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Abstract

In this paper we present a general result concerning the convergence to stochastic integrals

with non-linear integrands. The key finding represents a generalization of Chan and Wei’s (1988)

Theorem 2.4. and that of Ibragimov and Phillips’ (2004) Theorem 8.2. This result is necessary

for analysing the asymptotic properties of mis-specification tests, when applied to a unit root

process, for which Wooldridge (1999) mentioned that the exiting results in the literature were

not sufficient.
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1 Introduction

The asymptotic analysis of unit root statistics relies on the use of the Functional Central Limit
Theorem, the Continuous Mapping Theorem, and on convergence to stochastic integrals. However,
Wooldridge (1999) mentioned that these results are insufficient for the analysis of, for instance,
White’s (1980) test for heteroskedasticity applied to a unit root process. For that analysis the
asymptotic properties are needed for terms like
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where f : R → R is a non-linear function, and (u1,n, u2,n)n∈Z is a martingale difference sequence
with respect to a filtration Fn. Moreover, for most applications it is necessary to establish this
convergence jointly with the convergence of the process n−1/2X1,n. Such a joint convergence result
will be developed in this paper. In the most general result presented, f is a function of a vector
random walk including the integrator as one of its elements, as well as of time.

The result presented in this paper generalizes two types of results available in the literature.
First, Chan and Wei (1988, Theorem 2.4) considered the linear case where f(x) = x and established
the joint convergence result
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on D2[0, 1]×R, where B1 and B2 are two Brownian motions with respect to an increasing sequence of
σ-fields Gt. Their proof will be followed to a large extent. Secondly, the case where f is non-linear has
received less attention. Strasser (1986) considered the case where f is Lipschitz which excludes the
polynomial functions often found in econometrics. Ibragimov and Phillips (2004) considered more
general non-linear functions, and established a convergence result for sums like that presented in (1)
using general convergence results for semi-martingales. This was done under the restrictive assump-
tion that the innovations are independent and identically distributed, which prohibits important
applications.

The result presented in this paper will be proved along the lines of Chan and Wei (1988) with one
important change. Since they analysed the case of linear functions f , so that the involved sums are
quadratic forms, they could make extensive use of the uncorrelatedness of martingale differences. In
the proof presented in this paper, this argument will have to be replaced. The outline of the paper
is therefore: section 2 will present the main result, whereas section 3 presents some lemmas used to
replace Chan and Wei’s argument based on uncorrelatedness. The proof of the main result follows
in section 4.

Throughout this paper the notation [[1, h]] is used for a sequence 1, 2, . . . , h of natural numbers.

2 Main Results

Two versions of the main result are presented. Theorem 1 covers the quantity given in equation (1),
so that the function f does not involve the integrator. Thereby it is possible to get an overview of
the necessary moment conditions. Theorem 2 generalizes the result to functions of vectors of random
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walks that can include the integrator.
In order to formulate the main results the following sets of assumptions are needed.

Assumption 1. Let f : Rh × [0, 1] → R be a differentiable vector function satisfying the growth
condition: for any vector x = (x1, . . . , xh+1)

′ ∈ Rh+1, we have ∀r ∈ [[1, h + 1]],

∣∣∣∣
∂f(x)

∂xr

∣∣∣∣ ≤ Kr

(
1 +

h+1∑
s=1

|xs|αr,s

)
(3)

for a set of h + 1 positive constants (K1, . . . , Kh+1), and (h + 1)2 positive, but finite, integers

α =




α1,1 . . . α1,h α1,h+1
...

. . .
...

...
αh,1 . . . αh,h αh,h+1

αh+1,1 . . . αh+1,h αh+1,h+1


 (4)

Assumption 1 is satisfied for instance by power functions: f(x) = xp and by Lipschitz functions.
To see the latter note that a function f : R→ R is Lipschitz if |f(y)−f(x)| ≤ K∗|x−y| for a constant
K∗ > 0 and any x, y ∈ R. For such a function it can be established that |f ′(x)| ≤ K0 (1 + |x|α) for
some constant K0 and some integer α.

Assumption 2. Let Xn = (X1,n, X2,n, . . . Xh,n) be the partial sum process defined by: ∀s ∈ [[1, h]],

Xs,n(t) =
∑[nt]

k=1 us,k. Suppose it satisfies

n−1/2Xn
d−→ B (5)

on D[0, 1]h, where B = (B1, B2, . . . , Bh) is a h-dimensional Brownian motion.

Note that in the case where all the us,n’s are also i.i.d. with zero mean and constant covariances,
Assumption 2 is equivalent to the Multivariate Donsker Theorem (c.f. White (2000), Theorem 7.27).

Some higher order martingale difference sequence properties and some moment conditions are
needed that depend on the constants αr,s in (4). In what follows, we consider the case where h = 2,
and we replace the term xh+1 by t to emphasize that the latter refers to the use of a deterministic
term. First the case where f(x1, x2, t) does not vary with x2 is considered.

Assumption 3. Let (u1,n, u2,n)′ be a martingale difference sequence with respect to a filtration Fn.
If K1 > 0,

E(ui
1,n|Fn−1)

a.s.
= c1,i for i = 2, . . . , (α1,1 + 2) · I(α1,1>0), (6)

E
(
u

2α1,1+2
1,n

) a.s.≤ c∗1,1 (7)

If Kh+1 > 0,

E
(
ui

1,n|Fn−1

) a.s.
= c̃1,i for i = 2, . . . , min{αh+1,1 + 1, 2αh+1,1 − 1}, (8)

E
(
u

2αh+1,1

1,n

) a.s.≤ c∗1,h+1 (9)
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In addition,

E(u2
2,n|Fn−1)

a.s.≤ c∗2,2 (10)

for a set of positive integers (α1,1, αh+1,1), K1 and Kh+1 as in Assumption 1, some positive constants
c∗1,1, c∗1,h+1, c∗2,2 and some set of constants (c1,i, c̃1,i).

Assumption 3 is required to replace the uncorrelatedness property of martingale differences used
in Chan and Wei (1988). Conditions (6) and (8) are higher order martingale different properties.
These ensure uncorrelatedness of powers of the innovations. Conditions (7) and (9) are corresponding
unconditional moment conditions, whereas condition (10) is the only conditional moment bound. It
relates to the integrator and is not related to the form of f . Note that in contrast to Chan and
Wei (1988), no bounds are required for the conditional variance of the innovation u1,n related to the
integrand. In addition, if no deterministic terms are included in f , then conditions (8) and (9) do
not apply.

The following three examples illustrates some of the uses and differences when applying the above
three assumptions to different functional forms for the function f .

Example 1. f(x1, x2, t) = 1
Then K1 = K2 = Kh+1 = 0 and conditions (6) to (9) do not apply. Thus, in this case, we are
interested in showing

1√
n

n−1∑

k=1

u2,k+1
d−→ B2(1) (11)

which, given Assumptions 1 and 2, is basically equivalent to Donsker’s theorem as given in Chan and
Wei (1988, Theorem 2.2).

Example 2. f(x1, x2, t) = x1

Then K1 > 0, K2 = Kh+1 = 0 , α1,1 = 0, αh+1,1 = 0 and conditions (6), (8) and (9) do not apply,
but (7) is needed. Thus, in this case, we are interested in showing

1

n

n−1∑

k=1

X1,n

(
k

n

)
· u2,k+1

d−→
∫ 1

0

B1(u) dB2(u) (12)

Given Assumptions 1 and 2, the above example is similar to Theorem 2.4 of Chan and Wei (1988),
noting however that (7) only requires the unconditional variance of u1,n to be bounded as opposed to
a bound on the conditional variance.

Example 3. f(x1, x2, t) = x2
1

Then K1 > 0, K2 = Kh+1 = 0 , α1,1 = 1, αh+1,1 = 0, so conditions (6) and (7) imply that the first
three conditional moments of (u1,n) are constant and the fourth moment bounded. Thus, in this case,
we are interested in showing

1

n3/2

n−1∑

k=1

[
X1,n

(
k

n

)]2

u2,k+1
d−→

∫ 1

0

[B1(u)]2 dB2(u) (13)

The term in (13) cannot be dealt with by using Chan and Wei’s result due to the presence of the
non-linearity in X1,n. In fact, this point is the limitation in the existing literature that was implicitly

3



pointed out by Wooldridge (1999). Thus, the need of the result presented in this paper, in order to
be able to deal with terms such as that appearing in (13) above. If in addition (u1,n, u2,n) is an i.i.d.
sequence, then the result in (13) also follows from the result presented by Ibragimov and Phillips
(2004, Theorem 8.2). However, their result cannot be used to show (13) for the case where we have
an i.i.d. sequence (ξn) with standard normal distribution generating u1,n = ξn and u2,n = ξnξn−1,
which arises in some of the problems alluded to by Wooldridge (1999).

The following theorem is a generalization of the results presented by Chan and Wei (1988) and
Ibragimov and Phillips (2004). However, in here we allow for the possibility of including more
general ‘functional’ terms such as the one presented in equation (1), while still maintaining the joint
convergence result of equation (2).

Theorem 1. Let f : R×[0, 1] → R be a function satisfying Assumption 1. Suppose that Assumptions
2 and 3 are satisfied. Then, on D2[0, 1]× R,
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)
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0

f [B1(u), u] dB2(u)

)

(14)

Theorem 1 can be generalized so that the function f can include not only X1,n but also X2,n. In
fact this result also holds for a finite number of martingales Xs,n. This is presented in the following
theorem. But first we need to modify Assumption 3 accordingly.

Assumption 4. Let un = (u1,n, . . . , uh,n)′ be a martingale difference sequence with respect to a
filtration Fn. Let α be a set of integers as defined in Assumption 1, and let (c∗r,r, c

∗
j,r, c

∗
j,h+1, c

∗
h,2) be

positive constants and (cr,i, cj,i, c̃j,i) some constants.
If Kr > 0, r ∈ [[1, h]],

E
(
ui

r,n|Fn−1

) a.s.
= cr,i for i = 2, . . . , max{3 · I(

Ph
j=1 αr,j>0) , (αr,r + 2) · I(αr,r>0)}, (15)

E
(
u2βr

r,n

) a.s.≤ c∗r,r where βr = max{2 · I(
Ph

j=1 αr,j>0) , αr,r + 1}. (16)

If Kr > 0, r ∈ [[1, h]], j ∈ [[1, h]] so that j 6= r,

E
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= cj,i for i = 2, . . . , min{2αr,j + 1, 4αr,j − 1}, (17)

E
(
u

4αr,j
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) a.s.≤ c∗j,r (18)

If Kh+1 > 0, j ∈ [[1, h]],

E
(
ui

j,n|Fn−1

) a.s.
= c̃j,i for i = 2, . . . , min{αh+1,j + 1, 2αh+1,j − 1}, (19)

E
(
u
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In addition,

E(u2
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a.s.≤ c∗h,2 (21)
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Example 4. f(X) = f(x1, t) and h = 2
In this case, K2 = 0, α1,2 = 0 and α2,s = 0 for s ∈ {1, 2}. Assumption 4 then reduces to Assumption
3. Nevertheless, it is important to note here that we need conditions (15) to (20) to hold for all the
us,n, s ∈ [[1, h]] - which are included in the function f . In Assumption 3, these conditions were only
required to hold for u1,n (i.e. for the term included inside the function f), whereas u2,n was only
required to satisfy condition (21).

Once again, we present here an example to illustrate the use of Assumption 4 in conjunction with
Assumptions 1 and 2.

Example 5. f(X) = x2
1 · x2 and h = 2 and no deterministic terms

Then K1 > 0, K2 > 0. Since ∂f(x)
∂X1

= 2X1X2. In order to get the growth condition satisfied the

inequality 2|X1X2| ≤ |X1|2 + |X2|2 is used, so α1,1 = 2 and α1,2 = 2. Further α2,1 = 2 and α2,2 = 0.
In this case, we are interested in knowing the limiting distribution of the term

1

n2

n−1∑

k=1

[
X1,n

(
k

n

)]2

X2,n

(
k

n

)
· u2,k+1 (22)

Note that, in the above example, condition (18) requires the existence of the eighth moment for
X1,n and X2,n (or equivalently for u1,n and u2,n). Alternatively, this condition could be replaced by
an assumption involving the existence of moments for certain cross-product of X1,n and X2,n. In
particular E(X4

1,nX
2
2,n). This is needed to get the bound in (40), in the proof of the main result. In

other words, there is a trade off between the moments required for X1,n and X2,n individually, in the
above example up to the eight moment, and the moments required for the cross-product X1,n · X2,n,
up to the fourth moment in this example.

The following theorem represents the main result in this paper. It is a generalization of Theorem
1 into a higher dimensional case and more general functional form.

Theorem 2. Let f : Rh×[0, 1] → R be a function satisfying Assumption 1. Suppose that Assumptions
2 and 4 are satisfied. Then, on Dh[0, 1]× R,

(
1√
n
Xn,

1√
n

n−1∑

k=1

f

[
1√
n
Xn

(
k

n

)
,
k

n

]
uh,k+1

)
d−→

(
B,

∫ 1

0

f [B(u), u] dBh(u)

)
(23)

Note that Theorem 1 is a special case of Theorem 2, in which only X1 was included in f .
Additionally, Theorem 2 represents a generalization of the work by Chan and Wei (1988), Ibragimov
and Phillips (2004) and Strasser (1986) as discussed in the introduction.

Remark 1. The proof of Theorem 2 is based on the convergence in probability of the Skorokhod
embedding of 1√

n

∑n−1
k=1 f [ 1√

n
Xn

(
k
n

)
, k

n
]uh,k+1. Thus (23) can be further generalized in the sense that,

if there are h functions so that fs : Rh × [0, 1] → R satisfy Assumption 1, for all s ∈ [[1, h]], and
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suppose that Assumptions 2 and 4 are satisfied for each function fs. Then,
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∫ 1

0
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∫ 1
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fh [B(u), u] dBh(u)

)

This last result is a consequence of the fact that each of the terms 1√
n

∑n−1
k=1 fs[

1√
n
Xn( k

n
), k

n
]us,k+1

converges in probability to
∫ 1

0
fs[B(u), u] dBs(u) for all s ∈ [[1, h]]. Thus the joint convergence in

distribution.

The following remark introduces another result which is required in the analysis of some mis-
specification tests mentioned earlier - when these are applied to a marginally stable (i.e. with all its
roots equal to unity) autoregressive process, with or without deterministic terms (e.g. constant or
linear trend). This is due to the presence of sums of polynomial terms that appear for instance in
White’s test for heteroskedasticity (White, 1980).

Remark 2. Suppose Assumptions 1, 2 and 4 are satisfied and let g : Rh × [0, 1] → R be continuous.
Then (23) holds jointly with

g

[
1√
n
Xn

(
k

n

)
,
k

n

]
d−→ g [B(u), u] (24)

since applying g to Xn and the identity to 1√
n

∑n−1
k=1 f [ 1√

n
Xn( k

n
), k

n
]uh,k+1, is continuous. As an

example let g[Xn(t), t] = 1
n

∑n−1
k=1(f [ 1√

n
Xn( k

n
), k

n
])2 so that the denominator and the numerator of the

least squares-type statistic

Zn =

1√
n

∑n−1
k=1 f

[
1√
n
Xn

(
k
n

)
, k

n

]
uh,k+1

1
n

∑n−1
k=1

(
f

[
1√
n
Xn

(
k
n

)
, k

n

])2

converge jointly, and hence Zn converges.

3 Preliminary Lemmas

At this point, it is worth mentioning that the following two lemmas and a corollary are required in
order to establish the proof for Theorem 2.

First of all, a key point in the argument used by Chan and Wei (1988) is that they work with linear
terms, so they can square these terms and use the fact that the square martingale is uncorrelated.
When dealing with squared term, Chan and Wei used the following result

E




(
N∑

t=1

εt

)2

 =

N∑
t1=1

·
N∑

t2=16=t1

E(εt1εt2) +
N∑

r1=1

E(εr1

2) =
N∑

r1=1

E(εr1

2) ≤ c ·N (25)

given that, when t1 6= t2, E(εt1εt2) = E(εmin{t1,t2} · E{εmax{t1,t2}|Fmax{t1,t2}−1}) = 0 , and E(ε2
r1

) =

6



E
(
E{ε2

r1
|Fr1−1}

) ≤ c for some constant c > 0. However, due to the functional terms and growth

condition used in Theorem 2, we require the existence of higher order moments for the sum
∑N

t=1 εt.
In fact, we are interested in the power 2p (p is a positive integer) of the above sum. Thus, a higher
order martingale difference assumption and higher order moment bounds are needed, as stated in
Assumption 4. The following lemma summarizes the abovementioned points in a more explicit
manner.

Lemma 1. Let (εn)n∈N be a sequence of martingale differences with respect to increasing σ-fields Fn.
If,

E(εi
n|Fn−1)

a.s.
= ci for some constants ci, i = 2, 3, ..., min{p + 1, 2p− 1}, (26)

E
(
ε2p

n

) a.s.≤ c∗ for some constant c∗ > 0, for a fixed integer p. (27)

Then, there exists a constant Kp > 0 such that

E




(
N∑

t=1

εt

)2p

 ≤ Kp ·Np (28)

Note that when p = 1, equation (27) is reduced to condition (2.14) in Chan and Wei (1988), and
equation (26) is then empty.

Proof of Lemma 1. : We have that

E




(
N∑

t=1

εt

)2p

 =

N∑
t1=1

N∑
t2=1

· · ·
N∑

t2p−1=1

N∑
t2p=1

E(εt1εt2 . . . εt2p−1εt2p) (29)

Suppose that there are k different indexes s1, ..., sk, each replicated r1, ..., rk times in the above
expectation. Thus for all k ∈ [[1, 2p]], we have that

∑k
i=1 ri = 2p. Hence,

E




(
N∑

t=1

εt

)2p

 =

N∑
s1=1

N∑
s2=1

· · ·
N∑

sk−1=1

N∑
sk=1

E

[
k∏

i=1

εri
si

]
(30)

The bound (28) needs to be established in each of four different cases.
- Case 1: k < p

Then, from the triangle inequality and Hölder’s inequality (c.f. Magnus and Neudecker, 1999),
we obtain that

∣∣∣∣∣E
[

k∏
i=1

εri
si

]∣∣∣∣∣ ≤ E

∣∣∣∣∣
k∏

i=1

εri
si

∣∣∣∣∣ ≤
k∏

i=1

(
E

∣∣εri
si

∣∣ 2p
ri

) ri
2p

where
k∑

i=1

ri

2p
= 1.

By assumption (27), we have that

k∏
i=1

(
E |εsi

|2p) ri
2p ≤

k∏
i=1

(c∗)
ri
2p ≤ c∗
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Using (30) and the triangle inequality,

∣∣∣∣∣∣
E




(
N∑

t=1

εt

)2p



k<p

∣∣∣∣∣∣
≤

N∑
s1=1

N∑
s2=1

· · ·
N∑

sk−1=1

N∑
sk=1

∣∣∣∣∣E
[

k∏
i=1

εri
si

]∣∣∣∣∣

Therefore, in combination with the bound established above, the expectation in (28) is of order
O

(
Nk

)
= o (Np)

- Case 2: k > p
In this case there is at least one group with one element, so a j ∈ [[1, h]] exists so that rj = 1,

and the largest group size is p. Thus, by taking iterated expectations

E

[
k∏

i=1

εri
si

]
= E

[(
j−1∏
i=1

εri
si

)
εsj

(
k∏

i=j+1

εri
si

)]

= E

[(
j−1∏
i=1

εri
si

)
εsj

E

(
k∏

i=j+1

εri
si
|Fsj

)]

Due to the maximal group size and condition (26), the conditional expectations are constant. Thus

E

[
k∏

i=1

εri
si

]
=

(
k∏

i=j+1

cri

)
E

[(
j−1∏
i=1

εri
si

)
εsj

]

=

(
k∏

i=j+1

cri

)
E

[(
j−1∏
i=1

εri
si

)
E

(
εsj
|Fsj−1

)
]

which is zero by the martingale difference assumption. Thus the expectation in (28) is zero in this
case.
- Case 3: k = p and there is a singleton group

The argument is the same as in Case 2, noting that the longest group size is now p+1. Thus the
expectation in (28) is again zero.
- Case 4: k = p and there are no singletons

In this case, all the si’s arranged in pairs (i.e. ∀i ∈ [[1, k]], ri = 2). Using the law of iterated
expectation successively to obtain that

E(εt1εt2 . . . εt2p−1εt2p)p = E

[
p∏

i=1

ε2
si

]
=

p∏
i=1

E{ε2
si
|Fsi−1} = cp

2

using the moment conditions presented in equation (26), i.e. E(εn
2|Fn−1) = c2. The number of

possible combinations in which we can order the different pairs represented by s1, s2, ..., sp is given
by

ap ·
(

N

1

)
×

(
N − 1

1

)
× . . .×

(
N − p + 1

1

)
= ap · N !

(N − p)!
= O (Np)

where ap is a constant for a given p. Hence the bound in (28) is satisfied.

As mentioned earlier, Theorem 2 allows for non-linearities to be included via the function f which
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satisfies the growth condition. Thus, concerning the proof of Theorem 2, we are interested in the
difference |f(Y ) − f(X)| (for some X and Y in the domain of f) rather than the simple difference
|Y −X| used in the proof of Chan and Wei (1988). Thus, the need for the following lemma.

Lemma 2. Let f : Rh+1 → R satisfy Assumption 1. Then, ∀x,y ∈ Rh+1, such that x = (x1, . . . , xh+1)
′

and y = (y1, . . . , yh+1)
′, we have

|f(y)− f(x)| ≤
h+1∑
r=1

Kr

[
1 +

h+1∑
j=1

2(αr,j−1) (|xj|αr,j + |yj − xj|αr,j)

]
|yr − xr| (31)

|f(y)− f(x)|2 ≤ 2(h + 1)
h+1∑
r=1

K2
r

[
1 + (h + 1)

h+1∑
j=1

2(2αr,j−1)
(|xj|2αr,j + |yj − xj|2αr,j

)
]
|yr − xr|2(32)

Proof of Lemma 2. : First of all, from Jensen’s inequality we have that for any positive integers
a and N , (

N∑
i=1

Xi

)a

≤ Na−1

N∑
i=1

Xi
a (33)

Since f is differentiable, the mean value theorem and the triangle inequality give, for all x,y ∈ Rh+1,

|f(y)− f(x)| =

∣∣∣∣∣
h+1∑
r=1

∂f(x + δ)

∂xr

(yr − xr)

∣∣∣∣∣ ≤
h+1∑
r=1

∣∣∣∣
∂f(x + δ)

∂xr

∣∣∣∣ · |yr − xr| (34)

where δ = (δ1, . . . , δh+1)
′ ∈ Rh+1 such that ∀i ∈ [[1, h + 1]], |δi| ≤ |yi − xi|. Using first the growth

condition in Assumption 1 and then the inequality (33), we obtain that

∣∣∣∣
∂f(x + h)

∂xr

∣∣∣∣ ≤ Kr

[
1 +

h+1∑
j=1

|xj + δj|αr,j

]
≤ Kr

[
1 +

h+1∑
j=1

2(αr,j−1) (|xj|αr,j + |δj|αr,j)

]

Inserting this in (34) gives (31). We recover the result in (32) by using the inequality (33) repeatedly
to inequality (31). First, apply (33) to the sum in r

|f(y)− f(x)|2 ≤ (h + 1)
h+1∑
r=1

Kr
2

[
1 +

h+1∑
j=1

2(αr,j−1) (|xj|αr,j + |δj|αr,j)

]2

· |yr − xr|2

Then apply (33) to the sum in squared bracket

|f(y)− f(x)|2 ≤ 2(h + 1)
h+1∑
r=1

Kr
2


1 +

(
h+1∑
j=1

2(αr,j−1) (|xj|αr,j + |δj|αr,j)

)2

 · |yr − xr|2

Then apply (33) to the sum in j

|f(y)− f(x)|2 ≤ 2(h + 1)
h+1∑
r=1

Kr
2

[
1 + (h + 1)

h+1∑
j=1

22(αr,j−1) (|xj|αr,j + |δj|αr,j)2

]
· |yr − xr|2

9



Finally, apply (33) to the square terms involving xj and δj. This gives (32).

4 Proof of Theorem 2

Having established the proof of Lemma 1 and Lemma 2, we can now proceed to the proof of Theorem
2. Also, note that Theorem 1 is a special case of Theorem 2 so it is proved thereby.

Proof of Theorem 2. : From Billingsley (1968) we know that since B1, B2, . . . , Bh have contin-
uous paths, the convergence in the Skorokhod topology is equivalent to the uniform convergence.
Additionally, D can be equipped with a complete metric so that the induced topology is equivalent
to the Skorokhod topology (Billingsley, 1968). Then, by the Skorokhod representation theorem (Sko-
rokhod, 1956), there are a probability space Ω and random elements Ũ1,n, ... ,Ũh,n in D[0, 1] such
that

‖(Ũ1,n, . . . , Ũh,n)− (B1, . . . , Bh)‖∞ −→ 0 a.s. (35)

and
Ũn = (Ũ1,n, . . . , Ũh,n)

d
= n−1/2(X1,n, . . . , Xh,n) = n−1/2Xn

let

Gh,n =
1√
n

n−1∑

k=1

f

[
X1,n

(
k
n

)
√

n
, . . . ,

Xh,n

(
k
n

)
√

n
,
k

n

]
uh,k+1

and

G̃h,n =
n−1∑

k=1

f

[
Ũn

(
k

n

)
,
k

n

]
·
[
Ũh,n

(
k + 1

n

)
− Ũh,n

(
k

n

)]

Thus
(Ũn, G̃h,n) = (Ũ1,n, . . . , Ũh,n, G̃h,n)

d
= (n−1/2X1,n, . . . , n−1/2Xh,n, Gh,n)

Now, from equation (35) and Egorov’s theorem (c.f. Billingsley, 1995), given ε > 0, there is an
event Ωε ⊂ Ω such that P (Ωε) ≥ 1− ε and

sup{‖(Ũ1,n(ω), . . . , Ũh,n(ω))− (B1(ω), . . . , Bh(ω))‖∞ : ω ∈ Ωε} = δn −→ 0 (36)

where δn is a sequence of constants. Then, we can take integers N(n) −→∞ such that

N(n) · δn −→ 0 and
N(n)

n
−→ 0 (37)

Following Chan and Wei (1988), for each n, we can choose a partition {t0, ..., tN(n)} of [0, 1] such
that

0 = t0 < t1 =
n1

n
< t2 =

n2

n
< ... < tN(n) =

nN(n)

n
= 1,

max{|ti+1 − ti| : 0 ≤ i ≤ N(n)− 1} = o(1). (38)

In order to prove the result shown in equation (23), it is sufficient to show that,

G̃h,n
P−→

∫ 1

0

f [B1(u), . . . , Bh(u), u] dBh(u)

10



In fact, we follow closely the argument of Chan and Wei (1988) in that we can write

G̃h,n −
∫ 1

0

f [B1(u), . . . , Bh(u), u] dBh(u) = Jh,n + Hh,n + Lh,n + Mh,n

where,

Jh,n = G̃h,n −
N(n)∑

k=1

f
[
Ũn(tk−1), tk−1

]
·
[
Ũh,n(tk)− Ũh,n(tk−1)

]

Hh,n =

N(n)∑

k=1

(
f

[
Ũn(tk−1), tk−1

]
− f [B(tk−1), tk−1]

)
· IΩε ·

[
Ũh,n(tk)− Ũh,n(tk−1)

]

Lh,n =

N(n)∑

k=1

f [B(tk−1), tk−1] · IΩε ·
([

Ũh,n(tk)− Ũh,n(tk−1)
]
− [Bh(tk)−Bh(tk−1)]

)

Mh,n =

N(n)∑

k=1

f [B(tk−1), tk−1] · [Bh(tk)−Bh(tk−1)]−
∫ 1

0

f [B(t), t] dBh(t)

where ∀t ∈ [0, 1], B(t) = (B1(t), B2(t), . . . , Bh(t)).
Thus, the proof of Theorem 2 completed by showing that each of the four terms Jh,n, Hh,n, Lh,n

and Mh,n is of order op(1). This is done in the following four lemmas.

Lemma 3. If Assumptions 1 and 4 are satisfied. Then, Jh,n = op(1).

The proof of this Lemma is based on Chan an Wei (1988). This is where the higher order
martingale difference sequence assumptions and Lemma 1 are needed.

Proof of Lemma 3. : We have

Jh,n =

N(n)∑

k=1

nk−1∑
i=nk−1

Ak,iRi+1

where

Ak,i = f

[
Ũn

(
i

n

)
,
i

n

]
− f

[
Ũn(tk−1), tk−1

]

Ri+1 = Ũh,n

(
i + 1

n

)
− Ũh,n

(
i

n

)

so Ak,i is Fi-measurable, and Ri is a Fi-martingale difference sequence. Therefore

E
(
J2

h,n

)
=

N(n)∑

k=1

nk−1∑
i=nk−1

E
[
A2

k,iR
2
i+1

]
=

N(n)∑

k=1

nk−1∑
i=nk−1

E
[
A2

k,i · E
(
R2

i+1|Fi

)]

Due to (21) in Assumption 4, we have E
(
R2

i+1|Fi

) a.s.≤ n−1c∗h,2. If in addition it is shown, as suggested

11



by Chan and Wei (1988), that

E
(
A2

k,i

) ≤ Kα ·
(nk

n
− nk−1

n

)
(39)

where Kα is a positive constant, then

E
(
J2

s,n

) ≤ Kα

c∗h,2

n

N(n)∑

k=1

nk−1∑
i=nk−1

(nk

n
− nk−1

n

)
≤ Kα · c∗h,2 · max

1≤k≤N(n)
{tk − tk−1} −→ 0

from equation (38). The desired result will then follow from Chebychev’s inequality. Hence, it is
now sufficient to show that equation (39) is satisfied. Now, to prove (39) the result (32) in Lemma
2 is applied to A2

k,i which gives

A2
k,i ≤ 2(h + 1)

h+1∑
r=1

K2
r

[
1 + (h + 1)

h+1∑
j=1

2(2αr,j−1)
(
C

2αr,j

j + D
2αr,j

j

)]
D2

r

where, for j ∈ [[1, h]]

Cj = Ũj,n (tk−1) and Dj = Ũj,n

(
i

n

)
− Ũj,n (tk−1)

whereas j = h + 1 gives terms related to the deterministic terms

Ch+1 =
nk−1

n
and Dh+1 =

i

n
− nk−1

n

The summands for r ∈ [[1, h]] and for r = h + 1 are treated separately.
First, let r ∈ [[1, h]]. If Kr = 0 there is no contribution. Thus, for Kr > 0 bounds are needed for

E(D2
r), E(C

2αr,j

j D2
r) and E(D

2αr,j

j D2
r). Starting with the latter, for j = r

E
(
D2αr,r+2

r

) ≤ c∗r,r
(nk

n
− nk−1

n

)

by (15) and (16) in Assumption 4 and Lemma 1, and noting that (i− nk−1) ≤ (nk − nk−1).
For j ∈ [[1, h]] so that j 6= r and αr,j 6= 0, the Cauchy-Schwarz inequality gives

[
E

(
D

2αr,j

j D2
r

)]2

≤ E
(
D

4αr,j

j

)
· E (

D4
r

) ≤ c∗r,jc
∗
r,r

(nk

n
− nk−1

n

)2

(40)

by conditions (15) to (18) in Assumption 4 and Lemma 1.
For j = h + 1, or j ∈ [[1, h]] so that j 6= r and αr,j = 0, then it suffices that

E
(
D2

r

) ≤ c∗r,r
(nk

n
− nk−1

n

)
(41)

by (16) in Assumption 4 and Lemma 1.

Continue with E(C
2αr,j

j D2
r). If j ∈ [[1, h]] and αr,j 6= 0

E
(
C

2αr,j

j D2
r

)
= E

[
C

2αr,j

j · E (
D2

r |Fnk−1

)]

12



Now,

E
(
D2

r |Fnk−1

)
= cr,2

(
i

n
− nk−1

n

)

by (15) in Assumption 4 and Lemma 1, whereas E(C
2αr,j

j ) is bounded by conditions (15) to (18) in
Assumption 4 and Lemma 1. For the case j = h + 1, and likewise for the term E(D2

r), the desired
result follows from (41).

Secondly, let r = h + 1. Again, no bounds are needed if Kh+1 = 0. So, let Kh+1 > 0. In this

situation it suffices that E(C
2αh+1,j

j ) and E(D
2αh+1,j

j ) are bounded. For j = h + 1 this is trivial,
whereas for j ∈ [[1, h]] this follows from (19) and (20) in Assumption 4 and Lemma 1.

Lemma 4. If Assumptions 1, 2 and condition (21) in Assumption 4 are satisfied. Then, Hh,n =
op(1).

Proof of Lemma 4. : We have

Hh,n =

N(n)∑

k=1

AkIΩεFk

where

Ak = f
[
Ũn(tk−1), tk−1

]
− f [B(tk−1), tk−1]

Fk = Ũh,n(tk)− Ũh,n(tk−1)

From the triangle inequality we have

|Hh,n| =
∣∣∣∣∣∣

N(n)∑

k=1

AkIΩεFk

∣∣∣∣∣∣
≤

N(n)∑

k=1

|AkIΩεFk|

Now, applying (31) in Lemma 2 to Ak, we obtain that

|Ak| ≤
h+1∑
r=1

Kr

[
1 +

h+1∑
j=1

2(αr,j−1) (|Cj|αr,j + |Dj|αr,j)

]
· |Dr|

where, for j ∈ [[1, h]]

Cj = Bj(tk−1) and Dj = Ũj,n(tk−1)−Bj(tk−1)

whereas j = h + 1 gives the terms related to the deterministic terms

Ch+1 = tk−1 and Dh+1 = 0

Therefore, there is no contribution from the case r = h + 1. Hence, Ak,h+1 = 0 and

|Hh,n| ≤
N(n)∑

k=1

h∑
r=1

Kr

[
1 +

h+1∑
j=1

2(αr,j−1) (|Cj|αr,j + |Dj|αr,j)

]
· |Dr| IΩε |Fk|

13



Now, from equation (36) we have the bound IΩε |Dr| ≤ δn. Thus, we obtain that

|Hh,n| ≤ δn

N(n)∑

k=1

h∑
r=1

Kr ·Gk,r |Fk|

where,

Gk,r = 1 +
h∑

j=1

2(αr,j−1) (|Cj|αr,j + δn
αr,j) + 2(αr,h+1−1)t

αr,h+1

k−1

Taking expectations gives,

E|Hh,n| ≤ δn

N(n)∑

k=1

h∑
r=1

Kr · E {Gk,r |Fk|}

Now, from the Cauchy-Schwarz inequality E{Gk,r |Fk|} ≤ (E[G2
k,r] · E[F 2

k ])1/2. Due to (21) in As-
sumption 4, E[F 2

k ] ≤ c∗h,2(tk − tk−1) ≤ c∗h,2. Furthermore, E[G2
k,r] involves powers of the Brownian

motion and thus has finite moments. Therefore, for some constant K > 0, it follows that

E|Hh,n| ≤
(

h∑
r=1

Kr

)
·K ·N(n) · δn −→ 0

from equation (37). Thus, by the Markov inequality we obtain the desired result.

Lemma 5. If Assumptions 1 and 2 are satisfied. Then, Lh,n = op(1).

Note that when dealing with the term Lh,n, the corresponding proof was not explicitly shown by
Chan and Wei (1988). This is due to triviality of this step in the proof when f is a linear function.
However, for a more general non-linear function f like the one considered here, the following proof
is in order.

Proof of Lemma 5. : First, summation by parts gives

Lh,n = IΩε

N(n)∑

k=1

f [B(tk−1), tk−1] ·
([

Ũh,n(tk)−Bh(tk)
]
−

[
Ũh,n(tk−1)−Bh(tk−1)

])
= L̃1,n − L̃2,n

where

L̃1,n = IΩε f [B(1), 1] ·
[
Ũh,n(1)−Bh(1)

]

L̃2,n = IΩε

N(n)∑

k=1

[
Ũh,n(tk)−Bh(tk)

]
· (f [B(tk), tk]− f [B(tk−1), tk−1] )

Hence, the proof of Lemma 5 consist of showing that both L̃1,n and L̃2,n are op(1). First, from (36),
we have

E|L̃1,n| = E
∣∣∣f [B(1), 1] IΩε

[
Ũh,n(1)−Bh(1)

]∣∣∣ ≤ E |f [B(1), 1]| · δn −→ 0
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for a twice continuously differentiable vector function f : Rh × [0, 1] → R. Thus, L̃1,n = op(1).
Secondly, using the triangle inequality and (36), respectively, we obtain that

|L̃2,n| ≤
N(n)∑

k=1

∣∣∣Ũh,n(tk)−Bh(tk)
∣∣∣ IΩε |Ak| ≤ δn

N(n)∑

k=1

|Ak|

where
Ak = f [B(tk), tk]− f [B(tk−1), tk−1]

Thus, taking expectations

E|L̃2,n| ≤ δn

N(n)∑

k=1

E |Ak| (42)

Now, applying (31) in Lemma 2 to Ak, we obtain that

|Ak| ≤
h+1∑
r=1

Kr

[
1 +

h+1∑
j=1

2(αr,j−1) (|Cj|αr,j + |Dj|αr,j)

]
· |Dr|

where, for j ∈ [[1, h]]

Cj = Bj(tk−1) and Dj = Bj(tk)−Bj(tk−1)

whereas j = h + 1 gives terms related to the deterministic terms

Ch+1 = tk−1 and Dh+1 = tk − tk−1

Therefore,

E|Ak| ≤
h+1∑
r=1

Kr · E
{[

1 +
h+1∑
j=1

2(αr,j−1) (|Cj|αr,j + |Dj|αr,j)

]
· |Dr|

}

≤
h+1∑
r=1

Kr


E

[
1 +

h+1∑
j=1

2(αr,j−1) (|Cj|αr,j + |Dj|αr,j)

]2

· E [
D2

r

]



1/2

from the Cauchy-Schwarz inequality.
If Kr = 0 there is no contribution. Thus, for Kr > 0 the properties of the Brownian motion imply

that both expectations are bounded. In particular, for r ∈ [[1, h]],

E
(
D2

r

)
= E

(
[Br(tk)−Br(tk−1)]

2
)

= (tk − tk−1) ≤ 1

While D2
h+1 = (tk − tk−1)

2 ≤ 1. Therefore,

E|Ak| ≤ K̃

(
h+1∑
r=1

Kr

)
(43)
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where K̃ is a positive constant.
Hence, combining (42) and (43), we obtain that

E|L̃2,n| ≤ K̃

(
h∑

r=1

Kr

)
·N(n) · δn −→ 0

from (37). Then, by the Markov inequality, we have that L̃2,n = op(1). Thus Lh,n = op(1).

Lemma 6. If Assumption 1 is satisfied. Then, Mh,n = op(1).

Proof of Lemma 6. : First, we can write

Mh,n =

N(n)∑

k=1

f [B(tk−1), tk−1] · [Bh(tk)−Bh(tk−1)]−
∫ 1

0

f [B(t), t] dBh(t)

=

N(n)∑

k=1

∫ tk

tk−1

(f [B(tk−1), tk−1]− f [B(t), t] ) dBh(t)

Therefore,

E
(
M2

h,n

)
= E




N(n)∑

k=1

∫ tk

tk−1

(f [B(tk−1), tk−1]− f [B(t), t] ) dBh(t)




2

=

N(n)∑

k=1

∫ tk

tk−1

E
(
A2

k

)
dt

where Ak = f [B(t), t]− f [B(tk−1), tk−1]. Again, following Chan and Wei (1988), if

E
(
A2

k

) ≤ K̄ · (tk − tk−1) (44)

where K̄ is a positive constant, then

E
(
M2

h,n

) ≤ K̄ ·
N(n)∑

k=1

∫ tk

tk−1

(tk − tk−1) dt ≤ K̄ ·max{(tk − tk−1)} = o(1)

from equation (38). The desired result will then follow from the Chebyshev’s inequality. In other
words, to prove Lemma 6 it is sufficient to show (44). Now, applying (32) in Lemma 2 to A2

k, we
obtain that

A2
k ≤ 2(h + 1)

h+1∑
r=1

K2
r

[
1 + (h + 1)

h+1∑
j=1

2(2αr,j−1)
(
C

2αr,j

j + D
2αr,j

j

)]
D2

r

where, for j ∈ [[1, h]]
Cj = Bj(tk−1) and Dj = Bj(t)−Bj(tk−1)

whereas j = h + 1 gives terms related to the deterministic terms

Ch+1 = tk−1 and Dh+1 = t− tk−1

16



Therefore,

E
(
A2

k

) ≤ 2(h + 1)
h+1∑
r=1

K2
r · E

{[
1 + (h + 1)

h+1∑
j=1

2(2αr,j−1)
(
C

2αr,j

j + D
2αr,j

j

)]
D2

r

}

≤ 2(h + 1)
h+1∑
r=1

K2
r


E

[
1 + (h + 1)

h+1∑
j=1

2(2αr,j−1)
(
C

2αr,j

j + D
2αr,j

j

)]2

· E [
D4

r

]



1/2

from the Cauchy-Schwarz inequality.
Exploiting the properties of the Brownian motion, both expectations are found to be finite. In

particular it holds, for r ∈ [[1, h]],

E
(
D4

r

)
= E

(
[Br(tk−1)−Br(t)]

4
) ≤ K2

B · (tk−1 − t)2

where KB > 0 is a constant, and, when r = h + 1, D4
h+1 = (t− tk−1)

4.
Finally, noting that (t− tk−1) ≤ (tk − tk−1) ≤ 1, we obtain (44).
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