are thus only indicative rather than

�rm in that they are not binding commitments to trade. Hence, as recently

pointed out by Daníelsson and Payne (2002), at very high frequencies they

may not accurately measure tradeable exchange rates. Daníelsson and Payne

(2002), however, show that at levels of aggregation of �ve minutes and above,

returns computed from these data are a fairly good proxy for �rm returns

which is a further argument against using very disaggregated data. Following

the common practice in the literature, certain inactive periods have been

discarded. First, all the returns between Friday 21:00 GMT and Sunday 21:00

GMT are excluded. Second, we eliminated the following slow trading days

associated with holidays: Christmas (December 24�26), New Year (December

31 and January 1�2), Good Friday, Easter Monday, Memorial Day, July

Fourth, Labor Day, and Thanksgiving and the following day. This leaves us

2,496 observations in total, of which 1,998 (from October 1, 1994 through

September 30, 2002) form the estimation period, while the remaining 498

observations (from October 1, 2002 through Septeber 30, 2004) are left for

forecast evaluation.

The realized variance, bi-power variation and the jump component Jt+1 (�)

are depicted in Figure 1. The maximum of all the series occurred on Sep-

tember 22, 2000. On that day, the European Central Bank, the Federal

Reserve, the Bank of Japan, the Bank of England and the Bank of Canada

bought euros in a coordinated intervention, presumably causing an abrupt
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increase in volatility. As the bottom panel shows, the jump component de-

�ned in (2) takes a positive value on almost every day, which is very di¤erent

from the conventional idea of an infrequently occuring jump. Therefore, in

the empirical analysis we concentrate on the continuous sample path and

jump components de�ned in (5) and (4), respectively. Following Andersen

et al. (2005), three signi�cance levels, �, are considered, 0.95, 0.99 and

0.999. Moreover, because of better �t we will consider the realized volatility,

RV
1=2
t+1 (�) decomposed into the sum of (with slight abuse of notation)

C
1=2
t+1;� (�) � I [Zt+1 (�) � ��]RV

1=2
t+1 (�) + I [Zt+1 (�) > ��]BV

1=2
t+1 (�)

(6)

and

J
1=2
t+1;� (�) � I [Zt+1 (�) > ��]

h
RV

1=2
t+1 (�)�BV

1=2
t+1 (�)

i
(7)

instead of modeling the realized variance and Jt+1;� (�) and Ct+1;� (�) di-

rectly. These components for the di¤erent signi�cance levels are plotted in

Figure 2. The continuous components, in general, resemble the bi-power vari-

ation series, while the appearance of the jump components greatly depends

on the signi�cance level �. As the top panel shows, quite a few signi�cant

jumps (586) are still found when � = 0:95, whereas the number declines to

328 when � equals 0.99, and at the 99.9% level only 80 signi�cant jumps are

detected. Still, visual inspection of the series suggests that all the jump com-

ponent series exhibit some clustering and are thus potentially predictable.

3 Modeling Realized Volatility

In this section we estimate models for the realized volatility, RV 1=2t+1 (�), and

its continuous sample path and jump components C1=2t+1;� (�) and J
1=2
t+1;� (�),

de�ned as the square root of (1), (6) and (7), respectively. For the realized
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volatility and continuous components, we estimate mixture multiplicative

error models that were shown to �t realized exchange rate volatility series

quite well by Lanne (2006). Compared to the HAR-RV model employed

by Andersen et al. (2005), this model has the additional advantage that

the positivity of the volatility forecasts can easily be guaranteed. Standard

Markov-switching models (e.g. Hamilton, 1989), on the other hand, are

shown to give a reasoble �t to the jump component.

3.1 Mixture Multiplicative Error Model

Denoting by vt the variable to be modeled (realized volatility or the con-

tinuous component), the mixture multiplicative error model can be written

as

vt = �t"t; t = 1; 2; :::; T;

where the conditional mean is parametrized as

�t = ! +

qX
i=1

�ivt�i +

pX
j=1

�j�t�j

and the stochastic error term "t is a mixture of "1t and "2t such that "1t �

Gamma (
1; �1) with probability � and "2t � Gamma (
2; �2) with probabil-

ity 1 � � (0 < � < 1). In order for "t to have mean unity, we impose the

restrictions that 
1 = 1=�1 and 
2 = 1=�2, i.e., the shape parameters are

the reciprocals of the scale parameters. Furthermore, we allow the condi-

tional mean to switch accordingly, i.e., the conditional mean equals �1t with

probability � and �2t with probability (1� �) where

�1t = !1 +

q1X
i=1

�1ivt�i +

p1X
j=1

�1j�1;t�j

and

�2t = !2 +

q2X
i=1

�2ivt�i +

p2X
j=1

�2j�2;t�j:
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This speci�cation will be called the mixture-MEM(p1; q1; p2; q2) model. It

can be estimated in a straightforward manner by the method of maximum

likelihood (see Lanne, 2006). In estimation, the parameters of both mixture

components must be restricted such that they satisfy the conditions of Nelson

and Cao (1992) to ensure positivity of vt.

The estimation results are presented in Table 1. Based on diagnostic

checking, the mixture-MEM(1; 6; 1; 2) models were selected for all the series.

Presumably the sixth lag is required for modeling some kind of seasonality

in the series. The coe¢ cients of the lags between 2 and 6 of the �rst mixture

component turned out to be insigni�cant, so they are restricted to zero. The

error distributions of the mixture components are distinctly di¤erent, but the

di¤erences are similar across the series. Plots of the error distributions (not

shown) indicate that most of the time the errors come from a distribution

relatively tightly concentrated around unity, whereas somewhat less than

20% of the time the errors are generated from a right-skewed distribution

with clearly fatter tails. Moreover, as could be expected, the latter mixture

component of each continuous sample path component has less probability

mass on the tails than that of the realized volatility.

As pointed out by Lanne (2006), the persistence of the series is measured

by the largest eigenvalue of the �rst-order vector representation of the model,

and these values equal 0.987, 0.982, 0.983 and 0.981 for the realized volatility

and the continuous components with signi�cance levels 0.95, 0.99 and 0.999,

respectively. This con�rms the expectation that all the series are highly

persistent and suggests that the persistence of the realized volatility is partly

brought about by jumps (cf. Vlaar and Palm (1993) who attribute a part

of the high persistence implied by GARCH models for exchange rate returns

to ignoring jumps). There are also di¤erences in persistence between the
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mixture components for all the series. While the �rst component is very

persistent with estimates of �11 between 0.922 and 0.935, the corresponding

�gures for �21 range from 0.526 to 0.874, and the di¤erences are considerably

greater for the continuous components than the realized volatility.

According to the diagnostic checks depicted in Figure 3 all the models

can, in general, be deemed adequate. As the mixture model does not yield

conventional standardized residuals, diagnostics are based on the so-called

probability integral transform (for details, see e.g. Lanne, 2006). For the

adequacy of the speci�cation, the transformed data should be independently

uniformly distributed. Diebold et al. (1998) recommend checking this by

plotting a histogram of the transformation and computing the autocorre-

lation function of the demeaned residuals and their squares. Virtually all

the bins of the histograms lie within in the 95% con�dence intervals, indi-

cating no violation of the uniformity requirement. This can also be tested

using Pearson�s goodness-of-�t test. The p-values for the models for the re-

alized volatility and the continuous components with signi�cance levels 0.95,

0.99 and 0.999 equal 0.68, 0.90, 0.28 and 0.52, respectively, reinforcing the

impression given by visual inspection. Likewise, the autocorrelation in the

transform series is minor, attesting to the adequacy of the mixture-MEM

speci�cations. There is, however, some evidence of autocorrelation in the

squared series which was also detected by Lanne (2006) in realized volatility

of other exchange rate series.

3.2 Modeling the Jump Component

As pointed out above, the jump component series in Figure 2 seem to ex-

hibit some serial dependence that could be exploited in forecasting. To

this end, the standard two-regime Markov-switching model (e.g. Hamilton,
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1989) is employed. In other words, the process is assumed to switch between

two regimes characterized by N (�1; �
2
1) and N (�2; �

2
2) distributions, respec-

tively.2 The switching is assumed to be governed by a Markov chain such

that the probability of staying in regime 1 in the next period if regime 1 pre-

vails in this period equals p11 and the corresponding probability of staying

in regime 2 equals p22.

The estimation results3 are presented in the upper panel of Table 2. For all

values of �, the process switches between regime 1 with mean (very close to)

zero and small variance and regime 2 with greater mean and higher variance.

The mean and variance parameters in regime 2 increase with � as the average

size and variability of the jump components increase. This regime is also not

persistent, especially with � = 0:999, whereas regime 1 is highly persistent

with the estimates of p11 exceeding 0.8, reinforcing the interpretation of the

two regimes as the �normal�and �jump�regimes, respectively.

The diagnostic tests proposed by Hamilton (1996) are employed to check

the adequacy of the Markov-switching models, and the results are reported

in the lower panel of Table 2. When � equals 95% or 99%, the simple model

seems, in general, to su¢ ciently capture the dynamics in the jump compo-

nent. There is only some evidence of unmodeled conditional heteroskedastic-

ity, indicating that further re�nements might be possible. This feature may,

however, be di¢ cult model adequately, and because even with this de�ciency,

the forecasting performance is good, we proceed with the simple model spec-

2Because the normality assumption is not realistic in that it allows the process to take

negative values, the maximum likelihood (ML) estimation of the model can only be given

a quasi ML interpretation. The distributional assumption is not likely to have a big e¤ect

on the results in practice.
3I am grateful to James Hamilton for making available on his homepage the GAUSS

software for estimating the Markov-switching models and computing the diagnostics.
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i�cation. When � = 0:999, on the other hand, also the hypotheses of no

autocorrelation in regime 2 and across the regimes are clearly rejected. It

is likely that these �ndings are indications of the general lack of predictable

variation in the jump component process in this case. As a matter of fact, the

forecasts of the jump component generated by this model do not contribute

at all toward the accuracy of the realized volatility forecasts, as will be seen

in Section 4. Therefore, also in this case we settle for this speci�cation.

4 Forecasts

In order to answer the question posed in the Introduction of whether more ac-

curate forecasts can be obtained by modeling the components of the realized

volatility separately, we conduct some forecast experiments. In evaluating

the forecasting performance we concentrate on the mean square error,

MSE =
1

T �

T �X
t=1

(vt � bvt)2 ;
where T � is the length of the forecast period, vt the realized volatility and bvt
is the volatility forecast either implied by the model for the realized volatility

or computed as the sum of the forecasts of the models for the continuous and

jump components. It is easy to show that this loss function satis�es Hansen

and Lunde�s (2006) su¢ cient conditions for correct ranking of volatility fore-

casts when they are measured against an imperfect proxy such as the realized

volatility. Some other commonly employed loss functions, including the mean

absolute error (MAE), on the other hand, do not satisfy these conditions and

their use can lead to the incorrect model being selected. Following Andersen

et al. (2003), one- and ten-day-ahead forecasts are compared.

We start the forecast comparisons by reporting the results of the pair-

wise test due to Diebold and Mariano (1995) for forecast accurary. As the
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null forecast we take the combination forecast so that negative values of the

Diebold-Mariano test statistic indicate that by summing the component fore-

casts, a smaller MSE is obtained than by forecasting the realized volatility

directly. The results in Table 3 show that out of sample, considerable gains in

predictability can be made by separately modeling the continuous and jump

components, whereas the di¤erences in the in-sample �gures are minor and

not statistically signi�cant. This is consistent with the �nding in Andersen

et al. (2005) that the lags of the jump component are not signi�cant in their

regression model for the realized volatility with � = 0:999. Out of sample

at the one-day horizon, the MSE is signi�cantly smaller at any sensible sig-

ni�cance level irrespective of the exact de�nition of the jump component.

For � = 0:999, the reduction in the MSE compared to directly modeling the

realized volatility is approximately 5.5%, whereas in the other two cases the

corresponding �gure is around 8%. As far as the 10-day volatility is con-

cerned, the reductions in out-of-sample forecast accuracy are even greater,

ranging from 9.8% (� = 0:99) to 10.6% (� = 0:999), but according to the

Diebold-Mariano test the di¤erences are not statistically signi�cant.

While we are mainly interested in �nding out, whether signi�cant gains in

forecast accuracy can be obtained by decomposing the conditional volatility,

the Diebold-Mariano tests only provide pairwise comparisons between the

mixture-MEMmodel for the realized volatility directly and forecasts obtained

through the di¤erent decompositions. Hence, that test may not be optimal,

and to answer the question of interest more directly and to avoid potential

data snooping biases, we also computed Hansen�s (2005) test statistics for

superior predictive ability (SPA) that allows for controlling for the full set of

models and their interdependence when evaluating the signi�cance of relative

forecasting performance. The null hypothesis is that the benchmark is not
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inferior to any alternative forecast. In our case, the natural benchmark is

the mixture-MEM model for the realized volatility. This test rejects for both

the one and ten-day out-of-sample volatilities with p-values 0.003 and 0.021,

respectively, indicating that signi�cant gains can be made by decomposing,

also for the ten-day volatility. The corresponding in-sample p-values equal

0.411 and 0.303, respectively, con�rming that the benchmark model is not

surpassed by the decomposition forecasts.

Although there are small di¤erences between the MSE�s produced by dif-

ferent decompositions, these seem to be minor, and as a general conclusion

it could be said that at least when the combination of MEM and Markov-

switching models is used, it is of lesser importance how the decomposition

is done. This is probably due to the �exibility of the models to �t series

with somewhat di¤erent properties which was also indicated by the favor-

able diagnostic test results in all cases considered. The forecasting bene�ts

of decomposing can be seen as coming from two sources, the better �t of the

MEM model due to the purging of the series of extreme observations and the

predictability of the jump component. However, as mentioned in Section 3,

there does not seem to be much predictable variation in the jump component

when only the greatest jumps are included (� = 0:999), so that in this case

the bene�ts almost exclusively come from the �rst factor. This was recon-

�rmed by computing the MSE�s of forecasts of the realized volatility based

on the continuous component only. In the � = 0:999 case the �gures were

virtually unchanged, while in the other cases dismissing the jump component

led to considerable loss in forecast accuracy.
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5 Conclusion

With EUR/USD exchange rate data it has been shown that by decomposing

the realized volatility into its jump and continous sample path components,

considerable gains in out-of-sample forecast accuracy can be reached. More-

over, this �nding seems to be relatively independent of the details of the

decomposition in the range typically considered. Hence, we have been able

to answer in the a¢ rmative the question posed by Andersen et al. (2005) of

whether separately modeling and forecasting the two components is bene�-

cial. However, further work along these lines is called for as our results may

be speci�c to the particular data set and models. Although diagnostic tests

suggest the adequacy of the chosen speci�cation, comparable gains might not

be possible when other commonly used models are employed.
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Figure 1: The realized variance, bi-power variation and jump component of

EUR/USD returns.
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Figure 2: The decomposition of the EUR/USD realized volatility into con-

tinuous and jump components based on the Zt statistic at the 95, 99 and

99.9 % signi�cance levels.
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Figure 3: Diagnostics for the probability integral transforms of mixture-

MEM models for the realized volatility and continuous components. The

upper panel depicts their frequency distributions, and the middle and lower

panels the autocorrelation functions of the demeaned transforms and their

squares, respectively. The dashed lines are the 95% con�dence intervals.
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Table 1: Estimation results of the mixture-MEM models for the realized

volatility and continuous sample path components.

RV
1=2
t C

1=2
t;0:95 C

1=2
t;0:99 C

1=2
t;0:999

� 0.843 0.844 0.807 0.838

(0.036) (0.043) (0.052) (0.041)


1 22.390 22.777 22.903 22.035

(1.475) (1.510) (1.711) (1.450)

!1 0.002 0.003 0.003 0.003

(0.001) (0.001) (0.001) (0.001)

�11 0.272 0.294 0.282 0.282

(0.023) (0.024) (0.025) (0.023)

�12 -0.170 -0.190 -0.177 -0.173

(0.026) (0.027) (0.028) (0.026)

�16 -0.045 -0.043 -0.043 -0.042

(0.010) (0.010) (0.010) (0.010)

�11 0.935 0.929 0.928 0.922

(0.011) (0.013) (0.014) (0.015)


2 8.883 10.212 10.753 9.828

(1.163) (1.442) (1.418) (1.365)

!2 0.031 0.106 0.076 0.089

(0.037) (0.084) (0.067) (0.121)

�21 0.586 0.623 0.596 0.593

(0.114) (0.113) (0.097) (0.117)

�22 -0.465 -0.185 -0.232 -0.273

(0.185) (0.309) (0.270) (0.411)

�21 0.874 0.526 0.614 0.650

(0.135) (0.319) (0.279) (0.430)

The �gures in parentheses are standard errors computed

from the inverse of the �nal Hessian matrix.
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Table 2: Estimation and diagnostic test results of the Markov-switching mod-

els for the jump components of the realized volatility.

J
1=2
t;0:95 J

1=2
t;0:99 J

1=2
t;0:999

Estimation Resultsa

�1 0.006 0.001 6.52e-7

(0.001) (0.001) (0.001)

�2 0.145 0.164 0.269

(0.008) (0.010) (0.028)

�21 0.001 0.001 0.001

(6.07e-5) (2.36e-5) (1.66e-5)

�22 0.016 0.020 0.046

(0.001) (0.002) (0.009)

p11 0.826 0.877 0.968

(0.014) (0.009) (0.004)

p22 0.214 0.165 0.018

(0.030) (0.028) (0.012)

Diagnostic Testsb

Autocorrelation in regime 1 0.477 0.979 0.055

Autocorrelation in regime 2 0.242 0.236 5.63e-15

Autocorrelation across regimes 0.525 0.221 5.68e-15

ARCH 0.006 0.008 0.004

aThe �gures in parentheses are standard errors computed from the inverse of

the �nal Hessian matrix.
bThe �gures are marginal signi�cance levels.
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Table 3: Out-of-sample forecast evaluation: the Diebold-Mariano test for the

direct and combined forecasts.
One-Day-Ahead Forecast Ten-Day-Ahead Forecast

Model MSE D-M p-value MSE D-M p-value

Statistic Statistic

In-Sample

RVt 0.0380 1.250

Jt;0:95 + Ct;0:95 0.0378 -0.508 0.612 1.261 0.330 0.741

Jt;0:99 + Ct;0:99 0.0379 -0.301 0.763 1.242 -0.284 0.777

Jt;0:999 + Ct;0:999 0.0381 0.230 0.818 1.239 -0.476 0.634

Out-of-Sample

RVt 0.0242 0.4413

Jt;0:95 + Ct;0:95 0.0224 -3.120 0.002 0.3986 -1.085 0.278

Jt;0:99 + Ct;0:99 0.0225 -3.029 0.002 0.3999 -1.210 0.226

Jt;0:999 + Ct;0:999 0.0229 -2.291 0.002 0.3968 -1.406 0.160

The null forecast in the Diebold-Mariano test is the combination forecast.

23


