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Abstract We present a new procedure for detecting multiple additive outliers in GARCH(1,1) models at un-

known dates. The outlier candidates are the observations with the largest standardized residual. First, a

likelihood-ratio based test determines the presence and timing of an outlier. Next, a second test determines

the type of additive outlier (volatility or level). The tests are shown to be similar with respect to the GARCH

parameters. Their null distribution can be easily approximated from an extreme value distribution, so that

computation ofp-values does not require simulation.

The procedure outperforms alternative methods, especially when it comes to determining the date of the

outlier. We apply the method to returns of the Dow Jones index, using monthly, weekly, and daily data. The

procedure is extended and applied to GARCH models with Student-t distributed errors.
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Outlier Detection in GARCH Models

1 Introduction

Financial data typically show volatility clustering and so-called thick tails. The ARCH (Engle, 1982)

and GARCH (Bollerslev, 1986) models were designed to capture these features. However, when

estimating a GARCH model with normal errors, there are frequently more outliers than expected.

Two approaches come readily to mind to address this issue: using a distribution with fatter tails, such

as the Student-t distribution, or treating the outliers as being generated separately, and using dummy

variables to remove them. Here we are concerned with the latter, and discuss methods for outlier

detection in GARCH models.

The focus in this paper is on additive outliers, for which we shall follow the classification of Hotta

and Tsay (1998). They distinguish between additive outliers that only affect the level, but leave the

variance unaffected, and those that also affect the conditional variance. We label the first type ‘ALO’,

and the second ‘AVO’. Like Hotta and Tsay (1998) and Franses and van Dijk (2000), our approach

is inspired by Chen and Liu (1993), who discuss outlier detection in standard time-series models.

Our approach, however, is based on likelihood-ratio tests,instead of Lagrange-multiplier tests, which

leads to much simpler procedures than either Hotta and Tsay (1998) or Franses and van Dijk (2000).

The new procedure for outlier detection builds on work by Doornik and Ooms (2000), which stud-

ies the impact of a dummy variable on the GARCH likelihood. Inthat paper, we give the conditions

under which bimodality arises when adding a single-observation dummy variable to the mean equa-

tion of a GARCH(p, q) model. Interestingly, bimodality does not always happen,but tends to be more

likely when there is an outlier. We also show there that adding the corresponding dummy with a lag

of one period in the variance equation solves the problem of bimodality. The procedure developed

below is based upon this observation.

The organization of this paper is as follows. In§2 we review the two types of additive outliers

introduced by Hotta and Tsay (1998). We then propose a nesting model for additive outliers in§3 and

use this as the basis for a new likelihood-based detection procedure. Some examples to illustrate the

procedure are given in§4, with a more formal description in§5. The next two sections investigate

the size and power of the proposed procedure. Then in§8 we apply the procedure to the Dow Jones

index, at monthly, weekly, and daily frequencies. In§9 we extend the new procedure to GARCH-t

and GARCH(2,2) models. Finally,§10 concludes. Appendix B compares our procedure with those

proposed by Hotta and Tsay (1998) and Franses and van Dijk (2000).
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2 Additive outliers in GARCH models

The baseline GARCH(p, q) regression model with normally distributed errors is defined as:

yt = x′

tζ + εt, εt|Ft−1 ∼ N(0, ht),

ht = α0 +

q∑

i=1

αiε
2
t−i +

p∑

i=1

βiht−i, t = 1, . . . , T.
(1)

Ft is the filtration up to timet. In practice,xt may only consist of the constant term. Surveys include

Bollerslev, Engle, and Nelson (1994), Shephard (1996), andGourieroux (1997). The log-likelihood

of (1) is given by:

`(θ) =

T∑

t=1

`t(θ) = c −
1

2

T∑

t=1

[
log(ht) +

ε2
t

ht

]
. (2)

For a GARCH(1,1) model with0 ≤ β1 < 1, which is the main focus, we can write

ht = α0 + α1ε
2
t−1 + β1ht−1,

as

ht = α∗

0 + α1

t∑

j=1

βj−1
1 ε2

t−j , (3)

givenε0 andh0, whereα∗

0 = α0(1 − βt
1)/(1 − β1) + βt

1h0.

2.1 Additive level outliers (ALO)

The GARCH(1,1) model with an additive level outlier is defined as:

yt − x′

tζ − γdt = εt, εt|Ft−1 ∼ N(0, ht),

ht = α0 + α1ε
2
t−1 + β1ht−1, t = 1, . . . , T,

(4)

wheredt equals one whent = s and zero otherwise. In (4) the outlier does not influence the lagged

disturbances that enter the conditional variance. The occasion could be a market correction that does

not influence volatility, an institutional change, or even arogue trade.

Model (4) is a standard GARCH model with a dummy variable as regressor. Although this data

generation process is well-defined, maximum likelihood estimation is problematic because of the

potential for bimodality in the likelihood.

We assume that the start-up of the GARCH(1,1) process does not depend on the parameters. The

score of the log-likelihood of model (4) is given by:

T∑

t=1

∂`t(θ)

∂θ
= −

T∑

t=1

[
εt

ht

∂εt

∂θ
+

1

2

1

h2
t

(
ht − ε2

t

) ∂ht

∂θ

]
, (5)

with εt = yt − x′

tζ − dtγ. The first order condition (5) for the dummy coefficientγ can be expressed

as a function ofεs andhs+1, hs+2, . . . hT , since

∂εt

∂γ
= −dt,

∂ε2
t

∂γ
= −2εtdt, thus

∂ht

∂γ
= −2α1

t−1∑

j=1

βj−1
1 εt−jdt−j .
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and dt = 0 for t 6= s and ds = 1. The score term forhs+1 can lead to multiple solutions for

γ, depending on the GARCH parameters, onhs and onεs+2, hs+2, εs+3, hs+3, . . .. This type of

bimodality often appears in volatile periods. Doornik and Ooms (2000) show that, when this type

of bimodality in the log-likelihood occurs, the ’standard’estimate ofγ that sets the residual̂εs to

zero, γ̂ = ys − x′

sζ̂, corresponds to a local minimum of the log-likelihood, instead of a maximum.

Inference based ont-statistics in particular is compromised, motivating our decision to use likelihood-

ratio based tests instead of Wald tests.

2.2 Additive volatility outliers (AVO)

The GARCH(1,1) model for an additive volatility outlier is:

yt − x′

tζ − γdt = εt, εt|Ft−1 ∼ N(0, h∗

t ),

ε∗t = γdt + εt,

h∗

t = α0 + α1ε
∗2
t−1 + β1h

∗

t−1, t = 1, . . . , T,

(6)

wheredt equals one whent = s and zero otherwise as in (4). The log likelihood is now definedin

terms ofh∗

t andεt, whereh∗

t is affected by previous outliers.

To expressh∗

t in terms of the clean conditional varianceht and a dynamic effect of the outlier, we

first substituteε∗t :

h∗

t = α0 + α1ε
2
t−1 + β1h

∗

t−1 + α1

(
2γεt−1 + γ2

)
dt−1. (7)

Then we find from (3):

h∗

t = ht + α1β
t−s−1
1

(
2γεs + γ2

)
I(t > s), (8)

whereI(t > s) equals one whent > s, and zero otherwise. So the outlier has an impact on the

volatility that diminishes over time, assumingβ1 < 1. In particular, whenεs = 0, both a negative and

a positive outlier increase volatility.

Maximum likelihood estimation (MLE) of the additive volatility outlier (AVO) model (6) is not

hampered by the multiple modes forγ. The score of the log-likelihood of model (6) is given by:

T∑

t=1

∂`t(θ)

∂θ
= −

T∑

t=1

[
εt

h∗

t

∂εt

∂θ
+

1

2

1

h∗2
t

(
h∗

t − ε2
t

) ∂h∗

t

∂θ

]
, (9)

with εt = yt − x′

tζ − dtγ.

Because the volatility equation forh∗

t is in terms ofε∗t and notεt, ∂h∗

t /∂γ = 0, since∂ε∗t /∂γ = 0.

The onlyγ solving the first order condition for MLE leads tôεs = 0. Bimodality is not an issue, and

γ̂ = ys − x′

sζ̂, with varianceh∗

s. Detection of an outlier of type AVO simplifies to inspectingthe

largest standardized residual. When an outlier is found, maximum likelihood estimation of (6) is

required. This option is not readily available in most current software packages, but it would be a

simple extension.
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3 A nesting model for generalized additive outliers (GAO)

In this section we introduce a model for generalized additive outliers that nests both the additive level

and the additive volatility outlier models in GARCH processes. The first step is to introduce a lagged

dummy variable in the conditional variance equation of the GARCH(p, q) model:

β(L)ht = α0 + α(L)ε2
t + τdt−1, t = 1, . . . , T.

wheredt is defined as before, such thatdt−1 equals one whent = s + 1 and zero otherwise. Theτ

parameter models the effect of an outlier on the conditionalvariance at times+1. The polynomials in

the lag operatorL, Lkxt = xt−k, are defined asβ(L) = 1−
∑p

i=1 βiL
i, andα(L) =

∑q
i=1 αiL

i. We

assume that the roots ofβ(z) = 0 lie outside the unit circle, and thatβ(z) andα(z) have no common

roots to ensure identification of the individual GARCH parameters. Then:

ht =
α0

β(1)
+

α(L)

β(L)
ε2
t +

τ

β(L)
dt−1.

For the model with an additive volatility outlier, extending (6) to GARCH(p, q) processes:

ε∗t = γdt + εt,

β(L)h∗

t = α0 + α(L)ε∗2t ,

we find, again substitutingε∗t :

h∗

t =
α0

β(1)
+

α(L)

β(L)
ε2
t +

α(L)

β(L)

(
2γεt + γ2

)
dt. (10)

In this equation for the AVO model, which extends (7), we see that the additional term multiplying

β(L)−1dt−1 is α(L)L−1(2γεt−1 + γ2), while in the model with a lagged dummy in the volatility it is

τ , whereτ is estimated. The latter can therefore be interpreted as an unrestricted version of the AVO

model.

In the second step we add the ALO dummy variable to the mean equation of the GARCH model.

For this step, we again refer to Doornik and Ooms (2000), who show that, in a GARCH(p, q) model

with a dummy in the mean equation and the same dummy lagged oneperiod in the variance equa-

tion, the bimodality problem discussed in§2.1 disappears as the first order condition forγ is sim-

plified. This motivates the adoption of the generalized additive outlier (GAO) model, which for the

GARCH(1,1) case is given by:

yt = x′

tζ + γdt + εt,

ht = α0 + α1ε
2
t−1 + β1ht−1 + τdt−1.

(11)

In this model, the dummy variable in the mean equation foryt sets the corresponding residual to zero

whenγ is estimated by maximum likelihood:̂εs = 0. Moreover, (11) nests both the AVO and ALO

model, without the complexity that is created by the bimodality of the log-likelihood.

We propose to take advantage of this easy estimation in likelihood ratio tests for the presence of

additive outliers. In practice the timing of the outlier,s, is often unknown. In our outlier detection
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procedure we estimate a standard GARCH(1,1) model, use the largest standardized residual as the

outlier candidate, then perform a likelihood-ratio type test of γ = τ = 0 in (11). This procedure is

simple enough that it can be carried out using standard GARCHsoftware which allows for adding

separate explanatory variables in the mean equation and in the variance equation, without the need for

additional programming. Of course, the asymptotic distribution of the likelihood ratio test statistic is

not the standardχ2 if the timing of the outlier is unknown. We have to take account of the search for

the largest outlier and approximate the distribution as we would do for an order statistic. An effective

approximation is derived in§6.

If focus is only on detection of a single additive outlier, the above procedure is sufficient. It may,

however, be of interest to determine whether an outlier is oftype ALO or AVO. The next section gives

some motivating examples before formalizing the procedure.

4 Likelihood adjustment, outlier correction and outlier classification

To illustrate the properties of the likelihood-based outlier classification, it is necessary to be able to

evaluate the likelihoods of the different outlier models asa function of outlier sizeγ, see Figure 1

below. This is also required when a detected outlier has to beaccounted for in the model. Both

likelihood adjustment and outlier extensions can be implemented by a simple data transformation,

which adjusts the data for the effect of the outlier.

Taking account of an additive level outlier (ALO) only involves adjusting the raw data prior to the

next estimation (i.e. replacingyt with yt− γ̂dt). Taking account of an additive volatility outlier (AVO)

is slightly more complicated. The log-likelihood functioninvolves both the unadjusted residualsε∗t
that defineh∗

t for t = s + 1, and the adjusted residualsεt, for t = s. Implementing the AVO

adjustment therefore requires an extension to existing GARCH code. We summarise the adjustments

needed to compute the modified log-likelihoods for the different outlier models in Table 1. We call

these concentrated likelihoods, although the parameters of the model other thanτ , only satisfy the

first order conditions for MLE at one value ofγ.

Table 1: Adjustments for concentrated likelihood computation

in volatility in residuals notation

ALO ε∗t − γdt ε∗t − γdt `alo(·|γ)

AVO ε∗t ε∗t − γdt `avo(·|γ)

ε∗t = yt − x′

tζ, adjustments applied to log likelihood (2).

This adjustment avoids adding parameters of dummy variables to the log-likelihood which are

difficult or impossible to estimate unrestrictedly.

In the first two motivating illustrations of our procedure, we use subsets of the weekly and monthly

Dow Jones returns as discussed in more detail in§8. For the weekly data we use 574 observations
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covering the years 1982 to 1992. The monthly data has 420 observations for the years 1965 to 1999.

In both cases, a standard GARCH(1,1) with an intercept for the mean is estimated. Also in both cases,

the largest outlier is found for the first observation after the Black Monday crash of 19 October 1987.

This is the outlier candidate. Using the corresponding dummy variabledt in the mean, anddt−1 in the

variance, the GAO model (11) is estimated next.

Table 2: Likelihood Ratio Testing for a generalized additive outlier (GAO) in Dow Jones returns

log-likelihood γ̂ τ̂ ε̂s

Monthly data 1982–1992

Baseline model (1) −333.73 — — −4.38

GAO model (11) −302.91 −4.39 0.08 0

Test statistic andp-value 61.7 [10−10]

Weekly data 1965–1999

Baseline model (1) −861.89 — — −9.01

GAO model (11) −843.32 −8.98 6.09 0

Test statistic andp-value 37.2 [10−5]

Thes subscript refers to October 1987.

Table 2 gives the maximised log-likelihoods of the baselineGARCH(1,1) model and the GAO

model. Thep-values of the likelihood ratio tests treat the timing of theoutlier as unknown, i.e.s is

considered as estimated from the data. They are based on an extreme value approximation discussed

in §6 and Appendix A. In both data sets, the outlier candidate is highly significant.

−5.5 −5.0 −4.5 −4.0 −3.5

−305

−304

−303

Monthly

γ →

AVO →

log−likelihood ALO 
log−likelihood GAO 
log−likelihood AVO 

−12 −10 −8 −6

−850

−848

−846

−844

Weekly

γ →

ALO
   ↓

log−likelihood ALO 
log−likelihood GAO 
log−likelihood AVO 

Figure 1: Likelihood grids of GAO, ALO, AVO models for GARCH(1,1) model of montly and weekly

Dow Jones returns, as a function ofγ, the size of the October 1987 crash, see Table (1) for ALO and

AVO concentrated likelihood computation. Note: GAO and AVOindistinguishable for weekly data.
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Given the presence of an outlier att = s, we examine the outlier type. The decision on the type

of additive outlier is based oǹalo(·|γ̂gao) and`avo(·|γ̂gao), as discussed in Table 1. Figure 1 shows the

concentrated likelihood grids as a function of the outlier sizeγ. The GAO model nests ALO and AVO,

so always has a higher likelihood. The GAO grid can be computed from either̀ alo(·|γ) or `avo(·|γ) by

adding the lagged dummy variable to the conditional variance equation and estimatingτ , conditional

onγ. For the monthly data, ALO is very close to GAO: there is no significant difference using aχ2(1)

test. The likelihood of ALO is higher than AVO, and the formermodel is preferred. For the weekly

data, Figure 1 shows the ALO likelihood to be bimodal, unlikethe monthly case. Here, AVO and

GAO are indistinguishable, so that the AVO model is preferred.

The procedure to decide between ALO and AVO is based on the likelihoods for̂γgaoand therefore

ignores the two global modes of the ALO model in case of bimodality. In practice it is possible that

both ALO and AVO are significantly worse than the GAO model, although we have only encountered

this very rarely. One approach to such a finding would be to adjust the GARCH likelihood in a similar

manner as for ALO and AVO, so that a GAO correction can be imposed.

We conclude this section with a note on initialisation of theGARCH likelihood. In our computa-

tions for the illustration of Figure 1 we conditioned on the first observation to initialize the GARCH

recursion, so that the effective sample size is 419 and 573 respectively. Then, the value ofγ does

not influence the likelihood of the observations prior tot = s. In the remainder of the paper, we use

the sample mean ofε2
t for initialization ofht, following the suggestion in Bollerslev (1986), which is

more commonly followed in practice.

5 Detecting multiple outliers

The simplifying data adjustments and simplified likelihood-based tests are even more important when

one suspects that more than one additive outlier of unknown type may be present: in that case a

recursive detection procedure is required.

Based on the GAO model (11), we propose the following five stepprocedure to detect additive

outliers in a GARCH(1,1) model:

Step 1 Estimate the baseline GARCH model (1), i.e. without any dummy variables, to obtain the

log-likelihood ̂̀
b and residualsε∗t and volatilitiesh∗

t .

Step 2 Find the largest standardized residual in absolute value,maxt |ε
∗

t /h
∗

t |. Denote this observa-

tion by t = s. Estimate the GARCH GAO model (11) with dummydt ≡ I(t = s) in the

mean equation, anddt−1 in the variance equation (this can be done in most standard software

packages with GARCH estimation). This gives estimates for the added parameterŝγgao,s and

τ̂gao,s respectively, with log-likelihood̂̀gao,s.

Step 3 If 2(̂̀gao,s − ̂̀
b) < Cα

T then terminate: no new outlier is detected. Our approximation of

the asymptotic distribution of this test under the null-hypothes of no outliers suggests that

CT ≈ 5.66 + 1.88 log T at a significanceα of 5%. The full approximation is given in§6.

7



Step 4 This step implements the AVO versus ALO selection, given that an outlier was detected:

(a) If τ̂gao,s < 0 then the outlier is of type ALO; else continue with step 4(b):

(b) Estimate the GARCH model with an ALO outlier correction of fixed size γ̂gao,s. The

model to be estimated corresponds to`alo(·|γ̂gao,s) from Table 1: it is a standard GARCH

model without additional dummy parameters, but with a dependent variable that is cor-

rected for the outlier, see§4. This model giveŝ̀alo,s.

(c) Estimate the GARCH model with an AVO outlier correction of fixed size γ̂gao,s. The

model is`avo(·|γ̂gao,s) from Table 1, see§4 for its implementation. This gives̀̂avo,s.

(d) If ̂̀
avo,s > ̂̀

alo,s the outlier is AVO, else it is ALO.

The procedure can be iterated until no further outlier is detected. Because the outlier coefficients

have already been estimated at each step, we propose to use the simple data correction of Table 1

when an outlier is detected. This data adjustment procedureavoids a proliferation of parameters in

the log-likelihood.

Step 4 is used to distinguish between the two types of outliers, in case one is detected. It involves

two additional GARCH model estimations, which can be initialised using estimates forα0, α1 andβ1

from step 1, i.e. the baseline model (1) without any outlier effects. The same can be done in step 2, so

that the additional overhead of the three maximum likelihood estimations is small.

Step 4(a) uses the fact that, becauseε̂s = 0 for AVO: τ = α1γ
2. Imposingα1 > 0 shows that a

negativêτ is incompatible with the AVO model, saving the effort of estimating the model.

6 Controlling the size of the outlier detection procedure

We use extreme value theory, see e.g. Leadbetter, Lindgren,and Rootzén (1983), and Monte Carlo

simulation to determine an appropriate null distribution for the test in Step 3 of our outlier detection

procedure of§5. Assuming that the single outlier test statistics are independent for alls, s = 1, . . . , T ,

and also that the dummy variable leading to the largest statistic is selected in Step 2, one can treat the

test statistic in Step 3,

MT = max
s∈(1,...,T )

LRGAO
T (s) = max

s∈(1,...,T )
2(̂̀gao,s − ̂̀

b)

as the maximum of a random sample of sizeT from a χ2(2) distribution. Monte Carlo results in

Appendix A show that the asymptoticχ2(2) approximation for a test for a single generalized additive

outlier at a known fixed times, denoted byLRGAO
T (s), works well forT = 500.

Extreme value theory describes conditions under whichMT follows an extreme value limit-

ing distribution. These conditions do not require independence of the underlying random variables

LRGAO
T (s). In our case the limiting distribution is extreme value typeI and the mean ofMT is a

linear function oflog T asT gets large. We use a response surface analysis of Monte Carloexperi-

ments that leads to a good approximation of the finite sample distribution ofMT . The computation
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of p-values and critical values only requires the knowledge of sample sizeT and does not require

further simulation. Here we present the formula and the mainsimulation results; more detail is in

Appendix A.

Steps 1–3 are simulated as described in§5 under the null hypothesis of no outlier. The Monte Carlo

usesN = 10000 replications of the baseline model (1), a constant in the mean, xt = 1, ζ = 1 and

α1 = 0.1, β1 = 0.8, α0 = 1 − α1 − β1. The sample sizes areT = 200(100)1200, 1500, 2000, 2500.

The restrictions0 < α̂1 + β̂1 ≤ 1 andα̂0 > 0 are always imposed in the estimation procedure. The

results, shown in the first panel of Figure 2, indicate that the mean of the test statistic increases with

the sample size, in proportion tolog T asT → ∞, as predicted by extreme value theory. The variance,

skewness and kurtosis are not very sensitive to the sample size, see the second panel of Figure 2. The

last panel shows that the critical values are approximatelyequidistant, i.e. the critical value function,

CV (α, T ), is additively separable in two simple functions ofα and T and the distances between

critical values of 20% and 10% on the one hand and between 10% and 5% on the other hand, are

approximately equal. This is a characteristic of a Type I extreme value distribution.

200 300 400 500 600 700 800 9001000 2000
10

12

14

→  T (log10 scale)

mean 

200 300 400 500 600 700 800 9001000 2000

2

3
sdev skewness ex.kurtosis 

200 300 400 500 600 700 800 9001000 2000

15

20

1%, 5%, 10%, 20% critical values 

Figure 2: Simulated moments (mean, standard deviation, skewness and excess kurtosis), and critical

values (1%, 5%, 10%, 20%) of the maxsLRGAO
T (s) statistic under the null hypothesis.

Combining the extreme value Type I limiting distribution and the response surface analysis of

Monte Carlo experiments in Appendix A, we form the followingapproximation for the distribution of

the statisticMT , which we denote by maxsLRGAO
T (s):

P (maxsLRGAO
T (s) ≤ x) = exp

{
− exp

[
−

x + 1.283 − 1.88 log T (1 + 12/T )

2.223

]}
. (12)
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To check the accuracy of this approximation, we simulate therejection frequencies for various

parameter values under the null hypothesis. Table 3 lists the empirical size, showing that the procedure

works well enough for practical use. The table also illustrates that the approximation works well for a

range of GARCH parameters, indicating that the test is asymptotically similar with respect toα1 and

β1.

Table 3: Size of (Max-)LR-test for single generalized additive outlier at unknown time

α1 β1 T 20% 10% 5% 1%

0.6 0.2 500 0.184 0.091 0.046 0.013

0.4 0.2 500 0.189 0.093 0.045 0.012

0.2 0.4 500 0.191 0.094 0.048 0.011

0.2 0.6 500 0.194 0.094 0.048 0.009

0.05 0.9 500 0.204 0.108 0.056 0.015

0.1 0.8 250 0.191 0.102 0.055 0.012

0.1 0.8 500 0.191 0.097 0.049 0.013

0.1 0.8 1000 0.195 0.100 0.056 0.011

0.1 0.8 2500 0.199 0.097 0.050 0.012

ASE 0.006 0.005 0.003 0.002

Based onN = 4 000 replications.
ASE: Monte Carlo standard error of the rejection frequencies.

7 Power of the outlier detection procedure

Next, we investigate the performance of our procedure in detecting additive outliers, in selecting the

type of additive outlier, and in determining the timing of the additive outlier. To investigate the power

of the proposed test procedure by Monte Carlo, we selectT = 250, and have the DGP of type AVO

as in (6) as well as of type ALO as in (4).1 The DGP parameters are set asα0 = 1 − α1 − β1,

with γ = −3,−4,−5. The outlier enters near the middle of the sample:s = T/2. The results are

presented in Table 4.

The first column in Table 4 gives the GARCH design parameters.The next four columns give the

rejection frequencies at a5% significance level. The results forγ = 0 correspond to the size of the

test, confirming a level close to5%. The remainder shows that the proposed procedure has satisfactory

power to detect the outlier, regardless of the type of outlier. It is also remarkably good at detecting

the date (i.e. the location) of the outlier, which, of course, is an important aspect of any detection

procedure.2 Our procedure is also successful in detecting the type of outlier: there is no particular

1So we do not forceγ to enter the DGP with the same sign as the drawn residual.
2The percentages for correct date and type are conditional ondetection of an outlier.
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Table 4: Size and power of outlier detection test for a generalized additive outlier in a GARCH(1,1)

model

Rejection frequencies Correct date Correct type

α1, β1 γ = 0 −3 −4 −5 −4 −5 −4 −5

Outlier of type AVO atT/2

0.1,0.8 0.054 0.23 0.53 0.84 96% 99% 77% 81%

0.3,0.5 0.050 0.20 0.53 0.83 96% 99% 76% 81%

0.5,0.3 0.048 0.20 0.52 0.83 96% 99% 76% 80%

Outlier of type ALO atT/2

0.1,0.8 0.054 0.28 0.60 0.84 97% 99% 73% 75%

0.3,0.5 0.050 0.40 0.71 0.87 98% 99% 82% 84%

0.5,0.3 0.048 0.55 0.79 0.89 98% 99% 84% 85%

Based on5% nominal rejection frequencies forN = 4 000 andT = 250.
Correct date: % with the correct date when an outlier was detected.
Correct type: % with the correct outlier type when an outlier was detected.

Table 5: Samples for Dow Jones returns

frequency index at no. of observations scale

daily close of trade 29269 276

weekly midweek (or nearest day before) 5422 51

monthly end of month 1264 12

bias towards AVO or ALO, when an outlier is detected.

While the AVO results seem independent of the GARCH parameters, the power of ALO appears

to increase asα1 increases. The likely explanation is that this correspondsto a larger volatility effect

when left unmodelled, see equation (8) above. Overall, the proposed outlier detection procedure

works very well, even at this small sample size where GARCH models can be somewhat harder to

estimate. Essentially the same results were obtained for a sample size of 500.

8 Multiple outlier applications for Dow Jones returns

As an application of the new outlier-detection procedure weconsider the returns on the Dow Jones

Industrial Average index,3 using monthly, weekly, and daily data for the period 1896, May 26, to

2001, December 5. Table 5 provides some details.

3The Dow Jones index data are available from www.djindexes.com.
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The return data are formed by taking the first difference of the logarithms and then annualized.

These returns were multiplied by the scale factor given in Table 5, selected as the integer which made

the annualized average return for the daily and weekly returns as close as possible to the average for

the monthly data.

Visual inspection of the daily returns shows the largest drop in 1914, followed closely by 1987. In

1914, the exchange was closed for four and a half months following the outbreak of World War I. So

there is a long period of missing data in 1914 (during that period, grey trading continued outside the

exchange). The year 1929 is characterized by boom and bust, followed by a period of long decline,

and is historically the period with the highest volatility.October 1987 saw the largest one-day drop

in the index, but it took less than two years to reach the pre-crash levels again. The last sharp fall

followed the 11 September 2001 terrorist attacks on Washington and New York, which is indicated as

an outlier in the daily data.

Table 6: Detected outliers in GARCH(1,1) model for monthly and weekly Dow Jones returns 1896-

2001.

date size p-outlier p-AVO p-ALO type

monthly returns:12∆ log ym
t

1987/10 −4.39 0.083 τ̂ < 0 0.795 ALO

1914/12 −3.58 0.00012 0.478 0.112 AVO

1940/05 −3.11 0.00022 τ̂ < 0 0.241 ALO

1937/09 −2.37 0.028 0.122 0.001 AVO

2001/09 0.129 —

weekly returns:51∆ log yw
t

1914/12/16 −16.75 0 0.042 0.244 ALO

1940/05/15 −7.05 0 1 0 AVO

1899/12/13 −7.14 0.083 0.206 0.026 AVO

1987/10/21 −8.95 0.053 0.287 0.010 AVO

1926/03/03 −4.84 0.00015 1 0.002 AVO

1898/05/11 7.61 0.00020 0.030 0.960 ALO

1994/03/30 −3.39 0.00075 0.120 0.536 ALO

1998/09/02 0.070 —

p-outlier is for testing no outlier against a GAO at an unknowndate.
p-ALO is for testing ALO against GAO, conditional on a known outlier date.
p-AVO is for testing AVO against GAO, conditional on a known outlier date.
Notation:0.045 = 0.00005

We apply our outlier detection procedure recursively: firstdetect the largest outlier, then adjust for

this as discussed in§4, next, detect and adjust for the subsequent outlier, untilno more are found. This
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approach is along the lines of Chen and Liu (1993), and therefore susceptible to the same criticism

that estimates of the other model parameters, in particularα0, are contaminated by the presence of

an outlier. Robust estimation of GARCH models is possible, but rather costly and difficult to imple-

ment, see Sakata and White (1998) and therefore not yet attractive. The problem can be mitigated by

applying a Studentt-error distribution, see§9.2 below.

The top half of Table 6 lists the results when applying the procedure to the monthly data. The

column labelledp-outlier gives thep-value of the test for a generalized additive outlier, basedon

the extreme value approximation. Detected are the 1987 crash, the start of the two world wars in

Western Europe, as well as September 1937 (when the index dropped by17%). The order in the

table follows the order in which the outliers were detected,and we also include the first outlier with a

p-value> 5%. The column labelledp-AVO reports thep-value for theχ2(1) likelihood-ratio test of

the AVO restriction within the GAO model. Similarly, the next column has the test outcome for the

ALO restriction. Note that AVO is rejected without further testing, when̂τ < 0, according to Step 4a

of the procedure. In December 1914, when the stock market reopened, both ALO and AVO are not

significantly different from GAO. However, the likelihood of AVO is higher than ALO, so the former

is selected.

The second part of Table 6 gives the results for the weekly data. We see more AVO outliers, as

expected. At different frequencies, the pattern of outliers will also be different: a brief crash or rally

within a month can be hidden by only looking at the end-of-month data. The world wars are now the

largest outliers, and World War II is detected as an AVO. Also, the13% fall in the second week of

December 1899 is detected before the 1987 crash. Except for the final outlier in 1994, the ALO versus

AVO decision is clear-cut.

In Table 7 we list the dates of outliers for the daily model, but this time in chronological order.

There are more than five times as many observations as in the monthly data set, but also five times as

many outliers. The procedure is found to be acceptably fast on the daily data, taking less than half

an hour for nearly30 000 observations (on a 800 Mhz Pentium III notebook; this includes the first

estimation).

The results in this section assume that the underlying modelis Gaussian GARCH(1,1), possibly

contaminated with outliers. Outliers only exist with reference to a model, and using the wrong model

could lead to the detection of too many outliers. Especiallyfor the daily data, it may be that the

GARCH model with student-t distributed errors, which is readily available in standardsoftware, is a

better description. This is explored in the next section.

9 Extensions to other models

9.1 GARCH(2,2) models

In the GARCH(p, q) case, the lag polynomialα(L) in (10) hasq terms instead of one. The equivalent

extension to the equation forht in the GAO model (11) would be to add the dummy variable with lags
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Table 7: Detected outliers using the new procedure in GARCH(1,1) model for daily Dow Jones re-

turns:276∆ log yd
t

date type p-outlier date typep-outlier date typep-outlier

1899/12/08 AVO 0.043 1924/02/15 AVO 0.0037 1950/06/26 AVO 0.066

1901/05/08 AVO 0.0008 1925/11/10 AVO 0.0015 1955/09/26 AVO 0

1901/09/07 AVO 0.0208 1927/10/08 AVO 0.0325 1962/05/28 AVO 0.0039

1904/12/07 AVO 0.045 1929/10/28 AVO 0.0002 1982/08/17 AVO 0.0055

1907/03/14 AVO 0.0005 1933/03/15 ALO 0.048 1986/09/11 ALO 0.0033

1913/01/20 ALO 0.066 1934/07/26 ALO 0.0067 1987/10/19 AVO 0

1914/07/28 ALO 0.045 1939/09/05 ALO 0.0031 1989/10/13 AVO 0

1914/07/30 AVO 0.043 1940/05/13 AVO 0.063 1991/01/17 ALO 0.0158

1914/12/12 ALO 0 1943/04/09 ALO 0.0004 1991/11/15 AVO 0.063

1916/12/12 AVO 0.0012 1946/09/03 AVO 0.0034 1997/10/27 AVO 0.042

1917/02/01 ALO 0.061 1948/11/03 AVO 0.048 2000/04/14 ALO 0.0156

2001/09/17 AVO 0.0002

1 to q as the variance equation is affected by a level outlier forq periods. As a simple alternative we

do not extend the GAO model with extra lags of the dummy variable. Instead, we just apply the same

procedure as for GARCH(1, 1), introducing only one dummy variable in the variance equation and

leaving the approximation to the distribution of the test statistic in Step 3 unchanged. We evaluate our

test procedure by Monte Carlo for 16 different GARCH(2,2) data generating processes both with and

without additive outliers. The results in Table 8 show that the size and power are very close to that in

the GARCH(1, 1) case. However, the procedure detects more additive level outliers in Step 4, which

could be caused by the omission of the additional lagged dummies, together and the rule 4a thatτ̂ < 0

corresponds to an ALO.

9.2 GARCH-t models and effects of outlier correction on GARCH parameteresti-
mates

A GARCH model with Student-t distributed errors, as proposed by Bollerslev (1987), is a likely al-

ternative for a GARCH model with additive volatility outliers. Appendix A discusses the adjustments

that we made to the extreme value approximation when incorporating the standardizedt(ν) distribu-

tion. As the form of the limiting extreme value distributionis nonstandard in this case and depends

on the unknownν, our approximation does not work as well as in the Gaussian model. Table 9

presents some results for the test. As expected, the actual outliers have to be considerably larger to be

distinguished from the thick tail of the Student-t(6) distribution.
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Table 8: Size and power of the test for a generalized additiveoutlier at unknown time in a GARCH(2,2)

model

Rejection frequencies Correct date Correct type

α1, α2;β1, β2 γ = 0 −3 −4 −5 −4 −5 −4 −5

Outlier of type AVO atT/2

0.1, 0.1; 0.1, 0.6 0.076 0.21 0.48 0.77 93% 98% 74% 77%

0.1, 0.1;−0.1, 0.8 0.061 0.16 0.41 0.74 94% 99% 60% 64%

Outlier of type ALO atT/2

0.1, 0.1; 0.1, 0.6 0.076 0.34 0.63 0.84 96% 98% 82% 82%

0.1, 0.1;−0.1, 0.8 0.061 0.32 0.63 0.85 97% 99% 85% 86%

5% nominal rejection frequencies forN = 2 000, T = 500.

Correct date, type: % correct when an outlier was detected.

Table 9: Size and power of the test for a single generalized additive outlier at unknown time in a

GARCH(1,1)-t(6) model,α1 = 0.1, β1 = 0.8

Rejection frequencies Correct date Correct type

γ = 0 −5 −8 −10 −15 −8 −10 −15 −8 −10 −15

Outlier of type AVO atT/2

0.043 0.04 0.08 0.22 0.74 92% 98% 99% 77% 84% 96%

Outlier of type ALO atT/2

0.043 0.05 0.26 0.48 0.84 91% 96% 99% 90% 95% 96%

Based on5% nominal rejection frequencies forN = 2 000 andT = 1 000.

Correct date, type: % correct when an outlier was detected.

Empirical application to the Dow Jones industrial averagesindex supports the closeness of the

Gaussian GARCH(1,1) model with generalized additive outliers and the GARCH(1,1)-t model. Ta-

ble 10 shows that at the monthly and weekly level, the two models seem to be close substitutes, with

the outlier model weakly preferred on AIC, where we treat thedate and type of the outlier as known

and count the sizes of the outliers as extra parameters to be estimated. At the daily level, the GARCH-

t is preferred, yielding a higher log-likelihood and lower AIC than the model with outliers. Both the

outlier extension and the introduction oft distributed errors significantly affect the estimates for the

GARCH parameters in the weekly and daily data:α̂0 and α̂1 increase,β̂1 decreases. The ’robust’

estimation of the mean return using the Student-errors significantly increaseŝζ (the intercept) as the

predominantly negative returns receive a lower weight. A similar effect was observed by Sakata and

White (1998) for daily S&P 500 returns (1987/8-1991/8) whenthey applied robust high breakdown
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estimators for the GARCH(1,1) model. The outlier correction does not have a significant impact on

the estimated mean return as the percentage of outliers is very small.

Table 10: Estimated GARCH(1,1) coefficients for Dow Jones returns at various frequencies

GARCH(1, 1) with outliers GARCH(1, 1)-t(ν) with outliers

Monthly data: 12∆ log ym
t

ζ 0.068 (0 .015 ) 0.078 (0 .015 ) 0.095 (0 .015 )

α0 0.014 (0 .0040 ) 0.013 (0 .0038 ) 0.017 (0 .0056 )

α1 0.114 (0 .019 ) 0.095 (0 .017 ) 0.102 (0 .022 )

β1 0.862 (0 .021 ) 0.870 (0 .021 ) 0.861 (0 .027 )

α∗

0 0.582 0.377 0.459

ν 5.357

outliers 0 4 0

log-lik −1189.0 −1121.4 −1133.8

AIC 1.889 1.782 1.803

Weekly data:51∆ log yw
t

ζ 0.100 (0 .013 ) 0.089 (0 .013 ) 0.111 (0 .013 ) 0.110 (0 .013 )

α0 0.063 (0 .0077 ) 0.023 (0 .0039 ) 0.027 (0 .0057 ) 0.025 (0 .0052 )

α1 0.149 (0 .012 ) 0.095 (0 .0078 ) 0.091 (0 .011 ) 0.091 (0 .010 )

β1 0.820 (0 .013 ) 0.888 (0 .0084 ) 0.892 (0 .012 ) 0.894 (0 .011 )

α∗

0 2.036 1.437 1.644 1.645

ν 7.151 7.808

outliers 0 7 0 2

log-lik −8372.4 −8120.2 −8162.0 −8128.3

AIC 3.090 3.000 3.013 3.000

Daily data: 276∆ log yd
t

ζ 0.120 (0 .012 ) 0.124 (0 .012 ) 0.145 (0 .011 )

α0 0.105 (0 .0070 ) 0.069 (0 .0052 ) 0.082 (0 .0085 )

α1 0.094 (0 .0032 ) 0.072 (0 .0026 ) 0.080 (0 .0041 )

β1 0.896 (0 .0032 ) 0.918 (0 .0027 ) 0.912 (0 .0043 )

α∗

0 10.69 6.727 10.09

ν 5.670

outliers 0 34 0

log-lik −67539.8 −66715.8 −66476.7

AIC 4.616 4.559 4.543

α∗

0 = α0/(1 − α1 − β1). Standard errors in parentheses.
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For each frequency we also applied the GARCH-t outlier test to the GARCH-t models. Only for

the weekly data were outliers detected: ALO when the market reopened after World War I, and AVO

at the start of World War II. These are the same two leading outliers found in the normal GARCH(1,1)

model. However, in terms of AIC the GARCH-t model with outliers is not an improvement over the

normal GARCH(1,1) model with outliers. The effect of the outliers detection on the estimatedν is

small. For the monthly data, the closest candidate outlier in the GARCH-t model was October 1987,

with ap-value of0.052. In daily data, the closest candidate was September 26, 1955, which was also

the first one found in the GARCH(1,1) model, but now withp-value of0.10 rather than zero.

10 Conclusion

We introduced a new detection procedure for additive outliers in GARCH models. This procedure has

several advantages over existing procedures:

• It is simple to implement and contains a convenient procedure to computep-values for tests,

without the need for simulation.

• It is likelihood-based and associated tests are asymptotically similar with respect to the GARCH

parametersα1 andβ1.

• Simple nested tests distinguish between Additive Level Outliers and Additive Volatility Out-

liers.

• The procedure can be extended to other types of GARCH models such as EGARCH, etc.

Our applications on monthly, weekly and daily Dow Jones returns show that the test procedure also

works well in practice. We compare estimates of our outlier model with a GARCH-t model, also

possibly affected by outliers. The GARCH-t model without outliers is to be preferred over the normal

GARCH with outliers for the daily Dow Jones returns.

Other practical aspects of the procedure could be examined.Although the in-sample fit of a

GARCH-t and normal-GARCH with outliers for the monthly Dow Jones returns may be quite simi-

lar, the forecasted volatility will be quite different. It may be that the former is preferred in practice,

for example for value-at-risk estimations. Conclusions regarding leverage effects in the form of asym-

metric volatility could be also different: the outlier detection, for the data considered, predominantly

removes negative shocks.

The proposed method could become a useful addition to the toolkit of empirical volatility mod-

ellers. The first-step outlier test can serve as a mis-specification test for the model. Next, the iterated

procedure can be used as a robustification of the model (with too many outliers suggesting that the

model is inadequate). Finally, the detected outliers can complement value-at-risk estimations: in large

samples, the distribution of outliers is informative in itself, otherwise the estimates may require their

absence.
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A Approximating the distribution of the max sLR
GAO
T (s) test

This appendix describes the details of the experiments leading to the approximation for the maxsLRGAO
T (s)

test in the normal case described in§6. We also present adjustments to the approximation for the case of
Student-t errors, that we discuss in§9. In order to simplify the presentation we denoteLRGAO(s) by Xs and
maxsLRGAO

T (s) by MT .
The single likelihood-ratio test for a Generalized Additive Outlier at a known timet = s, denoted by

LRGAO(s), involves two parameters that are well identified under the null, giving the test statistic an asymptotic
χ2(2) ≡ exp(1/2) distribution. The effectiveness of this asymptotic approximation for a sample size of 500 is
illustrated below.

As we effectively doT such tests we wish to approximate the distribution of the maximum: MT =
max(X1, . . . , XT ). Assuming independently and identically distributedXs the cumulative distribution func-
tion FMT

of MT is given by

FMT
(x) = {FX(x)}T =

{
1 − e−

1

2
x
}T

.

Using
1

T
log FMT

(x) = log
(
1 − e−

1

2
x
)
≈ −e−

1

2
x,

whenx is large, gives

FMT
(x) ≈ exp

{
−Te−

1

2
x
}

= exp

{
− exp

(
−

x − 2 logT

2

)}
,

such that for largex and largeT , MT has a Type I extreme value limiting distribution. Our approximations
are based on this distribution type. Leadbetter, Lindgren,and Rootzén (1983, Chapters 1,3) show that Type I
extreme value (or Gumbel-) limiting distributions apply much more generally. TheXs need not be exponential
and independent, although these are the cases where the asymptotic theory works well, also in moderately sized
samples.

In general, when

FMT
(x) = exp

{
− exp

(
−

x − aT

b

)}
, (13)

the expectation and variance ofMT are given byE[MT ] ≡ mT = aT + δb, whereδ ≈ 0.577216, and
V[MT ] = b2π2/6, see e.g. Mood, Graybill, and Boes (1974, Appendix B). Critical values at significance level
α can therefore be computed as

Cα
T = −b log(− log(1 − α)) + aT . (14)

Although theXs are not independently distributed in our case, we can use theextreme value distribution
(13) as the limiting distribution. TheXs are not fat tailed and they are short memory under the null hypothesis of
no outliers, so the required distributional mixing conditions for a Type I extreme value distribution are met, see
Leadbetter, Lindgren, and Rootzén (1983, Ch. 3). The general theory allows the variance of the approximating
distribution, and thereforeb, to depend onT . This does not apply to our statistic.

Simulating the distribution ofMT for increasing sample sizesT , as reported in§6, we observe that the
simulated standard deviation,V [WT ]1/2, of the test statistic is close to constant. Its asymptotic value is2.851

with standard error0.008, found from a regression on a constant,T−1 andT−2. This results in̂b = 2.223.
After some experimentation, we found that the means from theMonte Carlo experiment in§6, depicted as

14 observations in the upper panel of Fig. 2, are very well described by the following regression:

m̂Ti
= 1.880

(0.0013)
log(Ti) + 22.7

(1.2)
log(Ti)/Ti, i = 1, . . . , 14,

where heteroscedasticity consistent standard errors (HCSE) are given in parentheses. The residual normality
test of this regression insignificant, but there is significant heteroscedasticity. The intercept is insignificant. The
resulting response surface formT , b as a function of sample sizeT is:

aT = mT − δb ≈ 1.88 logT (1 + 12/T )− 1.283,
b ≈ 2.223.

(15)

Figure 3 shows how well the approximation (14), (15) works when applied to a selection of critical values.
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Because the number of Monte Carlo experiments is quite big, we have a large number of draws from the
(hypothesized) extreme value distribution. This in turns leads to accurate estimates of the mean and standard
deviation, for which we adopted the method of moments to determine the parameters of the limiting distribution.
We could instead have used the disaggregated data along the lines of, e.g., Tsay, 2002,§7.5.2.1, to directly
estimateaT andbT . This would give very similar outcomes for the resulting critical values, but with better
estimates of the overall parameter uncertainty in the approximation at varying levels ofT .

Abraham and Yatawara (1988) (AY88) use a similar extreme value approximation for the maximum of a
sequence ofχ2(2) distributed LM tests for time series model outliers. They donot fit equations for the moments
of the extreme value distribution, but instead adjust the critical value approximation (14), with fixedb = 2 and
derive a constant term in the critical value equation,log(θ), using Monte Carlo Simulations.

(AY 88) : Cα
T = −2 log(− log(1 − α)) + 2 log(T ) + log(θ) (16)

with T the number of (dependent) outlier tests. They estimated an extremal indexθ = 0.8. The termlog(θ)
corrects the critical values for the dependence of the test statistics, see Leadbetter, Lindgren, and Rootzén (1983,
p.67) for a formal definition.θ = 1 for (asymptotically) independent statistics. Abraham andYatawara (1988)
also note that applying the test with estimated parameters for the time series model, rather than using known
parameters markedly decreases the empirical critical values for the test. A similar effect may explain that the
coefficient oflog(T ) is lower than two in our approximation formula (15). The specification (16) would work
badly in our case.
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Figure 3: Simulated and fitted critical values (1%, 5%, 10%, 20%) of the maxsLRGAO
T (s) test statistic

under the null hypothesis.

Next, we turn to the case with a Student-t error term. We first note thatMT of a sample oft(ν)-distributed
variables has a type II extreme value (Fréchet) limiting distribution:

FMT
(x) = exp

{
−x−ν

}
, (17)

whereν, the tail index, determines the shape of the distribution. Thek-th moments ofMT are now given by
E[Mk

T ] = Γ(1 − k/θ), whereΓ is the gamma function. In this caseν equals the degrees of freedom of the
Student distribution, see Mood, Graybill, and Boes (1974,§6.5.3, example 12).

As theLRGAO test involves the test for a single outlier in a GARCH-t model, one may perhaps expect
that the type II behaviour also applies here. It may also be that the type I approximation is still reasonable for
common values ofν .

In order to investigate this issue we compare the distributions of theLRGAO(s) test for a fixeds in the cases
of normal errors and Student-t errors using simulation. Figure 4 presents QQ plots of the simulation results for
the design given in§6 forT = 500 andN = 10000, testing for an outlier at the middle of the sample:s = T/2.
The solid line in Figure 4 makes clear that the distribution for theLRGAO test for an outlier at a known point
in a GARCH model with normal errors is indeed close toχ2(2).

Note that for Student-t(6) errors, the distribution ofLRGAO is considerably more spread towards the right
tail. At first sight, this may indicate that a type I extreme value distribution does not apply here. However,
if we simulate the critical values of the maxsLRGAO

T (s) test under Student-t errors, the distribution of the
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Figure 4: QQ plot against aχ2(2) reference distribution of the LR(2) test for an outlier in the middle
of the sample: normal GARCH(1,1) (solid line) versus GARCH-t(1,1) with t(6) errors. T = 500,
N = 10000.
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Figure 5: Simulated moments (mean, standard deviation), ofthe maxsLRGAO
T (s) statistic in a

GARCH-t(ν)(1,1) under the null hypothesis, forν = 4, 5, 6, 9, 13 and∞ (normal).

test shifts withν, but the distance between critical values at 5% and 10% and between 10% and 20% for a
specificν remain very close, as in Figure 2. Figure 6 presents simulated critical values for Student-t errors.
The differences in critical values for a type II extreme value distribution are determined by[− log(1 − α)]

−1/ν

which should not lead to an equal spacing between 5% and 10 % and 10% and 20% critical values. This is an
indication that that the type II approximation would not work well here.

Instead of using a type II approximation, we adapt the type I extreme value approximation under normal
errors to the Student-t(ν) case by allowingmT andb to depend onν. Based on GARCH(1,1)-t(ν) Monte Carlo
simulations forν = 4, 5, 6, 9, 13, the following adjustments can be used to approximate the distributions for the
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outlier test in the GARCH(1,1)-t(ν) model:

m(T, ν) ≈ mT + 11ν−1 + 0.25mT ν−1/2,
b(ν) ≈ b + 12ν−2,

(18)

with mT andb given in (15). We did not allowb to depend onT , although the simulations show the variance to
be somewhat u-shaped forν ranging from4 to 6. The response surface for the mean fits remarkably well. The
approximation to the critical values is satisfactory, see Figure 6, except whenν = 4, and to a lesser extent for
ν = 5 at1%.
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Figure 6: Simulated and fitted critical values (1%, 5%, 10%, 20%) of the test statistic for GAO in
GARCH-t(ν) under the null hypothesis.
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B Alternative outlier detection procedures for GARCH(1,1) models

We discuss to alternative approaches. Hotta and Tsay (1998)built a procedure based on LM tests. Franses and
van Dijk (2000) suggested a procedure based on regressions.

B.1 Additive volatility outliers

Hotta and Tsay (1998) propose an LM test on the largest standardized residual:

LMAVO = max
1<t<T

ε̂2
t

ĥt

.

This is approximately distributed as the maximum of a randomsample of sizeT − 2 from aχ2(1) distribution.

B.2 Additive level outliers

Hotta and Tsay (1998) propose an LM test for the ALO case:

LMALO = max
1<t<T

ε̂2
t

ĥt

{
1 + α̂1ĥt

∑J
j=t+1 β̂

j−(t+1)
1 ĥ−2

j

(
ĥj − ε̂2

j

)}2

1 + 2α̂2
1ĥ

2
t

∑J
j=t+1 β̂

2[j−(t+1)]
1 ĥ−2

j

.

t < J ≤ T is a truncation parameter that is introduced to avoid ‘swamping’. The distribution of LMALO

depends on the choice ofJ , and the true values ofα1 andβ1, requiring simulation for every test. Finally, they
suggest, when both LMALO and LMAVO are significant, to adopt the one with the most significant value. The
p-values of LMALO can only be obtained by simulation, which can hinder the decision between outlier types:
if the AVO test has a very smallp-value, many replications are required to decide whether the ALO test has an
even smallerp-value or not. Moreover, there is no guarantee that the candidate outliers for both tests occur at
the same observation.

Franses and van Dijk (2000) suggest the following procedurefor detecting additive level outliers in GARCH(1,1)
models. Using the ’variance innovations’ut = ε2

t − ht andu∗

t = ε∗2t − h∗

t they rewrite (8) as (so this is under
the impact of a neglected outlier):

u∗

t = φ
{
I(t = s) − α1β

t−s−1
1 I(t > s)

}
+ ut,

whereφ = 2γεs + γ2 is the direct impact of the outlier on the sequence of variance innovations. Theφ

parameter is estimated by regression ofû∗

t = ε̂∗2t − ĥ∗

t on
{

I(t = s) − α̂1β̂
t−s−1
1 I(t > s)

}
, whereα̂ andβ̂

are obtained in the baseline GARCH(1,1) model. From this they solve forγ:

γ̂s =






0 if ε̂∗2s − φ̂ < 0,

ε̂∗s −
(
ε̂∗2s − φ̂

)1/2

if ε̂∗2s − φ̂ ≥ 0 andε̂∗s ≥ 0,

ε̂∗s +
(
ε̂∗2s − φ̂

)1/2

if ε̂∗2s − φ̂ ≥ 0 andε̂∗s < 0.

The largest̂γs exceeding a certain critical value is used to remove the outlier from the data. An approximation
for the critical value is offered for certain significance levels. If an outlier is found, att0 say, the procedure
is repeated foryt − γ̂t0I(t = t0) until no further outliers are detected. This procedure could be combined
with LMAVO along the lines suggested by Hotta and Tsay (1998) (i.e. selecting the outcome with the smallest
p-value). In both cases, the assumption is that the outlier isof the same sign as the observed residual. In
addition, Franses and van Dijk (2000) select the smallest solution (in absolute value). Although this provides
a unique choice forγ, their regression method for the variance innovations often suggests the existence of
multiple solutions forγ, even when these are not indicated by the log-likelihood. See, e.g., the left hand side
likelihood grid in Figure 1.

Both the LM based approach and the regression procedure are rather complex, and suffer from non-
similarity with respect to the GARCH parameters, so that newsimulations are needed to computep-values
in each empirical application.
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B.3 Simulation comparison

Next, we contrast our procedure to these alternative methods, denoted FD for the regression procedure of
Franses and van Dijk (2000), and HT for the LM test based approach of Hotta and Tsay (1998). The results are
in Table 11.4 The main findings are that FD, although not designed to test for AVO, it will have some power
against it; FD has lower power than HT when the outlier is of type ALO, probably because HT actually uses two
tests (a more appropriate comparison would be with LMALO only). HT and our procedure have similar power,
but the latter is much better at dating the outlier. Surprisingly, HT is worse at dating for the larger outliers as
the LM tests lose their optimal power properties for distantalternatives. In addition, our procedure is more
successful in classifying the outlier.

Table 11: Size and power of outlier detection tests for a single outlier in a GARCH(1,1) model

Rejection frequencies Correct date Correct type
α1, β1 γ = 0 −4 −5 −4 −5 −4 −5

Outlier of type AVO atT/2
HT 0.1,0.8 0.047 0.55 0.84 97% 96% 50% 39%
HT 0.3,0.5 0.044 0.54 0.85 82% 75% 54% 48%
HT 0.5,0.3 0.045 0.54 0.85 70% 66% 60% 56%

Outlier of type ALO atT/2
FD 0.1,0.8 0.050 0.45 0.73 91% 97%
FD 0.3,0.5 0.042 0.30 0.55 82% 91%
FD 0.5,0.3 0.075 0.27 0.50 72% 85%
HT 0.1,0.8 0.047 0.58 0.82 97% 96% 75% 80%
HT 0.3,0.5 0.044 0.69 0.85 88% 78% 75% 81%
HT 0.5,0.3 0.045 0.76 0.86 72% 56% 60% 75%
HT is LM approach of Hotta and Tsay (1998); FD is regression method of
Franses and van Dijk (2000). For further notes: see Table 4.

B.4 Application Comparison for the Dow Jones returns

Table 12 lists the results when applying the three procedures to the monthly Dow Jones returns. The order in
the table is that in which the outliers were detected, and we also include the first outlier with ap-value> 5%.

The procedure of Hotta and Tsay (1998) finds the same outliersas our method, with two additional ones.
Note that Hotta and Tsay (1998) use simulation to determinep-values for the ALO test. For large outliers,
the result is ap-value of zero, because it would be too time consuming to find accurate values (we use1000
replications andJ = 3). In our implementation, ALO is selected over AVO in that situation.

Franses and van Dijk (2000)’s procedure only detects ALO, which is less of a problem with monthly data,
nonetheless giving quite different results. This method was the only to detect a positive outlier in the monthly
data: August 1932 saw a large upswing in the index. The size ofthe first detected outlier is rather different from
the other methods, as the multiple solution forγ suggested by their regression for the variance innovationsdid
not arise in the other methods.

This could also explain the subsequent differences in the detection path. For the weekly and daily results we
exclude this method, because it would need to be combined with an AVO detection (adding LMAVO is simple,
but does require simulation to determinep-values). The consequence of only correcting for ALO in the weekly
returns is that about twice as many outliers are found, oftenclose to each other. This illustrates the advantages
of implementing volatility outliers.

4To compute the rejection frequency, we used the extreme value approximation (12) for our procedure. For HT we used
simulation based on1000 replications andJ = 3. For FD we use the given critical value approximation, except that we
replaceκε with max(3, κε). This is not a good solution, though, e.g. whenα = 0.6 andβ = 0.2, we would use the value
3, but simulations find a size of20% in that case.
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Table 12: Detected outliers in GARCH(1,1) model for monthlyDow Jones returns:12∆ log ym
t

new procedure
date type size p-outlier p-ALO

1987/10 ALO −4.38 0.083 0.795
1914/12 ALO −3.58 0.00012 0.112
1940/05 ALO −3.11 0.00018 0.251
1937/09 AVO −2.37 0.036 0.002
2001/09 — 0.139

Hotta and Tsay (1998)
date type size p-LMAVO p-LMALO

1987/10 ALO −4.38 0.074 0
1914/12 ALO −3.58 0.045 0
1940/05 ALO −3.11 0.008 0.002
1899/12 ALO −2.49 0.039∗ 0.025
1937/09 AVO −2.38 0.0457 0.046∗

1990/08 ALO −1.79 0.052∗ 0.043
2001/09 — 0.053 0.069∗∗

Franses and van Dijk (2000)
date type size

1987/10 ALO −3.78
1932/08 ALO +3.44
1940/05 ALO −2.54
1914/12 ALO −2.76
p-ALO is for testing ALO, when an outlier is detected.
∗ at date of subsequent outlier candidate;∗∗ at 1907/3.
Notation:0.045 = 0.00005

Table 13 gives the results for the weekly data. Four out of theseven outliers that are found by both our
procedure and HT are now of a different type. The HT proceduredetects two more outliers albeit atp-values
that are not very low.

The application comparison shows two clear benefits of our new procedure: it is a nested procedure, avoid-
ing the need to have to comparep-values of two separate tests, possibly at different dates.It is also easy to
computep-values at the second stage, allowing for better classification in ALO and AVO.

The new procedure is found to be considerably faster on the daily data, taking less than half an hour for
nearly30 000 observations (on a 800 Mhz Pentium III notebook; this includes the first estimation). HT takes two
and a half hours, requiring simulation, and FD more than seven hours. FD requires nearly30 000 regressions
for each test, but there is scope for implementing this more efficiently.
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Table 13: Detected outliers in GARCH(1,1) model for weekly Dow Jones returns:51∆ log yw
t

new procedure
date type p-outlier p-ALO size

1914/12/16 ALO 0 0.244 −16.75
1940/05/15 AVO 0 0 −7.05
1899/12/13 AVO 0.083 0.026 −7.14
1987/10/21 AVO 0.053 0.010 −8.95
1926/03/03 AVO 0.00015 0.002 −4.84
1898/05/11 ALO 0.00020 0.960 7.61
1994/03/30 ALO 0.00075 0.536 −3.39
1998/09/02 — 0.070

Hotta and Tsay (1998)
date type p-LMAVO p-LMALO size

1914/12/16 AVO 0 0∗∗ −16.75
1940/05/15 AVO 0 0 −7.05
1899/12/13 ALO 0.093 0 −7.14
1987/10/21 ALO 0.065 0 −8.95
1898/05/11 ALO 0.043

∗ 0 7.61
1994/03/30 ALO 0.043

∗ 0 −3.39
1926/03/03 ALO 0.042 0 −4.84
1998/09/02 ALO 0.030 0.018 −4.73
1929/10/30 AVO 0.043 0.061∗ −8.67
1927/10/19 — 0.115 0.059

∗ at subsequent outlier candidate.
∗∗ at previous observation: 1914/7/29.
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