
Econometrics Journal (2002), volume5, pp. 1–26.

Pooling of Forecasts

DAVID F. HENDRY† , MICHAEL P. CLEMENTS††
† DEPARTMENT OFECONOMICS, UNIVERSITY OF OXFORD, OX1 1NF.

†† DEPARTMENT OFECONOMICS, UNIVERSITY OF WARWICK,
COVENTRY, CV4 7AL.

E-mail: david.hendry@economics.ox.ac.uk
E-mail: m.p.clements@warwick.ac.uk

Received: October 2001

Summary We consider forecasting using a combination, when no model coincides with
a non-constant data generation process (DGP). Practical experience suggests that combining
forecasts adds value, and can even dominate the best individual device. We show why this can
occur when forecasting models are differentially mis-specified, and is likely to occur when the
DGP is subject to deterministic shifts. Moreover, averaging may then dominate over estimated
weights in the combination. Finally, it cannot be proved that only non-encompassed devices
should be retained in the combination. Empirical and Monte Carlo illustrations confirm the
analysis.

Journal of Economic Literature classification: C32.

1. INTRODUCTION

In the third of a century since Bates and Granger (1969), the combination of individual forecasts
of the same event has frequently been found to outperform the individual forecasts, in the sense
that the combined forecast delivers a smaller mean-squared forecast error (MSFE) – seeinter
alia Diebold and Lopez (1996) and Newbold and Harvey (2001) for recent surveys, and Clemen
(1989) for an annotated bibliography. Studies such as Newbold and Granger (1974) provided
early evidence consistent with that claim. Moreover, simple rules for combining forecasts, such
as averages (i.e., equal weights), often work as well as more elaborate rules based on the relative
past performance of the forecasts to be combined: see Stock and Watson (1999) and Fildes
and Ord (2001). Nevertheless, despite some potential explanations (such as Granger (1989)),
precisely why forecast combinations should work well does not appear to be fully understood.
This paper addresses that issue.

There are a number of potential explanations. First, if two models provide partial, but incom-
pletely overlapping, explanations, then some combination of the two might do better than either
alone. In particular, if two forecasts are differentially biased (one upwards, one downwards),
it is easy to see why combining could be an improvement over either. However, it is unclear
why investigators would construct systematically biased models; and there are other solutions to
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2 David F. Hendry and Michael P. Clements

forecast biases than pooling. Moreover, it is less easy to see why a combination need improve
over the best of a group, particularly if there are some decidely poor forecasts in that group.

Secondly, in non-stationary time series, most forecasts will fail in the same direction when
forecasting over a period within which a break unexpectedly occurs. Combination is unlikely to
provide a substantial improvement over the best individual forecasts in such a setting. However,
what will occur when forecasting after a deterministic shift depends on the extent of model
mis-specification, data correlations, the size of breaks and so on, so combination may help.
Since a theory of forecasting allowing for model mis-specification interacting with intermittent
deterministic shifts has explained many other features of the empirical forecasting literature (see
Clements and Hendry (1999)), we explore the possibility that it can also account for the benefits
from pooling.

Thirdly, averaging reduces variance to the extent that separate sources of information are
used. Since we allow all models to be differentially mis-specified, such variance reduction re-
mains possible. Nevertheless, we will ignore sample estimation uncertainty below to focus on
specification issues, so any gains from averaging reducing that source of variance will be addi-
tional to those we delineate.

Next, an alternative interpretation of combination is that, relative to a ‘baseline’ forecast,
additional forecasts act like intercept corrections (ICs). It is well known that appropriate ICs
can improve forecasting performance not only if there are structural breaks, but also if there
are deterministic mis-specifications. Indeed, Clements and Hendry (1999) present eight distinct
interpretations of the role that ICs can play in forecasting, and (e.g.) interpret the cross-country
pooling in Hoogstrate, Palm, and Pfann (1996) as a specific form of IC.

Finally, pooling can also be viewed as an application of Stein–James ‘shrinkage’ estimation
(see e.g., Judge and Bock (1978)). If the unknown future value is viewed as a ‘meta-parameter’
of which all the individual forecasts are estimates, then averaging may provide a ‘better’ estimate
thereof.

Thus, we evaluate the possible benefits of combining forecasts in light of the nature of the
economic system and typical macroeconomic models thereof, to discern the properties of the
system and models – and the relationships between the two – that result in forecast combination
reducingMSFEs. In particular, given that a general theory of economic forecasting which allows
for structural breaks and mis-specified models has radically different implications from one that
assumes stationarity and well-specified models (see Clements and Hendry (1999) and Hendry
and Clements (2001a)), we explore the role of forecast combinations in the former.

Section 2 confirms that combinations of forecasts are ineffective when forecasting using the
correct conditional expectation in a weakly-stationary process. Thus, departures from ‘optimal-
ity’, due to mis-specification, mis-estimation, or non-stationarities are necessary to explain gains
from combination. Section 3 considers whether combination could deliver gains in a weakly-
stationary process when forecasting models are differentially mis-specified by using only sub-
sets of the relevant information. We show there is a range of values of the parameters of the data
generation process (DGP) where this can occur, but gains are not guaranteed. Nevertheless, the
logic of why gains ensue in such a setting points to why combination might work in general,
partly by providing ‘insurance’ against obtaining the worst forecasts. Section 4 notes alternative
ways of implementing forecast combinations, then 5 considers the role of encompassing—which
is violated by the need to pool—and discusses whether only non-encompassed models are worth
pooling. If the weights used in any combination are estimated, then they directly reflect a lack of
encompassing; however, if pre-fixed weights, such as the average, are used, encompassed models
may lower rather than raise the efficiency of the combined forecast. Section 6 extends the anal-
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Pooling of Forecasts 3

ysis to processes subject to deterministic shifts, where the combination can dominate inMSFE.
Moreover, previously encompassed models may later become dominant, so averaging across all
contenders cannot be excluded as a sensible strategy. Section 7 provides an empirical illustration
based on the data set originally used by Bates and Granger (1969), and by demonstrating the
efficacy of ICs, suggests that combination works there because of deterministic shifts of the form
underlying our theoretical approach. The Monte Carlo study of the behaviour in finite samples
of our theoretical approximations in section 8 supports their applicability in practice. Section 9
concludes.

2. FORECASTING BY THE CONDITIONAL EXPECTATION

Consider a weakly-stationaryn-dimensional stochastic process{x t} with densityDx(xt|Xt−1,θ),
which is a function of past informationXt−1 = (. . .x1 . . .xt−1) for θ ∈ Θ ⊆ Rk. Forecasts of
xT+h based on the conditional expectation given information up to periodT :

x̂T+h|T = E[xT+h | XT ], (1)

are conditionally unbiased:

E
[
xT+h − x̂T+h|T | XT

]
= E [xT+h | XT ] − E [xT+h | XT ] = 0, (2)

and no other predictor conditional on onlyXT has a smallerMSFE matrix:

M
[
x̂T+h|T | XT

]
= E

[(
xT+h − x̂T+h|T

) (
xT+h − x̂T+h|T

)′ | XT

]
. (3)

Moreover, both (2) and (3) hold for allh. Consequently, on aMSFE basis for forecasting
xT+h, the conditional expectation cannot be beaten, as is well known. However, the empirical
evidence that combination is useful clearly indicates that the above framework is inappropriate
as an analytic basis.

There are several possible explanations for the empirical outcome. First, forecastsx̃T+h|T
are used that are based on only subsets of the available informationXT . Secondly, the func-
tions of past data used to form those forecasts do not coincide with the conditional expectation.
Thirdly, parameter estimation uncertainty is sufficiently large that averaging is advantageous.
Finally, the underlying data densityDx(xt|Xt−1,θ) is not constant, in which case, the first two
mistakes are almost bound to occur as well, particularly if deterministic shifts are the source of
the non-constancy.1 The proliferation of competing forecasting methods and models is also evi-
dence for the first two potential explanations. Here, we first explore the implications of combin-
ing the forecasts from mis-specified models whenDx(·) is constant, then consider what happens
when the DGP is subject to intermittent breaks.

3. FORECASTS FROM MIS-SPECIFIED CONSTANT MODELS

To articulate our approach, we approximate the DGPD x(xt|Xt−1,θ) by the constant-parameter
first-order vector autoregression (VAR):

xt = γ + Γxt−1 + εt (4)
1We do not consider combination to offset measurement errors in preliminary data: see Gallo and Mariano (1994).
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whereεt ∼ INn [0,Ωε]. Section 6 considers the impacts of breaks due to deterministic shifts. We
focus on 1-step ahead forecasts forT + 1 from timeT purely to simplify the algebra; no issue
of principle seems involved in generalizing to multi-step forecasts. Also, we restrict attention
to forecasting the scalaryt, which is one element ofxt, and in this section, assume that, in
the absence of structural breaks,xt in (4) has been reduced to weak stationarity by appropriate
transformations. Thus, partitioningx ′

t = (x′
1,t : x′

2,t), the model determiningyt is given by:

yt = β′
1x1,t−1 + β′

2x2,t−1 + et, (5)

whereet ∼ IN
[
0, σ2

e

]
, independently ofxt−1. Since the processes are all weakly stationary,

intercepts are set to zero.
Two investigators unaware of the nature of the process in (5), fit separate models of the form:

yt = a′x1,t−1 + ut = a′wt + ut, (6)

and:
yt = b′x2,t−1 + vt = b′zt + vt. (7)

Each model is mis-specified by omitting the components which the other includes – the absence
of overlapping variables seems an inessential simplification (the switch tow t andzt is to ease
notation below, but note thatwT+1 andzT+1 are known at the forecast origin). Moreover, as we
believe the explanation for any benefits from combination derive from specification—rather than
estimation—issues, we further simplify by neglecting sampling variability in the coefficientsa
andb. The assumption that the partial models span the information set is to simplify the algebra,
and does not seem consequential: section 8 provides a Monte Carlo illustration.

It must be stressed that in such a constant-parameter framework, pooling the information will
produce the optimal forecast, as the resulting model coincides with the DGP, whereas pooling the
forecasts will not in general (but see Granger (1989) for an example). However, that implication
need not generalize to non-constant DGPs.

Let: (
wt

zt

)
=

(
φw,t

φz,t

)
+

(
ξw,t

ξz,t

)
, (8)

whereφw,t andφz,t are fixed functions of past variables, and:(
ξw,t

ξz,t

)
∼ INn

[(
0
0

)
,

(
Ωww Ωwz

Ωwz Ωzz

)]
. (9)

Our interest is in comparing the accuracy of the forecasts from the models in (6) and (7) against
that of a pooled forecast, based onMSFEs (as that is the criterion most frequently applied in
practice: but see Clements and Hendry (1993)). We setφw,t = φz,t = 0, so both dynamics and
deterministic factors are ignored, and this is known to the investigators, so intercepts and further
lags are omitted: section 8 investigates dynamics via Monte Carlo simulations.

The 1-step ahead forecast from (6) is denotedŷT+1 = âwT+1, so the forecast error is:

ûT+1 = yT+1 − ŷT+1 = (β1 − â)′ wT+1 + β′
2zT+1 + eT+1.

The corresponding forecast from (7) usesỹT+1 = b̃′zT+1 with:

ṽT+1 = yT+1 − ỹT+1 = β′
1wT+1 +

(
β2 − b̃

)′
zT+1 + eT+1.
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Neither forecast should encompass the other. Section 5 considers testing for non-encompassing
before forecast combining.

Next, we derive the conditional biases and variances of the forecast errors. First:

E [ûT+1 | wT+1, zT+1] = (β1 − E [â])′ wT+1 + β′
2zT+1,

and similarly forE [ṽT+1|wT+1, zT+1]. Let â = E [â] + δ
â
, where

E [â] = E

[(∑
wtw′

t

)−1 ∑
wtyt

]

= β1 + E

[(∑
wtw′

t

)−1 ∑
wtz′t

]
β2 = β1 + Π′

zwβ2, (10)

where:

Π′
zw = E

[(∑
wtw′

t

)−1 ∑
wtz′t

]
= Ω−1

wwΩwz,

using:
zt = Πzwwt + ηzw,t where E

[
wtη

′
zw,t

]
= 0. (11)

Notice that:
V [zt] = ΠzwV [wt]Π′

zw + V
[
ηzw,t

]
,

whereV [·] denotes a variance, so:

V
[
ηzw,t

]
= Ωηzw = Ωzz − ΩzwΩ−1

wwΩwz,

and:
V [â] = T−1σ2

eΩ
−1
ww.

Similarly:

E
[
b̃
]

= Π′
wzβ1 + β2,

where:

Π′
wz = E

[(∑
ztz′t

)−1 ∑
ztw′

t

]
= Ω−1

zz Ωzw.

Thus:

ûT+1 =
(
β1 − β1 − Π′

zwβ2 − δâ
)′

wT+1 + β′
2ΠzwwT+1 + β′

2ηzw,T+1 + eT+1

= −δ′
â
wT+1 + β′

2ηzw,T+1 + eT+1,

with:
E [ûT+1 | wT+1, zT+1] = β2ηzw,T+1.

LettingM [·] denoteMSFE:

E
[
û2

T+1 | wT+1, zT+1

]
= M [ûT+1 | wT+1, zT+1]

= w′
T+1V [â]wT+1 + σ2

e + β′
2Ωηzwβ2

� σ2
e + β′

2Ωηzwβ2
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where the final expression ignores terms ofOp

(
T−1

)
. Similarly:

ṽT+1 = −δ′
b̂
zT+1 + β′

1ηxz,T+1 + eT+1,

with:

E
[
ṽ2

T+1 | wT+1, zT+1

]
= z′T+1V

[
b̂
]
zT+1 + σ2

e + β′
1Ωηwzβ1

� σ2
e + β′

1Ωηwzβ1.

To order the outcome accuracy, we assumeE
[
û2

T+1|wT+1, zT+1

]
< E

[
v̂2

T+1|wT+1, zT+1

]
,

soβ′
2Ωηzwβ2 < β′

1Ωηwzβ1. Consequently,̂yT+1 would transpire on average to be the more
accurate forecast here: equivalent results hold for the opposite ranking.

A combined forecast is:

̂̂yT+1 = (1 − λ) ŷT+1 + λỹT+1 = ŷT+1 + λ (ỹT+1 − ŷT+1) ,

where the last expression relates pooling to intercept correction, with error:

̂̂eT+1 = (yT+1 − ŷT+1) + λ (ŷT+1 − ỹT+1) = ûT+1 + λ (ṽT+1 − ûT+1)
= −δ′

â
wT+1 + β′

2ηzw,T+1 + eT+1

+λ
(
δ′
â
wT+1 + β′

1ηwz,T+1 − β′
2ηzwx,T+1 − δ′b̂zT+1

)
,

so:
E

[̂̂eT+1 | wT+1, zT+1

]
= λβ′

1ηwz,T+1 + (1 − λ)β′
2ηzw,T+1.

Also (ignoring terms ofOp(T−1)):

E
[̂̂e2

T+1 | wT+1, zT+1

]
� σ2

e + λ2β′
1Ωηwzβ1 + (1 − λ)2 β′

2Ωηzwβ2 + 2λ (1 − λ)β′
1E

[
ηwz,T+1η

′
zw,T+1

]
β2

where:

E
[
ηwz,T+1η

′
zw,T+1

]
= E

[
(zt − Πzwwt) (wt − Πwzzt)

′]
= −ΩzzΩ−1

zz Ωzw + ΩzwΩ−1
wwΩwzΩ−1

zz Ωzw

= −Ωzw (In1 − Π′
zwΠ′

wz) .

The last line is the matrix analogue of(1 − R2
wz), and has a negative sign: intuitively, if the

regression ofzt onwt over- (under-) estimates, the reverse regression will do the opposite.
Stock and Watson (1999) find that a combination obtained by pooling forecasts across many

methods does well, using either the mean or median forecast, so we focus on the case where
λ = 0.5. Then:

M
[̂̂eT+1 | wT+1, zT+1

]
� σ2

e + 0.25
[
β′

1Ωηwzβ1 + β′
2Ωηzwβ2 − 2β′

1Ωzw (In1 − Π′
zwΠ′

wz)β2

]
, (12)

as against the smaller of the two individual forecast errors:

M [ûT+1 | wT+1, zT+1] � σ2
e + β′

2Ωηzwβ2.
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Pooling of Forecasts 7

So:
M

[̂̂eT+1 | wT+1, zT+1

]
< M [ûT+1 | wT+1, zT+1] ,

if and only if:

β′
1Ωηwzβ1 − 2β′

1Ωzw (In1 − Π′
zwΠ′

wz)β2 < 3β′
2Ωηzwβ2.

Letβ′
2Ωηzwβ2 = kβ′

1Ωηwzβ1 wherek < 1, then combination dominance requires:

(1 − 3k)β′
1Ωηwzβ1 − 2β′

1Ωzw (In1 − Π′
zwΠ′

wz)β2 < 0.

This is more likely to hold if the marginal effects ofw andz on y in the DGP are of the same
sign and ‘match’ the sign ofΩzw.

In the special case thatΩzw = 0, combination dominance requires:

1 < 3k,

so an improvement over the better individual forecast by averaging is possible within that range
(and similarly for the alternative ranking). However, the larger forecast error was:

σ2
e + β′

1Ωηwzβ1,

as against (12), so whenΩzw = 0, dominance requires:

k < 3,

which is bound to hold. Thus, averaging guarantees ‘insurance’, and may provide dominance
when the models are differentially mis-specified for a constant DGP.

3.1. Scalar case

In the scalar case whenn1 = n2 = 1, somewhat more transparent results can be obtained.
Denote the correlation betweenw andz by rwz and their variances byσ2

w andσ2
z , then domination

by the average over the best requires:

(1 − 3k)β2
1ρ − 2β1β2rwz < 0,

for ρ = σw/σz > 0 with β2
2σ2

z = kβ2
1σ2

w. Normalizing such thatβ1 = β2 = 1, thenk = 1/ρ2

soρ > 1 and dominance requires:

ρ2 − 2rwzρ − 3 < 0 subject toρ > 1.

This is bound to hold whenρ is close to unity, and also forρ < 3 whenrwz is close to+1.
Also, against the larger forecast error (again using the normalized parameter values):

3ρ2 + 2ρrwz > 1,

which must always hold even whenrwz < 0. Thus, combination—even by averaging—seems
likely to be advantageous here.
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8 David F. Hendry and Michael P. Clements

4. IMPLEMENTING FORECAST COMBINATIONS

Forecast combination can be implemented in many different ways: see Granger and Ramanathan
(1984), Diebold (1988), Wall and Correia (1989) and Coulson and Robins (1993) among others.
Potential approaches range from simple averaging to more complex schemes designed to give
optimal combination weights. In this last case, the weights are often estimated to optimize some
criterion (e.g., minimizing theMSFE of the combined forecast) on a post-model-estimation
‘training sample’ for which the realizations are available, prior to undertaking genuine out-of-
sample forecasting. Sometimes the individual models’ explanatory variables will be assumed
known, and the true values can be conditioned on, at either training or forecasting stages, or
alternatively these may themselves be forecast.

Forecasting is seldom a ‘one-off’ venture, and typically forecasts will be made at a number
of successive forecast origins. The individual models may be re-specified and/or re-estimated
at each origin, as may the combination weights – one can imagine the training window mov-
ing through the sample as the forecast origin progresses. The estimation windows may be of
fixed length so that early observations are dropped, or may expand indefinitely. The success (or
otherwise) of forecast combining is likely to depend in part on how it is implemented, so that
explanations of its efficacy will be multi-faceted. Nevertheless, given a careful articulation of the
context in which forecasting is undertaken, it should be possible to determine which factors are
likely to play a key role.2

4.1. Forecast combination as a bias correction

Suppose{ŷT+i, ỹT+i} denotes a set of forecasts over a training periodi = 1, . . . , R, whereŷT+i

is the1-step ahead forecast ofy at T + i based onT + i − 1, etc., and the parameter estimates
are based on a sample over1, . . . , T . We allow the forecasts to be biased, possibly because
they are generated from assumed constant-parameter models in the presence of structural breaks:
Granger (1989) recommends ‘unbias(ing) the component forecasts’ prior to combination. Thus,
E [yT+i − ŷT+i] �= 0 andE [yT+i − ỹT+i] �= 0 for i = 1, . . . , R, and this is reflected in non-zero
values of the corresponding sample moments. Suppose the weights are calculated to minimize
theMSFE of the combined forecast, imposing the restriction that the weights sum to unity, and
allowing for bias by including an intercept. Lettingy, ŷ andỹ denote the vectors of observations
overT + 1 to T + R, the weightα is estimated from:

y = δi + αŷ + (1 − α) ỹ + ε (13)

wherei is anR-dimensional vector of1s, or:

y − ỹ = δi + α [(y − ỹ) − (y − ŷ)] + ε.

By the Frisch–Waugh theorem (see Frisch and Waugh (1933)), one can equivalently run the
regression ofMi (y − ỹ) onMi (ỹ − ŷ) whereMi = IR − i (i′i)−1 i′:

Mi (y − ỹ) = α̂ [Mi (y − ỹ) − Mi (y − ŷ)] + ε̂.
2As an example of a possible factor, consider the early successes based on the combination of time-series models and

(largely) static economic models. The failure to model the dynamics in the latter and the absence of causal factors in the
former constituted important sources of model mis-specification.

c© Royal Economic Society 2002



Pooling of Forecasts 9

Using:

Mi (y − ỹ) = y − [
ỹ + iR−1i′ (y − ỹ)

]
= y −

[
ỹ + θ̃i

]
,

whereθ̃ is the sample estimate of the bias inỹ, andỹbc= ỹ + θ̃i is the bias-corrected forecast.
Similarly,Mi (y−ŷ) = y − ŷbc, where

ŷbc = ŷ + iR−1i′ (y − ŷ) = ŷ + θ̂i,

so:
y = α̂ŷbc + (1 − α̂) ỹbc + ε̂.

The combination forecast is

̂̂ybc,T+R+i = α̂ŷbc,T+R+i + (1 − α̂) ỹbc,T+R+i, i ≥ 1,

that is, a combination of the bias-corrected forecasts. Bias correction should account for a reduc-
tion in theMSFE, so that the appropriate benchmarks for the combined forecast should beỹ bc

andŷbc rather thañy andŷ. In practice, the combined forecast is usually only compared to the
uncorrected individual forecasts.

An alternative interpretation of the role ofδ in (13) is as an ‘intercept correction’ for the
forecast given bŷ̂ybc,T+R+i. This interpretation is clearer if we assume there is just a single
forecast̃y, so that the problem is simply to calculateδ in:

y = δi + ỹ + ε (14)

or:

y − ỹ = δi + ε

so thatδ̃ = θ̃, namely the sample estimate of the bias. Ifδ̃ > 0 because of a tendency to
under-predict, the intercept-corrected forecastsỹ bc,T+R+i = ỹT+R+i + δ̃ are revised up by that
amount.

5. THE ROLE OF ENCOMPASSING

When fixed weights are used (as in an average), it is easy to illustrate a case where only non-
encompassed models are worth pooling. In particular, when (5) is one of the forecasting equa-
tions, averaging with any subset model or models will produce systematically poorer forecasts.
This should hold more generally for weakly-stationary processes—since all other forecasts are
then inferentially redundant—and suggests testing for forecast encompassing prior to averaging:
see Harvey, Leybourne, and Newbold (1998) and Diebold (1989), who relate encompassing to
forecast combinations. Ericsson and Marquez (1993) and Andrews, Minford, and Peel (1995)
provide empirical examples of forecast-encompassing tests. However, section 6.4 provides a
counter example in processes subject to deterministic shifts where an encompassed model may
later dominate: since breaks seem pandemic in macroeconomics, no general result can be estab-
lished.

c© Royal Economic Society 2002



10 David F. Hendry and Michael P. Clements

5.1. Estimated weights

Two forces operate here. First, under weak stationarity, there is the detrimental effect of the
uncertainty added by estimation of the weights. Secondly, there is an offset from the benefit of
choosing the best weights. Overall, we suspect estimation probably does not explain much of the
success of pooling: whether or not the weights are estimated, combining must be better than the
worst of the individual forecasts, and could beat the best. Section 8 shows that this occurs in the
Monte Carlo.

When the weights are estimated by regression, then any forecast which contributes to a com-
bination is not encompassed by the others (see Chong and Hendry (1986)). Thus, estimated
weights assign little role to encompassed forecasts, as their weights will be insignificant. While
the need to pool violates encompassing (see Lu and Mizon (1991), and Ericsson (1992)), and so
reveals non-congruence, congruenceper se cannot be established as a necessary feature for good
forecasting: see Hendry and Clements (2001a). Indeed, the next section suggests that averag-
ing might be preferable when unanticipated breaks can occur. Section 8 confirms that estimated
weights need not dominate over fixed.

6. COMBINING UNDER EXTRANEOUS STRUCTURAL BREAKS

Hendry and Doornik (1997) and Hendry (2000) establish that deterministic shifts are the prob-
lematic class of structural breaks in a forecasting context, so we focus on those. We consider a
DGP where the regressor processesx1,t−1 andx2,t−1 in (5) experience breaks at different times,
but the forecasting model remains unchanged. Thus,φw,t andφz,t in (8) are non-constant, be-
yond being functions of past variables. The DGP for they process in terms ofw t andzt remains:

yt = β′
1wt + β′

2zt + et, (15)

whereet ∼ IN
[
0, σ2

e

]
. As before, dynamics and intercepts are assumed absent merely to sim-

plify the algebra, so prior to forecasting,φz,t = φw,t = 0, whereas in-sample:

(
wt

zt

)
∼ INn

[(
0
0

)
,

(
Ωww Ωwz

Ωwz Ωzz

)]
. (16)

Again, the investigators fit separate models of the form:

yt = a0 + a′
1wt + ut, (17)

yt = b0 + b′
1zt + vt. (18)

Now intercepts are included, to offset any mean values induced by deterministic shifts. We first
allow only thez process to shift byφz,T+1 = τ z (redefined to simplify notation) which is in
fact a change at the end of the estimation sample, influencing the forecast-period behaviour ofy.
Since the shifts occur in the processes determining the regressors, we refer to these as extraneous
breaks.

The 1-step ahead forecast from (17) is:

ŷT+1 = â0 + â′
1wT+1,
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so the forecast error̂uT+1 = yT+1 − ŷT+1 is:

ûT+1 = (β1 − â1)
′ wT+1 − â0 + β′

2zT+1 + eT+1 (19)

=
(
β′

2τ z − â0

)
+ (β1 − â1)

′ wT+1 + β′
2ξz,T+1 + eT+1,

using (8), where we have placed the changed term first. The corresponding forecast from (18)
uses̃yT+1 = b̃0 + b̃′

1zT+1 with ṽT+1 = yT+1 − ỹT+1:

ṽT+1 = β′
1wT+1 +

(
β2 − b̃1

)′
zT+1 − b̃0 + eT+1

= −b̃0 +
(
β2 − b̃1

)′
zT+1 + β′

1ξw,T+1 + eT+1.

Next, we derive the conditional biases and variances of the forecast errors. This requires the
relationship equations between the regressors, of which the first is given by:

zT+1 = ψ + ΠzwwT+1 + ηzw,T+1 where E
[
ηzw,T+1

]
= 0 E

[
wT+1η

′
zw,T+1

]
= 0 (20)

so: (
ψ′

Π′
zw

)
�

(
1 0
0 Ωww

)−1 (
τ ′

z

Ωwz

)
=

(
τ ′

z

Ω−1
wwΩwz

)
. (21)

Thus, from the estimation sample, prior to any shifts, and assuming least-squares estimates of
in-sample parameters, from (10):

E [â0] = 0 and E [â1] = β1 + Π′
zwβ2,

so:

E [ûT+1 | wT+1, zT+1] = −E [â0] + (β1 − E [â1])
′ wT+1 + β′

2zT+1

= β′
2 (zT+1 − ΠzwwT+1)

= β′
2τ z + β′

2ηzw,T+1,

using (21). Again we ignoreOp

(
T−1

)
terms arising from estimation, so:

ûT+1 � β′
2τ z + β′

2ηzx,T+1 + eT+1,

with:
E

[
û2

T+1 | wT+1, zT+1

] � σ2
e + β′

2 [Ωηzw + τ zτ
′
z]β2.

However, a break may also be induced in the other forecasting model whenz T+1 shifts because:

wT+1 = κ+ ΠwzzT+1 + ηwz,T+1 where E
[
ηwz,T+1

]
= 0 and E

[
zT+1η

′
wz,T+1

]
= 0,

soκ = −Πwzτ z, whereasΠ′
wz = Ω−1

zz Ωzw, leading to a forecast error of:

ṽT+1 � β′
1ηwz,T+1 − β′

1Πwzτ z + eT+1.

Then the squared error is:

E
[
ṽ2

T+1 | wT+1, zT+1

] � σ2
e + β′

1Ωηwzβ1 + β′
1Πwzτ zτ

′
zΠ

′
wzβ1.
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12 David F. Hendry and Michael P. Clements

We continue to assume that, in the absence of the break, the model includingw is the more
accurate, that is,β′

2Ωηzwβ2 = kβ′
1Ωηwzβ1 for k < 1. Then, to the approximations involved:

E
[
û2

T+1 | wT+1, zT+1

] � σ2
e + kβ′

1Ωηwzβ1 +
(
β′

2τ z

)2

E
[
ṽ2

T+1 | wT+1, zT+1

] � σ2
e + β′

1Ωηwzβ1 +
(
β′

1Πwzτ z

)2
.

Consequently,̃yT+1 could be the more accurate forecast here, despite being less accurate prior
to the break. This is more likely the largerτ z and the less correlated arez andw – in the limit,
whenΠwz = 0, b̂1 is a consistent estimator ofβ2, and the term involvingτ z drops out of the
MSFE for ỹT+1.

The average forecast is: ̂̂yT+1 =
1
2

(ŷT+1 + ỹT+1) ,

with error:

̂̂eT+1 = (yT+1 − ŷT+1) +
1
2

(ŷT+1 − ỹT+1) = ûT+1 +
1
2

(ṽT+1 − ûT+1)

=
1
2

(
β′

2 − β′
1Πwz

)
τ z +

1
2

(
β′

1ηwz,T+1 + β′
2ηzw,T+1

)
+ eT+1,

so:

E
[̂̂eT+1 | wT+1, zT+1

]
=

1
2

(
β′

2 − β′
1Πwz

)
τ z +

1
2

(
β′

1ηwz,T+1 + β′
2ηzw,T+1

)
.

Again ignoring terms ofOp(T−1):

E
[̂̂e2

T+1 | wT+1, zT+1

]
� σ2

e + 0.25
[
(1 + k)β′

1Ωηwzβ1 − 2β′
1Ωzw (In1 − Π′

zwΠ′
wz)β2 +

[(
β′

2 − β′
1Πwz

)
τ z

]2
]
.

Thus, the combined forecast could beat both individual forecasts depending on the relative sizes
of the unmodelled shift in thez process to the error variances.

To illustrate this, we consider two simplifications: firstΩwz = 0, then a scalar case in section
6.1. Against̂yT+1 (the more accurate forecast in the absence of breaks) in the first simplification,
the average forecast dominates when:

(1 − 3k)β′
1Ωηwzβ1 < 3

(
β′

2τ z

)2
,

which is bound to hold fork > 1/3 and could hold even for smallk. Against the second forecast:

(k − 3)β′
1Ωηwzβ1 +

(
β′

2τ z

)2
< 0.

If we approximate byk = 1, then both hold when:

β′
1Ωηwzβ1 >

1
2

(
β′

2τ z

)2
> −3

2
(
β′

2τ z

)2

where the last inequality must be true. If instead,k is small, then:

1
3

(
β′

2τ z

)2
< β′

1Ωηwzβ1 < 3
(
β′

2τ z

)2
.

Thus, irrespective of whetherk is large or small, the average can ‘win’ against both mis-specified
forecasting devices when the DGP experiences deterministic shifts.
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6.1. Scalar illustration

In the scalar case whenn1 = n2 = 1, using the approach in section 3.1:

E
[̂̂e2

T+1 | wT+1, zT+1

]
� σ2

e + 0.25
{(

1 − r2wz

) [
(1 + k)β2

1σ2
w − 2β1β2σwz

]
+ (β2 − β1πwz)

2
τ2
z

}
,

with:

E
[
û2

T+1 | wT+1, zT+1

] � σ2
e + β2

2σ2
z

(
1 − r2wz

)
+ β2

2τ2
z

E
[
ṽ2

T+1 | wT+1, zT+1

] � σ2
e + β2

1σ2
w

(
1 − r2wz

)
+ β2

1τ2
z π2

wz .

AgainstŷT+1, the average outperforms in the normalized case if (asrwz = ρπwz andkρ2 = 1):

− (
1 − r2wz

) (
3ρ + 2rwz − ρ3

)
<

τ2
z

σ2
z

(
3ρ + 2rwz − kρr2wz

)
.

Whenρ is close to unity andrwz is large, this reduces to:

− (
1 − r2wz

)
<

τ2
z

σ2
z

(22)

which must hold. Alternatively, ifrwz = 0, then:

ρ2 < 3
(

1 +
τ2
z

σ2
z

)
,

which will hold when the relative break is sufficiently large. AgainstỹT+1, the average dominates
if:

− (
1 − r2wz

) (
3ρ4 + 2ρrwz − ρ2

)
<

τ2
z

σ2
z

(
3r2wz + 2rwz − ρ2

)
.

As before, whenρ is close to unity andrwz is large, we replicate (22). And ifrwz = 0, dominance
requires

3ρ2 > 1 +
τ2
z

σ2
z

.

Thus, dominance over both individual models simultaneously requires:

1
3

(
1 +

τ2
z

σ2
z

)
< ρ2 < 3

(
1 +

τ2
z

σ2
z

)
.

We conclude that there is a wide range over which averaging will dominate.

6.2. Later breaks

If, in a later forecast period, there is a break in the other process, then a similar analysis applies
with the rankings of the individual models reversed. The algebra naturally becomes tedious, but
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14 David F. Hendry and Michael P. Clements

the outcome must depend on both the absolute and relative sizes of the breaks, whether earlier
breaks were modelled or not, the robustness of devices to breaks, and the sizes of the signal-noise
ratios. There must exist combinations in which the average dominates over individual forecasting
devices, on average over repeated forecasting episodes, because other devices swing from good
to bad performance. Such later breaks may also vitiate estimation of weights: when a method
is doing well because it had not previously suffered forecast failure, estimation will attribute an
above-average weight to it. Any later shift in that ‘current best’ device would induce poorer
performance than just the average.

6.3. Breaks in falsely-included variables

If some of the variables that are included with non-zero cofficients in forecasting models are in
fact irrelevant, then an analogous derivation is feasible to show that the effects of breaks favour
combination. When such variables experience a deterministic shift, the forecasts from that model
will be poor, since the dependent variable will not have been affected. Any average will attribute
a smaller weight than unity to such a set of forecasts, and so outperform it. Later breaks in
other variables in rival models will similarly worsen their performance, leaving the average as
the ‘winner’.

6.4. Within-equation breaks

Finally, a break in they process introduces further complications, depending on the class of
models under analysis. When a break occurs after forecasts are announced, all devices will fail,
usually in the same direction, so averaging will neither resolve nor exacerbate that problem.
However, some methods will continue to fail for many later periods – especially equilibrium-
correction models (EqCMs) – again usually in the same direction (see e.g., Clements and Hendry
(1999)). If the EqCMs were previously the dominant approach, then we have the analogue of
the conditions in section 6, namely a switch in ranking between methods pre and post break,
precisely the situation when averaging can dominate on average. Now, however, in the sub-
periods, the average may or may not dominate. Moreover, estimated weights would emphasize
the near encompassing of an EqCM over (say) a first-differenced autoregression, so could do less
well than the average. Indeed, when simple – but robust – forecasting devices are encompassed
by the EqCM, and so excluded from the pooling, we have a counter example to any claim that
only non-encompassed models should be included in the average.

6.5. Pooling information

In the present context, pooling of information should prove more successful than pooling fore-
casts for all extraneous breaks, but not for breaks in the equation of interest. Since there are
usually many variables involved, the former type of break should be far more frequent than the
latter, supporting pooling. In Hendry and Clements (2001b), we explore this idea to explain
the success of ‘factor forecasts’, or diffusion indices, as in Stock and Watson (1999) and Forni,
Hallin, Lippi, and Reichlin (2000). Moreover, extraneous breaks become endogenous in a sys-
tem, so our approach also suggests an explanation for why multi-step (or dynamic) estimation
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may be advantageous: see Chevillon (2000). However, when different transformations (e.g., log
and linear) of the same variable are involved, pooling information is less likely to dominate.

7. EMPIRICAL ILLUSTRATION

Bates and Granger (1969) provide an example of the usefulness of combining forecasts from
linear and exponential trend models of output. Table 1 records an output index for the UK
gas, electricity and water sectors for the years 1948 to 1965, along with forecast errors from
linear and exponential trend models of output{y t}, given byyt = α +βt+ errort and ln(yt) =
a+bt+errort, wheret is a linear time trend. The forecast error in periodt (t = 1950, . . . , 1965)
is calculated from a forecast based on estimating the model on data up tot−1. The results in the
table show that although the exponential model forecasts have a much smaller sum of squared
errors (SSE) than the linear model, nevertheless, a combination which attaches a small weight
to the linear forecasts has a smaller SSE. For example, for a fixed weight of0.16 on the linear
forecasts, the combined forecast SSE is 78.8.3 This clearly supports combination, but it is of
interest to interpret how the gain comes about given our analysis.

The forecast errors from the linear model become large and positive from around 1961 on-
wards, indicating that the constant absolute increase model is inappropriate. On average, the
exponential model over-predicts (negative errors), albeit to a lesser extent. Combination is seen
to work because the two sets of forecasts are biased in different directions. This view is sup-
ported by the SSEs of the bias-corrected forecast errors (see the last two columns of the table),
and the results of combining the bias-corrected forecasts. The bias-corrected forecast of period
t is calculated by adding the sample mean of the forecast errors up to periodt − 1 to the fore-
cast of periodt. Because the bias term is calculated from past forecast errors up to that point,
it adapts only slowly to the run of positive errors in the linear forecasts of the 1960s.4 The SSE
of the bias-corrected exponential forecasts is77, less than the combined forecast SSE of78.8
(with a weight of0.16), but more pertinently, we find that any fixed-weight combination of the
bias-corrected forecasts, with weights in the interval(0, 1), has a larger SSE than that of the ex-
ponential model forecasts.5 Of course, the fixed-weight combination forecasts discussed are not
feasible, in the sense that they are based on knowledge of the full set of forecast errors, and they
can also be improved upon by varying-weight schemes, as shown by Bates and Granger (1969).
This example shows that gains from combination may disappear if individual forecasts are first
corrected, consistent with the derivation when there are no breaks that combination exploits off-
setting biases.

A final implication, given the autocorrelated forecast errors, is that intercept correction or
differencing should improve the forecasts. For the latter, the SSEs become 73.9 and 59.0 for the
linear and exponential models respectively, providing a dramatic improvement for the former,

3The figures we report are based on our own calculations. We reproduce the forecasts, and forecast errors etc., based
only on the actual series. Some small differences were observed relative to Bates and Granger’s figures, presumably
because of improved precision.

4If we were to estimate combination weights for the original forecasts based on the whole sample, and include an
intercept in the combination, a much smaller SSE of 60.1 results, partly because the bias-corrections are now calculated
based on the full-sample, and the sample biases of the individual forecasts will be zero. However, the optimal combination
weights that sum to unity are now−0.23 and1.23, and difficult to interpret.

5The optimal combination for the bias-corrected forecasts, imposing the constraint that they sum to unity (and with a
zero intercept in the combination ) was−0.22 on the linear forecasts, delivering an SSE of 72.61.
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Table 1. Forecasts of output indices, 1950–65

Actual 1-step forecast errors

Linear Exponential Combination Linear Exponential

Bias-corrected Bias-corrected

1948 58.0

1949 62.0

1950 67.0 1.0 0.7 0.77 1.0 0.7

1951 72.0 0.7 0.1 0.21 -0.3 -0.6

1952 74.0 -2.5 -3.4 -3.24 -3.3 -3.8

1953 77.0 -2.2 -3.3 -3.11 -1.9 -2.4

1954 84.0 2.1 0.8 0.99 2.8 2.2

1955 88.0 1.0 -0.6 -0.37 1.2 0.4

1956 92.0 0.4 -1.7 -1.33 0.4 -0.7

1957 96.0 0.0 -2.5 -2.08 -0.0 -1.4

1958 100.0 -0.2 -3.2 -2.71 -0.3 -2.0

1959 103.0 -1.3 -4.8 -4.28 -1.4 -3.4

1960 110.0 1.9 -2.1 -1.47 2.0 -0.3

1961 116.0 3.2 -1.4 -0.71 3.1 0.4

1962 125.0 7.0 1.8 2.60 6.7 3.5

1963 133.0 8.8 2.8 3.74 8.0 4.3

1964 137.0 6.1 -0.9 0.26 4.7 0.3

1965 145.0 8.0 -0.0 1.26 6.3 1.1

Sample bias 2.1 -1.1 -0.6 1.8 -0.1

Sum of squared errors 263.3 84.4 78.8 211.9 77.0

The output series is the output index for the gas, electricity and water sector, given in (Bates and Granger
1969, Table A1, p. 462). The combination forecast has fixed weights of0.16 and0.84 on the (uncorrected)
linear and exponential forecasts
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and a smaller – but worthwhile – gain for the latter, which now does better than any combina-
tion. Clements and Hendry (1999) treat inappropriate specification or estimation of deterministic
terms as near equivalents of shifts in those terms, so that interpretation is also consistent with the
present gains from combination and differencing.

8. A MONTE CARLO STUDY

We consider a range of settings. The first set include extraneous shifts in white noise processes
to match the theory derivations and check their applicability in finite samples (section 8.1). We
then allow for dynamic models (section 8.2), breaks in the DGP equation itself (section 8.3), and
situations where some of the explanatory variables are absent from all of the models (section
8.4).

8.1. Shifts in an extraneous variable

Forecast period shift. Table 2 reports a selection of results from a Monte Carlo study of the
usefulness of combination in small samples for constant DGPs and when there is a shift in the
mean of an extraneous variable. The DGP is as given in section 6 withw t andzt scalar variables.
The models are estimated without intercepts on the sample up toT , and used to forecastT +
1. The meansφz = φw = 0 in-sample, but we allowφz,T+1 = τz to be non-zero in some
experiments. Results are given for three combination schemes: simple averaging, the ‘optimal’
combination, and the use of relativeMSFE weights.6 We setβ1 = β2 = 1, with a DGP
disturbance variance of0.16. The table records the Monte Carlo estimates of the biases and
MSFEs over50, 000 replications, for a number of sample sizesT , and different values ofσ w ,
σz andρ. We also record the Monte Carlo estimates ofb̂1 andâ1. The columns headedMz, Mw

andMc relate to forecasts from the models includingz, w, and the simple average of the two,
whereas the columns headedMλ andMλM show the optimal andMSFE weight combinations
respectively.

For the first three rows of the table,τz = 0, so show the effects of combination when there are
no structural shifts. The model includingw (Mw) is the more accurate of the individual models,
because withβ1 = β2 = 1, the higher variability ofw (σ2

w > σ2
z ) means that it explains more

of the variation in the dependent variable. Nevertheless, the simple average of the two forecasts
yields a smallerMSFE. The optimal combination assigns a weight of just over0.6 to Mw (a
little higher when relativeMSFE weights are used), and the combined forecast is then a little
smaller than in the case of averaging. Monte Carlo estimates of these weights are shown in the
table under the columns headedλ̂ and λ̂M . Notice that the individual forecasts (and therefore
the combinations) have a zero bias (to two decimal places) in the absence of deterministic non-
stationarities. The high value ofρ entails that the effects ofz andw in the individual models
(estimated aŝb1 andâ1) are quite different from their effects in the DGP. Our analytic derivations

6The optimal combination, as derived by Bates and Granger (1969), chooses the weights to minimise theMSFE of
the combined forecast (subject to the weights on the individual forecasts summing to unity). This involves covariance
terms between the models’ forecast errrors. When these are ignored, the optimal weight is given by the relativeMSFEs
alone. For simplicity, we substitute the in-sample estimated residuals for the1-step in-sample (1, . . . , T ) forecast errors
in calculating the weights, so that the periodt ‘forecast error’ is based on parameter estimates obtained on data up toT ,
rather thant − 1.
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ignore terms ofO
(
T−1

)
: the Monte Carlo suggests that the qualitative results are the same for

T = 100 andT = 10 (compare the first and third results), suggesting that these terms are indeed
unimportant.

The next set of rows report results for a shiftφz equal to one standard deviation of thez-
equation disturbance term, namelyτz = σz (equalling one standard deviation ofz in the absence
of explanatory variables in thez-equation). Consider row 4. This suggests that the relative
percentage reductions inMSFE can be much larger when there are structural shifts. The bias in
the forecasts fromMw is approximately the value of the shift. By includingz, M z picks up the
value of the shift, but because the coefficient onz is approximately double that in the DGP, this
model over-predicts by approximately the amount of the shift. Now the combination based on
optimal weights (Mλ) no longer delivers the smallestMSFE: just as the best model in-sample
may not yield the most accurate forecasts when there are structural changes, so the optimal
combination in-sample may no longer be optimal for out-of-sample forecasting. Whenρ = 0
(row 5), b̂1 is an unbiased estimator ofβ1, so thatMz is unbiased. Nevertheless, combination
is still better (averaging is optimal): it pays to combine with the biased predictor. Rows 7 and
8 illustrate the results of combination whenρ < 0, so that both individual models are biased in
the same direction, and averaging leads to a worse outcome than the best, but still outperforms
the worst individual forecast. The optimal combination remains dominant, but the weights are
outside(0, 1), and relativeMSFE weights give similar results to averaging. The third set of
rows are forφz,T+1 = 2σz. Row 9 illustrates a greater proportionate reduction inMSFE from
combination. Row 10 (ρ = 0) indicates that for shifts of this size the bias induced inM w is large
enough to counteract the benefits to combination, andM z has the smallestMSFE.

Forecast and estimation period shifts. The fourth and fifth panels of table 2 replicate the
second and third, but with a shift in the intercept of thew process of two and minus two
times the standard error of its disturbance, respectively, taking effect in periodsT andT + 1
(φw,T = φw,T+1 = ±2σz). We allow intercepts in theMz andMw models, but otherwise pro-
ceed as above. Note that the impact of the single observationT on the estimation of the models’
parameters is relatively minor, so that the results for consecutive shifts in the forecast period
would be qualitatively similar. From the bottom panel, it is apparent that combination can yield
large percentage reductions inMSFE when the explanatory variables undergo shifts in different
directions, and the variables are positively correlated (ρ > 0, rows 19 and 21). Then, the upward
bias in the coefficient estimates exacerbates the forecast biases ofMz andMw. Whenρ < 0,
the models’ slope parameter estimates are biased towards zero, and the forecasts from both indi-
vidual models are closer to the actual value ofyT+1 that results from the largely offsetting shifts
in the two explanatory variables. When the shifts are in the same direction (rows 14 – 18) the
deterioration in the individual models’ performances is less pronounced, but depending on the
relative sizes of the shifts and the importance of the individual explanatory variables, combina-
tion can either beat the best individual forecast or guard against inadvertently choosing the worst.
For example, in row 14 the size of the shift inw relative to that inz is such thatMw is better than
averaging, but a scheme that assigns a higher weight (λ) to Mw delivers a smallerMSFE (the
table presents results for average values of0.64 and0.69). When the size of the shifts is more
comparable (e.g., row 16), averaging is again beneficial.
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8.2. Autocorrelated explanatory variables

Table 3 reports results for a subset of these experiments, except thatz andw now follow AR(1)
processes, with an autoregressive coefficient of0.9. Keeping the same values of the disturbance
variances as before, the variances ofz andw increase by a factor of approximately five, so that
the costs to omitting either in terms ofMSFE is now larger: seeMz andMw in the first three
rows of the table, for example. The proportionate gains to combination are correspondingly
greater. Now, combination pays even whenρ = 0 andτ z = 2 (row 10), but note that the size of
the shift relative to the standard error ofz has fallen.

8.3. Shifts in the y equation

Table 4 reports the results for the three combination schemes and the individual model forecasts
when there are shifts in they equation. We chose the parameter values corresponding to row 2
of table 2, soτz = 0, σz = 1 andσw = 1.5, andρ = 0.75 in the first panel. The shifts in
they equations are defined by:τ , the time of the shift, whereby the new values take effect from
τ + 1 onwards, andτ = 15 or 18 for T = 20; δ0, the shift in the (hitherto zero-valued) intercept
of 0.8 (twice the standard deviation of they-equation disturbance term); andδ 1, the shift in the
coefficient onz, whereδ1 = 1 so the coefficient doubles in size. The second and third sets of
four rows repeat the first, but withρ = 0, andρ = −0.75. For both theM z andMw models,
intercepts are estimated to accommodate the shifts in they equation.

The results suggest the following. The individual forecasts (and therefore combinations)
remain unbiased whenδ1 is not equal to zero, becausez is a mean-zero variable. Nevertheless,
for both types of shift, combination proves to be efficacious forρ = 0.75 andρ = 0, but, as in
the absence of such shifts, is generally less so whenρ is negative.

8.4. Completely omitted variables

Our analytic derivations assume that the variables in the models span the explanatory variables
in the DGP, so each model only excludes variables which the other contains. The condition
that all the variables in the DGP are included in at least one of the models would appear to be
unimportant to our explanations of why pooling works, but we checked that aspect in a further
Monte Carlo study reported in table 5. There we report experiments based on rows 1 to 6 of table
2, but allowing an additional variable{qt} to enter the DGP with a unit coefficient. This variable
is mean-zero white noise, with a variance of unity, but with a shift to a mean of unity (rows 1 to
6) or 2 (rows 7 to 12) for periodsT andT + 1, i.e.,φ q = 0 but φq,T :T+1 = 1 or 2. If q were
uncorrelated with the explanatory variables andφq,T :T+1 = 0, our analytical calculations would
be unaffected, sinceq could be subsumed into the disturbance term so only affect the equation
error variance. Maintaining the interrelatedness assumption, a shift inφ q is equivalent to a shift
in the intercept of they equation. The interesting cases are whenq is correlated with one or both
of z andw. In our experiments, both correlations are one half. We also estimate intercepts in
both theMw andMz models.

The first three rows of table 5 (and rows 7 to 9) show that the individual model forecasts (and
therefore the combined forecast) are approximately biased by an amount equal to the size of the
shift in q. Nevertheless, combination reduces theMSFEs. Whenz also shifts (rows 4 to 6), then
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becauseq andz shift in the same direction, and because the ‘omitted variable bias’ inM z causes
the coefficient onz to be upward biased, the forecast biases ofM z are smaller than eitherMw

or the combination. When, in addition,σz > σw so thatz is the more important determinant of
y (row 6), combination is worse thanMz (but only marginally so). For larger shifts inφq, Mz is
relatively better than the combined forecast.

8.5. Summary

These simulations confirm the analytical results, and explore a number of extensions. The
qualitative nature of the conclusions based on the analytical work hold up, so that model mis-
specification and parameter non-constancy are seen to explain why combination, and especially
averaging, often works in practice. When a DGP variable which is not included in either of the
individual models undergoes a shift in mean, at the same time that other variables shift, a range
of outcomes is possible depending on the exact design, that is, the relative sizes of the shifts,
their relative contributions to the total variation in the dependent variable, and the signs of the
cross-correlations, etc. In general, allowing for variables that do not enter any of the models
could strengthen or weaken the case for combination when there are shifts.

9. CONCLUSION

Practical experience shows that combining forecasts has value added and can dominate even the
best individual device. Thus, we considered selecting forecasting methods by pooling several
individual devices when no model coincides with a non-constant data generation process (DGP).

We first show that averaging guarantees ‘insurance’, and may provide dominance, when the
models are differentially mis-specified even for a constant DGP. While such a result can occur
in weakly-stationary processes, we suspect that empirical findings are better explained by the in-
termittent occurrence of deterministic shifts in unmodelled explanatory variables. Consequently,
we demonstrate that when forecasting time series that are subject to deterministic shifts, the av-
erage of a group of forecasts from differentially mis-specified models can outperform them all on
average over repeated forecasting episodes. Moreover, averaging may well then dominate over
estimated weights in the combination. Finally, it cannot be proved that only non-encompassed
devices should be retained in the combination.

In practice, trimmed means, or perhaps medians, might be needed to exclude ‘outlying’ fore-
casts, since otherwise, one really poor forecast would worsen the combination needlessly.

Both the empirical and Monte Carlo simulation illustrations confirmed the theoretical analy-
sis. The average of the levels forecasts outperformed the best individual forecast in both settings,
sometimes spectacularly. However, in the empirical example, bias correcting the forecasts re-
moved much of the benefit of averaging, and other devices for robustifying forecasts to breaks
did even better. Thus, although we have established that combination can be beneficial in our
theoretical framework, comparisons with other approaches are merited.

Hendry and Clements (2001a) present ten cases where well-known empirical phenomena
in economic forecasting can be explained by the use of mis-specified models of processes that
experience intermittent deterministic shifts. The present paper extends that list to eleven. We
believe that the related results on forecasting using ‘factor models’ can be accounted for by the
same general theory, and are also investigating multi-step estimation within that framework.
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