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Abstract. The role of expectations for economic fluctuations has received
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1 Introduction

The role of expectations about future developments in productivity for busi-
ness cycle fluctuations is a topic of considerable interest in the recent litera-
ture. For example, Beaudry and Portier (2005, 2006), Jaimovich and Rebelo
(2006, 2007), Lorenzoni (2006) and Haertel and Lucke (2008) found that news
on technology are an important force for business cycle movements. They
use theoretical models and present empirical results for different countries to
underpin their arguments.

Our point of departure is the study by Beaudry and Portier (2006) (hence-
forth BP). They argue that news on future productivity is reflected in stock
prices which thereby affect economic fluctuations. They find evidence for
their view in U.S. data. Their analysis is based on cointegrated structural
vector autoregressions to investigate the relation between U.S. stock prices
(SP) and total factor productivity (TFP). The former variable is chosen be-
cause it reflects expectations of market participants. Thus, if expectations
are an important driving force of economic fluctuations as, for example, cap-
tured by TFP, then the same should be true for stock prices. BP fitted
vector error correction models (VECMs), that is, cointegrated vector au-
toregressions (VARs) and used two alternative schemes for just-identifying
structural shocks. They found that the resulting technology innovations from
the two alternative schemes are quite similar and so are the implied impulse
responses. They present an innovation diffusion model which is in line with
these results.

Their approach has one important drawback, however. Specifying a struc-
tural VAR (SVAR) model with just-identifying restrictions for the shocks
ensures that no unnecessary and possibly false restrictions are imposed. On
the other hand, statistical information cannot be used to check the validity
of just-identifying restrictions. It may easily go unnoticed that the just-
identifying restrictions deliver shocks or innovations which are not informa-
tive about what actually happens in the underlying economic system. In
other words, it is conceivable that the shocks are not what they are meant
to be. In SVAR practice a model identification scheme is often checked by
considering the plausibility of the resulting impulse responses. In that situa-
tion it is not uncommon that alternative identification schemes are proposed
which have a justification based on theoretical arguments and lead to es-
sentially different conclusions about some features of the phenomenon under
consideration. For example, in monetary economics a range of alternative
models coexist which are meant to explain the transmission mechanism of
monetary policy (see, e.g., Christiano, Eichenbaum and Evans (1999) for an
overview).
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In BP’s framework where two alternative just-identified models are com-
pared, a model could, of course, be set up which merges the two identifi-
cation schemes and thereby incorporates over-identifying restrictions which
can be tested against the data. BP perform such tests and find that the
over-identifying restriction cannot be rejected (see BP, footnotes 4, 6 and 7).
Such tests are conditional on one set of just-identifying assumptions being
correct, however. More generally, in such tests it may go unnoticed that
none of the just-identifying restrictions may be appropriate. Which set of
restrictions is eventually used is a matter of taste or beliefs rather than of
testable facts.

In this study we will therefore use a different approach and draw on
data properties to obtain identifying information so that restrictions such as
BP’s become over-identifying constraints and can thus be tested. Specifically
we use BP’s reduced form model and exploit the fact that the residuals
are not normally distributed. If such nonnormality is due to business cycle
fluctuations which generate different statistical properties in expansions and
recessions, a Markov regime switching (MS) mechanism may capture them.
Such models have been used extensively in business cycle analysis ever since
they were first introduced into econometrics by Hamilton (1989). Therefore it
is plausible to consider them in the present context. These models generalize
the mixed normal models used by Lanne and Lütkepohl (2008) to identify
shocks in SVAR analyses.

Using the MS-SVAR model we find that it is not at all clear that BP’s
identifying restrictions can actually stand up against the data. In fact, it
depends on the measure of TFP whether their restrictions can or cannot be
rejected. Using the TFP measure which appears to be favored by BP, their
restrictions are clearly rejected in our model setup.

Our study makes two main contributions. First, it presents an MS-SVAR
model which gives rise to identifying restrictions simply by assuming orthog-
onality of the structural shocks across the different regimes. Secondly, these
models are applied to check BP’s identifying restrictions using different TFP
measures. The result is that the acceptability of BP’s identifying restrictions
crucially depends on the TFP measure used.

The paper is structured as follows. In the next section our model setup
is presented and the associated estimation strategy is sketched. In Section 3
the empirical analysis is discussed and conclusions are provided in Section 4.
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2 The Model

2.1 General Setup

We consider a K-dimensional reduced form VAR(p) model of the type

yt = Ddt + A1yt−1 + · · ·+ Apyt−p + ut, (2.1)

where yt = (y1t, . . . , yKt)
′ is a K-dimensional vector of observable time series

variables, dt is a deterministic term with coefficient matrix D, the Aj’s (j =
1, . . . , p) are (K × K) coefficient matrices and ut is a K-dimensional white
noise error term with mean zero and positive definite covariance matrix Σu,
that is, ut ∼ (0, Σu). If some of the variables are cointegrated, the VECM
form may be more convenient,

∆yt = D∗d∗t + αβ′y∗t−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut, (2.2)

where ∆ denotes the differencing operator, defined such that ∆yt = yt−yt−1,
Γj = −(Aj+1 + · · ·+ Ap) (j = 1, . . . , p− 1) are (K ×K) coefficient matrices,
α is a (K × r) loading matrix of rank r, β is the (K∗ × r) cointegration ma-
trix which may include parameters associated with deterministic terms and
y∗t−1 is yt−1 augmented by deterministic terms in the cointegration relations.
The rank r is the cointegration rank of the system. The term d∗t represents
unrestricted deterministic components and its parameter matrix is denoted
by D∗.

In the standard SVAR approach a transformation of the reduced form
residuals ut is used to obtain the structural shocks, say εt. A transformation
matrix B is chosen such that εt = B−1ut ∼ (0, IK) has identity covariance
matrix, that is, the structural shocks are assumed to be orthogonal and
typically their variances are normalized to one. Hence, Σu = BB′. To obtain
identified, unique structural shocks, some restrictions have to be imposed on
B. For example, BP use a zero restriction on one element of B and thereby
preclude an instantaneous effect of one of the shocks on TFP. In another
scheme they identify the shocks by enforcing that only one of them has a
long-run effect on TFP.

Notice that although normality of the ut’s is often assumed for conve-
nience, such an assumption is usually not backed by theoretical considera-
tions nor is it necessarily required for asymptotic inference. Moreover, VAR
residuals are often found to be nonnormal in applied work. In the following
we will specify a Markov switching structure on the residuals which implies
a more general distribution class for the ut’s and we will discuss how that
can be used for the identification of shocks.
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2.2 Markov Regime Switching Residuals

We assume that the distribution of the error term ut depends on a Markov
process st. More precisely, it is assumed that st (t = 0,±1,±2, . . . ) is a
discrete Markov process with two different regimes, 0 and 1. We focus on a
two regime case here for convenience to simplify the following notation and
discussion. The case of two regimes only is also considered in the application
in Section 3. The transition probabilities are

pij = Pr(st = j|st−1 = i), i, j = 0, 1.

The conditional distribution of ut given st is assumed to be normal,

ut|st ∼ N (0, Σst). (2.3)

Although here the conditional normality assumption is made for convenience
only, it should be clear that it opens up a much wider class of distributions
than just the unconditional normal. We will discuss this issue further below.
The distributional assumption will be used for setting up the likelihood func-
tion. If normality does not hold the estimators will only be pseudo maximum
likelihood (ML) estimators.

Note that the transition probabilities are the same in all periods. They
can be conveniently summarized in the (2× 2) transition matrix

P =

[
p00 p01

p10 p11

]
.

This matrix contains all necessary conditional probabilities to reconstruct
the distributions of the stochastic process st. For example, the unconditional
distribution of st can be derived from the conditional probabilities in P (see,
e.g., Hamilton (1994, Chapter 22)).

For later reference we note that p10 = 1−p00 and p01 = 1−p11. If p00 = p01

and p11 = p10 the conditional distributions of the states are independent of
the previous state,

Pr(st = j) = Pr(st = j|st−1 = 0) = Pr(st = j|st−1 = 1), j = 0, 1.

Hence, the MS model reduces to a model with mixed normal (MN) errors,

ut ∼
{ N (0, Σ0) with probability γ = p00,
N (0, Σ1) with probability 1− γ = p11.

In that case the transition matrix has the form

P =

[
γ γ

1− γ 1− γ

]
.
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Given that mixed normal distributions constitute a very large and flexible
class of distributions, this shows that assuming a conditionally normal distri-
bution in (2.3) results in a very rich distribution class for the error terms. The
case of mixed normal errors in the context of SVAR analysis was considered
by Lanne and Lütkepohl (2008).

To discuss the identification of shocks in the context of the MS model we
note that a well-known result of matrix algebra establishes that there exists
a (K × K) matrix B such that Σ0 = BB′ and Σ1 = BΛB′, where Λ =
diag(λ1, . . . , λK) is a diagonal matrix (e.g., Lütkepohl (1996, Section 6.1.2)).
Lanne and Lütkepohl (2008, Appendix) show that the matrix B is unique
up to changes in sign if all diagonal elements of Λ are distinct and ordered
in some prespecified way. For example, they may be ordered from smallest
to largest or largest to smallest. The important point to note here is that
this setup delivers shocks εt = B−1ut which are orthogonal in both regimes.
Since B is unique (up to sign changes), the model is in fact identified by
the assumption that the shocks have to be orthogonal across regimes. Thus,
any restrictions imposed on B in a conventional SVAR framework become
over-identifying in our setup and, hence, can be tested against the data.

The nonuniqueness of B with respect to sign is no problem for our pur-
poses. The precise condition from Proposition A of Lanne and Lütkepohl
(2008) is that all signs in any of the columns of B can be reversed. This
corresponds to considering negative shocks instead of positive ones or vice
versa. Usually it will not be a problem for the analyst to decide on whether
positive or negative shocks are of interest. Also, from the point of view of
asymptotic inference, local identification of this kind is sufficient for the usual
results to hold.

In our setup MS is confined to the error covariance matrix only and no MS
is assumed in other parameters because we wish to extend BP’s framework
as little as possible. MS in the other parameters would have implied different
impulse responses in different regimes which would be a major change in the
model. Allowing for MS in the residuals only means that we basically remain
within BP’s model. We are just more specific about the properties of the
residuals. Nonnormal residuals generated by a MS mechanism do not seem
to be excluded by BP.

2.3 Estimation

An analysis of Gaussian ML estimation in a univariate model of the type
(2.3) (that is, the process is white noise conditional on a given state of the
Markov chain) was provided by Francq and Roussignol (1997). Very general
asymptotic estimation results for stationary processes are also available in
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Douc, Moulines and Rydén (2004). The case of cointegrated VARs seems
less well explored. We use a two-step estimation procedure. In the first step
the cointegration relation is estimated by Johansen’s reduced rank regression.
Then a Gaussian ML estimation conditional on the first-step cointegration
relation is performed. Although there is no apparent reason why this pro-
cedure should not result in estimators with standard asymptotic properties,
we admit that we don’t know of a formal proof and strictly speaking our
results are conditional on knowing the true cointegrating vector. It will be
seen, however, that the general MS-VAR model may not be needed anyway
in our application but can be reduced to a mixed normal model for which in-
ference is discussed in Lanne and Lütkepohl (2008). Therefore, exploring the
asymptotic properties of more general MS-VECMs is left for future research.

3 Empirical Analysis

3.1 The Data

As mentioned earlier, we are interested in the relation between U.S. stock
prices (SP) and total factor productivity (TFP). The question of interest here
is whether expectations reflected in stock price movements are an important
driving force of economic fluctuations as, for example, captured by TFP. Our
data set was previously analyzed by BP. It consists of quarterly observations
from 1948Q1 - 2000Q4. Thus, we have a sample size of T = 212. The stock
prices are measured by the deflated Standard & Poors 500 Composite Stock
Price Index. BP use two different measures of TFP. The first one is computed
as

TFPt = log(Qt/H
s̄h
t KS1−s̄h

t ),

where Qt is output, Ht is hours worked, KSt measures capital services and
s̄h is the average level of the labor share over the sample period. Further
details are given in BP’s article. We use their data which are available from
the American Economic Review website.2 The second measure controls for
variable rates of factor utilization. Their adjusted measure is defined as

TFPA
t = log(Qt/H

s̄h
t (CUtKSt)

1−s̄h),

where CUt measures capacity utilization. BP have constructed a quarterly
series for this measure. The adjusted TFP measure is plausible in the present
context because technological innovations may change the relative factor pro-
ductivity. We use only the quarterly series, while BP also consider annual

2See http://www.e-aer.org/data/sept06/20030282 data.zip.
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data. We focus on quarterly data because our model setup is more general
and, hence, requires larger sample sizes.

3.2 The Empirical Models

For quarterly data BP fitted a VECM with cointegration rank r = 1 and
five lags of differenced variables (p − 1 = 5 in model (2.2)). They used two
alternative schemes for identifying structural shocks. The first one restricts
one of the shocks to have no instantaneous effect on productivity, that is, a
zero restriction is imposed on B in our notation. The rational is that a tech-
nological innovation may not have an instantaneous effect on productivity
but only with some delay when production technologies have been adjusted.
Thus, the shock defined in this way is thought of as a technology shock. The
second identification scheme imposes a zero restriction on the long-run effects
of one of the shocks. More precisely, one of the shocks is assumed to have no
long-run impact on TFP. Such a shock could, for instance, be a money shock.
It should be understood, however, that this restriction implies that there is
at least one other zero element in the matrix of long-run effects because the
matrix has rank 1 when the cointegration rank is 1.

While both of these schemes are based on a plausible reasoning and BP
present an innovation diffusion model which backs them, it is desirable to
apply statistical procedures to check whether the assumptions are supported
by the data. We will do so by fitting VECMs as in BP, augmented by Markov
switching in the residual covariance. In other words, we fit a two-regime MS-
SVECM with five lagged differences and cointegration rank one. We also
include an intercept term in the cointegration relation and in the model, i.e.,
we use y∗t = (y′t, 1)′ and specify dt = 1 in (2.2). Unfortunately, BP are silent
about the deterministic terms they included in their models. Therefore we
decided to include the minimal set of deterministic terms that can capture the
data properties. Apart from possible differences in the deterministic terms
and the MS feature in the residual covariance structure, our models are the
same as those of BP. Because our models are slightly more general than
those of BP in that they allow for different residual regimes, they should be
good representations of the data generation mechanism if BP’s models satisfy
this condition. Although our generalizations of BP’s models are minimal,
they are sufficient to ensure identification of shocks without imposing BP’s
identification schemes and, hence, we can test their identification schemes as
over-identifying restrictions against the data.

In the context of this application, considering an MS model makes sense
for a number of reasons. First of all, the residuals of a standard VECM of
the type used here are clearly nonnormal. As discussed in Section 2, the
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MS model for the error term may just be seen as a generalization of the dis-
tribution class considered for the residuals. We have checked normality by
performing different variants of Jarque-Bera tests (see Lütkepohl (2005, Sec.
4.5)) and obtained clear rejections at a 1% significance level. Second, the
model can be seen as an attempt to account for changing volatility through-
out the sampling period. There are different plausible mechanisms which
could bring about changing volatility. The basic question concerns the im-
pact of stock prices and news on business cycle fluctuations and MS models
have been used traditionally to accommodate differences in the phases of
the business cycle. Thus, the model may capture changing volatility across
the business cycle. Alternatively, in financial market series conditional het-
eroskedasticity is often diagnosed. It is well-known that MS in the variances
can generate conditional heteroskedasticity (e.g., Krolzig (1997)). If we fit an
MS model we usually do not know a priori what the regimes will represent.
Looking at the estimated regime probabilities may suggest some plausible
interpretation of the regimes, however. In the present case, it is important
to note that the MS model is a plausible extension of the original model used
by BP.

3.3 Results

We use the estimation strategy outlined in Section 2.3. In other words, we
first estimate the cointegration vector by reduced rank regression and then all
the other parameters are estimated by (pseudo) Gaussian ML conditionally
on the cointegration vector estimated in the first step. We first use the
unadjusted TFP measure. Estimation results for four different models are
given in Table 1. In the first model no restriction is imposed on the B
matrix (“unrestricted”), in the second model a zero restriction is placed on
the upper right-hand corner element of B (B12 = 0) (“short-run restr.”),
in the third model a long-run restriction is imposed (“long-run restr.”) and
in the final model both a short-run and a long-run restriction are imposed
(“both restr.”). The restrictions imposed on the second and third models are
those used by BP to identify the structural shocks.

In our model setup the B matrix is unique (up to sign) if λ1 6= λ2.
Clearly the estimates of these two quantities and their standard errors in the
unrestricted model indicate that this condition is likely to be satisfied. The
point estimates are in fact of a different order of magnitude, λ̂1 = 0.0108
and λ̂2 = 2.0181, and two-standard error intervals around these estimates
do not overlap. Thus, provided our minimal extension of the BP model is a
good description of the data, there is strong evidence that our identification
assumption is satisfied. Note also that it is an advantage of our setup that
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Table 1: Estimates of structural parameters of MS model for (SP, TFP )
with standard errors in parentheses

Parameter unrestricted short-run restr. long-run restr. both restr.
B11 0.0118 (0.0007) 0.0118 (0.0007) 0.0118 (0.0007) 0.0118 (0.0007)
B12 -0.0001 (0.0001) . 0.0000 (0.0001) .
B21 0.0124 (0.0043) 0.0112 (0.0042) 0.0112 (0.0043) 0.0111 (0.0042)
B22 0.0453 (0.0028) 0.0453 (0.0028) 0.0454 (0.0028) 0.0454 (0.0028)
λ1 0.0108 (0.0022) 0.0117 (0.0024) 0.0105 (0.0023) 0.0105 (0.0023)
λ2 2.0181 (0.4456) 2.0242 (0.4503) 2.0467 (0.4565) 2.0479 (0.4554)
p00 0.2153 (0.1225) 0.2085 (0.1417) 0.2585 (0.1270) 0.2576 (0.1260)
p11 0.7367 (0.1617) 0.7404 (0.1661) 0.7664 (0.1700) 0.7660 (0.1701)
log likelihood 1085.65 1085.12 1085.56 1084.56

Table 2: LR tests of models for (SP, TFP )
H0 H1 LR statistic p-value
MS with short-run restriction unrestricted MS 1.06 0.30
MS with long-run restriction unrestricted MS 2.18 0.14
MS with both restrictions unrestricted MS 2.18 0.37

unrestricted MN unrestricted MS 0.05 0.81

MN with short-run restriction unrestricted MN 1.04 0.31
MN with long-run restriction unrestricted MN 2.14 0.14
MN with both restrictions unrestricted MN 2.14 0.34

the data are actually informative about our identification assumption and
we do not have to rely entirely on non-statistical information. The only
additional identification assumption we need to make and which cannot be
checked by statistical tests is the orthogonality of the shocks in both regimes.
This assumption, of course, is standard in the SVAR literature and it was
also made by BP. Accepting this assumption makes it possible to test the
restrictions imposed by BP. A test of their restrictions may be based on
(pseudo) likelihood ratio (LR) tests.

Test results are given in the upper part of Table 2 where the p-values are
based on χ2-distributions with as many degrees of freedom as there are re-
strictions. Clearly, at conventional significance levels, none of the restrictions
can be rejected. More precisely, all p-values are larger than 10%. Hence, re-
jection of the null hypotheses at significance levels of 10% or smaller is not
possible. Thus, this first examination suggests that the two models used by

9



Table 3: Estimates of structural parameters of mixed normal model for
(SP, TFP ) with standard errors in parentheses

Parameter unrestricted short-run restr. long-run restr. both restr.
B11 0.0118 (0.0007) 0.0118 (0.0007) 0.0118 (0.0007) 0.0118 (0.0007)
B12 -0.0001 (0.0001) . 0.0000 (0.0001) .
B21 0.0124 (0.0043) 0.0112 (0.0042) 0.0111 (0.0043) 0.0111 (0.0042)
B22 0.0453 (0.0028) 0.0453 (0.0028) 0.0454 (0.0028) 0.0454 (0.0028)
λ1 0.0108 (0.0022) 0.0116 (0.0026) 0.0105 (0.0023) 0.0105 (0.0023)
λ2 2.0161 (0.4453) 2.0258 (0.4530) 2.0483 (0.4558) 2.0493 (0.4570)
γ 0.7651 (0.0963) 0.7671 (0.1005) 0.7502 (0.0982) 0.7506 (0.0979)
log likelihood 1085.62 1085.10 1084.55 1084.55

BP are both acceptable in our framework.
Looking at the transition probabilities in Table 1 it is seen, however, that

the estimates almost add up to one. As mentioned in Section 2, this is just
the condition for the MS model to collapse to a mixed normal (MN) model.
To check whether a mixed normal model may be sufficient in the present
case, we have actually tested it against the MS model using again a (pseudo)
LR test with one degree of freedom. The result is also shown in Table 2. The
related p-value of 0.81 is strong evidence in favor of the MN model. Therefore
we have also estimated MN models with the BP restrictions. The estimation
results for the structural parameters for all four models are presented in Table
3 and the related LR tests are reported in the lower part of Table 2.

Notice that also in the MN models the λi’s are clearly distinct. In fact,
they are very close to those obtained for the MS models. Moreover, they are
clearly different from one which suggests that the covariance matrices in the
two mixing models are different. Of course, this may be regarded as another
confirmation that the residual distribution is nonnormal.

The LR tests for the MN models in Table 2 all have p-values substantially
above 10%. Hence, also in this more restrictive framework BP’s restrictions
cannot be rejected.

Because BP argue that the adjusted TFP measure may be more appro-
priate, we have also estimated all our models with TFPt replaced by TFPA

t .
The results for the MS models are given in Table 4. Although they are dif-
ferent from the ones in Table 1, there are also important similarities. In
particular, the identification condition λ1 6= λ2 appears to hold. Thus, we
can again perform our tests for BP’s restrictions. The results are given in
the upper part of Table 5. Now both restrictions are clearly rejected as all
p-values are very small and in particular substantially smaller than 1%.
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Table 4: Estimates of structural parameters of MS model for (SP, TFPA)
with standard errors in parentheses

Parameter unrestricted short-run restr. long-run restr. both restr.
B11 0.0075 (0.0007) 0.0095 (0.0006) 0.0076 (0.0007) 0.0104 (0.0006)
B12 -0.0057 (0.0004) . -0.0057 (0.0004) .
B21 0.0576 (0.0046) 0.0173 (0.0041) 0.0580 (0.0047) 0.0189 (0.0052)
B22 0.0323 (0.0022) 0.0455 (0.0028) 0.0328 (0.0022) 0.0539 (0.0034)
λ1 0.0056 (0.0013) 0.0118 (0.0023) 0.0072 (0.0015) 0.0099 (0.0020)
λ2 0.3070 (0.0712) 1.6703 (0.3768) 0.2998 (0.0670) 0.6222 (0.1441)
p00 0.2724 (0.1474) 0.2045 (0.1070) 0.2520 (0.1395) 0.2443 (0.1135)
p11 0.7849 (0.1850) 0.7411 (0.1782) 0.7210 (0.1827) 0.8319 (0.1406)
log likelihood 1148.73 1129.30 1142.52 1125.30

Table 5: LR tests of models for (SP, TFPA)
H0 H1 LR statistic p-value
MS with short-run restriction unrestricted MS 38.86 4.5e-10
MS with long-run restriction unrestricted MS 12.42 0.0004
MS with both restrictions unrestricted MS 46.86 3.6e-9

unrestricted MN unrestricted MS 0.04 0.84

MN with short-run restriction unrestricted MN 38.88 4.5e-10
MN with long-run restriction unrestricted MN 13.90 0.0002
MN with both restrictions unrestricted MN 46.98 6.3e-11
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Table 6: Estimates of structural parameters of mixed normal model for
(SP, TFPA) with standard errors in parentheses

Parameter unrestricted short-run restr. long-run restr. both restr.
B11 0.0075 (0.0007) 0.0095 (0.0006) 0.0076 (0.0007) 0.0104 (0.0006)
B12 -0.0057 (0.0004) . -0.0057 (0.0004) .
B21 0.0576 (0.0046) 0.0173 (0.0041) 0.0578 (0.0046) 0.0189 (0.0052)
B22 0.0324 (0.0022) 0.0455 (0.0029) 0.0327 (0.0022) 0.0539 (0.0034)
λ1 0.0057 (0.0012) 0.0118 (0.0023) 0.0068 (0.0014) 0.0099 (0.0019)
λ2 0.0012 (0.0702) 1.6629 (0.3777) 0.3135 (0.0699) 0.6220 (0.1410)
γ 0.7482 (0.1142) 0.7789 (0.0916) 0.7377 (0.1110) 0.7797 (0.0914)
log likelihood 1148.71 1129.27 1141.76 1125.22

Since the estimated transition probabilities p00 and p11 again almost sum
to one, we have also tested the MS model against the simpler MN model.
The p-value given in Table 5 is 0.84 and thus the MN model is strongly
favored. Hence, we have also examined the MN models corresponding to
all the MS models and show some estimation results in Table 6. Again the
identification condition appears to be satisfied. The corresponding LR tests
of the restrictions are given in the lower part of Table 5. Like for the MS
models they are very small and, hence, the restrictions are rejected.

We emphasize that our rejection of BP’s identifying restrictions is not due
to a more restrictive framework but is obtained although we use a slightly
more general model setup. Also, we are using an identification assumption
(namely the orthogonality of the shocks) which was also used by BP in addi-
tion to their short-run and long-run restrictions. Thus, it cannot be argued
that we are actually testing some other restriction at the same time which
may be incompatible with BP’s identification schemes.

The overall conclusion from our empirical results is that it depends on
the TFP measure used whether BP’s models are rejected or not. Using the
TFP measure which controls for variable rates of factor utilization, BP’s
models are rejected. Clearly, variable rates of factor utilization are plausible
if technological innovations occur. Thus, they are plausible in the present
context and were preferred by BP. If indeed the adjusted TFP measure is
the relevant variable in the present context, our results shed doubt on the
conclusions drawn from BP’s analysis.
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4 Conclusions

This note contributes to the literature which investigates the role of expecta-
tions regarding developments in productivity for business cycle fluctuations.
We have augmented VECM models by Markov switching to obtain identi-
fied shocks simply by assuming orthogonality of the shocks across regimes.
Expectations on technological developments are assumed to be reflected in
stock prices. Hence, we have investigated the relation between stock prices
and TFP. We have used quarterly U.S. data from BP and we used their
models as a basis to study the relation between stock prices and TFP. Aug-
menting the models by Markov switching allows us to test BP’s identifying
assumptions for news shocks. It turns out that it crucially depends on the
measure used for TFP whether their identification assumption conforms with
the data. If a TFP measure is used which allows for variable rates of factor
utilization, BP’s identifying restrictions are clearly rejected in the augmented
model.
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