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Abstract

In this paper we model the Gaussian errors in the standard Gaussian, linear state space
model as a stochastic volatility processes. We show that conventional MCMC algorithms for
this class of models are ineffective, but that the problem can be alleviated by reparameterising
the model. Instead of sampling the unobserved variance series directly, we sample in the space
of the disturbances, which proves to lower correlation in the sampler and thus increases the
quality of the Markov chain.

Using our reparameterised MCMC sampler, it is possible to estimate an unobserved factor
model for exchange rates between a group of n countries. The underlying n + 1 country-
specific currency strength factors and the n + 1 currency volatility factors can be extracted
using the new methodology. With the factors, a more detailed image of the events around
the 1992 EMS crisis is obtained.

We assess the fit of competitive models on the panels of exchange rates with an effective
particle filter, and find that indeed the factor model is strongly preferred by the data.

Keywords: Markov chain Monte Carlo, particle filter, state space form, stochastic volatility.

1 Introduction

1.1 Overview

This paper shows how to statistically handle a class of conditionally Gaussian unobserved compo-

nent time series models whose disturbances follow stochastic volatility (SV) processes. Uncondi-

tionally, this delivers a potentially highly non-linear model whose forecasts are adaptive through

time, changing the level of optimal smoothing to locally match the properties of the data.

We will claim that standard methods for carrying out the computations required for this model

class, which are based on Markov chain Monte Carlo (MCMC), can be poor in situations encoun-

tered in practise. We show that a simple reparameterisation overcomes this difficulty delivering

reliable methods for inference, and investigate in what situations the reformulation improves the

mixing of the sampling chain. These are the main contributions of this paper. We will illustrate
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the methods by an example from financial econometrics, where a panel of exchange rate series

is dissected into country specific components for level and variance. Such a decomposition helps

understanding events like the EMS crisis of 1992, where it is seen which currencies were affected,

and how uncertainty spread.

1.2 The model

Write σ2
t as a vector of non-negative processes and σ2 = (σ2

1 , . . . , σ
2
n), the corresponding matrix.

Then we will assume that the observable process y = (y1, . . . , yn) follows a conditionally Gaussian

state space form (GSSF) with

 yt

αt+1


 |αt, σ

2
t ∼ N






 Ztαt

Ttαt


 , Rtdiag

(
σ2

t

)
R′

t



 ,

where Zt, Tt and Rt are non-stochastic matrices. Throughout, to simplify the exposition, we will

assume that

Rtdiag
(
σ2

t

)
R′

t =


 Gtdiag

(
σ2

t

)
G′

t 0

0 Htdiag
(
σ2

t

)
H ′

t


 ,

so the errors in the transition and measurement are conditionally independent. When σ2
t is an

unobserved exogenous Markov chain then this is a special case of the conditionally Gaussian state

space form introduced independently and concurrently by Carter and Kohn (1994) and Shephard

(1994b). We will denote this class a GSSF-SV to show that y|σ2 can be written as a Gaussian

state space model and that unconditionally

Rtut =


 yt

αt+1


−


 Ztαt

Ttαt




follows a Harvey, Ruiz, and Shephard (1994) type multivariate SV model. In particular we will

assume that

ut = εt � σt, εt
i.i.d.
∼ N(0, I),

where � is a Hadamard product. Reviews of the literature on state space models are given in

Harvey (1989), Kitagawa and Gersch (1996), West and Harrison (1997), Durbin and Koopman

(2001), while the corresponding literature on SV processes is discussed in Ghysels, Harvey, and

Renault (1996) and Shephard (1996).

The main model we will work with is where

hit = logσ2
it

follows a short memory Gaussian process. The most important example of this, which we will

focus on, is where ht follows a vector autoregression

ht+1 = γ + φ (ht − γ) + ωt, ωt ∼ NID(0,Ω). (1)
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In many models it will be convenient to assume that φ and Ω are diagonal matrices. When the

aim is solely to smooth the data, rather than predict future values, it often makes sense to simplify

the model by setting φ to the identity matrix and γ to a vector of zeros so that

ht+1 = ht + ωt, ωt ∼ NID(0,Ω). (2)

Throughout we will write α = (α1, . . . , αn), h = (h1, . . . , hn) and ω = (ω1, . . . , ωn).

Example 1 A traditional Gaussian local level model (e.g. Muth 1961, Harvey 1989 and West

and Harrison 1997) has

yt|αt ∼ N
(
αt, σ

2
1

)
, αt+1|αt ∼ N

(
αt, σ

2
2

)
.

The adaptive local level model generalises this to

yt|αt, σ
2
t ∼ N

(
αt, σ

2
1t

)
, αt+1|αt, σ

2
t ∼ N

(
αt, σ

2
2t

)
. (3)

In a static model, where σ2
t is constant through time, then E (αn+s|y1, . . . , yn) for, s > 0, only

depends upon the signal-to-noise ratio q = σ2
2/σ

2
1. The amount of discounting of past data we

use to produce forecasts is constant through time. When σ2
t changes through time, the degree of

discounting changes through time, adapting to the data.

This example is one of the most basic GSSF-SV models, and it is used in the next sections in

a simulation exercise. The application in Section 4 can be seen as a more elaborate version of this

adaptive local level model.

The model above is just one special case of the GSSF-SV models. Enlarging a general model

with time varying volatility allows the amount of smoothing to change over time. Another example,

not elaborated here, would be to write a cubic smoothing spline in GSSF (Wecker and Ansley 1983)

with a time-varying level of smoothness.

1.3 The literature

The idea of allowing the variance of components in state space models to change through time is

not new. Ameen and Harrison (1984), Shephard (1994a), West and Harrison (1997) and Koopman

and Bos (2004) consider the special case where σ2
t is a scalar. This allows all the variances of the

components to inflate and deflate through time. This added flexibility is potentially very useful,

but it does not allow the signal-to-noise ratios to change much through time and so will have a

limited impact on mean forecasts. Shephard (1994b, p. 122) mentioned the possibility of allowing

the variance of the transition model to change through time and use a non-stationary volatility

model to deal with it. However, he did not implement his strategy for this class of models. Highly

related work includes Uhlig (1997) and West and Harrison (1997, Ch. 10). There is quite some
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work on large dimensional factor SV models. Leading references include Aguilar and West (2000),

Pitt and Shephard (1999c), Chib, Nardari, and Shephard (2002). These can be regarded as special

cases of the above framework for in these models the αt process does not have any memory. Harvey,

Ruiz, and Sentana (1992) wrote about state space models with ARCH errors terms, however they

were not able to prove any properties about their proposed filter and estimation strategies. Bos,

Mahieu, and Van Dijk (2000) combine the state space model with a single SV process, and compare

its effectiveness with other specifications for the disturbance densities. Carter and Kohn (1994)

and Shephard (1994b) independently and concurrently introduced conditionally Gaussian state

space models where one could condition on Markov indicator variables, which allowed the σ2
t to

have a finite range of values at each time period. This type of model was additionally studied in

Kim and Nelson (1999).

1.4 Structure of the paper

The organisation of the paper is as follows. In Section 2.1 we discuss a standard approach to

designing MCMC algorithms for this type of problem. We will show this method is rather inef-

fective, delivering algorithms which need large computational resources in order to deliver correct

inferences. In Section 2.2 we introduce a reparameterisation of the model which vastly improves

the algorithm. Section 2.3 discusses the performance of the algorithms in a simulation exercise

using the adaptive local level model 3 above, while Section 3 shows how to effectively implement

a particle filter for this method. Section 4 applies the methods on a real world example to dissect

a system of exchange rates into country specific factors, allowing a more detailed analysis of the

occurrences around the EMS currency crisis in September 1992. Section 5 concludes.

2 Block sampling in GSSF-SV models

In this paper we will write θ as the unknown parameter vector. We often partition θ into ψ and

λ, where ψ indexes parameters in the Tt, Zt and Gt matrices, while λ denotes the parameters of

the σ2 process.

2.1 Conventional block sampling

The GSSF-SV model is a special case of the conditionally Gaussian state space form introduced

by Carter and Kohn (1994) and Shephard (1994b). This class has a convenient blocking structure

which considerably aids the implementation of MCMC techniques. In particular their methods

suggest the following standard algorithm.

1. Initialise σ2, θ.
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2. Update draw from θ, α|y, σ2 by

(a) Sampling from θ|y, σ2;

(b) Sampling from the multivariate normal distribution α|y, σ2, θ using the generic GSSF

simulation smoother (Fruhwirth-Schnatter 1994; Carter and Kohn 1994; de Jong and

Shephard 1995; Durbin and Koopman 2002).

3. Resample a draw from σ2|α, y, θ.

4. Goto 2.

The only non-standard part of this sampling is step 3. When σ2
t is Markovian and discrete

then we can sample from σ2|α, y, θ in a single block, as creatively emphasised by Carter and Kohn

(1994). Outside that case we have to resort to more brute force MCMC (e.g. in this type of

context Carlin, Polson, and Stoffer 1992) by replacing 3 by

3’. Sampling from, for t = 1, 2, . . . , n,

σ2
t |σ

2
t−1, σ

2
t+1, yt, αt, αt+1, θ.

Sampling from this density can be carried out in a number of ways. We use a method based

on the sampler discussed in detail by Kim, Shephard, and Chib (1998), although other methods

such as those highlighted by Jacquier, Polson, and Rossi (1994) and Geweke (1994) could be used.

This works with the ht parameterisation and notes that

f(ht|ht−1, ht+1, yt, αt, αt+1) ∝ f(ht|ht−1, ht+1)f(yt|αt, ht)f(αt+1|αt, ht),

which is relatively simple for

ht|ht−1, ht+1 ∼ N(γ + Σφ′Ω−1 {(ht+1 − γ) + (ht−1 − γ)} ,Σ), Σ = (Ω−1 + φ′Ω−1φ)−1

Proposals can be made from this density, either using many univariate draws (which seems always

a good idea if Ω and φ are diagonal) or all at once. Then they can be accepted using a Hastings-

Metropolis step in the usual way.

Step 2a allows for many different implementations. In the following we consider

2a(i). Sample all of θ|y, σ2 at once, using a Hastings-Metropolis step [indicated in the following

by θ|σ2 HM] or a step from the so-called Adaptive Rejection Metropolis Sampler, see Gilks,

Best, and Tan (1995) [θ|σ2 ARMS];

2a(ii). Sample each element of θ conditional on the others, using a Gibbs sampling scheme [θ|σ2

Gibbs];
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2a(iii). Split the density (θ|y, σ2) = (ψ|y, σ2) × (λ|σ2). Note that the series σ2 contains all possible

information on λ, hence (ψ|y, σ2) ≡ (ψ|y, σ2, λ) and (λ|σ2) ≡ (λ|y, ψ, σ2) [ψ, λ|σ2];

2a(iv). If the SV model contains h stochastic volatility series, the density (λ|σ2) can usually be split

into (λi|σ2
i ), sampling the parameters pertaining to each SV sequence separately. This tends

to lower correlation in the final chain [θi|σ2
i ].

2a(v). Additionally condition on the states, sampling from θ|y, σ2, α. Fruhwirth-Schnatter (1994)

argued that this increases the dependence in the MCMC output, but allows faster and easier

simulation of especially ψ|y, α, σ2 [θ|σ2, α].

2.2 Disturbance based block sampling

Even if the sampling from σ2|α, y, θ is carried out in an effective way the performance of the overall

sampler can be poor. The slow mixing of the samplers is caused in part by the choice of conditioning

variables in the Gibbs chain. The variance series σ2
t , t = 1, . . . , T is very informative on the

parameters in the SV process. Conditional on the variances σ2
t , the density λ|σ2, y, α, ψ allows

for little movement between successive draws of λ, leading to slow exploration of the parameter

space.

This section presents a reformulation of the sampling scheme in terms of the errors of the SV

process. The idea behind the transformation is to condition on elements which contain as little

information as possible on the parameters of the process.

In the original SV specification (1) the volatility process was defined in terms of

ωt = Ω
1

2ut ∼ NID(0,Ω), ut ∼ NID(0, I)

Note that there is a one-to-one relation between the volatility process σt (and hence ht) and the

white noise disturbances ut. Therefore, the conditioning in the block sampler can also be done on

ut, which by construction contains less information on the value of the parameters.

The sampling algorithm now becomes:

1. Initialise u, θ, and compute σ2 = f(u, λ) as a function of u.

2. Update draw from θ, α|y, u by

(a) Sampling from θ|y, u;

(b) Sampling from α|y, σ2(u, λ), θ as before.

3. Recompute σ2 from u and θ, sample from σ2|α, y, θ, and reconstruct u = f−1(σ2, λ).

4. Repeat from 2.
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Notice that step 2 is subtly different from the previous section for now we are no longer

conditioning on the time-changing variances. Instead we are conditioning on the standardised

disturbances for the log-variances and so as the parameters change so do the conditional variances.

The split into θ = (ψ, λ) makes less sense here as the full conditional λ|y, u, ψ does not simplify any

further as it did before in option (2a(iii)). Furthermore, the full conditional densities needed for

the Gibbs sampler in (2a(ii)) are not known in closed form when we condition on the disturbances

u. The other possibilities, of applying HM, ARMS, splitting between the h SV sequences and

conditioning on the state are still valid. Methods are indicated similarly, e.g. [θ|u HM] for the

Hasting-Metropolis sampler conditioning on the disturbances, sampling all parameters at once.

There has been very little research into the effect of reparameterisation on the convergence

of MCMC algorithms. The only two papers we know of are Pitt and Shephard (1999a) and the

excellent Frühwirth-Schnatter (2004). The latter paper is relevant here as the author has a section

on designing samplers based on the errors of the process rather than the states. This work was

carried out in the case of the GSSF.

2.3 Performance of the formulations in a simulation exercise

Settings

The performance of the standard formulation will be evaluated using the adaptive local level model

(3), with separate stochastic volatility series for the observation and transition equations. The

model only contains parameters in the volatility part, so here θ ≡ λ. We choose the settings of

the model to mimic situations found in financial time series, i.e.

• Persistent time varying volatility on the observations;

• Relatively slow moving underlying trend component;

• Variability in the trend volatility;

• Long data series.

Table 1: Parameters and prior choices

This table about here

Table 1 reports the parameter values chosen for the data generating process, together with

the prior specifications. The priors are mildly informative, to ensure existence of all sampling

densities, while not influencing the posterior density much.

The simulated data set contains 5,000 observations, which for a series of daily observations

would correspond to a time span of roughly 20 years.
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The algorithms were run in order on to collect a total of 100,000 posterior draws, after allowing

the algorithms a burn-in period of 20,000 iterations for initialising the SV sequences and getting

rid of the effect of the starting values of the samplers. Simulations are performed with the methods

specified in Sections 2.1–2.2.

For the Hastings-Metropolis and Gibbs samplers, where the sampling of the parameters θ|σ2, y

is relatively cheap, this step is repeated 5 times before series of α and h are updated. The HM

sampler draws candidate parameter vectors from a random walk candidate density, with a covari-

ance matrix proportional to a numerical approximation of the target density. The approximation

is updated every 100 iterations. The ARMS algorithm constructs a proposal density over a grid.

We choose an initial grid of 10 points.

Performance of the samplers

As explained before, a major obstacle for Bayesian methods is the mixing of the sampling chain.

Especially with models including unobserved stochastic volatility components, the correlation in

the chain can be high. In this section, we look at the performance of the algorithms from three

different angles.

This figure about here

Figure 1: Posterior density of φ2 according to different samplers

First, Figure 1 displays the posterior distribution of the autoregressive parameter φ2 of the SV

process for the state equation, as estimated using the different sampling methods. The lefthand

panel displays the posterior constructed using methods applying the conventional block sampling

algorithms of Section 2.1 whereas on the right the reformulation in disturbances of Section 2.2 was

used. For the model at hand, the methods [θ|σ2 HM] and [θ|σ2, α HM] correspond exactly, as all

parameters in the model are within the SV process; conditioning on the state does not alter the

likelihood. When conditioning on u instead of σ2, there is a difference in performance.

This figure about here

Figure 2: Autocorrelation of draws of φ2 according to different samplers

From the graph it is seen how the methods conditioning as usual on the volatility process

itself, differ strongly in their estimate of the posterior density, even though the underlying true

posterior density is the same for all simulations. This indicates that even after such a long sample,

convergence of the sampling scheme is not complete yet.

The samplers on the righthand side correspond well, and the estimated posterior densities

are smooth. This is a better sign of full convergence of the sampler after the 100,000 drawings

collected, and hence of better properties of the sampling schemes based on the reformulation.
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Second, as low mixing implies strong correlation in the chain of sampled parameter vectors,

it is instructive to look at the correlation of the individual parameters. Figure 2 displays the

autocorrelation of the samples of φ2, applying the different sampling schemes. Again, the lefthand

panel displays results for the standard formulation in terms of σ2, with different choices for the

sampler of θ, α|y, σ2, while the righthand panel follows the alternative formulation. Note that on

the left the autocorrelation is plotted until lag 10,000, on the right up to lag 1,000. Indeed, for

this model, conditioning on the disturbances in the volatility equations leads to strongly faster

mixing of the chain.

Table 2: Inefficiency of the sampling procedures

This table about here

Finally, Table 2 displays the estimated integrated autocorrelation times or inefficiency factors.

These were used in Shephard and Pitt (1997) and Kim, Shephard, and Chib (1998). Note that

Geweke (1989) prefers to report the inverse of this number. The measure compares the variance

of the sample mean, adapted for correlation in the chain, to the variance of the mean when the

correlation is not accounted for, as

R̂Bm
= 1 +

2Bm

Bm − 1

Bm∑

i=1

K

(
i

Bm

)
ρ̂(i)

with K(j) the Parzen kernel and Bm the bandwidth. A low value of R is preferable, while a value

of one indicates that the sampler delivers an uncorrelated set of draws. In the table the inefficiency

factors are calculated using a bandwidth of Bm = 2, 000. The conclusions are the same as before:

Conditioning on the volatility disturbances increases the efficiency of the sampling strongly.

2.4 Expected performance in different situations

Even though the results in the previous section are encouraging, the question is if such a strong

improvement can be expected in every situation. To understand this question, it is important to

realise where the gains are coming from.

Following Tanner (1996, Section 4.4.2) we can use the ‘missing information principle’ to de-

compose the log-posterior density p(θ|y) into parts pertaining to the augmented posterior and to

the posterior of the augmentation itself, which is for the original formulation

log p(θ|y) = log p(θ|y, σ2) − log p(σ2|y, θ) + C.

The degree of mixing of the Gibbs chain depends on the information in the steps, i.e. on the

expectation with respect to the density p(σ2|y, θ) of the augmentation parameters of

−
∂2 log p(θ|y)

∂θ∂θ′
= −

∂2 log p(θ|y, σ2)

∂θ∂θ′
+
∂2 log p(σ2|y, θ)

∂θ∂θ′
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and similarly for the reformulation based on conditioning on u instead of on h. If the expected

information
∫

h

−
∂2 log p(θ|y, σ2)

∂θ∂θ′
p(σ2|y, θ)∂σ2 >

∫

u

−
∂2 log p(θ|y, u)

∂θ∂θ′
p(u|y, θ)∂u,

then the reformulation indeed reduces the informativeness of the augmentation variable, and a

gain in the sampling performance can be expected.

To check this conjecture, the adaptive local level model (3) was simulated using a stochastic

volatility component only on the observation equation. The autocorrelation φ is fixed at 0.95, the

mean of the SV equation at γ = 1, and the standard deviation of the transition equation σ2 = 0.5.

The unconditional standard deviation of the SV equation,

σSV =
σω√
1 − φ2

is allowed to range from 0.05 to 5. Figure 3 displays the determinant of the information matrix

for the different choices of σSV, for the original parameterisation and the reformulation.

This figure about here

Figure 3: Expected determinant of the information matrix of density of the parameters in the
Adaptive Local Level model, with SV on the observation equation, for varying values of the
standard deviation of the SV process.

The figure indicates how, for SV processes with low unconditional variance, the density of

p(θ|y, σ2) can be expected to contain much more information on θ than the reformulated density

p(θ|y, u), and hence the reformulation can be expected to deliver gains in the mixing of the Gibbs

chain. On the other hand, for higher variances σ2
SV, including integrated SV processes with φ = 1,

the original formulation can be expected to work just as well, or better.

Notice that this simulation exercise is only concentrating on the effect of the formulation on

the parameters of the SV process itself. For a general model, with parameters relating to the mean

and others relating to the variance equation, one cannot immediately conclude that one method

will always be preferable to the other. Practical experience should be used to guide the sampler

choice.

3 Particle filtering

An important feature of MCMC is that it produces samples from α, σ2, θ|FT , conditioning on all

information available at the end of the sample, FT = {y1, . . . , yT}. Of course this is very useful

in terms of summarising important features of the model and the data. MCMC methods do not,

on the other hand, produce effective methods for sequentially sampling from

αt, σ
2
t |Ft, θ, t = 1, 2, . . . , n.
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Such quantities, conditioning only upon information available at time t, are very important in

practise for the use of sequential forecasting and model checking. Sequential forecasting underlies

Bayesian decision-making under uncertainty, where future actions may depend on the present, i.e.

filtered, unobserved components αt, σ
2
t . For model checking, extensive use is made of the marginal

likelihood contrasting competing models using Bayes factors (Aitkin 1991; Kass and Raftery 1995).

An estimate of the marginal likelihood can be computed from the conventional likelihood, L(θ; y),

which in turn needs a prediction error decomposition. This decomposition itself needs filtered

state estimates of αt and σ2
t .

A standard way of computing these filtered state estimates is via a particle filter (e.g. Gordon,

Salmond, and Smith 1993, Pitt and Shephard 1999b and Doucet, de Freitas, and Gordon 2001).

In this case the model has a lot of structure which allows us to carry out particle filtering in a

very fast way. This work follows the ideas discussed in, for example, Pitt and Shephard (1999b)

and Chen and Liu (2000).

We will argue by induction. Consider a collection of particles, or sample, which is used to

approximate the distribution of αt, σ
2
t |Ft,

σ
2(i)
t , fN

(
αt|Ft; a

(i)
t , P

(i)
t

)
, i = 1, 2, . . . ,M.

This implies, in particular, that the particle approximation to αt, σ
2
t |Ft is

f̂
(
αt, σ

2
t |Ft

)
=

M∑

i=1

fN

(
αt|Ft; a

(i)
t|t , P

(i)
t|t

)
I
(
σ2

t = σ
2(i)
t

)
,

a mixture of normals. Consequently

f̂
(
αt|σ

2
t = σ

2(i)
t ,Ft

)
= fN

(
αt|Ft; a

(i)
t|t , P

(i)
t|t

)
,

We treat this approximation as if it is true, which implies straightforwardly that

f̂
(
αt+1|σ

2
t = σ

2(i)
t ,Ft

)
= fN

(
αt+1|Ft; a

(i)
t+1|t, P

(i)
t+1|t

)

with

a
(i)
t+1|t = Tta

(i)
t|t and P

(i)
t+1|t = TtP

(i)
t|t T

′
t +Htdiag

(
σ

2(i)
t

)
H ′

t.

We propagate the volatility process forward using simulation. For each σ
2(i)
t we generate R

daughters by simulating forward

σ
2(i,j)
t+1 ∼ σ2

t+1|σ
2(i)
t , j = 1, 2, . . . , R.

This produces the approximation to the density of f
(
αt+1, σ

2
t+1|Ft

)
of

f̂
(
αt+1, σ

2
t+1|Ft

)
=





M∑

i=1

fN

(
αt+1|Ft; a

(i)
t+1|t, P

(i)
t+1|t

)




1

R

R∑

j=1

I
(
σ2

t+1 = σ
2(i,j)
t+1

)






 .
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The most important step is that we now calculate

f̂
(
αt+1, σ

2
t+1, i, j|Ft+1

)
∝ fN

(
αt+1|Ft; a

(i)
t+1|t, P

(i)
t+1|t

)
I
(
σ2

t+1 = σ
2(i,j)
t+1

)

×fN(yt+1|Zt+1αt+1, Gt+1diag
(
σ2

t+1

)
G′

t+1).

It follows that

f̂
(
αt+1, σ

2
t+1, i, j|Ft+1

)
=

(
wi,j∑M

k=1

∑R

l=1 wk,l

)
fN

(
αt+1|Ft+1; a

(i,j)
t+1|t+1, P

(i,j)
t+1|t+1

)

where

wi,j = fN

(
v
(i)
t+1|0, F

(i,j)
t+1

)
,

v
(i)
t+1 = yt+1 − Zt+1a

(i)
t+1|t, F

(i,j)
t+1 = Zt+1P

(i)
t+1|tZ

′
t+1 +Gt+1diag

(
σ

2(i,j)
t+1

)
G′

t+1,

and

a
(i,j)
t+1|t+1 = a

(i)
t+1|t + P

(i)
t+1|tZ

′
t+1

{
F

(i,j)
t+1

}−1

v
(i)
t+1,

P
(i,j)
t+1|t+1 = P

(i)
t+1|t − P

(i)
t+1|tZ

′
t+1

{
F

(i,j)
t+1

}−1

Zt+1P
(i)
t+1|t.

We need to sample from this density to produce the new set of particles, in order to complete the

algorithm. This is straightforward, we sample with replacement from the discrete distribution

σ
2(i,j)
t+1 , i = 1, 2, . . . ,M ; j = 1, 2, . . . , R,

with probabilities proportional to wi,j . Associated with each of these discrete particles are the

distributions αt+1|Ft+1; a
(i,j)
t+1|t+1, P

(i,j)
t+1|t+1. Relabelling all the particles produces the sample

σ
2(i)
t+1 , fN

(
αt+1|Ft+1; a

(i)
t+1, P

(i)
t+1

)
, i = 1, 2, . . . ,M.

The likelihood of the model is delivered as a by-product of the particle filter. It is calculated

as

L(yt+1|θ,Ft) ≈
1

RM

∑

i

∑

j

wi,j .

4 Factoring exchange rates

This section applies the sampling methods and the particle filter of Sections 2.1-2.2 and 3 on two

data sets. First, Section 4 uses a GSSF-SV model to dissect exchange rates into country-specific

components. Applying the techniques to data series of the British Pound, the German DMark

and the Japanese Yen against the U.S. Dollar, around the time of the 1992 crisis in the European

Monetary System, allows us to analyse in detail the uncertainty in the market, and the extend to

which it affected these currencies specifically.
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Modelling correlations

The models based on the General State Space Form with Stochastic Volatility promise great

flexibility in modelling time series with intricate dependencies in both means and variances. One

area where the application of such models can be of great interest is the field of exchange rate

research.

For instance in Lyons (2001, Ch. 6), in his introduction to exchange rate models, the purchasing

power parity (PPP) is presented as a first way to relate exchange rates to the structure of the

economy. The PPP can be written as

SUK/US = PUK/PUS

relating the spot exchange rate between Dollar and Pound (SUK/US) to the (consumer or other)

price indices in the respective countries (PUK and PUS, respectively). As is well known, it is hard

to prove empirically that the PPP actually holds, as it is unclear for what price indices or on what

time span the relation should be valid. Hence, the discourse in Lyons (2001) continues with models

of exchange rates themselves, without looking into the separate components in the exchange rates.

When multiple exchange rates are taken into account, there always is the problem of correctly

modelling the correlation between series. As both SUK/US and SYY/US relate to the dollar, both

levels and volatilities of the exchange rates are surely strongly related, see e.g. Beine (2004).

A clean way to model this relation was presented in Mahieu and Schotman (1994). They

propose a factor structure for the logarithm of the exchange rates sij,t = logSij,t between countries

i and j as

sij,t = ei,t − ej,t,

where the country specific components ei,t are assumed to follow random walks (which implies

the assumption of unpredictable returns on the exchange rates) with time varying variance. Using

country 0 as a numeraire, a full model for multiple exchange rates between n+ 1 countries could

be




s10,t

...

sn0,t


 =

(
−1 In

)



e0,t

...

en,t


 (4)




e0,t+1

...

en,t+1


 =




e0,t

...

en,t


+H

1

2

t εt εt ∼ N(0, In+1) (5)
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where Ht is a diagonal matrix with typical element

Hii,t = exp(hi,t)

hi,t+1 − γi = φi(hi,t − γi) + σi,ωωi,t

ωt ∼ N(0, In+1).

The values of the SV processes hi,t=0 at the start of the process should be initialised diffusely,

such that the process can choose the initial level of variance by itself.

This model, indicated below as Factor-SV model, allows us to extract the country specific

factors for both levels and volatilities out of a set of exchange rates. With the factors, one can

analyse the effect central bank interventions have on the exchange rates (Dominguez 1998; Beine,

Laurent, and Palm 2004), but now for the first time on each country specifically. Likewise, one

can e.g. measure which countries are hit hardest during currency crises (Evans and Lyons 2003).

The next sections apply the above model to exchange rate data on the US Dollar, the German

DMark, the Japanese Yen and the British Pound, over the years 1991-1993, around the period of

the crisis in the European Monetary System (EMS). Over this period the model is contrasted to a

the standard stochastic volatility model for exchange rate returns, or, using the previous notation,

modelling




s10,t+1

...

sn0,t+1


 =




s10,t

...

sn0,t


+Htεt εt ∼ N(0, In) (6)

where Ht is a diagonal matrix as before, though now of size n× n. Note how for this model the

numeraire of the exchange rates matters, in contrast to the factor model. Also, for simplicity, we

do not take the correlations between the exchange rates explicitly into account. Effectively we

estimate a panel of univariate random walk-SV (RW-SV) models.

Data and estimability

The proposed factor model contains, for n exchange rates of length T , n + 1 unobserved factor

components of length T , plus the n + 1 volatilities which are second order unobserved processes.

Essentially the SV processes serve to estimate the 3 × (n + 1) parameters σi,ω , φi and γi, which

can be expected to be considerably hard given the low degree of information available on these

parameters.

With n = 1 exchange rate, the model is not identifiable as it is not possible to distinguish

between the two country level factors. With n > 1, theoretically the numeraire factor can be

identified as a driving force within all exchange rates; for larger values of n more information on

e0,t and hence on the other factors is available.
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In Mahieu and Schotman (1994) the model on exchange rates is estimated in a classical frame-

work. The estimation procedure applied in their article however does not allow to estimate jointly

all unobserved processes, and can serve only as an approximation.

This figure about here

Figure 4: Exchange rates of the German DMark, British Pound and Japanese Yen against the US
Dollar, with 1/1/1991 ≡ 100

To keep estimation tractable, we concentrate on the three exchange rates of the German

DMark, the Japanese Yen and the British Pound against the US Dollar, over the period 2/1/1991–

31/12/1993.1 This period contains 755 daily observations. The series are depicted in Figure 4, with

the exchange rates scaled to 100 at the start of the sample. In the model we use the transformation

sij,t = 100 lnSij,t, with Sij,t the exchange rate between countries i and j at day t.

Posterior estimates

The model as presented above is estimated using a subsample of the simulation techniques de-

scribed earlier. Conditioning either on the stochastic volatilities σ2, or on the disturbances u in

the SV equations, the parameters θ are sampled using a Hastings-Metropolis step. The parameters

are either sampled all at once, or splitting the parameter vector into elements concerning each

of the volatility sequences separately, and splitting between the AR-parameters (ψi, σξ,i and the

level parameters γi (for simplicity, in the tables and figures this splitting is denoted θi|σ2 or θi|u).

The final sample contains 100,000 parameter vectors, collected after a burn-in period of 10,000

iterations.

The priors of the standard deviations in the SV processes are Inverted Gamma-1 densities,

with expectation and standard deviation equal to 0.2. The φi parameters used a Beta-prior with

expectation 0.86 and standard deviation 0.1, while γi was supposed to be normally distributed

around 0 with σγ = 2.

Table 3: Posterior statistics of the Factor-SV model

This table about here

Table 4: Posterior statistics of the standard RW-SV model

This table about here

The results for the multi-SV model are summarised in Table 3 and Figure 5, with the posterior

mean, highest posterior density region, efficiency measures for the various samplers, and a figure

of the posterior density of selected parameters. Statistics for the alternative model with standard

1Source: Reuters FX, interbank exchange rate at 16h GMT+1.
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This figure about here

Figure 5: Posterior densities of parameters relating to the US volatility factor resulting from the
competing sampling methods

RW-SV are given in Table 4, while discussion of the estimated underlying factors around the time

of the EMS crisis is postponed until later in this section.

Concerning the posteriors, we can conclude that the data is indeed informative on the parame-

ters in the SV process, as the posterior shifts away from the prior. This is quite an accomplishment,

as the estimation is very indirect: From the exchange rates, through the unobserved level factors

the unobserved SV processes are estimated, from which in turn the disturbances are extracted to

estimate their standard deviations σω, autocorrelations φ and location parameters γ.

The quality of the sample from the posterior density differs between the samplers. For in-

stance in Figure 5 the estimated posterior densities of σω,US, φUS and γUS indicate troublesome

convergence for the standard formulation conditioning on the volatility sequences σ2. The two

alternatives using the reformulated sampler correspond with each other, and with the standard

samplers in case those converged.

A similar picture is displayed from the inefficiency measures. Overall, efficiency increases

when switching to the reformulation, though some parameters like φUK, and also the γ’s, seem

to be estimated more easily in the original formulation. This is related to the findings in Section

2.4, where for higher unconditional variation in the SV series the original formulation has lower

expected information in the SV series σ2 than in the disturbances u.

Note that this model and data series is still relatively simple. In Figure 5 it already is seen that

convergence for this model, using the standard sampling procedure may not have been complete.

At the amount of correlation in the chain, full convergence may take a very long time, too long to

be practical. On larger data sets, covering a larger time period and/or at a higher frequency, with

more exchange rates included, and possibly with further explanatory variables in the model, the

sampling problems are exacerbated strongly. Without the alternative formulation of the sampling

procedure, a valid sample from the posterior distribution of the parameters may not be attainable.

For the model with the standard SV specification, without any underlying factors, posterior

statistics are reported in Table 4. Even though this model is simpler, as no underlying level

components have to be estimated, and there are only 3 SV components with their parameters,

efficiency of the estimated parameters is not clearly better than in the case of the factor model.

Conclusions on the performance of the samplers correspond with earlier results on the factor

models: Overall, the reformulation does increase the efficiency of the chain.

Table 5: Likelihood estimates

This table about here
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The particle filter of Section 3 can be used to estimate the marginal likelihood of the models.

Table 5 reports the log-likelihood at the posterior mode, and the corresponding log-marginal

likelihood computed using the kernel method (Kass and Raftery 1995; Bos 2002). For the particle

filter a set of m = 1, 000 particles with r = 100 daughters was used. A difference in log-marginal

likelihood of 613 points indicates that the factor model is strongly favoured above the standard SV

model. Of course, allowing for further correlation in the standard SV model could partly close the

gap between the models, but the message from the likelihoods is that the factor model indeed is

an interesting alternative for standard modelling procedures, especially now that it comes within

reach computationally.

Resulting factors and the crisis

The advantage of the multivariate factor model for exchange rates is that it is able to extract

estimates of the strength and uncertainty pertaining to each of the currencies separately. Figures

6 and 7 display these level ei and volatility σi,t = exp(hi,t/2) factors, over the 1991-1993 period.

Note that the factors displayed here are derived from the MCMC sampling results, and hence

condition on the full data set. Similar graphs, conditional only on past data, can be made using

the particle filter of Section 3.

This figure about here

Figure 6: Level factors extracted for the currencies over the 1991-1993 period, with 1-standard
deviation error bound.

This figure about here

Figure 7: Volatility factors extracted for the currencies over the 1991-1993 period, with 1-standard
deviation error bound.

For the means, it is utterly clear that it was the British Pound which devaluated in September

1992. Though there was some increased fluctuation in the strength of the German DMark, this

effect was not strong, and may in part be caused by estimation uncertainty.

The graph on the uncertainty in the exchange rate markets is more telling. First of all, the

only three ‘important’ currencies are considered to be the U.S. Dollar, the Japanese Yen and the

German DMark (or Euro, nowadays). The British Pound is seen to have hardly any variation of

itself before September 1992, as it was completely pegged to the DMark; any movement of the

Pound exchange rate was due to movements in other currencies.

In September, the EMS crisis hits. With the devaluation of the Pound, its volatility explodes

to levels about fifteen times higher than before. As the whole EMS is involved, also the DMark

reacts to the uncertainty in the system, but to a lesser extent. Neither the Dollar or the Yen show

any reaction, as the the crisis only involves the European currencies.
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The factors shown here are estimated using the Hastings-Metropolis algorithm with the re-

formulated sampler, sampling the parameters separately over all regions (as indicated by θi|ui

earlier). The results for the other methods are virtually equal; even after a relatively short sim-

ulation, the estimate of the currency factors is already formed, and does not increase much in

precision by lengthening the sample size. As the data is clearly informative on these factors, this

opens up the scope for estimating the influence of e.g. central bank interventions on these factors,

or whether it is possible to use factor estimates to predict the (probability of) a crisis.

5 Concluding remarks

In this paper we have focused on the GSSF-SV class of adaptive time series models. We have shown

that standard MCMC methods can be ineffective in this context, showing slow convergence and

high correlation in resulting sampling chains. Therefore, we have designed a reparameterisation

of the sampler. This delivers a method which allows us to routinely carry out likelihood based

inference using a palette of parameterisations, in order to choose the one with best characteristics

for the problem at hand. We back this up with an effective particle filter which allows us to carry

out on-line forecasting and diagnostic checking for this model. We illustrated the methods on

simulated and real data.

Using simulated data, the effect of the reformulation was clear, in that the simulated chain

displayed overwhelmingly better mixing properties. In the real data example, the advantage of the

reformulation is found to be strongest when the unobserved SV process is relatively persistent with

low unconditional variance, with the effect of the change in parameterisation being different for

the various parameters in the model. It is left for future research to check whether it is advisable

to allow different parameters within a model to be sampled using differing conditioning variables.

The GSSF-SV class of models was found to be valuable in modelling a panel of exchange rates,

allowing the exchange rates to be dissected into country-specific level and variance factors. This

decomposition promises to be a fruitful starting point for future analysis of mayor economic events

in the exchange markets, as it allows to indicate where changes in level or variance stem from,

from one specific country, from a group of countries, or from all countries jointly. This way, events

like currency crisis, or also the effectiveness of central bank interventions, can be investigated at

a level of detail which was previously unattainable.
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Figures and tables
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Figure 1: Posterior density of φ2 according to different samplers
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Figure 2: Autocorrelation of draws of φ2 according to different samplers
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Figure 3: Expected determinant of the information matrix of density of the parameters in the

Adaptive Local Level model, with SV on the observation equation, for varying values of the

standard deviation of the SV process.
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Figure 6: Level factors extracted for the currencies over the 1991-1993 period, with 1-standard

deviation error bound.
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Figure 7: Volatility factors extracted for the currencies over the 1991-1993 period, with 1-standard

deviation error bound.

Table 1: Parameters and prior choices
θ DGP Prior p1 p2 E(θ) σ(θ)
γ1 1 N (g1, s

2
1) g1 = 0 s1 = 2 0 2

γ2 -1 N (g2, s
2
2) g2 = 0 s2 = 2 0 2

σω1 0.05 IG(ασ1, βσ1) ασ1 = 2 βσ1 = 75 .1 .05
σω2 0.1 IG(ασ2, βσ2) ασ2 = 2 βσ2 = 75 .1 .05
φ1 0.95 Beta(αφ1, βφ1) αφ1 = 9.5 βφ1 = 1.5 .86 .1
φ2 0.90 Beta(αφ2, βφ2) αφ2 = 9.5 βφ2 = 1.5 .86 .1

The table reports the parameter values used in the DGP, together with
the prior density, the choices for the hyperparameters of the prior density
in columns p1 and p2, and the resulting prior expectation and standard
deviation.

Table 2: Inefficiency of the sampling procedures
θ|σ2 θi|σ

2
i θ|σ2 θ|σ2 θ|σ2, α θ|u θi|ui θ|u θ|u, α

HM HM Gibbs ARMS HM HM HM ARMS HM
φ1 358.86 480.55 310.53 113.53 358.86 44.26 54.02 16.38 44.77
φ2 491.82 525.93 401.82 374.11 491.82 26.91 23.06 7.82 29.69
σω1 588.65 563.36 419.32 271.36 588.65 55.09 43.67 10.82 59.70
σω2 636.61 645.72 415.56 418.44 636.61 29.89 19.08 2.96 17.27
γ1 172.77 271.11 202.84 93.58 172.77 14.94 16.41 3.49 20.80
γ2 546.53 538.50 457.69 522.27 546.53 7.69 7.14 2.08 11.11

Table reports the inefficiency measures (Shephard and Pitt 1997) for the different sampling
procedures, at a window width of Bm = 2, 000.
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Table 3: Posterior statistics of the Factor-SV model
Inefficiency

θ 95% conf θ|σ2 θi|σ2
i θ|u θi|ui

σω(US) 0.206 [0.11, 0.41] 338.93 218.65 46.75 62.99
σω(EU) 0.290 [0.19, 0.42] 108.93 103.65 80.81 53.86
σω(YY) 0.288 [0.16, 0.48] 313.90 231.19 44.11 43.77
σω(UK) 0.410 [0.25, 0.62] 232.11 205.38 120.53 173.26
φ(US) 0.920 [0.75, 0.98] 280.95 169.84 55.55 68.68
φ(EU) 0.960 [0.92, 0.99] 56.54 61.08 132.37 107.44
φ(YY) 0.916 [0.80, 0.98] 256.12 170.31 73.68 79.25
φ(UK) 0.986 [0.97, 0.99] 89.83 82.23 367.33 331.51
γ(US) −0.959 [−1.22, −0.69] 16.55 28.76 110.43 93.41
γ(EU) −2.747 [−3.31, −2.15] 18.66 15.37 125.06 195.98
γ(YY) −1.283 [−1.62, −0.96] 34.78 15.38 73.88 87.62
γ(UK) −3.722 [−5.22, −2.43] 8.60 5.61 277.75 306.04

Table reports the posterior mean and 95% highest posterior density region of the
parameters of the factor model for exchange rates. The righthand panel reports
the inefficiency measures at window size 2,000, using HM sampling with the
classical (θ|σ2) or reformulated (θ|u) conditioning, either sampling parameters
jointly (θ) or separated by region (θi).

Table 4: Posterior statistics of the standard RW-SV model
Inefficiency

θ 95% conf θ|σ2 θi|σ2
i θ|u θi|ui

σω(EU/US) 0.207 [0.11, 0.39] 303.73 343.03 28.12 54.85
σω(YY/US) 0.238 [0.13, 0.41] 157.92 112.20 84.52 113.23
σω(UK/US) 0.204 [0.11, 0.38] 296.23 219.83 53.00 68.18
φ(EU/US) 0.915 [0.76, 0.98] 257.58 339.85 38.64 60.77
φ(YY/US) 0.935 [0.84, 0.99] 117.71 79.83 106.04 151.64
φ(UK/US) 0.933 [0.81, 0.98] 237.00 245.50 71.26 85.82
γ(EU/US) −0.610 [−0.85, −0.34] 32.19 323.00 78.10 119.44
γ(YY/US) −1.012 [−1.37, −0.14] 10.74 61.12 133.45 412.11
γ(UK/US) −0.651 [−0.96, −0.32] 25.31 139.72 86.86 142.92
σω(EU/US) 0.201 [0.11, 0.38] 303.73 154.35 28.12 43.40
σω(YY/US) 0.241 [0.14, 0.40] 157.92 132.15 84.52 90.06
σω(UK/US) 0.204 [0.11, 0.39] 296.23 238.74 53.00 71.20
φ(EU/US) 0.921 [0.78, 0.98] 257.58 136.99 38.64 45.52
φ(YY/US) 0.934 [0.84, 0.99] 117.71 99.30 106.04 124.79
φ(UK/US) 0.934 [0.81, 0.98] 237.00 215.89 71.26 82.86
γ(EU/US) −0.610 [−0.86, −0.35] 32.19 17.66 78.10 95.62
γ(YY/US) −1.039 [−1.36, −0.52] 10.74 10.34 133.45 205.59
γ(UK/US) −0.647 [−0.93, −0.35] 25.31 25.47 86.86 92.44

See Table 3 for a description of the entries in the table.

Table 5: Likelihood estimates
Factor-SV RW-SV

Log likelihood −1796.81 −2413.14
Log marginal likelihood −1817.27 −2430.21

Table reports the log likelihood at the posterior mode of the pa-
rameters θ, as evaluated with the particle filter, and the logarithm
of the marginal likelihood, for the Factor-SV and standard RW-SV
models.
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