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Summary: A vector autoregressive model allowing for unit roots as well as
explosive characteristic roots is developed. The Granger-Johansen representation
shows that this results in processes with two common features: a random walk and
an explosively growing process. Co-integrating and co-explosive vectors can be found
which eliminate these common factors. Likelihood ratio tests for linear restrictions
on the co-explosive vectors are derived. As an empirical illustration the method is
applied to data from the extreme Yugoslavian hyper-inflation of the 1990s.
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1 Introduction

Several empirical studies of hyper-inflation have been based on cointegration analysis.
Following the work of Taylor (1991) variables like prices, money and exchange rate
have often been modelled as integrated of second order, I(2). Such a specification is
not adequate for cases where the inflation accelerates. Within the class of vector
autoregressive models accelerating inflations can be captured better by allowing for
an explosive characteristic root generating a common explosive trend as suggested
in a recent analysis of the Yugoslavian economy from the 1980s by Juselius and
Mladenovíc (2002). In the following a formal econometric theory for analysis of co-
explosive processes is therefore developed.
The proposed statistical model is based on a vector autoregression and focuses on

unit roots and a single explosive root. A Granger-Johansen representation is derived

1I am grateful to Søren Johansen who read an earlier version of this paper very carefully and
presented it at the conference on Common Features held in Rio de Janeiro in July 2002. I have also
benefitted from discussions with Martin Wagner. Computations were done using PcGive (Doornik
and Hendry, 2001).
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showing the structure of the common stochastic trends. It is demonstrated that there
are cointegrating vectors eliminating random walk common trends and ‘co-explosive’
vectors eliminating an explosive common trend. While linear restrictions on the
cointegrating vectors can be tested by the approach of Johansen (1996), see Nielsen
(2000), it is here shown how to test linear restrictions on ‘co-explosive’ relations.
The method is illustrated using data from the extreme Yugoslavian hyper-inflation

of the early 1990s, previously analysed by Petrovíc and Mladenovíc (2000). This gives
some new insight to the nature of hyper-inflations, with a more complete empirical
analysis appearing in a companion paper, Nielsen (2004).
The outline of the paper is that in §2 the model is developed and a Granger-

Johansen type representation theorem is presented. In §3 hypotheses on the co-
explosive vectors are formulated and the related likelihood ratio tests are derived.
The empirical work is presented in §4 while §5 concludes. Mathematical proofs are
given in Appendices.
The following notation is used throughout the paper: For a matrix α with full

column rank let α = α(α0α)−1 while α⊥ denotes the orthogonal complement so α0⊥α =
0 and (α, α⊥) is invertible. The abbreviations a.s., P and D are used for properties
holding almost surely, in probability, and in distribution respectively.

2 The model

The starting point for the analysis is a brief review of the cointegrated vector autore-
gressive model of Johansen (1996). Explosiveness and in particular co-explosiveness is
then presented as a restriction to that model. The Granger-Johansen representation
follows.

2.1 The cointegrated vector autoregressive model

Suppose a p-dimensional time series, X1−k, . . . , X0, . . . , XT is observed. The cointe-
grated vector autoregressive model with k lags and cointegration rank r can then be
written in terms of the equilibrium correction equation

∆1Xt = α(β01Xt−1 + δ01t) +
k−1P
j=1

Γj∆1Xt−j + µ+ εt, for t = 1, . . . , T, (2.1)

conditional on the initial values X1−k, . . . , X0, and where ∆1 is the usual difference
operator. The innovations εt are assumed independent, identically Np (0,Ω) distrib-
uted, and the parameters vary freely so Γj,Ω ∈ Rp×p where Ω is positive definite,
α, β ∈ Rp×r, while µ ∈ Rp and δ1 ∈ Rr.
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The characteristic polynomial for a process of the type (2.1) is given by the de-
terminant of¡
1− z−1

¢
Ip−z−1αβ01−

k−1P
j=1

z−j(1−z−1)Γj =
z − 1
z

Ã
Ip +

αβ01
1− z

−
k−1P
j=1

z−jΓj

!
. (2.2)

In the asymptotic analysis of the cointegration model it is usually assumed that the
roots of the characteristic polynomial are either stationary, |z| < 1, or at one, z = 1.
Here, the situation where there is also a single explosive root, z > 1, is analysed.
Most diagnostic tests for vector autoregressive models are derived under an as-

sumption of stationarity, |z| < 1, or at most a random walk like behaviour, |z| ≤ 1.
It is worth noting that while such an assumption is mathematically convenient it
may not be necessary. For instance, the lag length can be determined consistently
regardless of the location of the characteristic roots when using likelihood methods,
see Nielsen (2001a), but not when using methods based on the Yule-Walker equa-
tions. This means that correlograms cannot be used as they appear in econometric
and software at the moment, see Nielsen (2003). Likewise, the cointegration rank r
can be determined in the usual way as will be discussed in §3.4.
In the cointegration analysis of Johansen (1996) the cointegrating relations β1

are central as the linear combinations eliminating the common I(1) trends in the
process. The Granger-Johansen representation given in Theorem 2.2 below shows
that this interpretation carries through in the presence of explosive roots. In the usual
situation without explosiveness the cointegrating relations can be given stationary
initial distributions, but this is generally not the case in the presence of explosiveness.

2.2 A cointegration model with an explosive root

The presence of a single explosive root, ρ > 1, in the estimated characteristic poly-
nomial is an indication of an explosive common trend. By reformulating the model
such a trend can be analysed in conjunction with a random walk common trend.
Just as the cointegration model (2.1) is formulated in terms of first differences

∆1Xt the filter ∆ρXt = Xt − ρXt−1 will be needed where ρ is a freely varying para-
meter. Applying the identities

(1− ρ)Xt−1 = ∆ρXt−1 − ρ∆1Xt−1, (2.3)

ρj∆1Xt−j−1 = ∆1Xt−1 −
jP

l=1

ρl−1∆1∆ρXt−l, (2.4)

to the model equation (2.1), defining ∆ρX
∗
t−1 = {∆ρX

0
t−1, (1− ρ) t}0, and assuming

the lag length is at least two, k ≥ 2, then equation (2.1) can be rewritten as

M: ∆1∆ρXt = α1β
∗0
1∆ρX

∗
t−1 + αρβ

0
ρ∆1Xt−1 +

k−2P
j=1

Φj∆1∆ρXt−j + µ+ εt. (2.5)
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The new parameters α1, αρ, βρ,Φj relate to the original parameters by

α1 =
α

1− ρ
, αρβ

0
ρ = −

1

ρ

Ã
Ip + α1β

0
1 −

k−1P
j=1

ρ−jΓj

!
, Φj =

k−1P
l=j+1

ρj−lΓl, (2.6)

while β∗1 = (β
0
1, δ

0
1)
0. It follows from the expression for the characteristic polynomial

in (2.2) that the matrix αρβ
0
ρ has rank p−1 precisely when ρ is a single characteristic

root. The new parameter space is therefore given in terms of freely varying parameters
satisfying α1, β1 ∈ Rp×r, αρ, βρ ∈ Rp×(p−1), µ ∈ Rp, δ01 ∈ Rr, Φj,Ω ∈ Rp×p so Ω is
positive definite, and ρ ∈ R.
With the maximum likelihood estimators from the model formulated by (2.1) at

hand it is easy to estimate the parameters of (2.5). The explosive root ρ is estimated
by the explosive root of the sample characteristic polynomial for (2.1). The other
parameters are estimated using (2.6). Since α̂ρβ̂

0
ρ has reduced rank of (p− 1) by con-

struction, αρ and βρ can be estimated by the associated left- and right-eigenvectors.
In order to interpret the process a Granger-Johansen representation is needed.

This will be formulated in terms of restrictions to the parameters resembling those of
Johansen (1996, Theorem 4.2).

Assumption 2.1 (A) The matricesα1, β1, αρ, βρ have full column rank.
(B) The non-stationary characteristic roots of Xt are at 1 or at ρ where ρ > 1.
(C) det (α01⊥Ψ1β1⊥) 6= 0 and det(α0ρ⊥Ψρβρ⊥) 6= 0 where

Ψ1 = Ip +
αρβ

0
ρ

ρ− 1 −
k−2P
j=1

Φj, Ψρ = Ip +
α1β

0
1

1− ρ
−

k−2P
j=1

ρ−jΦj.

(D) The process Xt has one explosive characteristic root and p − r unit roots so
rank(αρβ

0
ρ) = p− 1 and rank(α1β01) = r.

The representation theorem can now be formulated. This shows that processes
satifying (2.5) have two common features in form of a random walk component and an
explosive component. The parameters β1 and βρ have interpretation as co-integrating
and co-explosive relationships in that β01Xt−1 has no random walk component while
β0ρXt−1 has no explosive trend. Both stochastic trends will be removed by the r − 1
linear relations given by span(β1) ∩ span(βρ). The proofs follow in §A.

Theorem 2.2 Consider a process of the form (2.5) satisfying Assumption 2.1. Then

Ut = {(∆1Xt)
0βρ, (∆ρX

∗
t )
0β∗1, (∆1∆ρXt)

0, . . . , (∆1∆ρXt−k+3)
0}0
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can be given a stationary initial distribution ensuring the representation

Xt
D
=

1

1− ρ
C1

tX
s=1

εs +
1

ρ− 1Cρ

tX
s=1

ρt−sεs + Yt + τ c + τ lt+ τxρ
t,

where Cx = βx⊥ (α
0
x⊥Ψxβx⊥)

−1 α0x⊥ and Yt is a stationary process. In particular,
β0cXt−1 can be given a stationary initial distribution for any βc ∈ span(β1)∩span(βρ).
The linear slope coefficient can be expressed as

τ l = C1µ/ (1− ρ) + (C1Ψ1 − Ip)β1δ
0
1,

and in particular β01τ l + δ01 = 0. The coefficients for the exponential term and the
constant level depend on the initial values in such a way that β0ρτx = 0 and

β01τ c = α01(C1Ψ1 − Ip)µ/(1− ρ) + α01(Ψ1C1Ψ1 −Ψ1)β1δ
0
1 + δ01ρ/(1− ρ).

Finally, it holds that the process X̃t = Xt − τ c − τ lt satisfies the equation

∆1∆ρX̃t = α1β
0
1∆ρX̃t−1 + αρβ

0
ρ∆1X̃t−1 +

k−2P
j=1

Φj∆1∆ρX̃t−j + εt. (2.7)

In this representation the first component
Pt

s=1 εs is a random walk which is
extensively studied in the econometric literature. The second component is ρt times
the sum

Pt
s=1 ρ

−sεs. That sum converges almost surely for increasing t according to
the Marcinkiewicz-Zygmund theorem. The convergence holds even if εt is a martingale
difference sequence as proved by Lai and Wei (1983).

3 Testing a simple hypothesis on the co-explosive parameters

In this section it is discussed how to test linear restrictions on the co-explosive vectors
βρ. First, the hypothesis and the estimation in the resulting restricted model are dis-
cussed. Then the maximum likelihood estimators are argued to be consistent. This
result is rather robust in that it is valid also for martingale difference innovations.
Thirdly, the asymptotic distributions of ρ̂ and of the likelihood ratio test statistic for
testing the hypothesis on βρ follow. These distribution are normal and χ2 respec-
tively, but those results rely on the normality of the innovations. Finally, tests for
cointegration rank and linear restrictions on β∗1 are discussed.
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3.1 Hypothesis and estimation

The hypothesis of interest is that the co-explosive vectors are known:

H: βρ = β◦ρ. (3.1)

This hypothesis can equivalently be formulated as a simple hypothesis on the orthog-
onal complement βρ⊥, which is a p-vector. In the empirical illustration reported in §4
and in the empirical analysis of Nielsen (2004) the hypotheses of interest are simple
homogeneity restrictions.
Under the hypothesis H the likelihood function has to be maximised by numerical

methods. For a given value of ρ the remaining parameters, θ say, can be estimated by
reduced rank regression as discussed by Johansen (1996, §6) giving a profile estimator
θ̂(ρ). The profile likelihood function for ρ is then L(ρ) = maxθ L(ρ, θ) = L{ρ, θ̂(ρ)}
and can be maximised by grid search.
In principle there is an identification problem. As an example, a bivariate first

order autoregression may result in the fitted model Xt = ÂXt−1 + ε̂t where the
estimator Â has eigenvalues ρ̂1 = 1/2 and ρ̂2 = 2. The model can then be reformulated
as ∆ρ̂jXt = ΠjXt−1+ ε̂t where Πj = Â− ρ̂jI2. For both choices of j the matrix Πj has
reduced rank and the likelihood achieves the same maximum maxρj ,Πj L

¡
ρj,Πj

¢
=

maxA L (A) . The obvious estimator for the explosive root is of course ρ̂2 = 2. In the
more complicated model (2.5) the grid search for ρ̂ can be done for ρ > 1.While this
estimator is not necessarily unique this results in a consistent estimator. If none or
more than one characteristic root are explosive the specification of the model should
be investigated. The same applies if the likelihood function has a local maximum at
ρ = 1 since this happens with vanishing probability in increasing samples if the model
is correct.

3.2 Consistency in the restricted model

In the following consistency is stated for the maximum likelihood estimators in the
restricted model H. The result is proved in §B,C and is based on a study of the
level curves of the likelihood function showing that the likelihood function achieves
its maximum in a neighbourhood of the true parameter in large samples.
The asymptotic theory is derived using results of Lai and Wei (1985) and later

adaptations by Nielsen (2005). While the likelihood is based on the Gaussian likeli-
hood derived from the model in §2 the assumptions to the innovations can be relaxed.
The relaxed assumptions have to be formulated with two types of results in mind.
On the one hand it is needed that the main component of the explosive common
trend,

Pt
s=1 ρ

−sεs, converges. The Marcinkiewicz-Zygmund Theorem shows that this
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process converges almost surely. In its original formulation the innovations are re-
quired to be independent and identically distributed, but following Lai andWei (1983)
it suffices to assume that (εt,Ft) is a martingale difference sequence for some filtration
Ft satisfying the following condition.

Assumption 3.1 For some γ > 0 it holds supt E{(ε0tεt)1+γ|Ft−1} <∞ a.s.

On the other hand it is necessary that the random walk common trend
Pt

s=1 εs con-
verges in distribution. Although many flexible Central Limit Theorems are available
the assumption of Chan and Wei (1988) to the conditional variance of εt is adopted
since Assumption 3.1 already bounds the conditional moments.

Assumption 3.2 Suppose E (εtε0t|Ft−1) = Ω a.s. where Ω is positive definite.

The consistency result for the maximum likelihood estimators under the hypoth-
esis H can now be formulated. The estimator ρ̂ is found by searching over a closed
set so ρ > 1 as described in §3.1, and consistency is established for that situation. It
is likely that consistency actually holds for ρ ≥ 1, as it can also be shown that the
likelihood function does not achieve it is at ρ = 1.

Theorem 3.3 Consider the restricted model given by H, and where ρ ≥ ρmin for some
ρmin > 1. Suppose Assumptions 2.1, 3.1, 3.2 are satisfied. Identify β̂

∗
1 by

β̂
∗0
1 β

∗
1 = Ir, (3.2)

and define the block-diagonal normalisation matrices

NV = diag(T
−1/2Ip−r, T

−1) and NW = T 1/2ρ−T . (3.3)

Then it holds

(i ) (Ω̂, µ̂) = (Ω, µ) + oP(1),
(ii ) ρ̂ = ρ◦ + oP(NW ),
(iii ) (α̂ρ, α̂1, Φ̂1, . . . , Φ̂k−2) = (αρ, α1,Φ1, . . . ,Φk−2) + oP(1),

(iv ) β̂
∗0
1 β

∗
1⊥N

−1
V

P→ 0.

The choice of identification of β̂
∗
1 in (3.2) follows the approach of Johansen (1996,

§13.2). Identification could alternatively be obtained through a matrix c so that for
instance c0β̂

∗
1 = Ir. Consistency under that type of identification also follows from

Theorem 3.3 by an argument as that of Johansen (1996, §13.2).
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3.3 Asymptotic distribution of estimators and test statistic

In the following the asymptotic distribution of the likelihood ratio tests statistic for
H is described. In contrast to the consistency results described above the results
depends on the exact distribution of the innovations corresponding to the results for
the univariate first order autoregression of Anderson (1959). Anderson’s result will
be discussed briefly and then results for the test statistic are given.
Anderson (1959) considered the maximum likelihood estimator for the autoregres-

sive coefficient in a first order autoregression

wt = ρwt−1 + εt,

when |ρ| > 1. From the Marcinkiewicz-Zygmund result discussed above it follows that

ρ−twt = w0 + ρ−1ε1 + ρ−2ε2 + · · ·+ ρ−tεt
a.s.→ W, (3.4)

for some positive, continuous random variableW. Anderson (1959) then proved that
the normalised least squares estimator satisfiesPT

t=1wt−1εtqPT
t=1w

2
t−1

=
W
PT

t=1 ρ
t−Tεtq

W2
PT

t=1 ρ
2(t−T )

+ oP(1), (3.5)

where the W’s cancel out. This result holds almost surely and quite generally under
the Assumption 3.1, 3.2. The last expression is a weighted average of the innovations
with most of the weight on the most recent observations. It is exactly normally
distributed when the innovations are normal and is seen to converge in distribution
as long as the innovations are independent and identically distributed. A similar
result can be established for the likelihood ratio test statistic for the hypothesis H.
To formulate the asymptotic result, introduce a parameter τ⊥ = Ψρβρ⊥. This

is a p-vector which is non-zero due to the Assumption 2.1(C), and its orthogonal
complement can be chosen as τ = (Ip − τ⊥τ

0
⊥)αρ, see Johansen (1996, Exercise 3.7).

Theorem 3.4 Suppose the parameters satisfy Assumption 2.1 and the innovations
satisfy Assumptions 3.1, 3.2 with γ > 1. Then, the log likelihood ratio test statistic
for H in M satisfies

LR(H|M) = H 0τ(τ 0Ωτ)−1τ 0H {1 + oP(1)}+ oP(1),

where

H =

PT
t=1 εt(β

0
ρ⊥∆1Xt−1)

{
PT

t=1(β
0
ρ⊥∆1Xt−1)2}1/2

a.s.
=

PT
t=1 ρ

t−Tεt

{
PT

t=1 ρ
2(t−T )}1/2

+ o (1) .

If the innovations are independent, identically normal distributed then LR
D→ χ2(p−

1).

8



The asymptotic normality in Theorem 3.4 relies directly on the normality assump-
tion by using that a weighted average of independent normal distributed variables is
normal. In practice the best we can do is to check if the normality assumption looks
reasonable and then use the above test. It may not hold exactly so infences should
only be made cautiously when test statistics are close to the chosen critical value.
Having said that, the remainder term in Theorem 3.4 disappears under quite general
martingale difference assumptions, while the leading term is exactly normal under the
normality assumptions. This type of result may therefore not be that different from
usual regression models which are used in finite samples so the robustness induced by
the Central Limit Theorem can be of limited use.

3.4 Determination of the cointegration rank

In order to determine the cointegrating rank, r, in the model M consider the more
general unrestricted vector autoregression where the parameter matrix (Π,Πl) = αβ∗01
is unrestricted. It is then of interest to consider hypotheses of the type

H (r) : rank (Π,Πl) ≤ r.

The cointegration rank is estimated to be r if indeed the hypothesis H (r) is accepted
while H (r − 1) is rejected. These hypotheses can be tested using Johansen’s (1996)
likelihood procedure. In his original derivation of the asymptotic theory it was as-
sumed that (i) the number of unit roots is p− r and (ii) the remaining characteristic
roots are stationary. The latter assumption is actually not necessary, so the procedure
can be used with the usual asymptotic distributions even in the presence of explosive
roots. While the asymptotic derivations in the Appendices focus on the results that
will be reviewed in §3 below, those results immediately lead to the following special
case of the rank test results. General results are given by Nielsen (2000, 2001).

Theorem 3.5 Suppose the model M and Assumption 2.1 are satisfied, while the in-
novations satisfy the Assumptions 3.1, 3.2. Then, the log likelihood ratio test statistic
for cointegration rank has the usual asymptotic distribution as given in Johansen
(1995, Theorem 6.1).

3.5 Linear restrictions on cointegrating vectors

Johansen (1996, §7) discusses a variety of linear restrictions on the cointegrating
vectors β∗1. The most general hypothesis for which the likelihood function can be
analysed analytically is the hypothesis that some cointegrating relations are known
and the others satisfy some linear restrictions. This hypothesis can be formulated as
a restriction on the space spanned by β∗1,

H1: span (β∗1) = span (B1, B1⊥D1ϕ1) , (3.6)
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for some known matrices B1,D1 of dimension {(p+ 1)× b1} and {(p+ 1− b1)× d1}
and a parameter ϕ1 of dimension (d1 × r), all with full column rank.
Hypotheses of this type can be tested within the model M given in (2.5) using χ2

inference. This is proved by Johansen (1996, §13) for a variety of hypotheses assuming
that (i) the number of unit roots is p− r, and (ii) the remaining characteristic roots
are stationary. The results also hold when the stationarity assumption (ii) is relaxed
as shown by Nielsen (2000) for the hypothesis β = Bϕ.
It may also be of interest to test the hypothesis H on the co-explosive vectors given

in (3.1) within the model M restricted by H1. This can be done using χ2 inference as
outlined in Theorem 3.4. The proof is similar to that presented in Appendix C albeit
notationally more burdensome due to the more complicated structure of β∗1.

4 Empirical illustration: The extreme Yugoslavian hyper-inflation

The presented model is now applied to data from the extreme Yugoslavian hyper-
inflation of the 1990s. A more complete empirical analysis can be found in the com-
panion paper, Nielsen (2004).
The institutional background for the extreme Yugoslavian hyper-inflation is de-

scribed in Petrovíc and Vujoševíc (1996) and Petrovíc, Bogetíc and Vujoševíc (1999).
In short, the former federal republic of Yugoslavia was falling apart in 1991, the war
started and United Nations embargo was introduced in May 1992. This situation led
to decreased output and fiscal revenue while transfers to the Serbian population in
Croatia and Bosnia-Herzegovina as well as military expenditure added to the fiscal
problems. The monthly inflation rose above 50% in February 1992 and accelerated
further, a price freeze was attempted in the end of August 1993 and the inflation
finally ended on 24 January 1994 with a currency reform after prices had risen by a
factor of 1.6×1021 over 24 months.
The main economic theory for hyper-inflation is due to Cagan (1956). Taylor

(1991) reformulated the model in a cointegration setup in terms of the equations

mt − pt = −α∆pet+1 + ζt, (4.1)

∆pet+1 = ∆pt+1 − t+1, (4.2)

where mt − pt is the log of real money, ∆pt is the monthly growth in log prices, and
∆pet+1 measures the expected inflation in period t + 1, while ζt, t+1 are stationary
error terms. Dividing by −α, and then subtracting ∆pt on both sides leads to

∆2pt+1 = −α−1 (mt − pt + α∆pt) +
¡

t+1 − α−1ζt
¢
. (4.3)

Assuming that mt and pt are both I(2) variables it can be tested whether the real
money mt − pt is I(1) and in turn whether mt − pt and ∆pt cointegrate to I(0). In
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Figure 1: Data in levels for full period until 1994:1. Data in differences (using ∆1-
operator) for shorter period until 1993:10.

this integrated framework the semi-elasticity α in the money demand schedule (4.1)
therefore shows up as the coefficient to ∆pt in a cointegrating relation.
Figure 1(a, c) show two time series of monthly data relating to the period 1990:12

to 1994:1. The variables are narrow money measured as M1, mt, and a price index,
pt, both reported on a logarithmic scale. The sources for the data are documented
in Petrovíc and Mladenovíc (2000). They consider the prices for 1993:12 and 1994:1
to be unreliable, so following precedence in the empirical hyper-inflation literature
only the data until 1993:10 rather than the full sample are analysed. Figure 1(b, d)
show first differences of the series. Both in levels and in differences the series show
an exponentially growth over time and hence an increasing growth in prices. Real
money measured as mt − pt is shown in levels and in differences in Figure 1(e, f). It
appears that real money, mt−pt, has a random walk behaviour while the depreciation
rate, ∆1pt, is explosive, indicating that the cointegration analysis proposed by Taylor
cannot be applied directly in this case. Such exlosive behaviour was also observed
for the earlier Yugoslavian hyper-inflation of the 1980s by Juselius and Mladenovíc
(2002). Using the developed statistical model this can now be analysed formally.
A vector autoregression with a constant trend and three lags is fitted to the data

up to 1993:10. On the one hand this gives a model that has admittedly few degrees of
freedom in that each equation has 7 mean parameters which are fitted using T = 32
observations. On the other hand a lot of information should be available in these

11



Test m p Test (m, p)
χ2normality(2) 2.3 [0.32] 2.4 [0.31] χ2normality(4) 7.1 [0.13]
FAR(3)(3, 21) 1.2 [0.34] 1.6 [0.22] FAR(3)(12, 34) 0.7 [0.73]
FHetero(14, 9) 1.8 [0.19] 3.9 [0.02] FHetero(42, 21) 2.0 [0.05]
FARCH(3)(3, 21) 1.0 [0.42] 0.5 [0.70]

Table 1: Mis-specification tests for the vector autoregressive model for m, p. Single-
equation as well as system tests are reported. p-values are given in brackets.

Rank Log likelihood Test against full rank
0 -0.41 29.6 [0.01]
1 10.77 7.2 [0.33]
2 14.39

Table 2: Test for cointegration rank. p-values are given in brackets.

explosively growing time series. Formal mis-specification tests are reported in Table
1. Interpreting these in the usual way indicates that the model is well-specified
with respect to normality and autocorrelation. There is possibly some unmodelled
heterogeneity. In doing so it is assumed that the usual asymptotic theory is valid
although this has only been proved for the test for autocorrelation in the residuals, see
Nielsen (2001a), whereas it is unclear whether for instance the test for heterogeneity is
valid. Some of the test statistics are reported in an F -form as advocated by Doornik
and Hendry (2001) in an attempt to deal with finite sample issues for these tests even
though it has not yet been argued whether this represents an improvement. This
model has a single explosive characteristic root of ρ̂ = 1.216.
A cointegration analysis can be carried out in the usual way as described in §3.4.

The results are given in Table 2, pointing towards a rank of one. This explosive
characteristic root is now estimated by ρ̂ = 1.205. The model M given in (2.5) with
r = 1 therefore appears to give a reasonable description of the data.
The hypothesis that βρ is known and given by the homogeneity condition

H : β0ρ = (1,−1) ,

can now be tested. This would imply that real money,mt−pt, is a co-explosive relation
with random walk behaviour, but no explosive behaviour. Since βρ is completely
specified the model can be estimated by regression for each value of ρ. This in turn
results in a profile likelihood in ρ which can then be maximised by a grid search.
Searching in the region ρ > 1 there is a unique maximum to the likelihood function of
10.74 at ρ̂ = 1.200. The test statistic for H against M is 0.06 which is small compared
to the χ2(1) distribution arising from Theorem 3.4.
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Returning to the cointegrating vector β∗1 it can be tested that the trend is absent,
so δ1 = 0. This reduces the likelihood further to 10.64 for ρ̂ = 1.204. The test statistic
for this hypothesis within the model H is therefore 0.20 which is also small compared to
a χ2(1) distribution. The estimated cointegrating vector is β̂ = (1,−0.59), indicating
that mt − 0.59pt is explosive, but has no random walk or linear trend behaviour.
In summary, the above analysis shows that the two variables mt, pt each has an

explosive common trend and a random walk trend. The series co-explode so mt − pt
is an I(1) process, while the differenced series ∆1mt,∆1pt are explosive, but without
a random walk component. This indicates that linking for instance mt− pt with ∆pt
as in the model of Taylor (1991) may not give a balanced regression in this situation.
A suggestion for getting around the issue of the unbalanced regression is given

in Nielsen (2004). The idea is to measure inflation as the cost of holding money,
ct = ∆1Pt/Pt = 1 − exp(−∆1pt) and a corresponding measure for the depreciation
rate, dt say. It turns out that a system of mt − st, ct, dt can be analysed by stan-
dard I(1) cointegration analysis right through to the end of the hyper-inflation. In
that framework Cagan’s money demand schedule, and, moreover, Cagan’s notion of
‘optimal’ inflation tax can be discussed.

5 Conclusion

Hyperinflation data have traditionally been analysed using I(2)models, so real money,
mt− pt, and price growth ∆pt become I(1) and Cagan’s money demand schedule can
be found as a cointegrating relation of these. At least for the extreme Yugoslavian
hyper-inflation these assumptions are unrealistic as the series involved appear to grow
explosively. The presented statistical model gives a new tool for analysing such data.
When applying the presented statistical model to data it is found that mt − pt

can very well be I(1) whereas ∆pt is explosive. This leads to the somewhat negative
conclusion that in this case these variables cannot be linked as usually done in the
empirical hyper-inflation literature. A solution to this empirical problem is proposed
in the companion empirical analysis in Nielsen (2004).
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A Proof of representation theorem

Proof of Theorem 2.2. When µ, δ1 are both zero the result follows as in Johansen
and Schaumburg (1998, Theorem 4). That result is formulated for processes without
explosive roots, but the proof actually applies without that restriction. The only
difference is that their use of complex conjugates has to be replaced by inverses,
which of course would amount to the same if z were on the complex unit circle.
For the general result replace εt by εt+µ+α1δ

0
1(1−ρ)t. To see that the deterministic

term is of the desired form note that C1
Pt

s=1{µ+ α1δ
0
1(1− ρ)s} gives a linear trend

while Cρ

Pt
s=1 ρ

t−s{µ+α1δ01(1−ρ)s} gives a linear trend and an exponential trend due
to the formulas

Pt
s=1 ρ

t−s(1−ρ) = (1−ρt) and
Pt

s=1 sρ
t−s(1−ρ) = t−ρ(1−ρt)/(1−ρ).

Let Dt = τ c + τ lt + τxρ
t denote the deterministic trend of Xt. Replace Xt by

X̃t +Dt in the model equation (2.5) giving

∆1∆ρX̃t + (1− ρ) τ l = α1β
0
1

n
∆ρX̃t−1 + (1− ρ) τ c + ρτ l + (1− ρ) τ lt

o
+(1− ρ)α1δ

0
1t+ αρβ

0
ρ

n
∆1X̃t−1 + τ l − (1− ρ) ρt−1τx

o
+

k−2P
j=1

Φj

n
∆1∆ρX̃t−j + (1− ρ) τ l

o
+ µ+ εt.

Collecting the coefficient to ρt−1, t, 1 then results in the equations

β0ρτx = 0, β01τ l + δ01 = 0, (1− ρ)Ψ1τ l = α1β
0
1 {(1− ρ) τ c + ρτ l}+ µ.

The first two equations are easily solved for β0ρτx and β
0
1τ l. To get β

0
1⊥τ l and thereby

τ l pre-multiply the third equation with α01⊥ and post-multiply Ψ1 with Ip = β1β
0
1 +

β1⊥β
0
1⊥. Finally, to get β

0
1τ c pre-multiply the third equation with α01.

B Analysis of the likelihood function

In this appendix, the likelihood function is analysed by analytic means. The like-
lihood itself is discussed in §B.1. As it is of a regression-type its maximum can be
expressed in terms of the maximum likelihood estimator for the variance parameter
Ω. Hence, expressions for the estimators of Ω in the unrestricted model M and under
the hypothesis H are derived, which can facilitate subsequent asymptotic analysis.
Some additional notation is used. For a matrix α define α⊗2 = αα0. The nota-

tion (Yt|Zt) denotes the residual of the least squares regression of Yt on Zt and the
symbol SXY ·Z is used for the partial sample covariance of Xt and Yt given Zt, that is
T−1

PT
t=1Xt(Yt|Zt).
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B.1 The likelihood function

The likelihood function for the unrestricted model M is written down and a profile
likelihood for the parameters of the conditional expectation is derived.
Two equivalent expressions for the model equation were given in (2.1) and (2.5):

εt = ∆1Xt − α1β
∗0
1X

∗
t−1 −

k−1P
j=1

Γj∆1Xt−j − µ, (B.1)

= ∆1∆ρXt − αρβ
0
ρ∆1Xt−1 − α1β

∗0
1∆ρX

∗
t−1 −

k−2P
j=1

Φj∆1∆ρXt−j − µ. (B.2)

Due to the normality of the innovations the log likelihood function is

−2 logL (ϑ,Ω) = T log (detΩ) + tr

µ
Ω−1

TP
t=1

εtε
0
t

¶
,

where ϑ represents the parameters Π,Πl,Γ1, . . . ,Γk−1, µ in the conditional expecta-
tions equation (B.1). For each value of ϑ the likelihood function has a unique maxi-
mum for Ω given by Ω̂(ϑ) = T−1

PT
t=1 εtε

0
t. The profile likelihood for ϑ is therefore

−2 logL (ϑ) = −2maxΩ logL (ϑ,Ω) = T log det{Ω̂ (ϑ)}. (B.3)

In the probabilistic analysis the properties of the likelihood function will be
analysed for each parameter (ϑ◦,Ω◦) satisfying the hypothesis H. Using the model
equation (2.5) restricted by H the innovations of the model can then be written as

ε◦t = ∆1∆ρ◦Xt − α◦ρβ
◦0
ρ∆1Xt−1 − α◦1β

◦∗0
1 ∆ρ◦X

∗
t−1 −

k−2P
j=1

Φ◦j∆1∆ρ◦Xt−j − µ◦. (B.4)

In particular it holds that Ω̂(ϑ◦) = T−1
PT

t=1 ε
◦
t ε
◦0
t .

B.2 The unrestricted model: Variance estimator

In the following an expression for the variance estimator in the unrestricted model M
is derived. Some notation is needed. Introduce the vectors

U◦ρ,t−1 =
n¡

β◦0ρ∆1Xt−1
¢0
,
¡
∆1∆ρ◦Xt−1

¢0
, . . . ,

¡
∆1∆ρ◦Xt−k+2

¢0o0
,

W ◦
t−1 = β◦0ρ⊥∆1Xt−1, (B.5)

and define the residuals

R0,t =
¡
∆1∆ρ◦Xt

¯̄
U◦ρ,t−1,W

◦
t−1, 1

¢
, R1,t =

¡
∆ρ◦Xt−1

¯̄
U◦ρ,t−1,W

◦
t−1, 1

¢
.
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Due to the innovation equation (B.4) these are linked by

Rε,t =
¡
ε◦t
¯̄
U◦ρ,t−1,W

◦
t−1, 1

¢
= R0,t − α◦1β

∗◦0
1 R1,t. (B.6)

The following result then holds.

Lemma B.1 Consider the unrestricted model M and a process satisfying (B.4) and
hence the restricted model H. Then the maximum likelihood estimator for Ω satisfies

T Ω̂M =
TP
t=1

n
Rε,t +

³
α◦1β

∗◦0
1 − α̂M1 β̂

∗M0
1

´
R1,t

o⊗2
,

where α̂M1 , β̂
∗M
1 are maximum likelihood estimators for α1, β

∗
1 in the model M. In

particular, α̂M1 , β̂
∗M
1 are obtained by reduced rank regression of R0,t on R1,t.

Proof of Lemma B.1. The model equation (B.1) is a reduced rank regression
equation. The profile likelihood for (α1, β

∗
1) = {α/(1− ρ◦), β

∗} is therefore found by
eliminating Γ1, . . . ,Γk−1, µ by partial regression,

Ω̂M(α, β
∗) = min

Γ1,...,Γk−1,µ
Ω̂ (ϑ) = T−1

TP
t=1

³
R̃0,t − α1β

∗0
1 R̃1,t

´⊗2
,

where, following the notation of Johansen (1996, §6), R̃0,t and R̃1,t are the residuals

R̃0,t = (∆1Xt |∆1Xt−1, . . . ,∆1Xt−k+1, 1) ,

R̃1,t = {(1− ρ◦)Xt−1 |∆1Xt−1, . . . ,∆1Xt−k+1, 1} .

Using the identity (2.3) it is seen that R̃0,t = R0,t and R̃1,t = R1,t.
The profile likelihood for α1, β1 is maximised by reduced rank regression giving

unique maximum likelihood estimators α̂M1 , β̂
M∗
1 and

Ω̂M = T−1
TP
t=1

(Rε̂,t)
⊗2 where Rε̂,t = R0,t − α̂M1 β̂

∗M0
1 R1,t.

Subtracting and adding Rε,t as defined in (B.6) then gives the desired result.

B.3 The restricted model: Variance estimator

In the following an expression for the variance estimator is derived for the restricted
model H where βρ = β◦ρ.
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Recall the parameter τ⊥ = Ψρβ
◦
ρ⊥ with orthogonal complement τ = (Ip−τ⊥τ 0⊥)αρ.

Two random versions of τ⊥ as well as a random version of α1 are needed:

τ̂⊥ = Ψ̂ρβ
◦
ρ⊥ τ̆⊥ = Ψ̆ρβ

◦
ρ⊥, ᾰ1 =

1− ρ◦
1− ρ̂

α◦1 (B.7)

defined in terms of the quantities

Ψ̂ρ = I +
Π̂1
1− ρ̂

−
k−2P
j=1

ρ̂−jΦ̂j, Ψ̆ρ = I +
Π◦1
1− ρ

−
k−2P
j=1

ρ−jΦ◦j . (B.8)

Moreover, introduce the vector

Uρ̂,t−1 =
n¡

β◦0ρ∆1Xt−1
¢0
, (∆1∆ρ̂Xt−1)

0 , . . . , (∆1∆ρ̂Xt−k+2)
0
o0
,

and define the residuals

RH0,t = (∆1∆ρ̂Xt |Uρ̂,t−1, 1) , RH1,t =
¡
∆ρ̂X

∗
t−1 |Uρ̂,t−1, 1

¢
.

A result like Lemma B.1 for the restricted model H can now be stated.

Lemma B.2 Consider the restricted model H and a process satisfying (B.4). Then

T Ω̂H =
TP
t=1

n
Rε,t +

³
α◦1β

∗◦0
1 − α̂H1 β̂

∗H0
1

´
R1,t

o⊗2
+

"
Ω̂Hτ̂

H(τ̆H0Ω̂Hτ̂
H)−1τ̆H0

TP
t=1

ε̂Ht W
◦
t−1

½
TP
t=1

¡
W ◦

t−1
¢2¾−1/2#⊗2

,

where α̂H1 , β̂
∗H
1 , τ̂H and ε̂Ht are maximum likelihood estimators and residuals. In par-

ticular, α̂H1 , β̂
∗H
1 are obtained by reduced rank regression of RH0,t on RH1,t.

Proof of Lemma B.2. The profile likelihood for ρ, α1, β
∗
1 is given in terms of

Ω̂H(ρ, α, β
∗) = min

α 1,Φ1,...,Φk−2,µ
Ω̂ (ϑ) = T−1

TP
t=1

³
RH,ρ0,t − α1β

∗0
1 R

H,ρ
1,t

´⊗2
,

where the profile residuals depend on ρ and are given by

RH,ρ0,t = (∆1∆ρXt |Uρ,t−1, 1) , RH,ρ1,t =
¡
∆ρX

∗
t−1 |Uρ,t−1, 1

¢
.

Once again, profile estimates for α1, β∗1 given ρ are found by reduced rank regression

of RH,ρ0,t on RH,ρ1,t giving estimators α̂
H,ρ
1 , β̂

∗H,ρ
1 and

Ω̂H(ρ) = T−1
TP
t=1

³
ε̂H,ρt

´⊗2
where ε̂H,ρt = RH,ρ0,t − α̂H,ρ1 β̂

∗H,ρ0
1 RH,ρ1,t .
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Minimising the determinant of Ω̂H(ρ) with respect to ρ gives maximum likelihood

estimators ρ̂, α̂H1 , β̂
∗H
1 and Ω̂H = T−1

PT
t=1

¡
ε̂Ht
¢⊗2

where ε̂Ht can be written

ε̂Ht = RH0,t − α̂H1 β̂
∗H0
1 RH1,t =

³
RH0,t

¯̄̄
β̂
∗H0
1 RH1,t

´
=
³
∆1∆ρ̂Xt

¯̄̄
β̂
∗H0
1 ∆ρ̂X

∗
t−1, Uρ̂,t−1, 1

´
.

The residuals of the restricted and unrestricted model are related through partial
regression. Since Uρ̂,t,W

◦
t−1 and U◦ρ,t−1,W

◦
t−1 span the same space it holds

R0,t =
¡
RH0,t

¯̄
W ◦

t−1
¢
, R1,t =

¡
RH1,t

¯̄
W ◦

t−1
¢
.

Using partial regression on W ◦
t−1 the variance estimator therefore satisfies

T Ω̂H =
TP
t=1

¡
ε̂Ht
¯̄
W ◦

t−1
¢⊗2

+
TP
t=1

ε̂Ht W
◦
t−1

½
TP
t=1

¡
W ◦

t−1
¢2¾−1 TP

t=1

W ◦
t−1ε̂

H0
t . (B.9)

The first term in (B.9) resembles the expression in Lemma B.1 in that

TP
t=1

¡
ε̂Ht
¯̄
W ◦

t−1
¢⊗2

=
TP
t=1

n
Rε,t +

³
α◦1β

∗◦0
1 − α̂H1 β̂

∗H0
1

´
R1,t

o⊗2
.

For the second term in (B.9), it is first argued that(
∆1Xt−1 − Π̂∗1

µ
Xt−2
t

¶
−

k−2P
j=1

Γ̂j∆1Xt−j−1

¯̄̄̄
¯ β̂∗H01 ∆ρ̂X

∗
t−1, Uρ̂,t−1, 1

)
= τ̂⊥

³
W ◦

t−1
¯̄
β̂
∗H0
1 ∆ρ̂X

∗
t−1, Uρ̂,t−1, 1

´
. (B.10)

The three components in the regressand are rewritten one by one. First, noting that
Ip = β

◦
ρ⊥β

◦0
ρ⊥ + β

◦
ρβ
◦0
ρ it holds³

∆1Xt−1

¯̄̄
β̂
∗H0
1 ∆ρ̂X

∗
t−1, Uρ̂,t−1, 1

´
= β

◦
ρ⊥

³
W ◦

t−1

¯̄̄
β̂
∗H0
1 ∆ρ̂X

∗
t−1, Uρ̂,t−1, 1

´
.

Secondly, by the identity

(1− ρ̂)

µ
Xt−2
t

¶
= ∆ρ̂X

∗
t−1 −

µ
∆1Xt−1
0

¶
it holds½

Π̂∗1

µ
Xt−2
t

¶¯̄̄̄
β̂
∗H0
1 ∆ρ̂X

∗
t−1, Uρ̂,t−1, 1

¾
= Π̂1β

◦
ρ⊥

³
W ◦

t−1

¯̄̄
β̂
∗H0
1 ∆ρ̂X

∗
t−1, Uρ̂,t−1, 1

´
.
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Thirdly, use (2.4) for a similar substitution in the third term.
Returning to the second term in in (B.9) consider the likelihood equation for ρ.

Following the approach of Johansen (1996, p.182) this is

0 = tr

"
Ω̂−1

TP
t=1

ε̂Ht

(
∆1Xt−1 − Π̂∗1

µ
Xt−2
t

¶
−

k−2P
j=1

Γ̂j∆1Xt−j−1

)0#
.

Due to the identity (B.10) this reduces to

0 = tr

½
Ω̂−1H

TP
t=1

ε̂Ht
¡
τ̂⊥W

◦
t−1
¢0¾

= τ̂H0⊥ Ω̂
−1
H

TP
t=1

ε̂Ht W
◦
t−1, (B.11)

and so, by the identity Ip = Ωτ̂(τ̆ 0Ωτ̂)−1τ̆ 0+τ̆⊥(τ̂
0
⊥Ω

−1τ̆⊥)
−1τ̂ 0⊥Ω

−1 it holds, as desired,

TP
t=1

ε̂Ht W
◦
t−1 = Ω̂Hτ̂

H(τ̆H0Ω̂Hτ̂
H)−1τ̆H0

TP
t=1

ε̂Ht W
◦
t−1.

B.4 The restricted model: The residuals

The residuals are more difficult to handle in the restricted model H than in the
unrestricted modelM. In the following an expression akin to (B.6) is therefore derived.
Sub-sequently this is used for deriving an analytic expression for ρ̂.

Lemma B.3 Recall τ̆⊥, ᾰ1 defined in (B.7) . It holds that

RH0,t =
©
ε◦t + ᾰ1β

∗◦0
1 ∆ρ̂X

∗
t−1 + (ρ◦ − ρ̂) τ̆⊥β

◦0
ρ⊥∆1Xt−1

¯̄
Uρ̂,t−1, 1

ª
.

Defining RHε,t = (ε
◦
t |Uρ̂,t−1, 1) it follows that

RH0,t = RHε,t + ᾰ1β
∗◦0
1 RH1,t + (ρ◦ − ρ̂) τ̆⊥

¡
W ◦

t−1|Uρ̂,t−1, 1
¢
.

Proof of Lemma B.3. Note first the identities

(1− ρ◦)∆ρX
∗
t−1 = (1− ρ)∆ρ◦X

∗
t−1 + (ρ− ρ◦)

µ
∆1Xt−1
0

¶
, (B.12)

∆1∆ρXt−j = ∆1∆ρ◦Xt−j + (ρ◦ − ρ)∆1Xt−j−1 (B.13)

∆1Xt−j−1 = ρ−j◦

µ
∆1Xt−1 −

jP
l=1

ρl−1◦ ∆1∆ρ◦Xt−l

¶
. (B.14)

Now, rewrite the regressand ∆1∆ρ̂Xt of RH0,t using (B.13) as

∆1∆ρ̂Xt = ∆1∆ρ◦Xt + (ρ◦ − ρ̂)∆1Xt−1.
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Then substitute ∆1∆ρ◦Xt using the equation (B.4) to arrive at

∆1∆ρ̂Xt = ε◦t + α◦1β
∗◦0
1 ∆ρ◦Xt−1 + α◦ρβ

◦0
ρ∆1Xt−1

+
k−2X
j=1

Φ◦j∆1∆ρ◦Xt−j + (ρ◦ − ρ̂)∆1Xt−1 + µ◦. (B.15)

Finally, substitute the terms ∆ρ◦Xt−1 and ∆1∆ρ◦Xt−j using (B.12)-(B.14) to get

∆1∆ρ̂Xt = ε◦t +
1− ρ◦
1− ρ̂

α◦1β
∗◦0
1 ∆ρ̂X

∗
t−1 + (ρ◦ − ρ̂) Ψ̆ρ̂∆1Xt−1

+(ρ◦ − ρ̂)
k−2X
j=1

Φ◦j

jX
l=1

ρ̂l−1∆1∆ρ̂Xt−l + µ◦.

The expression for RH0,t follows since the regression on Uρ̂,t−1 eliminates the constant
and the ∆1∆ρ̂Xt−l terms.

An analytic expression for the maximum likelihood estimator ρ̂ in the restricted
model H can now be found. This looks at bit tedious at present, but will be rather
helpful for the asymptotic analysis.
Introduce the notation dcorr(xt, yt) = (

PT
t=1 x

⊗2
t )

−1/2PT
t=1 xty

0
t(
PT

t=1 y
⊗2
t )

−1/2 as
well as bm(xt) =PT

t=1 x
⊗2
t and define

Cε◦t ,W
◦
t−1

= dcorr³ε◦t ,W ◦
t−1

¯̄̄
β̂
∗H0
1 RH1,t

´
,

C
ε◦t ,β̂

∗H0
1⊥RH1,t

= dcorr³ε◦t , β̂∗H01⊥R
H
1,t

¯̄̄
β̂
∗H0
1 RH1,t

´
,

C
β̂
∗H0
1⊥RH1,t,W

◦
t−1

= dcorr³β̂∗H01⊥R
H
1,t,W

◦
t−1

¯̄̄
β̂
∗H0
1 RH1,t

´
,

MW◦
t−1
= bm³W ◦

t−1

¯̄̄
β̂
∗H0
1 RH1,t

´
, Mε◦t = bm³ε◦t ¯̄̄β̂∗H01 RH1,t

´⊗2
.

Lemma B.4 In the model H the maximum likelihood estimator for ρ satisfies³
τ̂H0⊥ Ω̂

−1
H τ̆⊥

´
(ρ̂− ρ◦)M

−1/2
W◦
t−1
= τ̂H0⊥ Ω̂

−1
H Mε◦t

1/2Cε◦t ,W
◦
t−1

−τ̂H0⊥ Ω̂−1H ᾰ1
³
α̂H01 Ω̂

−1
H ᾰ1

´−1
α̂H01 Ω̂

−1
H M

1/2
ε◦t

C
ε◦t ,β̂

∗H0
1⊥RH1,t

C
β̂
∗H0
1⊥RH1,t,W

◦
t−1

−τ̂H0⊥ Ω̂−1H ᾰ1

³
α̂H01 Ω̂

−1
H ᾰ1

´−1
α̂H01 Ω̂

−1
H τ̆⊥ (ρ◦ − ρ̂)M

1/2
W◦
t−1

C 0
β̂
∗H0
1⊥RH1,t,W

◦
t−1

C
β̂
∗H0
1⊥RH1,t,W

◦
t−1

.
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Proof of Lemma B.4. The likelihood equation for ρ̂ in (B.11) is

0 = τ̂H0⊥ Ω̂
−1
H

TP
t=1

ε̂Ht W
◦
t−1.

Following Johansen (1995, p.182) the likelihood equation for β∗1 is

0 = α̂H01 Ω̂
−1
H

TP
t=1

ε̂Ht
¡
∆ρ̂X

∗
t−1
¢0
.

Post-multiplying this expression with β̂
∗H
1⊥ and using ε̂

H
t = (R

H
0,t|β̂

∗H0
1 RH1,t) this implies

0 = α̂H01 Ω̂
−1
H

TP
t=1

ε̂Ht

³
β̂
∗H0
1⊥R

H
1,t

´0
.

Now, replace RH0,t occuring in ε̂Ht by the expression found in Lemma B.3 to get

0 = τ̂H0⊥ Ω̂
−1
H

TP
t=1

n
ε◦t + ᾰ1β

∗◦0
1 RH1,t + (ρ◦ − ρ̂) τ̆⊥W

◦
t−1

¯̄̄
β̂
∗H0
1 RH1,t

o
W ◦

t−1,

0 = α̂H01 Ω̂
−1
H

TP
t=1

n
ε◦t + ᾰ1β

∗◦0
1 RH1,t + (ρ◦ − ρ̂) τ̆⊥W

◦
t−1

¯̄̄
β̂
∗H0
1 RH1,t

o³
β̂
∗H0
1⊥R

H
1,t

´0
.

In both equations, post-multiply β∗◦01 by Ip+1 = β̂
∗H
1⊥β̂

∗H0
1⊥ + β̂

∗H
1 β̂

∗H0
1 , noting that the

term β̂
∗H0
1 RH1,t disappears by regression. Solve the first equation for (ρ◦ − ρ̂) and the

second for β∗◦01 β̂
∗H
1⊥ to get³

τ̂H0⊥ Ω̂
−1
H τ̆⊥

´
(ρ̂− ρ◦)

TP
t=1

³
W ◦

t−1

¯̄̄
β̂
∗H0
1 RH1,t

´2
= τ̂H0⊥ Ω̂

−1
H

TP
t=1

½
ε◦t + ᾰ1

µ
β∗◦01 β̂

∗H
1⊥

¶
β̂
∗H0
1⊥R

H
1,t

¯̄̄
β̂
∗H0
1 RH1,t

¾
W ◦

t−1,³
α̂H01 Ω̂

−1
H ᾰ1

´µ
−β∗◦01 β̂

∗H
1⊥

¶
TP
t=1

n
β̂
∗H0
1⊥R

H
1,t

¯̄̄
β̂
∗H0
1 RH1,t

o⊗2
= α̂H01 Ω̂

−1
H

TP
t=1

n
ε◦t + (ρ◦ − ρ̂) τ̆⊥W

◦
t−1

¯̄̄
β̂
∗H0
1 RH1,t

o³
β̂
∗H0
1⊥R

H
1,t

´
.

Insert the second expression in the first to get the desired expression.
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B.5 The restricted model: A reparametrisation

For the unrestricted model M the analytic expressions for the estimators can be given
directly. For the restricted model H, however, the estimators are expressed in terms
of the estimator for the explosive root ρ, for which no analytic expression is available.
In the following a reparametrisation of the model is therefore suggested which will
facilitate the asymptotic analysis of ρ̂.

Lemma B.5 Suppose βρ is identified by β
0
ρβ
◦
ρ = Ip−1 while β∗1 satisfies (3.2). Let

Ψρ◦ = I +
Π1
1− ρ◦

−
k−2P
j=1

ρ−j◦ Φj,

and define θ = (θUρ , θ
U
1 , θ

U
ρ,1, . . . , θ

U
ρ,k−2, θ

V , θW , θµ) where

θUρ = α◦ρ − αρ + (ρ◦ − ρ)Ψρ◦β
◦
ρ,

θU1 = α◦1 −
1− ρ

1− ρ◦
α1,

θUρ,j = Φ◦j −
ρ

ρ◦
Φj + (ρ◦ − ρ)

k−2P
m=j+1

Φmρ
j−1−m
◦ ,

θV = − 1− ρ

1− ρ◦
Π∗1β

∗◦
1⊥,

θW = −αρβ
0
ρβ
◦
ρ⊥ + (ρ◦ − ρ)Ψρ◦β

◦
ρ⊥,

θµ = µ◦ − µ.

Then the error term satisfies εϑ,t = ε◦t + θS◦t−1. Note the identity

k−2P
j=1

ρ−jθUρ,j =
k−2P
j=1

ρ−jΦ◦j −
k−2P
j=1

ρ−j◦ Φj. (B.16)

Proof of Lemma B.5. Consider the error equation (B.1). Replace ∆1∆ρXt,
∆ρX

∗
t−1, ∆1∆ρXt−j by the expressions (B.15), (B.12) and (B.13)-(B.14) to get

εϑ,t = ε◦t +
¡
Π◦ρ −Πρ

¢
∆1Xt−1 +

µ
Π◦∗1 −

1− ρ

1− ρ◦
Π∗1

¶
∆ρ◦X

∗
t−1

+
k−2P
j=1

Ã
Φ◦j − Φj + (ρ◦ − ρ)

k−2P
m=j

Φmρ
j−1−m
◦

!
∆1∆ρ◦Xt−j

+(µ◦ − µ) + (ρ◦ − ρ)

Ã
Ip +

Π1
1− ρ◦

−
k−2P
j=1

Φjρ
−j
◦

!
∆1Xt−1.
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Now, pre-multiply ∆1Xt−1 with the identity Ip = β
◦
ρβ
◦0
ρ + β

◦
ρ⊥β

◦0
ρ⊥ and ∆ρ◦X

∗
t−1 with

the identity Ip+1 = β
∗◦
1 β

∗◦0
1 + β

∗◦
1⊥β

∗◦0
1⊥, and use the identification in (3.2).

The identity (B.16) follows by straight forward inspection.

The matrix Ψ̆ρ introduced in (B.8) is non-zero in the following sense.

Lemma B.6 Suppose Assumption 2.1 is satisfied. Let k = 2. It then holds

(1− ρ)Ψ̆ρβ
◦
ρ⊥ 6= 0 for all ρ > 1.

In particular it holds that a c > 0 exists so for all ρ ≥ 1 then¯̄̄
Ψ̆ρβ

◦
ρ⊥

¯̄̄
≥ c

Proof. Consider the companion form xt = A◦xt−1 + e
◦
t , where

xt =

⎛⎜⎜⎜⎝
β◦0ρ∆1Xt

∆ρ◦Xt
...

∆ρ◦Xt−k+2

⎞⎟⎟⎟⎠ , e◦t =

⎛⎝ β◦0ρ
Ip
0

⎞⎠ ε◦t ,

and A◦ is the matrix⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ◦I + β◦0ρ α
◦
ρ β◦0ρ (Π

◦
1 + Φ◦1) β◦0ρ (Φ

◦
2 − Φ◦1) · · · β◦0ρ

¡
Φ◦k−2 − Φ◦k−3

¢
−β◦0ρ Φ◦k−2

α◦ρ I +Π◦1 + Φ◦1 Φ◦2 − Φ◦1 · · · Φ◦k−2 − Φ◦k−3 −Φ◦k−2
I

. . .
. . .

I

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

Due to Theorem 2.2 the eigenvalues of the companion matrix A◦ are bounded by one
in absolute value, |eigen(A◦)| ≤ 1. This in turn implies that

|eigen(ρI −A◦)| ≥ ρ− 1 > 0 for ρ > 1.

Partition the matrix ρI−A◦ as a (2×2) block matrix with a (2p−1)-dimensional upper
left block. The rule for determinants of partitioned matrices implies invertibility of"

(ρ− ρ◦) I − β◦0ρ α
◦
ρ −β◦0ρ

n
Π◦1 +

Pk−2
j=1 (ρ− 1) ρ−jΦ◦1

o
−α◦ρ (ρ− 1) I −Π◦1 −

Pk−2
j=1 (ρ− 1) ρ−jΦ◦1

#
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Now, assume the first of the stated results does not hold. Then

(ρ− 1) Ψ̆ρ = ηβ◦0ρ for some η ∈ Rp×(p−1).

This in turn implies that the companion matrix satisfies

ρI −A◦ =

½µ
(ρ− ρ◦) I − β◦0ρ α

◦
ρ

−α◦ρ

¶
,

µ
β◦0ρ η − (ρ− 1) Ip−1

η

¶
β◦0ρ

¾
which is a reduced rank matrix contradicting that ρI −A◦ is invertible.
The second result is proved by looking at four different special cases. (i) When ρ

belongs to any compact set so ρ > 1 then both Ψ̆ρβ
◦
ρ⊥ and 1 − ρ have outcomes in

compact sets not including zero due to the first result. (ii) For large ρ then Ψ̆ρβ
◦
ρ⊥

converges to β
◦
ρ⊥. (iii) For ρ approaching 1 and β

◦0
1 β

◦
ρ⊥ 6= 0 then Ψ̆ρβ

◦
ρ⊥ has an infinite

asymptote. (iv) For β◦01 β
◦
ρ⊥ = 0 it suffices to argue that ρmin can be chosen so close

to one that Ψ̆ρβ
◦
ρ⊥ has no zero points for 1 ≤ ρ ≤ ρmin. Now, the vector polynomial

(I−
Pk−2

j=1 z
jΦ◦j)β

◦
ρ⊥ has finitely many zero points in a neighbourhood of 1. It suffices

to show that such zero points cannot fall at one. Assumption 2.1(C) implies that
Ψ◦1β

◦
1⊥ = {Ip + α◦ρβ

◦0
ρ /(ρ◦ − 1) −

Pk−2
j=1 z

jΦ◦j}β◦1⊥ is non-zero. Since β◦01 β
◦
ρ⊥ = 0 then

β◦ρ⊥ ∈ span(β◦1⊥) this implies that

Ψ◦1β
◦
ρ⊥ =

Ã
Ip +

α◦ρβ
◦0
ρ

ρ◦ − 1
−

k−2P
j=1

zjΦ◦j

!
β◦ρ⊥ =

Ã
Ip −

k−2P
j=1

zjΦ◦j

!
β◦ρ⊥

is non-zero as desired.

C Asymptotic analysis

In this appendix the asymptotic properties of the likelihood function are explored.
This done for a data generating process with parameters (υ◦,Ω◦) and innovations
ε◦t , see (B.4). The asymptotic theory is unusual in two ways. First, the explosive
root is unknown and it therefore has to be estimated giving a non-linear estimation
problem as that for the I(2) analysis considered by Johansen (1997). Secondly, because
of the explosive characteristic roots the usual asymptotic theory for stationary and
integrated time series has to be enhanced.
This section is organised as follows. In §C.1 some general asymptotic results for

a vector autoregression are listed. These are mainly due to Lai and Wei (1985) and
adaptations by Nielsen (2005). The asymptotic theory for the unrestricted variance
estimator in model M then follows in §C.2. The consistency result for the restricted
model H of Theorem 3.3 is given in §C.3 followed by an analysis of the restricted
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variance estimator in model H in §C.4. This in turn leads to an improved consistency
rate for ρ̂ in §C.5. Finally, in §C.6 the asymptotic distribution of the test statistic
stated in Theorem 3.4 is derived.

C.1 Asymptotic results for vector autoregressive processes

In the following the data generating process is defined and asymptotic results of Lai
and Wei (1985) as modified by Nielsen (2005) are reported.
It is convenient to introduce the notation.

U◦t−1 = {(∆1Xt−1)
0 β◦ρ, (∆ρ◦X

∗
t−1)

0β∗◦1 , (∆1∆ρ◦Xt−1)
0, . . . , (∆1∆ρ◦Xt−k+2)

0}0, (C.1)

V ◦t = β∗◦01⊥∆ρ◦X
∗
t , W ◦

t = β◦0ρ⊥∆1Xt, (C.2)

where W ◦
t was also introduced in (B.5). According to the Granger-Johansen repre-

sentation in theorem 2.2 the process U◦t can be given a stationary initial distribution
while V ◦t andW

◦
t are the common trends of random-walk and of explosive behaviour,

respectively. The companion vectors for the process Xt can then be wirtten as

S◦t = (U
◦0
t , V

◦0
t ,W ◦0

t , 1)
0, (C.3)

which satisfies a first order autoregressive equation.
The following Lemma summarises the asymptotic behaviour of product moments

of the processes ε◦t , S
◦
t−1. Recall the normalisations NV , NW given in (3.3) and define

NS = diag(IdimU , NV , NW , 1).

Lemma C.1 Consider the process Xt given by (B.4) and suppose Assumptions 2.1,
3.1, 3.2 are satisfied. Let ξ, η be constants satisfying ξ < γ/(1+γ) and η > 0, recalling
the definition of γ in Assumption 3.1.
Define sample variances cvar(xt) = T−1

PT
t=1 xtx

0
t. Then

(i ) cvar(ε◦t ) a.s.= Ω◦ + o(T
−ξ) and cvar(ε◦t |1) a.s.= Ω◦ + o(T

−ξ).
(ii ) cvar(Ut−1|1) a.s.→ ΣU > 0.

(iii ) ρ−2T◦ Tcvar(Wt−1|1) a.s.→ ΣW

a.s.
> 0.

(iv ) cvar(NV Vt−1|1) D→ ΣV

a.s.
> 0.

(v ) cvar (NSSt−1)
D→ ΣS

a.s.
> 0.

The matrices ΣW ,ΣV ,ΣS are stochastic, while Ω◦,ΣU are deterministic. The sample
variance of the joint process S also satisfies

(vi ) max eigen(
PT

t=1 St−1St−1)
0 a.s.= O(ρ2T◦ ).
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Define sample correlations dcorr(xt, yt) = (PT
t=1 x

⊗2
t )

−1/2PT
t=1 xty

0
t(
PT

t=1 y
⊗2
t )

−1/2, so

(vii ) dcorr(St−1, εt) a.s.= o(T−ξ/2).
(viii ) dcorr{(U 0

t−1, V
0
t−1, 1)

0, εt} a.s.
= o(T η−1/2).

(ix ) dcorr(Wt−1, 1)
a.s.
= O(T−1/2).

(x ) dcorr(Ut−1,Wt−1|1) a.s.= o(T−ξ/2).
(xi ) dcorr(Vt−1,Wt−1|1) a.s.= o(1) = OP(T

−1/2).
(xii ) dcorr(Ut−1, Vt−1|1) a.s.= o(T−ξ/2) = oP(T

η−1/2).

In addition it holds jointly for some stochastic matrices ΣV ε,ΣV U that

(xiii ) T−1/2
PT

t=1NV (V
◦
t−1|1)ε◦0t

D→ ΣV ε.

(xiv ) T−1/2
PT

t=1NV (V
◦
t−1|1)U◦0t−1

D→ ΣV U .

Proof of Lemma C.1. Most of the results follow from Nielsen (2005), noting
that the definition of St is slightly different from here.
(i): Corollary 2.6. (ii): Example 6.6. (iii): Corollary 7.2 and Theorem 9.1. (vi):

Theorem 7.1. (vii),(viii): Theorem 2.4 and Corollary 2.6. (ix): Theorem 9.1. (x):
Table 2. (xi): Theorem 9.2, Remark 9.3 and (ix). (xii): Example 6.6 and Theorem
9.4. The results (iv), (xiii) can be proved using the techniques of Chan and Wei
(1988). For (xiv) see also Johansen (1995, §B).

C.2 Asymptotic theory for the unrestricted variance estimator

The expression for the unrestricted variance estimator ΩM is analysed asymptoti-
cally. For the sake of discussing the log likelihood ratio test statistic LR it suffices to

show consistency for the estimators bαM
1 , bβ∗M1 . These are reduced rank estimators, so

consistency can be shown along the lines of Johansen (1995, §13).

Lemma C.2 Consider the maximum likelihood estimators in the unrestricted model
M identified by (3.2). Consider processes Xt satisfying (B.4) and hence also H and
suppose Assumptions 2.1, 3.1, 3.2 are satisfied. Then, for some positive definite
matrix Σββ and some random matrices Σβε,ΣV ε, it holds

Ω̂M
P→ Ω◦, T 1/2

¡
α̂M1 − α◦1

¢
= ΣεβΣ

−1
ββ + oP (1) ,

T 1/2N−1
V β

∗◦0
1⊥β̂

∗M
1 = Σ−1V ΣV ε + oP (1) .

First a result like Lemma 10.3 of Johansen (1995) is needed.
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Lemma C.3 Consider the process Xt given by (B.4) and suppose Assumptions 2.1,
3.1, 3.2 are satisfied. Then,

1

T

TX
t=1

µ
β∗◦01 R1,t
R0,t

¶⊗2
P→

µ
Σββ Σββα

◦0
1

α◦1Σββ Ω◦ + α◦1Σββα
◦0
1

¶
,

1

T

TX
t=1

(NV β
∗◦0
1⊥R1,t)

⊗2 D→ ΣV ,

1

T 1/2

TX
t=1

(NV β
∗◦0
1⊥R1,t) ε

0
t

D→ ΣV ε,

1

T 1/2

TX
t=1

(NV β
∗◦0
1⊥R1,t)R

0
1,tβ

∗◦
1 = OP (1) .

Proof of Lemma C.3. It is first argued, with ξ defined in Lemma C.1, that

M◦ =
1

T

TX
t=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ
β∗◦01 ∆ρ◦X

∗
t−1

U◦ρ,t−1

¶
NV β

∗◦0
1⊥∆ρ◦X

∗
t−1

ε◦t
NWW ◦

t−1

¯̄̄̄
¯̄̄̄
¯̄ 1
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⊗2

= (C.4)

⎡⎢⎢⎣
ΣU + oP (1) OP

¡
T−1/2

¢
oP
¡
T−ξ/2

¢
oP (1)

ΣV + oP (1) T−1/2 {ΣV ε + oP (1)} OP
¡
T−1/2

¢
Ω◦ + oP (1) T−1/2 {ΣWε + oP (1)}

ΣW + oP (1)

⎤⎥⎥⎦ ,
where ΣWε = ρ−T◦

PT
t=1 ε

◦
tW

◦
t−1. This result arises using the following matrix of items

from Lemma C.1 ⎧⎪⎪⎨⎪⎪⎩
(ii) (xiv) (vii) (x)

(iv) (xiii) (xi)
(i) (ix)

(iii,ix)

⎫⎪⎪⎬⎪⎪⎭
Partialling out U◦ρ,t−1,W

◦
t−1 shows that

1

T

TX
t=1

⎛⎝ β∗◦01 R1,t
NV β

∗◦0
1⊥R1,t
Rε,t

⎞⎠⊗2 =
⎡⎣ Σββ + oP (1) OP

¡
T−1/2

¢
oP
¡
T−ξ/2

¢
ΣV + oP (1) T−1/2 {ΣV ε + oP (1)}

Ω◦ + oP (1)

⎤⎦ .
The desired result then follows by noting that R0,t = α◦1β

∗◦0
1 R1,t +Rε,t, see (B.6).
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The asymptotic theory for cointegration analysis can now be derived exactly as in
§10-13 of Johansen (1995), replacing his Lemma 10.3 by the above Lemma C.3.

Proof of Lemma C.2. Use the arguments in the proof of Lemmas 13.1 and
13.2 of Johansen (1995).

Proof of Theorem 3.5. Use the arguments in the proof of Lemma 11.1 of
Johansen (1995).

C.3 Consistency in the restricted model

The consistency of the maximum likelihood estimators in the restricted model is now
argued. The argument is given in three steps exploring the profile likelihood for ϑ
derived in §B.1 above. First, consistency is argued for Ω̂ as well as the auxillary
parameter θ defined in §B.5. Secondly, the consistency of ρ̂ as stated in Theorem 3.3
is proved. Finally, the consistency of the remaining parameters is proved.

Lemma C.4 Consider the model given by the regression equation εθ,t = ε◦t +θS◦t−1 as
outlined in Lemma B.5, where θ,Ω vary freely, so θ ∈ Rp×dimS and Ω is positive def-
inite. Then the maximum likelihood estimator for θ,Ω exists with probability tending
to one, and satisfies θ̂N−1

S
P→ 0.

Note that this proves Theorem 3.3(i) , as µ = θµ.

Proof of Lemma C.4. As outlined in §B.1 the level curves of the likelihood
function are given by det{Ω̂ (θ)} where T Ω̂ (θ) =

PT
t=1 ε

⊗2
θ,t . Partial regression then

implies that

T Ω̂ (θ) =
TX
t=1

¡
εθ,t|S◦t−1

¢⊗2
+

TX
t=1

εθ,tS
◦0
t−1

(
TX
t=1

¡
S◦t−1

¢⊗2)−1 TX
t=1

S◦t−1ε
0
θ,t.

According to Lemma C.1,i,v,vii it holds

T−1
TX
t=1

¡
εθ,t|S◦t−1

¢⊗2 P→ Ω◦,

T−1/2
TX
t=1

ε◦tS
◦
t−1

(
TX
t=1

¡
S◦t−1

¢⊗2)−1/2 P→ 0,

T−1
TX
t=1

¡
NSS

◦
t−1
¢⊗2 D→ ΣS

a.s.
> 0.
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The level curves then satisfy

T Ω̂ (θ) = Ω◦ + oP (1) +
n
oP (1) + θN−1

S Σ
1/2
S

on
oP (1) + θN−1

S Σ
1/2
S

o0
.

Thus for any parameter value θ and any constant ζ > 0 so
°°θN−1

S

°° ≥ ζ then R ≥
ζ2ΣS + oP (1) , which is non-zero, positive semi-definite, and not depending on θ as
desired. Since ζ is arbitrary the consistency result follows.

The consistency result of ρ̂ can now be established.

Proof of Theorem 3.3(ii). First, the assumption of non-convergence of ρ̂ is
combined with the convergence for θ̂. On the one hand the assumption to ρ̂ implies
that there exists κ, δ > 0 so P(N−1

W |ρ̂ − ρ◦| > κ) > δ infinitely often. On the other

hand Lemma C.4 shows that θ̂N−1
S

P→ 0. Thus, for all ζ > 0 exists a sub-sequence
(T 0) so for all T 0 it holds P(ΘT 0) > δ where

ΘT 0 = (N
−1
W |ρ̂− ρ◦| > κ and |θ̂N−1

S | < ζ).

Secondly, consider outcomes in ΘT 0 . Then it holds that¯̄̄̄
¯ θ̂

W
N−1

W

(ρ̂− ρ◦)N
−1
W

¯̄̄̄
¯ =

¯̄̄̄
¯ θ̂

W

ρ̂− ρ◦

¯̄̄̄
¯ < ζ

κ
. (C.5)

Since βρ = β◦ρ under the hypothesis H then

θ̂
W

ρ̂− ρ◦
= Ψρ◦β

◦
ρ⊥ = Ψ̆ρβ

◦
ρ⊥ +

³
Ψρ◦ − Ψ̆ρ

´
β
◦
ρ⊥.

Recall that ρ belongs to a closed subset of the parameter space, hence, ρ ≥ ρmin for
some ρmin > 1. Due to Lemma B.6 the absolute value of the first term first term is
therefore bounded from below by some c > 0 not depending on ρmin. The second term
can be rewritten using the identity (B.16) as

³
Ψρ◦ − Ψ̆ρ

´
β
◦
ρ⊥ =

1

1− ρ

¡
θU1 β

◦0
ρ + θV β◦0ρ⊥

¢
−

k−2X
j=1

ρ−jθUρ,j.

Due to the consistency of the estimator for θ established in Lemma C.4 and the
inequalities |ρ|−j ≤ |ρmin|−j and |1−ρ|−1 ≤ |1−ρmin|−1 then for all η the norm of the
second term is bounded by η for large T 0. Since ζ, η are arbitrary they can be chosen
to contradict the inequality (C.5).
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The consistency of the remaining parameters can now be argued.

Proof of Theorem 3.3(iii, iv). Once ρ̂ is known the remaining estimators
can be derived from the auxillary estimator θ̂. Due to the consistency of ρ̂ and of θ̂
established in Theorem 3.3(ii) and LemmaC.4 the consistency can now be established.

Starting with α̂1 note that α̂1 = (α◦1 − θ̂
U

1 )(1 − ρ◦)/(1 − ρ̂). Since θ̂
U

1 and ρ̂ are
oP(1) then α̂1 = α◦1 + oP(1).
Similarly the consistency of Φ̂k−2, . . . , Φ̂1, Π̂

∗
1β
∗◦
1⊥, α̂ρ can be established one by one

from θ̂
U

ρ,k−2, . . . , θ̂
U

ρ,1, θ̂
V
, θ̂

U

ρ .

C.4 Asymptotic theory for the restricted variance estimator

The expression for the unrestricted variance estimator ΩH is analysed asymptotically.

Here, the consistency for the reduced rank estimators bαH1 , bβ∗H1 is shown. Once again
this is done along the lines of Johansen (1995, §13), see also Lemma C.2.

Lemma C.5 Consider the restricted model H identified by (3.2) and processes Xt

satisfying (B.4). Suppose Assumptions 2.1, 3.1, 3.2 are satisfied. Then,

Ω̂H
P→ Ω◦, T 1/2

¡
α̂H1 − α◦1

¢
= ΣεβΣ

−1
ββ + oP (1) ,

T 1/2N−1
V β

∗◦0
1⊥β̂

∗H
1 = Σ−1V VΣV ε + oP (1) .

First a result like Lemma 10.3 of Johansen (1995) and Lemma C.3 is needed.

Lemma C.6 Consider the process Xt given by (B.4) with ρ ≥ ρmin and suppose
Assumptions 2.1, 3.1, 3.2 are satisfied. Then,

1

T

TX
t=1

µ
β∗◦01 RH1,t
RH0,t

¶⊗2
P→

µ
Σββ Σββα

◦0
1

α◦1Σββ Ω◦ + α◦1Σββα
◦0
1

¶
,

1

T

TX
t=1

¡
NV β

∗◦0
1⊥R

H
1,t

¢⊗2 D→ ΣV ,

1

T 1/2

TX
t=1

¡
NV β

∗◦0
1⊥R

H
1,t

¢
ε0t

D→ ΣV ε,

1

T

TX
t=1

¡
NV β

∗◦0
1⊥R

H
1,t

¢
RH01,tβ

∗◦
1 = OP (1) .
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Proof of Lemma C.6. As in the proof of Lemma C.3 the idea is to argue that

1

T

TX
t=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ
β∗◦01 ∆ρ̂X

∗
t−1

Uρ̂,t−1

¶
NV β

∗◦0
1⊥∆ρ̂X

∗
t−1

ε◦t
NWW ◦

t−1

¯̄̄̄
¯̄̄̄
¯̄ 1
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⊗2

=M◦,

whereM◦ is defined in (C.4). To see this, note that the relations (B.12)-(B.14) imply⎛⎝ β∗◦01 ∆ρ̂X
∗
t−1

Uρ̂,t−1
NV β

∗◦0
1⊥∆ρ̂X

∗
t−1

⎞⎠ =

⎛⎝ β∗◦01 ∆ρ◦X
∗
t−1

U◦ρ,t−1
NV β

∗◦0
1⊥∆ρ◦X

∗
t−1

⎞⎠+ (ρ̂− ρ◦)

⎛⎝ QU,1

QU,ρ

NVQV

⎞⎠St−1,

for some deterministic matrices Q.
When taking sums of squares of this expression the last term can be omitted since

T−1(ρ̂−ρ◦)2
PT

t=1 S
⊗2
t−1 = oP (1) due Theorem 3.3(ii) and Lemma C.1,vi, applied with

a similar argument for the cross terms.
When considering the cross product with ε◦t the last term can likewise be ignored

since T−1(ρ̂−ρ◦)
PT

t=1 St−1ε
◦0
t = oP(T

−ξ/2) using Theorem 3.3(ii) and Lemma C.1,vii.
When considering the cross product with W ◦

t−1 the last term can also be ignored
since T−1(ρ̂− ρ◦)

PT
t=1 St−1W

◦
t−1 = oP(N

−1
W ) by Theorem 3.3(ii) and Lemma C.1,vi.

Now, partial out Uρ̂,t−1 to see that, with ξ defined in Lemma C.1, it holds

1

T

TX
t=1

⎧⎪⎪⎨⎪⎪⎩
β∗◦01 RH1,t

NV β
∗◦0
1⊥R

H
1,t

RHε,t
NW

¡
W ◦

t−1 |Uρ̂,t−1
¢
⎫⎪⎪⎬⎪⎪⎭
⊗2

=

⎡⎢⎢⎣
Σββ + oP (1) OP

¡
T−1/2

¢
oP
¡
T−ξ/2

¢
oP (1)

ΣV + oP (1) T−1/2 {ΣV ε + oP (1)} OP
¡
T−1/2

¢
Ω◦ + oP (1) oP

¡
T−ξ/2

¢
ΣW + oP (1)

⎤⎥⎥⎦ .
The result now follows by noting the link between RH0,t, R

H
1,t, R

H
ε,t established in Lemma

B.3 and using the consistency in Theorem 3.3.

The asymptotic theory for cointegration analysis can now be derived exactly as in
§10-13 of Johansen (1995), replacing his Lemma 10.3 by the above Lemma C.6.

Proof of Lemma C.5. Use the arguments in the proof of Lemmas 13.1 and
13.2 of Johansen (1995).
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C.5 Improving the rate of consistency in the restricted model

Theorem 3.3, which was proved above, shows that parameters are consistent. In
particular, it holds that ρ̂− ρ◦ = oP(N

−1
W ). This rate of consistency can be improved

by a factor of T−ξ/2, where ξ arose in Lemma C.1.

Lemma C.7 Consider the model H with ρ ≥ ρmin and suppose Assumptions 2.1, 3.1,
3.2 are satisfied. Then, for all ξ < γ/(1 + γ) it holds

ρ̂H = ρ◦ + oP(T
−ξ/2N−1

W ).

Proof of Lemma C.7. Recall the expression for ρ̂ in Lemma B.4. The desired
result follows from the consistency of the estimators established in Theorem 3.3 and
then applying following orders of magnitude

MW◦
t−1
= OP

¡
ρ2T◦
¢
, Mε◦t = OP (T ) ,

Cε◦t ,W
◦
t−1
= oP

¡
T−ξ/2

¢
, C

ε◦t ,β̂
∗H0
1⊥RH1,t

= oP
¡
T−ξ/2

¢
, C

β̂
∗H0
1⊥RH1,t,W

◦
t−1
= OP

¡
T−1/2

¢
,

following from the proof of Lemma C.6.

As a corollary the asymptotic behaviour of the leading term in the statistic H in
Theorem 3.4 can be established.

Lemma C.8 Consider the restricted model H with ρ ≥ ρmin and a process Xt given
by (B.4). Suppose Assumptions 2.1, 3.1, 3.2 are satisfied. Then,

ρ−T◦ τ̆H0
TX
t=1

ε̂Ht W
◦
t−1 = ρ−T◦ τ 0

TX
t=1

ε◦tW
◦
t−1 + oP

¡
T 1/2−ξ

¢
.

Proof of Lemma C.8. Using the identity for RH0,t established in Lemma B.3

and the projection identity Ip+1 = β̂
∗
1β̂
∗0
1 + β̂

∗
1⊥β̂

∗0
1⊥ then ε̂Ht = (R

H
0,t|β̂

∗0
1 R

H
1,t) satisfies

ε̂Ht =

½
RHε,t +

1− ρ◦
1− ρ̂

α◦1β
∗◦0
1 β̂

∗
1⊥β̂

∗0
1⊥R

H
1,t + (ρ◦ − ρ̂) τ̆H⊥W

◦
t−1

¯̄̄
β̂
∗0
1 R

H
1,t

¾
.

Due to this usage β̂
∗
1⊥ and the identification (3.2) the estimator β̂

∗
1⊥ can be chosen as

β̂
∗H
1⊥ = (Ip+1 − β

∗◦
1 β̂

∗H0
1 )β∗◦1⊥, see Johansen (1995, p.191). It then follows from Lemma

C.5 that N−1
V β

∗◦0
1⊥β̂

∗H
1 and N−1

V β̂
∗H0
1⊥ β

∗◦
1 are both OP(T

−1/2). Using in addition Theorem
3.3 it holds

τ̆H0ε̂Ht = τ̆H0
n
RHε,t +OP(T

−1/2)NV β̂
∗0
1⊥R

H
1,t

¯̄̄
β̂
∗0
1 R

H
1,t

o
.
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Moreover, it follows thatÃ
β̂
∗0
1 R

H
1,t

NV β̂
∗0
1⊥R

H
1,t

!
=

½
I OP

¡
T−1/2

¢
OP
¡
T−1/2

¢
I

¾µ
β∗◦01 RH1,t

NV β
∗◦0
1⊥R

H
1,t

¶
.

A result as that in the proof of Lemma C.6 therefore holds when β∗◦1 is estimated.
Moreover, due to the improved consistency rate for ρ̂ it follows that

1

T

TX
t=1

β∗◦01 RH1,t
¡
W ◦

t−1 |Uρ̂,t−1
¢
= oP

¡
T−ξ/2

¢
,

1

T 1/2

TX
t=1

RHε,tNW

¡
W ◦

t−1 |Uρ̂,t−1
¢
= ρ−T◦

TX
t=1

ε◦tW
◦
t−1 + oP

¡
T 1/2−ξ

¢
,

rather than just oP (1) and oP
¡
T 1/2−ξ/2

¢
, respectively. Therefore, when partialling

out Uρ̂,t−1 as well as β̂
∗0
1 R

H
1,t it holds

NW

T

TX
t=1

(
NV β̂

∗0
1⊥R

H
1,t

RHε,t

¯̄̄̄
¯ β̂∗01 RH1,t

)
W ◦

t−1 =

∙
OP
¡
T−1/2

¢
T−1/2

©
ΣWε + oP

¡
T 1/2−ξ

¢ª ¸ .
This in turn gives the desired result.

C.6 Combining the preliminary results

The asymptotic result in Theorem 3.4 can now be proved by combining the previous
results for Ω̂M and Ω̂H. Due to the following auxillary result some terms cancel out.

Lemma C.9 Suppose α̂1 and β̂
∗
1 are estimators identified by β̂

∗
1 = β∗◦1 + β∗◦1⊥β

∗◦0
1⊥β̂

∗
1

and satisfying

T 1/2 (α̂1 − α◦1) = ΣεβΣ
−1
ββ + oP (1) , T 1/2N−1

V β
∗◦0
1⊥β̂

∗
1 = Σ−1V ΣV ε + oP (1) .

Consider processes Xt satisfying (B.4) and hence also H, and suppose Assumptions
2.1,3.1,3.2 are satisfied. Then

TX
t=1

n
Rε,t +

³
α◦1β

∗◦0
1 − α̂1β̂

∗0
1

´
R1,t

o⊗2
= Q◦ + oP (1) ,

where Q◦ is some function of ε◦t , S
◦
t−1, θ

◦,Ω◦ not depending on α̂1,β̂
∗
1.
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Proof of Lemma C.9. First note, that by the identification it holds

α◦1β
∗◦0
1 − α̂1β̂

∗0
1 = − (α̂1 − α◦1)β

∗◦0
1 − α̂1β̂

∗0
1 β

∗◦
1⊥β

∗◦0
1⊥.

The asymptotic properties for α̂1 and β̂
∗
1 then imply

T 1/2
³
α◦1β

∗◦0
1 − α̂1β̂

∗0
1

´
= −

¡
ΣεβΣ

−1
βββ

∗◦0
1 + α◦1ΣεVΣ

−1
V NV β

∗◦0
1⊥
¢
{1 + oP (1)} .

The expression of interest then equals, by

TX
t=1

R⊗2ε,t −ΣεβΣ
−1
ββΣβε − α◦1ΣεVΣ

−1
V ΣV ε −ΣεVΣ

−1
V ΣV εα

◦0
1 + α◦1ΣεVΣ

−1
V ΣV εα

◦0
1 + oP (1) ,

showing that the desired result is satisfied.

Proof of Theorem 3.4. Due to the regression nature of the problem the log
likelihood ratio test statistic satisfies

LR(H|M) = −T log det(Ω̂MΩ̂−1H ) = −T log det
n
Ip − Ω̂−1H

³
Ω̂H − Ω̂M

´o
.

Lemma C.5 immediately shows that Ω̂H
P→ Ω◦. Thus, if it is argued that T (Ω̂H− Ω̂M)

converges in distribution then a Taylor expansion shows

LR(H|M) = tr
n
Ω−1◦ T

³
Ω̂H − Ω̂M

´o
+ oP (1) .

Now, combining Lemmas C.2,C.5 shows

T
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´
=
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¡
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¢2¾−1/2#⊗2

.

The first two terms cancel asymptotically by Lemma C.9. As for the last term note
that Ω̂H and τ̂H are consistent due to Theorem 3.3. By the assumption that γ > 1
Lemma C.8 shows that

TP
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ε̂Ht W
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½
TP
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The desired result follows by recognising the leading term H .
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