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Abstract

This paper models the phenomenon of inertia driven by individual
strategy switching costs in a stochastic evolutionary context. Kandori,
Mailath, and Rob’s (1993) model of a finite population of agents repeat-
edly playing a 2 x 2 symmetric coordination game is extended to allow
for such inertia. Taking noise to the limit, a number of new short- to
medium-run equilibria emerge, centred around the mixed-strategy equi-
librium. Thus, unusually, an evolutionary model is seen to provide some
justification for the controversial concept of mixed-strategy equilibrium.
However, Kandori, Mailath, and Rob’s long-run selection of the risk-
dominant equilibrium continues to hold, both under fixed-rate mutations
and under state-dependent mutations driven by stochastic switching costs.
The key to this is the satisfaction of Blume’s (1999) “skew-symmetry” of
the noise process, which is shown to be crucial even under simultaneous
strategy revisions. In fact, the presence of the new short-run equilibria
can under certain conditions serve to reduce the expected waiting time
before the risk-dominant equilibrium is reached - an instance of Ellison’s
(2000) idea that evolution is more rapid when it can proceed via a series
of small “steps” between extremes. This suggests inertia to be a surpris-
ingly efficient phenomenon, and also serves to moderate the force of the
Ellison (1993) critique of excessively long transition times in models with
vanishing noise.

∗Discussions with my supervisors, David Myatt and Chris Wallace, as well as with Margaret
Meyer, Kevin Roberts and seminar participants at the Department of Economics, Oxford
University, are gratefully acknowledged. The usual disclaimer applies.

1



1 Introduction

“Change is not made without inconvenience, even from worse to
better.”

Samuel Johnson, A Dictionary of the English Language (1755)

In the last ten years, developments in evolutionary game theory have promised
to deliver mainstream game theory from its perpetual demon: moving from de-
terministic to stochastic evolutionary models solves the equilibrium selection
problem for repeated games in the long run. The introduction of persistent
randomness (or “noise”) into an evolutionary model allows the use of the prob-
abilistic toolkit of Markov chains, the most useful product of which is a long-run
ergodic distribution over the model’s outcomes which selects between them as
the noise goes to zero. This provides a high return on an evolutionary ap-
proach which both complements and augments perfectly rational game theory.
Evolutionary models can admit a variety of boundedly rational behaviour and
generally end up converging to rational outcomes. If they can both provide
realistic behavioural foundations for game theory, and sharpen its analytical
predictions, then they will have made a significant contribution indeed.

However, in the majority of existing evolutionary models, deterministic and
stochastic alike, the forms of bounded rationality admitted do not extend to the
possibility of player inertia. Individual players are assumed to be able costlessly
to change their strategies, and hence they do so whenever there is even the
smallest gain to be made. Even in those models that acknowledge and incorpo-
rate the presence of inertia, its causes are generally left exogenous. This paper
(and the companion paper, Norman (2003a)) studies the effects of generalising
stochastic evolutionary models to allow for the existence of “switching costs”
to changing strategies from one period to the next, and thus the possibility of
(endogenously determined) inertia. Such costs are intuitively realistic. As Lip-
man and Wang (2000) point out, changing actions involves real costs in many
economic contexts, such as a firm’s investment decisions (“set up” or “shut
down” costs) or price-setting games (“menu” costs). But even in the absence
of such tangible costs, if playing a given strategy is complex, then switching
strategies may be “hard”, imposing learning and implementation costs on the
individual player. It is thus an important and natural “robustness check” of
existing models to study how they change in the presence of these “switching
costs”.

The motivation is provided by coordination games, with the existence of
inertia representing a possible explanation for the persistence of suboptimal
coordination in real-life situations such as David’s (1985) choice between QW-
ERTY and Dvorak keyboard layouts, and the contemporary issue of Microsoft
versus Linux operating systems. Thus, a fixed switching cost is introduced into
the popular Kandori, Mailath, and Rob (1993) model of a finite population of
agents repeatedly playing a 2 x 2 symmetric coordination game. Analysis of
the limit of the ergodic distribution as the noise in the system goes to zero re-
veals that Kandori, Mailath and Rob’s long-run selection of the risk-dominant
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equilibrium continues to hold in the presence of switching cost-driven inertia,
until the switching costs become question-beggingly high. However, the model
acquires a number of new short- to medium-run equilibria centred around (and
including) the mixed-strategy equilibrium. The relative importance of these two
findings is determined by the transition times between equilibria. Ellison (1993)
and others have drawn attention to the fact that transition times become pro-
hibitively large when noise is taken to the limit. This suggests that a significant
amount of time could be spent in and around the mixed-strategy equilibrium
in the presence of inertia. This finding is particularly interesting in view of the
fact that mixed-strategy equilibria have been almost universally ruled unstable
in the stochastic adjustment dynamics literature to date - a regularity which
has served further to inter this long since controversial concept. Its emergence
here as a short- to medium-run equilibrium of the Kandori, Mailath and Rob
(henceforth KMR) model under inertia would appear to offer it some substantial
evolutionary justification, particularly if “in the long run we are all dead”.

It need not, however, be the case that the long run is long enough to invoke
Keynes’ famous dictum. Indeed, whilst the presence of player inertia and the
resulting new mixed short- to medium-run equilibria might at first appear likely
to slow down convergence to the risk-dominant equilibrium, an analysis of the
transition times in fact yields the opposite result: the presence of the new
mixed short- to medium-run equilibria serves to reduce the expected waiting
time before the risk-dominant equilibrium is reached. The reason for this result
is that, as Ellison (2000) has noted, evolution is more rapid when it may proceed
via a series of small “steps” between intermediate steady states, such as those
provided by the inertia-born mixed equilibria. The counterintuitive conclusion
is thus established that the presence of inertia serves to speed up evolution,
thus showing inertia to play a surprisingly efficient evolutionary role and also
moderating the Ellison (1993) “very long run” critique of models with vanishing
noise. Moreover, the force of the Ellison (1993) critique is further reduced by the
finding that the presence of switching costs serves to attenuate the positive effect
of the population size on transition times. This is again due to the presence
of the new mixed absorbing states, and specifically the fact that they become
more numerous - thus providing more evolution-facilitating “steps” - as the size
of the population increases.

To this point, the analysis is kept as simple as possible by assuming the
“switching cost” of strategy change to be fixed over time and across players.
However, it is clear that, in reality, different players (with different priorities,
abilities and constraints) will vary in the size of their switching costs, and any
given player’s switching cost will fluctuate in size over time (as his priorities,
abilities and constraints change). Thus, in section 4, the model is altered to
make the switching cost itself stochastic across players and time. The introduc-
tion of this stochastic switching cost obviates the need to introduce the state-
independent mutations of the KMR-style model, thus also serving to address the
criticisms of Bergin and Lipman (1996) by building a model with endogenously
generated “state-dependent mutations”. The earlier long-run selection results
are confirmed for this more realistic model, but the findings for transition times
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are qualified: whilst the “step-by-step” effect is still present, the switching costs
now make the extreme states even harder to escape. Nonetheless, it is shown
that there exists a threshold level of the mean switching cost, below which lim-
iting transition times are reduced by inertia, given a large enough population.
This threshold mean switching cost is increasing in the size of the population,
and is also crucially affected by the assumed switching cost distribution.

2 Relevant Literature

The stochastic adjustment dynamics literature was born in the papers of Fos-
ter and Young (1990), Kandori, Mailath, and Rob (1993), and Young (1993).
Foster and Young (1990), drawing on the Markovian techniques of Freidlin and
Wentzell (1984), introduced the concept of stochastic stability in continuous
dynamical systems into evolutionary biology, and provided a method for the
analytical computation of the stochastically stable set. Kandori, Mailath, and
Rob (1993), and Young (1993) then brought the somewhat simpler discrete
analysis into the realm of economics, with immediate dramatic effect. The mul-
tiplicity of equilibria in 2×2 coordination games was overturned by KMR (1993)
in an adaptive population setting with random mutations (“noise”); the unique
long-run (stochastically stable) equilibrium as the noise vanished was found to
be the risk-dominant one. Young (1993), meanwhile, also found risk-dominance
to determine long-run selection in a quite different model of a 2×2 coordination
game in which each player would choose an optimal strategy based on a sample
of information about what the other player had done in the past. These papers
provided the basis of a new and fruitful direction for evolutionary game theory,
appearing to offer a solution to the persistent problem of multiple equilibria and
path dependence: the long-run equilibrium of a stochastic model was unique for
generic games with strict Nash equilibria.

Nonetheless, the new stochastic evolutionary game theory was not without
its critics. The first main focus of criticism was the time required for transitions
between the equilibria of an evolutionary model. Ellison (1993) and others have
drawn attention to the fact that transition times become prohibitively large
when noise is taken to the limit; hence, the long-run selection results of models
such as KMR might only apply in the “very long run” (or “ultra-long run”),
a problem which grows with the size of the population. Thus it seemed that,
whilst long-run selection results for vanishing noise might be suited to small
populations, initial conditions were likely to be a more informative object of
analysis for small noise and large populations. Theorists have attempted to
tackle this “very long run” problem in a number of ways. Ellison (1993), and
Robson and Vega-Redondo (1996) have reduced transition times by altering the
matching process which describes how players meet. Binmore and Samuelson
(1997), meanwhile, study a model of “noisy learning” with non-vanishing noise,
which also serves to speed up evolution. More recently, Ellison (2000) has drawn
attention to a third effect which can reduce waiting times: evolution tends
to be more rapid when it may proceed via a series of small “steps” between
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intermediate steady states (rather than requiring sudden large changes). The
effects of such “step-by-step evolution” are readily captured by Ellison’s “radius-
modified coradius” approach to stochastic adjustment models.

The second main criticism of the early models of stochastic adjustment
dynamics concerned the mutation mechanism employed. Bergin and Lipman
(1996) criticise the arbitrariness of mutations occurring at a rate independent of
the current state of the system. Such “state-independent mutations”, embodied
in the fixed mutation rate ε of KMR and others, imply that players make mis-
takes (or experiment, etc.) with the same probability irrespective of the current
strategy frequencies, and thus of the expected payoffs at stake. Bergin and Lip-
man demonstrate that, given any model of the effect of mutations, any invariant
distribution of the “mutationless” process is close to an invariant distribution of
the process with appropriately chosen small mutation rates. This implies that
any strict Nash equilibrium of a strategic form game is selected under some
suitably chosen mutation model. Bergin and Lipman’s paper highlights the im-
portance of developing models or other criteria to determine “reasonable” classes
of “state-dependent mutations”. Myatt and Wallace (1998) present a candidate
for just such a “reasonable” mutation process; their model of state-dependent
mutations driven by payoff heterogeneity (rather than mistakes, or experimen-
tation) remains broadly supportive of risk-dominance. Risk-dominance is fur-
ther strengthened by Lee, Szeidl, and Valentinyi’s (2001) result that, for local
interaction games, the risk-dominant equilibrium is uniquely selected given a
sufficiently large population. More generally, Blume (1999) alleviates the inde-
terminacy of the Bergin and Lipman critique with his finding that the known
stochastic stability results are preserved for the (large) class of noise processes
satisfying a certain symmetry condition.

The development of the stochastic evolutionary field has clearly been rapid
then, but numerous important avenues have yet to be explored. One such avenue
is player inertia driven by individual strategy switching costs, the subject of
this paper. The idea of inertia driven by switching costs in repeated game
contexts is of course not a new one. Within the traditional perfectly rational
paradigm, Klemperer’s (1987a, 1987b) consumer switching costs1 and Radner’s
(1980) ε-Nash equilibrium are two obvious examples. In particular, Farrell
and Klemperer’s (2001) recent survey of competition with switching costs and
network effects considers settings of a similar nature to the model presented
here. The closest parallel to the present paper in the perfectly rational literature,
however, is Lipman and Wang (2000), who study the effects of switching costs
in general repeated game contexts. They add small costs of changing actions
and frequent repetition to finitely repeated games, and find that doing so makes
credible certain commitments which then serve to overturn all the standard
results for finitely repeated games.

By contrast with the perfectly rational literature, however, it would seem
that inertia has for the most part been left unmodelled in evolutionary contexts.

1On consumer switching costs see, for example, Klemperer (1995), Beggs and Klemperer
(1992), Farrell (1987), Farrell and Shapiro (1988, 1989), and Padilla (1995).
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In reinforcement models, for example, the probability of taking an action in the
present increases with the payoff that resulted from taking that action in the
past.2 Such models admit an intuitive role for inertia, but this inertia is assumed
exogenous, its root causes left unmodelled. Meanwhile, inertia plays an explicit
role in the KMR (1993) model, with their weakly monotonic selection dynamic
capturing the idea that only some (as opposed to all) players need be adjusting
their behaviour in any given period. But this ignores the important possibility
that no player adjusts his behaviour in a given period, and moreover, there is
again no endogenous determination of the inertia.

There are admittedly some evolutionary papers that model costly play of
some sort. One example is Sethi (1998), whose model of “strategy-specific
barriers to learning” in the replicator dynamics explores the consequences of
strategies varying in the ease with which they can be learned. Another example
is van Damme and Weibull’s (1998) model of “mutations driven by control
costs”, which has mutation rates determined by individual mistake probabilities,
which players can control at some cost. State-dependent mutations are thus
based on an economically justified model here, in the manner suggested by
Bergin and Lipman (1996).3 But whilst both of these papers model important
ways in which strategy adoption might be costly, neither captures the idea that
strategy change is costly compared to the (cost-free) status quo. The switching
costs postulated in this paper, by contrast, draw attention to the learning and
implementation costs incurred when a player switches to a new strategy - a
plausible source of individual-level inertia.

3 Fixed-Rate Mutations

3.1 The Model

Following Kandori, Mailath, and Rob (1993), the model focuses on a finite
number N (N an even number) of players who are repeatedly matched to play
the symmetric 2× 2 stage game defined by the general payoff matrix

Λ =
[

a11 a12

a21 a22

]
(1)

and who adjust their behaviour over time. Actions are taken in discrete time,
t = 1, 2, . . ., each player choosing his pure strategy for a period t at the beginning
of that period. The number zt of players playing strategy 1 at time t defines
the state of the dynamical system, the state space being Z = {0, 1, . . . , N}. The

2See Bush and Mosteller (1955), Suppes and Atkinson (1960), Arthur (1993), Roth and
Erev (1995), Börgers and Sarin (1995, 1997).

3This model again selects the risk-dominant equilibrium of coordination games.
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average payoff of a player with strategy i, πi(zt), is assumed to be4

π1(z) =
(z − 1)
(N − 1)

a11 +
(N − z)
(N − 1)

a12, (2)

π2(z) =
z

(N − 1)
a21 +

(N − z − 1)
(N − 1)

a22 (3)

These become expected payoffs under the assumption that players are myopic.
In the KMR analysis, the selection dynamics studied are all those under

which better strategies are better represented in the population in the next pe-
riod (the so-called “Darwinian” property), this class including the best-response
dynamic and the replicator dynamics. The quite general flavour of this analysis
is retained, but the dynamics are modified to include a fixed switching cost c,
incurred whenever a player switches strategies.

Definition 1 A 1-incumbent (resp. 2-incumbent) in period t is a player who
was a 1-strategist (resp. 2-strategist) in period t− 1.

Definition 2 The cost-adjusted payoff matrices are

Λ1 =
[

a11 a12

a21 − c a22 − c

]
(4)

and

Λ2 =
[

a11 − c a12 − c
a21 a22

]
(5)

for 1-incumbents and 2-incumbents, respectively.

Given the presence of this switching cost, KMR’s underlying deterministic
dynamic,

zt+1 = b(zt) (6)

now has the following “modified Darwinian” property:5,6

(b(z)− z) is





strictly negative iff π1(z) < π2(z)− c
nonnegative iff π1(z) ≥ π2(z)− c
nonpositive iff π1(z)− c ≤ π2(z)

strictly positive iff π1(z)− c > π2(z)





for z 6= 0, N .

(7)
Taking equation (7) line by line, it simply says that the number z of 1-strategists
will decrease if and only if 1-incumbents are changing strategies; that z cannot

4See KMR (1993), p. 37, for models of matching which generate these payoffs. Note that
a player will ignore his own play in forming his beliefs from the current population strategy
frequency.

5The strict and weak inequalities are assigned according to the assumption that indifference
leads to inertia at the individual level. This assumption is unimportant for the results.

6For the extreme states, 0 and N , it is assumed that b(0) > 0 iff π1(0) − c > π2(0), and
b(0) = 0 iff π1(0)− c ≤ π2(0). Similarly, b(N) < N iff π1(N) < π2(N)− c, and b(N) = N iff
π1(N) ≥ π2(N)− c.
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decrease if 1-incumbents are not changing strategies; that z cannot increase if
2-incumbents are not changing strategies; and that z will increase if and only
if 2-incumbents are changing strategies. Putting this information together, it
follows that7

(b(z)− z) is





strictly negative iff π1(z)− π2(z) < −c
0 iff − c ≤ π1(z)− π2(z) ≤ c

strictly positive iff π1(z)− π2(z) > c





for z 6= 0, N . (8)

The model has thus been generalised so that KMR’s analysis is now the special
case where c = 0.

The model is now made stochastic by introducing some noise (“mutations”)
into the system. Following KMR, it is assumed that each player’s strategy
“flips” with probability ε in each period (i.i.d. across players and over time).8

This yields the nonlinear stochastic difference equation

zt+1 = b(zt) + xt − yt, (9)

where xt and yt have the binomial distributions:

xt ∼ Bin(N − b(zt), ε) and yt ∼ Bin(b(zt), ε)

The dynamical system in equation (9) defines a Markov chain on the finite state
space Z = {0, 1, . . . N}. P ε = [pij ] is the Markov matrix, with the transition
probabilities given by

pij = Pr(zt+1 = j | zt = i) (10)

All elements in the matrix P ε are strictly positive under the above assumptions.
The long-run behaviour of the Markov chain in equation (9) is captured by

the stationarity equations µεP ε = µε, the solution of which is the distribution
µε (over states) that is stationary under P ε. However, it is not immediately
clear whether this solution is unique. If it is not, long-run behaviour will be
sensitive to initial conditions, so that the path dependence of deterministic mod-
els remains. However, for an ergodic Markov process, the stationarity equations
will have a unique solution and the long-run behaviour embodied in µε will
be independent of initial conditions. The unique invariant distribution µε may
then be used to explore the equilibrium selection issue by providing information
on whether some outcomes are much more likely than others. Indeed, µε can
be interpreted as the proportion of time that the society spends in each state in
the long run.

Lemma 1 An irreducible and aperiodic Markov chain is ergodic.
7For the extreme states, similarly, b(0) > 0 iff π1(0)− π2(0) > c, and b(0) = 0 iff π1(0)−

π2(0) ≤ c; b(N) < N iff π2(N)− π1(N) > c, and b(N) = N iff π2(N)− π1(N) ≤ c.
8The usual stories of “experimentation” or of players dying (with probability 2ε) and being

replaced by ignorant newcomers may be appealed to. For example, see KMR (1993), pp. 38-9.
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This is a standard result - see, for instance, Theorem 11.2 of Stokey, Lucas, and
Prescott (1989).

Proposition 1 The adaptive response dynamic defined by the transition prob-
abilities pij in equation (10) is an irreducible, aperiodic Markov process on the
finite state space Z. Consequently, it has a unique invariant (ergodic) distribu-
tion µε.

Proof. Since all elements in the Markov matrix P ε are strictly positive, i.e.
any state is accessible from any other state in a single period, it follows that
the process is irreducible. Moreover, since in every state there is a positive
probability of the system remaining in that state in the next period, the process
is aperiodic. Lemma 1 then implies that the process has a unique invariant
distribution.

The stage game Each time the players are matched to play the game Λ in
(1), they will play a symmetric coordination game. The class of symmetric
coordination games is the set of all games satisfying the conditions a11 > a21

and a22 > a12. Such a game evidently has two symmetric strict9 pure-strategy
Nash equilibria, (1, 1) and (2, 2), with associated security (or miscoordination)
payoffs a12 and a21. Thus, the players would like to coordinate on one or other
of the strategies. If a11 6= a22, then one of the pure-strategy Nash equilibria
Pareto dominates the other, and the game is described as being one of common
interest. There is also, however, a symmetric mixed-strategy Nash equilibrium
entailing mixing probabilities of [ρ, 1− ρ], where

ρ =
a22 − a12

(a22 − a12) + (a11 − a21)

There is thus a set of three Nash equilibria, ΘNE = {(1, 1), (2, 2), (ρ, ρ)}, with
no apparent way of selecting between them - the classic game-theoretic problem
of multiple equilibria.10 If players could coordinate, they would presumably
coordinate on the Pareto-dominant equilibrium, but in the absence of explicit
coordination it is not obvious that this will occur.

The most prominent solution to this equilibrium selection problem in 2× 2
coordination games is Harsanyi and Selten’s (1988) notion of “risk dominance”,
which captures the tradeoff between high payoffs and high risk faced by indi-
vidual players in a noncooperative setting.11 The risk-dominant equilibrium for
a 2× 2 game is the one that minimises the product of the players’ losses associ-
ated with unilateral deviations. In terms of the stage game Λ, equilibrium (1, 1)
risk-dominates (2, 2) if and only if a11 − a21 > a22 − a12, corresponding exactly
to ρ < 1

2 .
9A Nash equilibrium is strict if each player’s strategy therein is his unique best response

to those of his opponents.
10It is worth noting that the principal refinement of deterministic evolutionary game theory,

namely evolutionary stability, is of some, limited use here: it is straightforward to check that
the evolutionarily stable strategies (ESS) of a coordination game are the two pure-strategy
equilibria.

11This tradeoff was pointed out by Aumann (1987).
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Example 1 Risk dominance accounts well for persistent suboptimal coordina-
tion when the “optimal” strategy is “riskier” than the other, in the sense of
being associated with a greater payoff loss if the other player miscoordinates. To
borrow the example of Myatt and Wallace (1998), consider two players who play
the following game in deciding whether to adopt the IBM or Apple Macintosh
(Mac) standards in their personal computer work:

IBM Mac

IBM
5

5

2

4

Mac
4

2

6

6

The players benefit from compatibility, but given compatibility, Mac adoption
results in higher productivity than IBM adoption - (Mac, Mac) is the Pareto-
dominant equilibrium. However, the loss from incompatibility is more severe for
Mac users than for IBM users due, say, to wider outside support for the IBM
standard - (IBM, IBM) is the risk-dominant equilibrium (ρ = 2

5 < 1
2). The di-

vergence of the Pareto-dominant and risk-dominant equilibria characterises the
game as a Rousseau (1913) “Stag Hunt”, and if the risk-dominant equilibrium
is played, it is clearly suboptimal.

However, when the “optimal” strategy is not “riskier” in the given sense,
persistent suboptimal coordination cannot be explained by risk dominance. For
example, the class of pure coordination games, characterised by zero security
payoffs a12 = a21 = 0, sees the condition for risk-dominance of the (1, 1) equi-
librium reduced to a11 > a22, so that the risk-dominant and Pareto-dominant
equilibria coincide. In view of this inability of risk dominance always to explain
persistent suboptimal coordination, it is natural to consider what stochastic
evolutionary models tell us about selection under realistic embellishments and
generalisations, such as switching cost-driven inertia.

3.2 Analysis

3.2.1 Long-run equilibrium with vanishing noise

By rearranging the average payoffs in equations (2) and (3) to express them
explicitly as linear functions of z,

π1(z) =
(a11 − a12)

(N − 1)
z +

Na12 − a11

(N − 1)
(11)

π2(z) =
(a21 − a22)

(N − 1)
z + a22 (12)
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0 Nz∗

πi(z)

π2(z)

π1(z)

z

(b(z)− z) < 0 (b(z)− z) > 0

Figure 1: KMR (1993) model: coordination games

the two functions can easily be graphed, as in figure 1. Note that the π1 (z) line
will be steeper than the π2 (z) line if and only if

(a11 − a12)
(N − 1)

>
(a21 − a22)

(N − 1)
⇔ a11 − a21 > a12 − a22

and that this holds necessarily for coordination games given that a11 > a21

and a22 > a12.12 Moreover, these same two defining conditions of coordination
games imply that π1(z) < π2(z) for z = 0 and that π1(z) > π2(z) for z = N (as
is clear from equations (2) and (3)), so that there will certainly exist a value
z∗ ∈ Z where the two average payoff lines cross (though this z∗ need not, of
course, be an integer). This is KMR’s critical level of population z∗ for which

sign (π1(z)− π2(z)) = sign(z − z∗)

As KMR point out, z∗ essentially corresponds to the mixed-strategy equilibrium
of the coordination stage game, which puts probability ρ = (a22−a12)

a11−a21+a22−a12
on

12There is, however, no implication that π1(z) need have a positive slope and π2(z) a
negative slope.
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strategy 1.13 It is straightforward to solve for the value of z∗:

0 = π1(z∗)− π2(z∗)

(2),(3)
=⇒ 0 =

(
(z∗ − 1)
(N − 1)

a11 +
(N − z∗)
(N − 1)

a12

)
−

(
z∗

(N − 1)
a21 +

(N − z∗ − 1)
(N − 1)

a22

)

⇒ z∗ =
N(a22 − a12) + a11 − a22

θ
, (13)

where θ = (a11 − a21 + a22 − a12) is the sum of the normalised stage game
payoffs, a1 = a11 − a21 and a2 = a22 − a12.

In KMR’s model, there are just two absorbing states, 0 and N , correspond-
ing to the two pure-strategy Nash equilibria of the stage game Λ in equation
(1).14 These states have basins of attraction given by {z < z∗} and {z > z∗}
respectively, and the state with the larger basin of attraction (N if z∗ < N

2 ;
0 if z∗ > N

2 ) is the unique stochastically stable outcome.15 This outcome cor-
responds to the risk-dominant equilibrium of the underlying stage game Λ.16

The selection criterion of stochastic stability identifies which outcome(s) receive
positive weight in the ergodic distribution as the amount of noise tends to zero:
a state z is stochastically stable (Young 1993) if

lim
ε→0

µε(z) > 0

Intuitively, stochastically stable states are those that are most likely to be ob-
served over the long run when noise is small, and they are thus sometimes re-
ferred to as the long-run equilibria of a system. Thus, the long-run equilibrium
of the KMR coordination model is the risk-dominant equilibrium.

It will be seen below that the addition of switching costs to the KMR model
does not alter the long-run selection of the risk-dominant equilibrium, but it
does create new short- to medium-run equilibria in the form of a set of new
absorbing states.

Proposition 2 In the presence of a switching cost c > 0, there exists a multi-
plicity of mixed absorbing states17 of the unperturbed process P 0 in addition to
the set of pure absorbing states {0, N} present when c = 0.

13In this population context, the exact analogue of the stage game mixed-strategy equilib-
rium is the state ρN (which again need not be an integer) where a fraction ρ of all players are
playing strategy 1. Note that z∗ will not be exactly equal to ρN because 1-incumbents and
2-incumbents face slightly different strategy distributions due to the finiteness of the popula-
tion. The difference between z∗ and ρN does, however, vanish as the population size becomes
large.

14Note that z∗ would also be an (extremely unstable) absorbing state if it happened to be
an integer.

15See KMR’s (1993) Theorem 3, p. 44.
16See KMR’s (1993) Corollary 1, p. 46.
17A mixed state is one where both strategies are being played by some strictly positive

number of players (as opposed to the two pure states, 0 and N). This has also been termed
a polymorphic profile(by contrast with a monomorphic profile) in the literature (e.g. Robson
and Vega-Redondo (1996)).
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Proof. The modified Darwinian property of the selection dynamics in equa-
tion (8) says that there is a range of the average payoff difference between the
two strategies, (π1(z)− π2(z)) ∈ [−c, c], for which (b(z) − z) = 0. Since the
average payoff lines in figure 1 will certainly cross at some z∗ ∈ Z (as was
shown above), it follows that there will be a range of z, [zL, zH ] ∈ Z, for which
(b(z) − z) = 0. Now, it is clear from the deterministic dynamic in equation
(6) that any state for which (b(z) − z) = 0 is an absorbing state of the un-
perturbed process P 0 (since then zt+1 = zt for ε = 0). Thus, there is a range
of z ∈ {Z\0, N}, each (integer) element of which is a (mixed) absorbing state.

In addition to the regular KMR absorbing states, E∅ = {0} and EN =
{N}, there is thus now also the new set of mixed absorbing states, EM =
{z ∈ Z | (π1(z)− π2(z)) ∈ [−c, c]}, providing the system with additional rest
points. This means that the model now has several new mixed equilibria in the
short to medium run, any of which is likely to persist for a significant period
of time once reached. Thus, if the initial conditions dictate that the system is
in one of the mixed absorbing states at the outset, then it is likely to remain
there for a nontrivial length of time, and to remain within the region of mixed
absorbing states EM for considerably longer.18

The new mixed absorbing states also alter the KMR analysis of long-run
equilibrium. Both here and in the KMR model, this analysis faces the problems
associated with a finite population, for which reason KMR make use of the
integers around z∗:

α = min {z ∈ Z | π1(z) > π2(z)} = dz∗e , and
β = max {z ∈ Z | π1(z) < π2(z)} = bz∗c

These integers are illustrated in figure 2. In order to consider the new set of
mixed absorbing states, EM , use must also be made of the integers around zL

and zH , the limits of the range of z for which (b(z)− z) = 0.

Definition 3 Given equation (8), the lower limit zL of the range of z for which
(b(z)− z) = 0 is defined as

−c = π1(zL)− π2(zL)

(2),(3)
=⇒ zL =

N(a22 − a12 − c) + a11 − a22 + c

θ
, (14)

whilst the upper limit zH is defined as

c = π1(zH)− π2(zH)

(2),(3)
=⇒ zH =

N(a22 − a12 + c) + a11 − a22 − c

θ
(15)

18How long will of course depend upon the precise parameters of the game.
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0 Nz∗ zHzL

πi(z)

π2(z)

π1(z)

z

αβαL αHβL βH

c c

(b(z)− z) < 0 (b(z)− z) = 0 (b(z)− z) > 0

Figure 2: KMR coordination games with switching costs

Definition 4 The integers around zL are defined as

αL = min {z ∈ Z | π1(z)− π2(z) > −c} = dzLe , and
βL = max {z ∈ Z | π1(z)− π2(z) < −c} = bzLc

whilst those around zH are defined as

αH = min {z ∈ Z | π1(z)− π2(z) > c} = dzHe , and
βH = max {z ∈ Z | π1(z)− π2(z) < c} = bzHc

These integers are again illustrated in figure 2, and they immediately allow the
following characterisation of the set of mixed absorbing states:

EM = {αL, αL + 1, . . . , β, α, . . . , αH , βH}
= {αL + j} , j = 0, 1, . . . , (βH − αL) (16)

The number m of these mixed absorbing states is clearly given by

m = βH − αL + 1
= βH − βL = αH − αL (17)

Defining ζL = αL−zL and ζH = αH−zH , m can then be expressed as a function
of the parameters of the model:

m = (zH + ζH)− (zL + ζL)

=
2(N − 1)c

θ
+ (ζH − ζL) (18)
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The number of mixed absorbing states m is thus increasing in N and c, but
decreasing in the sum of the normalised coordination payoffs θ. The total num-
ber n of absorbing states (including the extreme states 0 and N) is of course
n = m + 2.

In order to investigate the effect of the new mixed absorbing states on the
long-run equilibrium of the model, use is made of Young’s (1993) method19

for computing the stochastically stable states of a regular20 perturbed Markov
process. This method is based on the notion of rooted trees constructed on the
set of the recurrent class(es) E1, E2, . . ., EK of the unperturbed process P 0. For
a given pair of (distinct) recurrent classes Ei and Ej , an ij-path is a sequence
of states that begins in Ei and ends in Ej . The resistance of this path is then
the number of mutations required to transit from recurrent class Ei to recurrent
class Ej along this path, and the minimum resistance over all possible ij-paths
is denoted rij .21 Construct a complete directed graph with K vertices (one for
each recurrent class), and weight each directed edge i → j with the appropriate
minimum resistance rij . A tree rooted at a particular recurrent class Ej ’s vertex
j (a j-tree) is then a set of (K − 1) directed edges such that there is a unique
directed path in the tree to j from every vertex (i.e. recurrent class) other than
j. The resistance of a rooted tree T is the sum of the resistances rij on T ’s
(K − 1) edges, and the minimum resistance over all trees rooted at j is called
the stochastic potential γj of the recurrent class Ej .

Lemma 2 (Young (1993)) If P ε is a regular perturbed Markov process, and
µε is its unique stationary distribution for each ε > 0, then limε→0 µε(z) =
µ0 exists, and the limiting distribution µ0 is a stationary distribution of the
unperturbed process P 0. The stochastically stable states are precisely those states
contained in the recurrent class(es) of P 0 having minimum stochastic potential.

The intuition for this result is that, for a small and positive noise level ε, the
process is most likely to follow paths leading towards the recurrent classes having
minimum potential.

Lemma 3 The most efficient (i.e., lowest resistance) j-tree for any given recur-
rent class j of the KMR coordination game model under switching costs involves
direct jumps out of the basins of attraction of the extreme state/s, but one-step

19See Young (1998), section 3.4, for more detail and illustrative examples.
20Let P ε be a Markov process on Z for each ε in some interval [0, ε∗]. P ε is described as

a regular perturbed Markov process if P ε is irreducible for every ε ∈ (0, ε∗], and for every
i, j ∈ Z, pε

ij approaches p0
ij at an exponential rate, that is,

lim
ε→0

pε
ij = p0

ij ,

and

if pε
ij > 0 for some ε > 0, then 0 < lim

ε→0

pε
ij

εr(i,j)
< ∞ for some r(i, j) ≥ 0.

The real number r(i, j) is called the resistance of the transition i → j. Note that transitions
that can occur under P 0 have zero resistance (i.e. p0

ij > 0 if and only if r(i, j) = 0).
21Note that other evolutionary models (such as KMR) employ the analogous notion of the

cost of a transition path, rather than the resistance.
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jumps in the direction of j’s basin of attraction within the region of mixed ab-
sorbing states.

Proof. Under vanishing noise, the number of mutations should be minimised
in order to identify the most efficient j-tree. Given the retarding effect of the
deterministic dynamic b(z), this clearly entails direct jumps22 out of the basins
of attraction of the extreme states 0 and N .23 But this retarding effect is not at
work within the region of mixed absorbing states EM , where the deterministic
dynamic dictates inertia, and thus a sequence of gradual steps more probable
than individual direct jumps can be utilised. In particular, note that there must
be a transition path (or “branch”) rooted at each recurrent class in a j-tree.
Minimising mutations once more dictates that the branches rooted at mixed
absorbing states should be “one-step” transitions into an adjacent state.

Now, the most efficient way for the j-tree to enter j’s basin of attraction
is via the mixed absorbing states, since their branches must exist anyway, and
their resistance is unaffected by their direction. This “saves” a number of direct
jumps out of the extreme state/s. Hence the one-step transitions rooted in the
EM region should be directed towards j’s basin of attraction.

Lemma 3 implies most efficient j-trees of the form illustrated in figure 3.24

In particular, consider the EM region of the most efficient 8-tree in figure 3(b).
Clearly the path of least resistance from state 5 to state 8 is that where a single
mutation takes the system into state 6, and thus the basin of attraction of state
8. Conditional on this path existing, the path of least resistance from state 4
to state 8, meanwhile, involves a single mutation into state 5, from where the
path to state 8 already exists. Given the stability of state 5, there is nothing to
be gained (in terms of efficiency) by jumping directly from state 4 to state 6,
and indeed it is counter-productive (less probable) to do so. Similar reasoning
applies to state 3 conditional on the existence of the 4 → 8 path.

Proposition 3 Provided that z∗ 6= N
2 and N ≥ 2, the risk-dominant equilib-

rium remains the unique stochastically stable state (and is thus selected with
probability one by the limit distribution) in the presence of a fixed switching cost
c, until c exceeds the maximum payoff gain at stake in the game.

Proof. The resistances of Lemma 3’s most efficient j-trees (i.e., the stochas-
tic potentials γj of the system’s recurrent classes (see page 15 above)) are
straightforward to calculate by “counting mutations”. Thus, consulting figure

22By “direct jumps” is meant just enough simultaneous mutations to move between the two
states concerned in one period.

23This is precisely the argument in the KMR model without switching costs - see KMR
(1993), pp. 44-46.

24In figure 3, each square corresponds to a state, the shaded squares being absorbing states
of the unperturbed process. Solid arrows constitute branches of the relevant j-tree, whilst
dashed arrows represent the deterministic dynamic (paths of zero resistance).
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Figure 3: Most efficient j-trees, N = 8

2, for the two pure absorbing states:

γ∅ = m + (N − βH)
= N − βL (19)

and

γN = αL + m

= αH (20)

The stochastic potential of any given mixed absorbing state25 zM,k ∈ EM ,
meanwhile, is given by

γk = αL + (N − βH) + (m− 1)
= N (21)

Clearly γk > γ∅, γN , so that the mixed absorbing states zM,k ∈ EM cannot
be stochastically stable, by Lemma 2 (page 15). Comparing the two pure ab-
sorbing states, meanwhile, it is clear that N has the lower (and thus minimum)
stochastic potential if and only if

γN < γ∅
(19),(20)⇐⇒ αH < N − βL

25zM,k = {αL + k}, where k can equal 0, 1, . . . , (βH − αL).
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Ignoring the ζ’s, this condition essentially corresponds to

zH < N − zL

(14),(15)
=⇒ N(a22 − a12 + c) + a11 − a22 − c

θ
<

N−N(a22 − a12 − c) + a11 − a22 + c

θ
N (a22 − a12) + a11 − a22

θ
<

N

2
(13)⇒ z∗ <

N

2
(22)

But this is just the condition for N being the risk-dominant equilibrium. Thus,
N has minimum stochastic potential - and hence, by Lemma 2, is (uniquely)
stochastically stable - under precisely the same condition as in KMR (1993,
Theorem 3, p. 44), i.e. that 1 be the risk-dominant strategy.

However, this analysis assumes that the set of mixed absorbing states EM

is wholly contained within the state space, i.e. EM ∈ (0, N). For large enough
values of c, βL will fall below zero and αH will rise above N , so that E∅ and
EN are absorbed within EM . Assume, without loss of generality, that 1 is the
risk-dominant strategy in the stage game Λ (equation (1)), so that N is the
population analogue of the risk-dominant equilibrium (and z∗ < N

2 ). In this
case, there will be a range of c (a22−a12 < c < a11−a21) for which E∅ has been
absorbed into EM but EN has not; over this range, γ∅ = N , whilst γN remains
αH , and the risk-dominant equilibrium N thus remains the unique stochastically
stable outcome. Since the only restriction on a12 is that it must be less than
a22, this possibility should not be ignored, although it is of secondary interest
here given that the focus is on small switching costs. Of even less interest is the
case where c is high enough (c > a11 − a21) to outweigh the maximum possible
payoff gain from a strategy switch, from which point αH > N , and EN is thus
also absorbed into EM . In this case, γN too becomes N , and all states z ∈ Z
become stochastically stable. The risk-dominant equilibrium is thus overturned
as the unique long-run equilibrium at this point, but only by begging the ques-
tion with the size of the switching costs - absolute inertia prevails.26

Thus, the long-run equilibrium of the KMR model under vanishing noise
is unchanged in the presence of switching costs, and it would seem that risk-
dominance continues to reign supreme over time. Having said this, however, it
is easy to imagine a variety of possible modifications to the model which might
overthrow the long-run selection of the risk-dominant equilibrium. For example,
with sufficiently asymmetric switching costs (so that switching from strategy 2 to
strategy 1 were harder than the reverse), the risk-dominated equilibrium would

26Note that if the players’ myopia were demonstrated to be rational, rather than simply
assumed, then these larger values of c would be of more interest, and the results would provide
an explanation for persistent suboptimal coordination in the long run. For investigations of
the justification of the myopia assumption, see Ellison (1997) and Blume (1995).
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clearly be selected. Indeed, one plausible possibility that might be considered is
a one-way switching cost, so that it is costly to switch from strategy 2 to strategy
1, but not to switch back. This might be a feature of a model of technological
standards, where there is a cost of technological advance but no cost of regress.
This could clearly lead to a situation of “lock-in” at the inferior standard in the
long run.27

KMR’s long-run selection results have thus become vulnerable in a way that
was impossible in their model. This is the case because the model with switching
costs modifies the KMR deterministic dynamic in a way not allowed for by
their assumptions. Despite the generality of KMR’s selection dynamics, then, a
limit to their applicability has been found (in the same way as pure rationality
lies outside the opposite limit). Admittedly, though, the sort of modification
required to overthrow the risk-dominant equilibrium in the long run might be
considered less than appealing. Asymmetric switching costs, for instance, would
appear to rob the concept of risk-dominance of its essence, so that its predictive
content should be expected to follow in its wake.

3.2.2 Transition times

It would thus seem that the effects of inertia are unlikely to be significant for
long-run selection. However, unsurprisingly, inertia is likely to be significant in
determining how long is the long run. Moreover - and somewhat more surpris-
ingly - the presence of inertia serves, not to increase, but to decrease transition
times, due to an unexpected side-effect of the new inertia-born mixed absorbing
states EM .

In order to demonstrate this, Ellison’s (2000) “radius-modified coradius” ap-
proach (mentioned in section 2 above) is employed. Ellison defines the radius
R(j) of the basin of attraction of a recurrent class j as the minimum number of
mutations necessary to escape that basin of attraction; this serves as a measure
of j’s persistence once reached. The coradius CR(j) of the basin of attraction
of j, meanwhile, is defined as the maximum over all other states of the min-
imum number of mutations necessary to reach j; this serves as a measure of
j’s tendency to be reentered once left. A better measure of this tendency, how-
ever, is provided by Ellison’s modified coradius CR∗(j) of j’s basin of attraction,
which captures the extent to which large evolutionary changes will occur more
quickly when they can be achieved by passing through a number of intermediate
steady states. This modified coradius is found by subtracting from the coradius,
CR(j), the radius of each of the intermediate recurrent classes i ∈ I through
which the path (from the coradius’s root to j) passes. In terms of Young’s
(1993) resistance notation (see page 15 above),

CR(j) = max
z/∈j

rzj

27Note, however, that such a conclusion would be somewhat dubious here, given that the
long run involves time spent in each equilibrium, and presumably such a switching cost should
be incurred only once.
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and
CR∗(j) = CR(j)−

∑

i∈I

R(i)

Lemma 4 (Ellison (2000)) If R(j) > CR∗(j), then: (a) the (long-run) stochas-
tically stable set of the model is contained in j; and (b) for any z /∈ j the expected
waiting time W (z, j, ε) until a state belonging to j is first reached, given that
play in the ε-perturbed model begins in state z, is W (z, j, ε) = O(ε−CR∗(j)) as
ε → 0.28

Proposition 4 The presence of switching costs serves to reduce the expected
waiting time before the long-run equilibrium is reached. Moreover, this expected
waiting time is decreasing in the size of the switching cost c.

Proof. In the KMR model with switching costs, the radius of the basin of
attraction of the risk-dominant equilibrium N is clearly29

R(N) = N − βH (23)

whilst the coradius is
CR(N) = αH

The set I of intermediate recurrent classes through which the path from (the
coradius’s root at) 0 to N passes is simply the set of mixed absorbing states
EM , each of which has a radius of 1. The modified coradius is thus

CR∗(N) = αH −
βH−αL∑

k=0

R(Mk)

= αH −m

= αL (24)

It is thus clear from equations (23) and (24) that R(N) > CR∗(N) if and only
if

N − βH > αL

Ignoring the ζ’s and rearranging, this condition essentially corresponds to

N − zL > zH

This is precisely the condition for long-run selection of the risk-dominant equi-
librium N in equation (22). Since the first part of Lemma 4 dictates that N is
the (long-run) stochastically stable outcome if R(N) > CR∗(N), this confirms
Proposition 3.

28W (z, j, ε) is of order 1
εδ , denoted O(ε−δ), as ε → 0 if and only if plim εδW (z, j, ε) is a

finite nonzero constant. It is of order less than 1
εδ , denoted o(ε−δ), meanwhile, if and only if

plim εδW (z, j, ε) equals zero.
29Refer to figure 2 (page 14).
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Now, assuming (without loss of generality) N to be the risk-dominant equi-
librium once again, it follows that R(N) > CR∗(N). The second part of
Lemma 4 thus implies that, for any z 6= N the expected waiting time until
N is first reached given that play in the ε-perturbed model begins in state z
is W (z, N, ε) = O(ε−αL) as ε → 0. It should be clear from figure 1 (page
11) that, in the KMR model without switching costs, R(N) = N − β and
CR∗(N) = CR(N) = α. The introduction of switching costs thus changes the
expected waiting time from O(ε−α) to O(ε−αL), which is clearly a reduction
given that αL < α. Moreover, since αL ≈ zL, and

∂zL

∂c
= −

(
N − 1

θ

)
< 0

(by equation (14)) it follows that the expected waiting time W (z,N, ε) before
the risk-dominant equilibrium is reached is a decreasing function of the switch-
ing cost c.30

Thus, the surprising conclusion is reached that the presence of individual-
level inertia serves to improve the overall efficiency of the evolutionary process by
speeding the transition time to long-run equilibrium.31 Whilst initially counter-
intuitive, this result is elucidated by Ellison’s (2000) account of the role of
intermediate stable “steps” in speeding evolution between extremes, discussed
in section 2 above. In this case, the new mixed absorbing states EM provide
resting points for the population on its way from 0 to N , thus increasing the
likelihood of this path and reducing the expected time taken before it is observed.
This also, of course, applies in reverse: Ellison’s (2000, pp. 31-32) result that the
expected waiting time for leaving any given recurrent class j’s basin of attraction
is O(ε−R(j)) implies that less undisturbed time is on average spent in the state N
(and the state 0) in the presence of switching costs (since both of their radiuses
fall under switching costs). All of this serves to reduce the force of the Ellison
(1993) “very long run” critique that transition times become prohibitively large
as noise tends to zero.

The Ellison (1993) critique is also questioned from another direction by the
introduction of switching costs, specifically in its contention that the “very long
run” problem becomes more acute the larger the size of the population N . This
is typically true in existing models, given that convergence times tend to be
rapidly increasing in population size, but this problem is diluted somewhat in
the presence of switching costs.

30Note again, however, the complications when EM is not wholly contained within the state
space Z. Once c has risen high enough that βL has fallen below 0 (c > a22−a12), the modified
coradius (and thus the exponent of the order of the expected waiting time) of N will remain
at 0 until c has risen to such a point (c > a11 − a21) that αH exceeds N . At this point it is
no longer the case that R(N) > CR∗(N) and, as was seen above, N ceases to be the unique
stochastically stable outcome. Again, though, these cases (and particularly the latter case)
are of limited interest given the size of the switching costs required.

31Note that all references to reduced expected waiting (or transition) times in fact refer to
a reduction in the order of expected waiting times. This is common practise in the literature
on stochastic adjustment dynamics, and indeed the order is all that matters as noise vanishes.
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Proposition 5 The presence of switching costs serves to attenuate the positive
effect of population size on transition times.

Proof. Continuing along the lines of the proof of Proposition 4, it is clear
from equation (14) that

∂zL

∂N
=

a22 − a12 − c

θ
(25)

Since a22 > a12 by definition for coordination games, the positive effect of N
on zL (and thus on the convergence time to N given that CR∗(N) = αL ≈ zL)
in the KMR case of zero switching costs is manifest. A positive value for the
switching cost, however, clearly attenuates this positive effect, to a degree in-
creasing in the size of the switching cost c.32

The intuition for this result is again based on the accelerated “step-by-step”
evolution allowed by the presence of the new mixed absorbing states. As the size
of the population N grows, the number of mixed absorbing states m also grows,
providing more intermediate stable “steps” for the population to evolve through.
It is still the case that a larger N necessitates more mutations in order for the
population to leave the extreme absorbing states’ basins of attraction, but these
required numbers of mutations increase more slowly with N in the presence of
the mixed absorbing states EM . Moreover, the more mixed absorbing states
there are (i.e., the higher the switching cost c), the stronger this attenuating
effect will be. Thus, under switching costs, the Ellison (1993) contention that
transition times under vanishing noise become unreasonably long as N becomes
large is questioned to a degree increasing in the size of the switching costs.

4 State-Dependent Mutations

The principal doubts over the conclusions reached in the previous section are
raised by two of the main criticisms of the model employed, namely the im-
plausibility of a fixed and uniform switching cost, and the problems associated
with state-independent mutations. Whilst it is highly realistic that individual
players will face switching costs of changing their strategies, it is far less real-
istic that there will be a single time-invariant switching cost that is the same
across all players, as was the case with c in the above KMR-style model. More-
over, the model is clearly subject to the Bergin and Lipman (1996) critique of
models with state-independent mutations, the mutation rate ε remaining con-
stant across states. Since mutations may be chosen such that any invariant
distribution of the unperturbed process is the limiting ergodic distribution of a
perturbed process, Bergin and Lipman argue that state-independent mutations
are arbitrary, and that an economically justified model of state-dependent mu-
tations should instead be employed. It is these criticisms that motivate the next
model.

32Although once c > a22 − a12, βL falls below 0 and CR∗(N) is fixed at 0 until αH rises
above N (c > a11 − a21), as discussed in note 30.
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The obvious response to the first criticism is to drop the assumption of a
fixed switching cost, and instead allow c to be stochastic, determined as the
realisation of a random variable C. Each individual player could then take a
draw from C each period to determine his switching cost for that period, yield-
ing the realistic feature of idiosyncratic, time-varying switching costs. This
sort of stochastic switching costs model would explicitly incorporate player het-
erogeneity, with players varying in their switching costs according to abilities,
situations, priorities and so on.33 Happily, this step also has the potential to
address the second criticism by endogenising the mutation rate in the manner
suggested by Bergin and Lipman. The stochastic switching costs can provide
the “error” necessary to yield an ergodic Markov chain, with this “error” now
being interpreted as players behaving differently to what one would expect from
the cost-less payoff matrix Λ in equation (1).

However, if - as the intuition for switching costs would at first suggest - the
support of the random variable C were to be restricted to the positive real line
R+, then the resulting Markov process would not be irreducible; “mutations”
against the flow of the deterministic dynamic would have zero probability since,
with a positive switching cost, no player will ever switch away from the strat-
egy which currently has the higher expected payoff.34 A reducible Markov chain
remains subject to path-dependence, and does not yield an ergodic long-run dis-
tribution. To attain this, the state-independent mutation rate ε of the earlier
chapters could be re-introduced, but this seems ad hoc and defeatist. Instead,
the support of the switching cost random variable C could be extended to the
whole real line R, allowing the possibility of switching benefits. The existence of
switching benefits in some players, grounded for example in an urge for creativ-
ity or nonconformity, is a realistic feature to incorporate within the model, and
can be kept relatively improbable by assuming that C is distributed with pos-
itive mean. This will suffice to deliver an irreducible Markov chain - all states
now being accessible from all others - and thus the desired ergodic long-run
distribution over states.

However, the move to stochastic switching costs is shown to have no effect
on the long-run selection results of section 3, thus confirming the finding that
(small) switching costs do not alter the long-run equilibrium of evolutionary co-
ordination games. Transition times, on the other hand, are affected by the move
to the stochastic switching costs model. In particular, the counter-intuitive re-
sult that inertia speeds evolution is qualified in the model with state-dependent
mutations; the “step-by-step” effect of section 3 is still at work, but a counter-
vailing force emerges that slows evolution. Nonetheless, the net effect is still to
speed up evolution, provided that the mean switching cost is not “too high”.

33The model would thus have parallels with the Myatt and Wallace (1998) model of adaptive
play by idiosyncratic agents.

34This observation illustrates well the Bergin and Lipman (1996) criticism of the arbitrari-
ness of state-independent mutations: there might be no reason to expect certain sorts of
mutations under certain circumstances, and to ignore this is to assume away path-dependence
when it may be an essential feature of the real-life process. The model here seeks to avoid
this problem by providing an economically justified model of mutations which generates irre-
ducibility.
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4.1 The Model

The basic KMR structure of a finite population of N players repeatedly playing
the 2×2 game Λ (equation (1)) is retained, with associated cost-adjusted payoff
matrices Λ1 and Λ2 (equations (4) and (5)). The first major change to the
model is that the switching cost c in any given period is now determined for
each player individually as an independent and identically distributed draw from
the switching cost random variable C, which is assumed to have a cumulative
distribution function (cdf) F with a positive mean c̄ > 0 and variance σ2. This
is a natural, general representation of differing switching costs across players,
the positive mean focusing attention on switching costs but the infinite support
delivering a small probability of switching benefits.

The expected payoffs are as they were in section 3 (see equations (2) and
(3), page 7). Define $1(z) = π1(z) − π2(z), and $2(z) = π2(z) − π1(z), to be
the expected payoff gains at stake from strategy switches in state z. Clearly a
1-incumbent will switch to being a 2-strategist if and only if

$2(z) > c

whilst a 2-incumbent will switch to being a 1-strategist if and only if

$1(z) > c

Defining st
l to be the strategy of player l in period t, the switching probabilities

conditional on player l having been selected for review are then immediate:

Pr(st+1
l = 2 | st

l = 1) = F ($2(z − 1))

Pr(st+1
l = 1 | st

l = 2) = F ($1(z))

The probability of a selected 2-incumbent switching to strategy 1 in a given state
is illustrated in figure 4 (f(·) representing the switching cost random variable
C’s probability density function (pdf)).35

The second major change to the KMR-style model of section 3 is in the se-
lection dynamic employed. In this more complicated setting, it is desirable for
the sake of mathematical convenience to focus attention on the best-response
dynamic B(z) - where players play their best response to current strategy fre-
quencies - rather than KMR’s more general “Darwinian” dynamic b(z). This
simplifies the analysis and also serves to isolate the effect of inertia on the sys-
tem’s review rate, without the distraction of having other forms of bounded
rationality at work. The effect of the selection dynamic can still be analysed
in this setting by comparing the extreme cases of the simultaneous-revisions
dynamic of KMR (1993) and others, and the “one-step” single-revisions dy-
namic favoured by Binmore and Samuelson (1997), Blume (1999), and Myatt
and Wallace (1998). Under the “one-step” dynamic, a single randomly selected
member of the population has the opportunity to revise his strategy at the end

35Whilst the pdf depicted in figure 4 is a Normal density, f(·) is a general pdf in the model,
and thus can take any form.
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Figure 4: The switching cost C’s pdf

of each period. Given his realised value of c, this player observes the strategy
distribution among the incumbent population and selects a best response to this
frequency.36 In the simultaneous-revisions model by contrast, each player has
this opportunity to revise his strategy each period. Evolution can thus proceed
far more rapidly under simultaneous revisions, ceteris paribus.37

4.2 Analysis

4.2.1 Single revisions

In this subsection, use will be made of the “one-step” best-response dynamic
B1(z), where just one player at a time has the opportunity to revise his strategy.
This gives a “birth-death” process, which is straightforward to analyse. Given
that the reviewing player l is randomly selected, the probability that he is a 1-
incumbent is simply z

N , implying the following transition probabilities between
states.

Lemma 5 The transition probabilities pij of the Markov matrix P satisfy:

pij =





(
i
N

)
F ($2(i− 1)) j = i− 1

(
i
N

)
(1− F ($2(i− 1))) +

(
N−i
N

)
(1− F ($1(i))) j = i

(
N−i
N

)
F ($1(i)) j = i + 1





and are zero elsewhere.
36An equivalent scenario is the familiar story of player exit and entry, whereby a randomly

selected player leaves at the end of each period, and is replaced by another player with a new
draw from C.

37Both the single- and simultaneous-revisions dynamics require the implicit assumption that
the switching cost of an updating individual will have changed since the last revision, since
he must take a fresh draw from C. This is a reasonable assumption when the noise is small,
and thus unproblematic for vanishing heterogeneity results obtained as σ tends to zero. More
generally, the procedure can be justified by noting that players are more likely to revise their
strategy whenever their switching costs change.
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Proof. Given the single-revisions framework, the process cannot move from
state i to j < i−1 or j > i+1. A move to state i+1 requires that a 2-incumbent
be selected for review, and that having been selected his best response to the
current strategy frequency be to switch to strategy 1. The former occurs with
probability (N − i)/N ; the latter with probability F ($1(i)). Similar arguments
apply for the cases j = i and j = i− 1.

Proposition 6 The adaptive response dynamic defined by the transition proba-
bilities pij in Lemma 5 is an irreducible, aperiodic Markov process on the finite
state space Z. Consequently, it has a unique invariant distribution.

Proof. Since the normal distribution has full support, either strategy may be
chosen by any reviewing player. The process can thus move in either direction
from any state i (except the extreme states), as formalised in Lemma 5, so
that every state is accessible from all others in finite time - i.e., the process is
irreducible. Moreover, since in every state there is a positive probability of the
system remaining in that state in the next period, the process is aperiodic. The
process thus has a unique invariant distribution by Lemma 1.

Long-run equilibrium with vanishing heterogeneity In the previous sec-
tion, long-run equilibrium results were obtained by analysing the limit of the
ergodic distribution as the probability of mutation ε tended to zero. The ana-
logue in this model, as in the model of Myatt and Wallace (1998), is vanishing
player heterogeneity over switching costs - i.e., taking σ2 → 0.

Given the departure from a uniform mutation rate ε, the simple Young
stochastic potential technique of Lemma 2 cannot be applied here. Fortunately,
Young’s method fits into a wider graph-theoretic approach to the analysis of the
long-run behaviour of perturbed Markov chains. This graph-theoretic approach
is in turn derived from general Markovian theory.38 If ε were known precisely,
it would (in theory) be possible to compute the actual distribution µε by simply
solving the stationarity equations µεP ε = µε. However, in most applications of
interest in economics, the size of the state space would make this a very cum-
bersome task. This fact led to the importing of the simplified graph-theoretic
techniques of Freidlin and Wentzell (1984) into the economics discipline by Fos-
ter and Young (1990), KMR (1993), and Young (1993), and the resulting birth
of stochastic adjustment dynamics.

Like the computation of Young’s stochastic potential function, the graph-
theoretic computation of µε is based on the notion of rooted trees, but this
time constructed on the whole state space Z rather than merely on the set of
recurrent classes. Specifically, consider a directed graph whose vertex set is the
state space Z. The edges of this graph form a z-tree (for some particular z ∈ Z)
if it consists of |Z| − 1 edges and from every vertex i 6= z there is a unique
directed path from i to z. A z-trees’s edges are weighted with the appropriate
Markov transition probabilities pij . Representing any given directed edge i → j
by the ordered pair of vertices (i, j), a z-tree T can then be represented as a

38A standard reference for Markovian theory is Karlin and Taylor (1975).
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Figure 5: Unique positively weighted 3-tree, N = 8

subset of ordered pairs. Let Tz be the family of all z-trees for a given z. Define
the likelihood of z-tree T ∈ Tz to be

p(T ) =
∏

(i,j)∈T

pij

Lemma 6 (Freidlin and Wentzell (1984)) Let P be an irreducible Markov
process on a finite state space Z.39 Its stationary distribution µ has the prop-
erty that the probability µ(z) of each state z is proportional to the sum of the
likelihoods of its z-trees, that is,

µ(z) =
v(z)∑
i∈Z v(i)

, where v(z) =
∑

T∈Tz

p(T ) (26)

This result allows computation of an exact estimate of a system’s ergodic dis-
tribution µε for each ε > 0;40 it is not a limiting result as ε tends to zero.

The additional analytical power of the Freidlin-Wentzell method in providing
an immediate closed form for the invariant distribution µ comes at the price of
the greater complexity inherent in constructing trees on the whole state space
(rather than on the set of recurrent classes, as in Young’s method41). The
number of z-trees to be considered soon becomes prohibitively large as the state
space grows. This is where the use of the single-revisions dynamic becomes
useful, since it means that v(z) in equation (26) takes a very simple form. With
only one revision at a time, there is only one possible positively weighted z-tree
for any given state z - that z-tree involving successive one-step jumps from every
state in the direction of z, as illustrated in figure 5.42 Any other one-step z-tree
violates the requirement of a unique path to z from every other state. It follows
that v(z) is given by

v(z) =
∏

0≤i<z

pi(i+1)

∏

z<i≤N

pi(i−1)

39Note that Lemma 2’s condition that P be a regular perturbed process is no longer required.
40See Young (1998), section 3.4, for illustrative examples.
41Young’s technique in fact follows from that of Freidlin and Wentzell, taking advantage of

uniform mutation rates, and of the zero resistance of paths along the deterministic dynamic,
in order to achieve greater analytical simplicity by simply “counting mutations” between
recurrent classes.

42For a proof, see Myatt and Wallace’s (1998) Lemma 3.
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which implies, in combination with the transition probabilities in Lemma 5, that

v(z) =
1

NN

∏

0≤i<z

(N − i)F ($1(i))
∏

z<i≤N

i F ($2(i− 1)) (27)

The unperturbed process P 0 in this model is that where there is no hetero-
geneity in switching costs, σ2 = 0. In this case, the switching cost pdf (figure
4, for example) collapses to a point mass on the mean switching cost c̄, and
the model becomes that of section 3, with c = c̄ (see figure 2, page 14). The
unperturbed process thus has a set of recurrent classes consisting of the two
extreme absorbing states, 0 and N , as well as the mixed absorbing states EM

of Proposition 2 (page 12). As usual, the ergodic distribution will focus all
weight on these states as perturbations go to zero, but to select between them
it is necessary to consider their relative weight in the ergodic distribution. Note
that Lemma 6 implies that the relative weight of any two states z and z′ in the
ergodic distribution µ may be assessed by considering the ratio

µ(z)
µ(z′)

=
v(z)
v(z′)

(28)

Following Myatt and Wallace, a state z will be said to dominate another state z′

for vanishing heterogeneity whenever limσ2→0
v(z)
v(z′) = ∞. If a state dominates

all others in this sense, it is clearly the unique stochastically stable state of
the system.43 Propositions 7 and 8 below establish that this state is the risk-
dominant equilibrium for a wide class of switching cost distributions.

Definition 5 A distribution F with mean ȳ has a likelihood ratio unbounded
in the tails if

lim
σ2→0

F (y)
F (y − ε)

→∞, ∀y ≤ ȳ, ∀ε > 0

and lim
σ2→0

1− F (y)
1− F (y + ε)

→∞, ∀y > ȳ, ∀ε > 0

Proposition 7 Assume that the switching cost distribution F has a likelihood
ratio unbounded in the tails. Then z ∈ {0, N} dominates any mixed state z ∈
(0, N) for vanishing heterogeneity.

Proof. For z > z∗, compare the limiting weights of states z and N in the
ergodic distribution using equations (27) and (28):

lim
σ2→0

v(N)
v(z)

= lim
σ2→0

∏
z≤i<N (N − i)F ($1(i))∏

z<i≤N i F ($2(i− 1))

= lim
σ2→0

∏

z≤i<N

(N − i)
(i + 1)

F ($1(i))
F ($2(i))

(29)

43Refer to the definition of stochastic stability on page 12.
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where the shared branches of the z- and N -trees for 0 ≤ i < z lead to the
corresponding terms being cancelled, and the second step merely re-indexes the
denominator.

Now, as σ2 → 0 (i.e. the game approaches that of section 3)44, F ($1(i))
(the probability of a selected 2-incumbent switching to strategy 1) tends to 1
for i > zH , but to 0 for i ≤ zH .45 Similarly, F ($2(i)) (the probability of a
selected 1-incumbent switching to strategy 2) tends to 1 in the limit for i < zL,
but to 0 for i ≥ zL. It is thus clear that, for z ∈ (zH , N), the numerator of
equation (29) tends to (N − z)! as σ2 → 0, whilst the denominator tends to 0;
hence, limσ2→0(v(N)/v(z)) = ∞, and state N dominates all states z ∈ (zH , N).

Meanwhile, for z ∈ (z∗, zH ], the additional terms in the range z ≤ i ≤ zH

must also be considered. All of these terms tend to zero in the limit in both
the numerator and the denominator, so that the numerator and the denomina-
tor themselves both tend to zero. However, consider the likelihood ratio term
(F ($1(i))/F ($2(i))) for a given i ∈ (z∗, zH ]. Since $1(i) > $2(i) for i > z∗,
a sufficient condition for this ratio to tend to infinity as σ2 → 0 is that the
switching cost distribution F have a likelihood ratio unbounded in the tails, as
defined in Definition 5. For such switching cost distributions then, all of the
likelihood ratio terms (F ($1(i))/F ($2(i))) for i ∈ (z∗, zH ] will tend to infinity
as heterogeneity vanishes. Meanwhile, the likelihood ratio terms for i ∈ (zH , N)
clearly tend to infinity in the limit, and thus, so does the whole of equation
(29). Hence, limσ2→0(v(N)/v(z)) = ∞ again, and state N dominates all states
z ∈ (z∗, zH ].

For z ≤ z∗,46 a similar comparison of the limiting weights of states z and 0
in the ergodic distribution delivers 0’s dominance over this range.

Proposition 8 For switching cost distributions with a likelihood ratio unbounded
in the tails, the risk-dominant equilibrium remains the unique stochastically sta-
ble state.

Proof. Compare the limiting weights of states 0 and N in the ergodic
distribution using equations (27) and (28):

lim
σ2→0

v(N)
v(0)

= lim
σ2→0

∏
0≤i<N (N − i)F ($1(i))∏
0<i≤N i F ($2(i− 1))

= lim
σ2→0

∏

0≤i<N

(N − i)
(i + 1)

F ($1(i))
F ($2(i))

= lim
σ2→0

∏

0≤i<N

F ($1(i))
F ($2(i))

(30)

Now, both the numerator and the denominator of equation (30) contain terms
tending to zero as σ2 → 0, so that the numerator and denominator themselves

44Refer in particular to figure 2 (page 14).
45zL and zH are as defined in equations (14) and (15) (page 13), with c = c̄.
46If it occurs, the term i = z∗ of course tends to zero at the same rate in both numerator

and denominator, and thus has no effect on the overall limiting relative weight.
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both converge to zero in the limit. Hence, the individual likelihood ratio terms
must once again be considered.

Assume without loss of generality that N is the risk-dominant equilibrium,
and re-express equation (30) as

lim
σ2→0

v(N)
v(0)

= lim
σ2→0

∏
0≤i≤z∗ F ($1(i))∏
z∗<i≤ẑ F ($2(i))

∏
z∗<i≤ẑ F ($1(i))∏
0≤i≤z∗ F ($2(i))∏

ẑ<i<N F ($1(i))∏
ẑ<i<N F ($2(i))

(31)

where ẑ = 2z∗ is defined by $1(ẑ) = $2(0) (and/or $2(ẑ) = $1(0)), as illus-
trated in figure 6. Now observe that $1(i) = $2(2z∗ − i) for all i, so that the
terms in the numerator and denominator of the first two ratios on the RHS of
equation (31) will be almost identical, and will thus approximately cancel each
other out. This can be seen intuitively, in figure 6, to be a consequence of the
linearity of the expected payoffs; each $1(i) term in the range z∗ < i ≤ ẑ has
an almost identical $2(i) term in the range 0 ≤ i < z∗ (reflected in the line
z = z∗), and vice versa. The only imprecision arises from integer problems,
which wash out as N becomes large.

Thus, equation (31) becomes

lim
σ2→0

v(N)
v(0)

≈ lim
σ2→0

∏

ẑ<i<N

F ($1(i))
F ($2(i))

As long as βL > 0 (i.e. c̄ < a22 − a12), all the terms in the numerator
tend to 1 as σ2 → 0 and all those in the denominator tend to 0, so that
limσ2→0(v(N)/v(z)) = ∞, and state N dominates state 0.47 By Proposition
7, state N thus dominates all others, and is the unique stochastically stable
state.

Long-run selection is thus determined by whether there are more terms in
the region (z∗, N ] or the region [0, z∗), i.e. which is the greater of (N − z∗) and
z∗. Thus, once again, the long-run equilibrium is the risk-dominant equilibrium.
Intuitively, in figure 6, the risk-dominant equilibrium N gets the terms in the
shaded region that are not cancelled out by corresponding terms on the other
side of z∗; all other terms cancel each other out, so that this shaded region is
decisive.

Thus, for any switching cost distribution satisfying the property of a likeli-
hood ratio unbounded in the tails, the risk-dominant equilibrium remains the
unique long-run equilibrium as heterogeneity vanishes. And a wide variety of
reasonable distributions do satisfy this property - for example, the Normal, Stu-
dent’s t, exponential, logistic and gamma distributions. Moreover, the likelihood

47Indeed, even if βL < 0, so that ẑ ≤ zH , it is still the case that $1(i) > $2(i) for all
i ∈ (ẑ, N), so that limσ2→0(v(N)/v(z)) = ∞ still holds by the arguments in the proof of
Proposition 7 (provided F has a likelihood ratio unbounded in the tails).
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Figure 6: Expected payoff differences

ratio unbounded in the tails property is a sufficient, but not a necessary, condi-
tion for the result, so that an even wider class of distributions is admissible.48

In fact, the above result is a particular instance of Blume’s (1999) result that,
with a random matching birth-death process, the risk-dominant equilibrium is
the unique stochastically stable state for 2× 2 coordination games under skew-
symmetric noise processes. Roughly speaking, a skew-symmetric noise process
is one under which only payoff differences ($1(z) and $2(z) here), and not the
“names” of strategies matter to choice. In other words, the probability of a
player choosing strategy 2 when strategy 1 has an expected payoff advantage of
δ and he is currently playing 1 is the same as that of him choosing 2 when he is
currently playing 1 and 2 has an expected payoff advantage of δ.

48Note, however, that the uniform mutation rate ε of section 3 does not satisfy this property.
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4.2.2 Simultaneous revisions

The selection dynamic employed in this subsection is the simultaneous-revisions
best-response dynamic BN (z). Under this dynamic, all players have the oppor-
tunity to revise their strategies each period; each player takes an independent
and identically distributed draw from the switching cost random variable C,
and then best-responds with respect to the current strategy frequency and his
c draw in deciding whether or not to switch strategies.

Lemma 7 Under the simultaneous-revisions dynamic, the new transition prob-
abilities pij which constitute the perturbed Markov matrix P σ2

are

pij =
min{j,N−i}∑

k=max{j−i,0}

(
i

i + k − j

)(
N − i

k

)

× F ($2(i− 1))i+k−j (1− F ($2(i− 1)))j−k

× F ($1(i))
k (1− F ($1(i)))

N−i−k

Proof. There are (min {j, N − i} − max {j − i, 0}) possible combinations
of strategy switches in a period that will lead the system from state i to state
j, each of which has a number of permutations (essentially relabelling players)
given by the product of the two binomial terms. The product of F terms is then
the probability of each permutation.

Proposition 9 The adaptive response dynamic defined by the transition proba-
bilities pij in Lemma 7 is an irreducible, aperiodic Markov process on the finite
state space Z. Consequently, it has a unique invariant distribution.

Proof. Since F has full support, either strategy may be chosen by any re-
viewing player. The process can thus move in either direction from any state i
(except the extreme states). Moreover, given that all players have the oppor-
tunity to revise their strategies in each period, the process can move anything
from 0 to N states in one period. Thus, every state is accessible from all others
within one period (i.e. every entry pij in the perturbed Markov matrix P σ2

of
Lemma 7 is strictly positive), so that the process is irreducible. Moreover, since
in every state there is a positive probability of the system remaining in that
state in the next period, the process is aperiodic. By Lemma 1, the process
thus has a unique invariant distribution.

Long-run equilibrium with vanishing heterogeneity As under single re-
visions, the unperturbed Markov process P 0 under simultaneous revisions is
that where there is no heterogeneity in switching costs, σ2 = 0. As this limit is
approached, the model again becomes that of section 3, with recurrent classes
0, N and EM . As before, limiting relative weights must be considered in order
to select between these candidate equilibria.
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However, this task is considerably less straightforward than under the single-
revisions dynamic. The transition probabilities of Lemma 7 provide a stark
illustration of the potential complexity of the Freidlin-Wentzell approach to
long-run equilibrium analysis. Every branch of every possible z-tree is weighted
by a transition probability pij , and under simultaneous revisions the number
of possible z-trees per state soon becomes prohibitively large as the state space
grows. Fortunately, some simplifications are available.

Lemma 8 The probability pij of the transition between states i and j is of the
order of

%ij = max
k∈[max{j−i,0},min{j,N−i}]

(
i

i + k − j

)(
N − i

k

)

× F ($2(i− 1))i+k−j (1− F ($2(i− 1)))j−k

× F ($1(i))
k (1− F ($1(i)))

N−i−k (32)

as σ2 → 0. Moreover, for switching cost distributions satisfying the condition
F (−x) < (1 − F (x)), and with a likelihood ratio unbounded in the tails, this
maximum is achieved at k = max {j − i, 0}.

Proof. The first part of the result is immediate from Lemma 7, given that
the order of a summation of terms is determined by the highest order term.
To see the second part, consider the effect of increasing k by 1 in equation
(32): (1 − F ($2(i − 1)))(1 − F ($1(i))) is removed from the expression, and
replaced by the strictly lower F ($2(i−1))F ($1(i)) (under the assumption that
F (−x) < (1−F (x))). A likelihood ratio unbounded in the tails is then sufficient
to guarantee that the maximand in equation (32) is decreasing in k as σ2 → 0.

Intuitively, the minimum value of k is selected in Lemma 8 because this
minimizes the number of strategy switches used to effect a given transition. Two
strategy switches in opposite directions merely cancel each other out, and two
players remaining inert is more probable than two players switching in opposite
directions; hence, anything above the minimum number of strategy switches
serves to reduce a transition path’s probability. This is a natural feature of a
model of evolution under inertia, and indeed a wide class of distributions satisfy
the conditions of the Lemma given a positive mean. For example, symmetry
about c̄ is sufficient (but not necessary) to ensure that F (−x) < (1− F (x)) for
c̄ > 0.

Lemma 9 Under the adaptive response dynamic defined by the transition prob-
abilities pij in Lemma 7, state z dominates another state z′ for vanishing het-
erogeneity whenever

lim
σ2→0

%(z)
%(z′)

= ∞,

where
%(z) =

∏

(i,j)∈Tmax
z

%ij
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and Tmax
z = arg maxT∈Tz

p(T ) is the most probable z-tree for a given state z.

Proof. Recall that a state z dominates another state z′ for vanishing het-
erogeneity whenever limσ2→0(v(z)/v(z′)) = ∞. Recall also from Lemma 6 that
v(z) is given by the sum of the likelihoods of all possible z-trees for a given state
z. Thus,

lim
σ2→0

v(z)
v(z′)

= lim
σ2→0

∑
T∈Tz

p(T )∑
T∈Tz′

p(T )
,

where p(T ) =
∏

(i,j)∈T pij is the likelihood of the tree T , which belongs to a
family of z-trees Tz (for a given state z).

Now, limσ2→0(v(z)/v(z′)) = ∞ if and only if v(z) is of higher order than
v(z′) (i.e. v(z′) = o(v(z))).49 Hence

lim
σ2→0

v(z)
v(z′)

= ∞ ⇔ lim
σ2→0

maxT∈Tz p(T )
maxT∈Tz′ p(T )

= ∞

Since this will in turn be true if and only if

max
T∈Tz′

p(T ) = o(max
T∈Tz

p(T )),

dominance is seen to be determined by a comparison of the order of the likeli-
hood of each state’s highest-order z-tree.50 The likelihoods of the most probable
z-trees are themselves products of the transition probabilities pij of Lemma 7,
each of which is of the order of %ij as σ2 → 0 by Lemma 8.

In order to employ Lemma 9 precisely, it is first necessary to identify the most
probable z-tree Tmax

z for each state z. This task is far from straightforward, and
is addressed in Norman (2003b). There it emerges that the most probable way
of escaping a given basin of attraction depends on the assumed “noise model” -
in this case the density of switching costs - but in general is unlikely to involve
either one-step transitions or direct jumps. As a result, fully operationalizing
Lemma 9 is a complex task, feasible only for particular noise models. However,
for the purposes required here, all that matters once again is the skew-symmetry
of the noise process.

Proposition 10 Assume that the switching cost distribution F has a likelihood
ratio unbounded in the tails. Then z ∈ {0, N} dominates any mixed state z ∈
(0, N) for vanishing heterogeneity.

Proof. For z ∈ (zH , N), consider %(N)/%(z), and call this the order ratio
for convenience. Once shared terms have been cancelled, this ratio is simply

49In general, for two functions f(x) and g(x), if (f(x)/g(x)) → 0 as x → ∞, then f is of
smaller order than g, denoted f(x) = o(g(x)). If, on the other hand, limx→∞(f(x)/g(x)) ≤
constant, then f is of the same order as g, denoted f(x) = O(g(x)).

50This is a key result in graph-theoretic Markovian theory which, for example, underlies
Young’s stochastic potential technique.
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%zN/ΥNz, where ΥNz is the (unknown) product of %ij terms leading from state
N to state z. The numerator of this order ratio tends to 1 as σ2 → 0 whilst the
denominator tends to 0. Hence limσ2→0 %(N)/%(z) = ∞, and state N dominates
all states z ∈ (zH , N) by Lemma 9.

For z ∈ (z∗, zH ], meanwhile, the order ratio %(N)/%(z) becomes somewhat
more complicated:

%(N)
%(z)

=
ΥzN

ΥNz

Since z now lies within the region of mixed absorbing states EM , both nu-
merator and denominator of the order ratio will now tend to 0 as σ2 → 0.
However, since the transition from z to N is in the more probable direction,
if F has a likelihood ratio unbounded in the tails, ΥzN will dominate ΥNz.
Thus, limσ2→0 %(N)/%(z) = ∞, and by Lemma 9 state N dominates all states
z ∈ (z∗, zH ].

For z ≤ z∗, similar arguments hold for %(0)/%(z).

Definition 6 A given z-tree Tz and a given z′-tree Tz′ are said to be k-symmetric
if all paths rooted in the region [z∗ − k, z∗) of each tree have symmetric coun-
terparts rooted in the region (z∗, z∗ + k] of the other tree.

Absent integer problems, all order ratio terms in a k-symmetric region cancel
for skew-symmetric noise processes.

Lemma 10 The most probable path from 0 to N involves one-step transitions
from αL to αH . Similarly, the most probable path from N to 0 involves one-step
transitions from βH to βL.

Proof. This follows directly from Norman’s (2003b) Proposition 3.

It follows from Lemma 10 that the most probable N - and 0-trees will be k-
symmetric, where k ∈ [z∗−zL, z∗]. Clearly if k = z∗, then all order ratio terms in
the region [0, ẑ] cancel (assuming N risk-dominant), leaving a situation similar
to that of Proposition 8. Under simultaneous revisions, however, it is possible
that k < min{z∗, N − z∗}, and more care is required.

Proposition 11 For switching cost distributions with a likelihood ratio un-
bounded in the tails, the risk-dominant equilibrium remains the unique stochas-
tically stable state.

Proof. The only candidates for long-run equilibrium are states 0 and N by
Proposition 10. Assume without loss of generality that N is the risk-dominant
equilibrium, and consider the most probable 0-tree Tmax

0 . Now construct its
k-symmetric N -tree T̃N with k as high as possible, a direct jump from 0 to
z∗ − k (if z∗ − k 6= 0), and transitions with a constant limiting probability
(i.e., branches of the underlying deterministic dynamic) elsewhere. Assuming
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the switching cost distribution has a likelihood ratio unbounded in the tails, T̃N

clearly dominates Tmax
0 for vanishing heterogeneity, since

lim
σ2→0

%0(z∗−k)

ΥN(z∗+k)
= ∞

And, by definition, the most probable N -tree Tmax
N dominates T̃N for vanishing

heterogeneity. Hence Tmax
N dominates Tmax

0 in the limit.

So, the power of Blume’s (1999) skew-symmetry is seen to extend beyond his
single-revisions dynamic to the case of simultaneous revisions, confirming the
selection of the risk-dominant equilibrium. Hence, when mutations are driven
by stochastic switching costs, the anxieties of indeterminacy raised by Bergin
and Lipman (1996) turn out to have limited bite.

4.2.3 Transition times

Given the move to a state-dependent mutations setting, Ellison’s (2000) “radius-
modified coradius” techniques cannot be directly applied. However, Norman
(2003b) extends Ellison’s key theorem to a general state-dependent mutations
setting, allowing the verification of the above stochastic stability results, and
the calculation of the order of transition times.

Under single revisions, switching-cost-driven inertia straightforwardly in-
creases expected waiting times by reducing each individual transition proba-
bility F (·). However, the “step-by-step” evolution of subsection 3.2.2 has no
effect here, since the single-revisions dynamic only allows one possible evolu-
tionary path between equilibria - the one-step-at-a-time path (see figure 5, page
27). Only under simultaneous revisions, then, can the question of transition
times under inertia be resolved.

In order to employ Norman’s (2003b) theorem, it is first necessary to identify
the least probable (over all recurrent classes) of the most probable paths from
each recurrent class to the risk-dominant equilibrium N . The most probable
path from 0 to N is clearly less probable than that from any of the mixed
absorbing states EM to N , but its nature is more difficult to ascertain (Norman
2003b). However, Lemma 10 (derived from Norman’s (2003b) Proposition 3)
does show that the path should contain one-step transitions towards N within
the region of mixed absorbing states. This effectively says that, if Ellison’s
(2000) “intermediate steps” are in place (i.e., given a positive value of c̄), the
most probable path from 0 to N exploits each step in the “step-by-step” fashion.
However, it is not yet clear whether it is desirable for these steps to be in place
(i.e., whether positive c̄ speeds evolution).

Lemma 11 The expected waiting time before N is reached, starting from any
z 6= N in the σ2-perturbed model with simultaneous revisions, is

W (z,N, σ2) = O

([
Υ0αL

∏

i∈[αL,z∗)

%i(i+1)

%i(i−1))

]−1
)

(33)

36



as σ2 → 0.

Proof. The appropriate path to consider involves some (unknown) sequence
of jumps leading from 0 to αL (of the order of Υ0αL

by definition), followed by
one-step transitions through the set of mixed absorbing states EM by Lemma
10. Meanwhile, the most probable path of escape from the basin of attraction
of any given mixed absorbing state is a one-step transition in the more probable
direction (towards 0 for z ∈ [αL, z∗); towards N for z ∈ (z∗, βH ]). Part (b) of
Norman’s (2003b) Theorem 1 then delivers the desired result, after cancelling
shared terms in the range (z∗, βH ].

Proposition 12 Under simultaneous revisions, the expected waiting time until
the risk-dominant equilibrium is reached from any other state is decreasing in
the mean switching cost over some range c̄ ∈ [0, ĉ), given sufficiently large N
(and as σ2 → 0). Moreover, ĉ is increasing in N .

Proof. When c̄ = 0, there are no mixed absorbing states, and the expected
waiting time in equation (33) is merely O(Υ0αL

). Now consider raising c̄ just
enough such that there is only one mixed absorbing state below the mixed-
strategy equilibrium z∗; in other words, αL = bz∗c. This gives one term in the
product in equation (33), and this term will tend to 1 as N gets large. At the
same time, one improbable transition is removed from the Υ0αL

term by the
shortening of the distance from 0 to αL. Each of the remaining transitions in
Υ0αL

also becomes less probable, but vanishingly so as N becomes large (and
so, the required c̄ becomes small). It follows that the small rise in c̄ above zero
lowers the order of the expected waiting time in equation (33) for sufficiently
large N . If c̄ is raised a little more, such that there are now two mixed absorb-
ing states below the mixed-strategy equilibrium - i.e., αL = (bz∗c − 1) - then
another improbable transition is removed from Υ0αL

, the remaining transitions
become a little less probable, and another product term is created in equation
(33). Similar arguments then yield a lower expected waiting time again for suf-
ficiently large N . And so on, with each successive new mixed absorbing state as
c̄ rises. However, holding N constant, increasing c̄ yields successively decreas-
ing new product terms, and successively lower transition probabilities, so that
there will come a point, ĉ, where increasing c̄ further may increase the expected
waiting time.

Thus, in the more realistic state-dependent mutations setting, it is confirmed
that transition times fall under switching costs, at least initially. The effects
at work are, however, more complicated than in section 3. Under stochastic
switching costs, if the mean switching cost c̄ rises, the number of mixed ab-
sorbing states increases, which has two conflicting effects. First, it shortens
the escape from 0’s basin of attraction (i.e., reducing αL) in favour of the less
improbable one-step transitions through the mixed absorbing states. This is
the analog of the “step-by-step” effect at work in Section 3, and it serves to
reduce the expected waiting time ceteris paribus. However, a countervailing
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effect is also at work, in that a higher mean switching cost makes every transi-
tion less likely - the only effect at work under single revisions. Proposition 12
demonstrates that, given a large enough population, the “step-by-step” effect
dominates for “small” c̄ and vanishing noise, so that inertia speeds up evolution.
However, there exists a threshold level of the mean switching cost ĉ, above which
the expected waiting time until long-run equilibrium is reached is no longer nec-
essarily decreasing in c̄. How high or low is ĉ will vary with the assumed noise
model and the population size.

5 Conclusion

This paper is motivated by the belief that player inertia is an important phe-
nomenon in repeated game contexts, and that it is driven in large part by the
presence of switching costs to changes in behaviour. Such switching costs are
introduced within the natural environment of a stochastically adaptive popula-
tion repeatedly playing a coordination game. There are three main findings to
note from this step. Firstly, the risk-dominant equilibrium remains the unique
long-run equilibrium under all but the highest levels of inertia. Secondly, the
concept of mixed-strategy equilibrium is rejuvenated by the introduction of in-
ertia, which transforms it from an unstable knife-edge to the focus of a new
group of short- to medium-run equilibria. Finally, evolution is, under certain
conditions, speeded by the presence of switching costs.

The first finding further strengthens risk-dominance as the solution concept
of choice in 2 × 2 evolutionary coordination games. Indeed, its long-run selec-
tion holds under quite general conditions even with state-dependent mutations
driven by stochastic switching costs, thanks to Blume’s (1999) skew-symmetry
property of the noise process being satisfied. Thus, Bergin and Lipman’s (1996)
fears of the indeterminacy of stochastic adjustment models are revealed to have
limited bite in this case. In fact, the extension of Blume’s skew-symmetry to
the case of the simultaneous-revisions dynamic of subsection 4.2.2 suggests his
results to hold very generally. Moreover, it would seem that persistent subopti-
mal coordination is unlikely to be founded in the existence of individual strategy
switching costs, unless they outweigh the maximum possible single-period pay-
off gain. Given the assumption of myopic players, this would be begging the
question somewhat, unless myopia could be shown to be rational in such a
context.

The second finding is more novel. The introduction of switching costs means
that where the payoff gain at stake from a strategy change is small (i.e., close to
the mixed-strategy equilibrium), players can no longer “be bothered” to switch
strategies. This effect allows the mixed-strategy equilibrium and nearby states
to assume a role as short- to medium-run equilibria. Contrary to most evolu-
tionary models then, in the presence of switching costs the system will rest for
significant periods of time in the states around the mixed-strategy equilibrium.
However, it is clear from the proof of Proposition 3 that none of the mixed
absorbing states, including the mixed-strategy equilibrium, are candidates for
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selection in the long run; indeed, more time is spent in the risk-dominated equi-
librium in the long run than in any given mixed absorbing state. This is due
to the advantage accorded the extreme states by the deterministic dynamic in
coordination games. The natural question is then raised as to what the effect of
switching costs would be on a game in which the deterministic dynamic acted in
favour of the mixed-strategy equilibrium. This question is addressed in Norman
(2003a).

The most interesting consequence of inertia to emerge in this paper, however,
is the third finding - the possible increased speed of evolution thanks to the
“step-by-step” (Ellison 2000) effect of the new mixed absorbing states. This
finding is straightforward under uniform mutations, but the stochastic switching
costs model of section 4 reveals the importance of the mean switching cost, the
population size and the noise model to the result. In general though, switching
costs with a “small” mean will speed evolution. This finding serves to qualify
the Ellison (1993) critique of unreasonably long transition times under vanishing
noise, offering an alternative escape to Ellison’s own local interaction or the
retreat to a model with non-vanishing noise. Given that models with vanishing
noise are far easier to work with than those with non-vanishing noise, and that
switching costs are likely to be a widespread phenomenon, this is potentially
significant.

On a more practical level, the altered speed of evolution has interesting im-
plications for the applications of evolutionary coordination games. For example,
consider the evolution of political institutions. There is clearly a great deal of
inertia in such institutions, driven by exactly the sorts of costs of institutional
change modelled in this paper. Such inertia is generally seen by political sci-
entists as an impediment to institutional change and an obstacle to the sort
of efficient selection generally predicted by the game-theoretic literature. The
modelling of inertia in this paper, however, suggests a more complex picture.
The stickiness of particular institutional arrangements can serve to speed up
evolution by providing Ellison’s (2000) facilitating intermediate links in the
evolutionary chain. To present the intuition in this political context, the trans-
formation from a monarchy to a democracy may proceed much more quickly if
a King can coexist with a legislature for some period of time without the system
reverting back to pure monarchy; a strong French Constitutional Council might
emerge far sooner if there can be a stable interim where it is powerless; and
a PR electoral system could replace SMSP far sooner if a compromise system
can exist in the interim. However, inertia will also make the abandonment of
a particular set of institutional arrangements less likely, so that the overall ef-
fect on the speed of change will depend on the particulars of the institutional
environment.

In conclusion, this paper has sought to fill a gap in the rapidly evolving lit-
erature on the emergence of conventions and institutions in stochastic adaptive
contexts. Player inertia has long been recognised as an important phenomenon,
but its intuitive cause in costly individual strategy changes has been left un-
modelled. The consequences of introducing such costs have been shown to be
nontrivial, but not necessarily in the inefficient manner suggested by popular
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opinion; rather, the presence of such inertia can, under certain conditions, speed
up evolution to the risk-dominant equilibrium by allowing the system to rest in
the stabilised mixed-strategy equilibrium along the way.
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