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1. Introduction

At least since the work of Sonnenschein, Debreu and Mantel, it is well known that the

utility maximization hypothesis imposes little structure on the excess demand function of

an exchange economy. If all agents have continuous and locally non-satiated preferences then

the economy’s aggregate excess demand will satisfy continuity and Walras’ law, but beyond

that, little can be said. More specifically, if an agent’s individual excess demand function is

derived from utility maximization, it will satisfy strong structural properties like the weak

and strong axioms, but aggregate excess demand need not have those properties, even if all

agents in the economy are utility-maximizing. This is unfortunate, because it is well known

that an economy with an excess demand function which obeys the weak axiom is very well

behaved. Such an economy will have a unique equilibrium price vector which is stable with

respect to Walras’ tatonnement and, furthermore, one can obtain intuitive comparative

statics results when preferences or endowments are perturbed.1 An economy with an excess

demand function obeying the weak axiom need not admit a utility maximizing representative

consumer, but such a structural property does go some way towards justifying this widely

made assumption. For all these reasons and more, it is important to find plausible conditions

on agents’ preferences and/or endowments which will guarantee that the economy’s excess

demand function obeys the weak axiom or some other desirable structural property.

A significant literature has developed which addresses precisely this demand aggregation

issue; a result which figures prominently in this literature is a theorem developed indepen-

dently by Milleron (1974) and Mitjuschin and Polterovich (1978) (henceforth to be referred

to as MMP). Let u : Rl
++ → R be a utility function and let f : Rl

++ ×R++ → Rl
++ be the
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demand function it generates; we say that f obeys monotonicity or the law of demand if at

any two distinct price vectors p and p′ in Rl
++, and wealth w > 0,

(p− p′)T (f(p, w)− f(p′, w)) < 0.

(Note that, crucially, while prices may vary, wealth is fixed at w.) It is well known that

while this property is, in some precise sense, encouraged by substitution effects, the pres-

ence of income effects means that it does not follow from utility maximization alone. The

contribution of MMP is to identify precisely those conditions on u which guarantee that

substitution effects always dominate income effects, so that f is monotonic.2, 3

If u is the utility function defined over contingent consumption in l states of the world,

it would be quite standard to assume that u has the expected utility form, i.e., u(x) =

∑l
i=1 πiū(xi) where πi > 0 is the agent’s subjective probability of state i occurring and

ū : R++ → R is the Bernoulli utility function. In this case, one could show that the

conditions of MMP are satisfied if the agent’s coefficient of relative risk aversion does not

vary by more than four, i.e.

max
r>0

(
−rū′′(r)

ū′(r)

)
−min

r>0

(
−rū′′(r)

ū′(r)

)
< 4. 4

The significance of this result for general equilibrium theory has to do with the fact

that monotonicity is preserved by aggregation across agents, unlike the weak or strong

axioms, which generally are not. Consider a market where all agents have monotonic

demand functions (which can differ across agents). Assume that each agent has some

wealth which is independent of price, and then consider a price change from p to p′. Each

agent’s demand will respond monotonically to this price change, and it is very clear that
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the aggregate demand of this market, F : Rl
++ → Rl

++, will also be monotonic, i.e., satisfy

(p− p′)T (F (p)− F (p′)) < 0 whenever p 6= p′.

Of course, there is a serious problem when one tries to apply this result in a general

equilibrium model: with one significant exception, the wealth distribution in the economy

will not be independent of price. The exception are exchange economies with collinear

endowments, i.e., where all agents have endowments that are some (scalar) fraction of the

aggregate endowment. In this case, a price change which preserves the value of aggregate en-

dowment, will also preserve the wealth of every agent. If all agents have monotonic demand

functions, then the economy’s aggregate demand will also obey a restricted version of this

property. Denoting the economy’s aggregate demand by F̃ and the aggregate endowment

by ω̄ in Rl
++, we have (p−p′)T (F̃ (p)−F̃ (p′)) < 0 whenever p 6= p′ and pT ω̄ = p′T ω̄. One can

then use this to show that the economy’s excess demand function, Z, where Z(p) = F̃ (p)−ω̄,

will also obey a similar version of monotonicity and hence the weak axiom. So by making

an assumption which is stronger than the weak axiom at the individual level, one obtains

the weak axiom in the aggregate.5

Our discussion so far has focused on exchange economies. We now turn to two-period

financial economies with possibly incomplete markets. There are two reasons why MMP-

type results are interesting in this context. Firstly, in this context, it is standard to assume

that agents maximize expected utility; with these utility functions, the MMP approach leads

to restrictions on the coefficients of relative risk aversion which can be easily interpreted.

Secondly, the MMP approach can be extended to incomplete markets with relative ease.

There is a natural analog to the complete markets result which can be obtained by a
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relatively modest tweaking of the assumptions and arguments made when markets are

complete. The behavioral restrictions on the agents, i.e., on their coefficients of relative

risk aversion remain unchanged; two assumptions must now be made on endowments - that

they are collinear (as before) and that they are in the span of the asset space. Once these

are in place, the economy’s excess demand will obey the weak axiom.6

In the context of economies with collinear endowments, there are at least two papers

which have sought to go beyond the claims made in the previous paragraph. While retaining

the spanning assumption, Dana (1995) has extended the MMP results to infinite dimensional

commodity spaces with possibly incomplete markets. In a finite dimensional context, the

spanning requirement has been weakened in Bettzuge (1998), which shows that a joint

restriction on the collinear endowments and the asset structure will suffice. In this paper

we have retained both the finite dimensional and spanning assumptions and devoted our

attention somewhere else.

We consider a financial economy with incomplete markets and focus on the local prop-

erties of demand near a given equilibrium price. Using MMP-type arguments, we identify

conditions which guarantee that the economy’s excess demand function for securities will

obey the weak axiom near this equilibrium. Our local approach means that unlike other

papers using the MMP approach (like Dana (1995) and Bettzuge (1998)), we are not able to

address the issue of the global uniqueness of equilibrium. However, the local weak axiomatic

structure of the excess demand function obtained through our conditions is still important

because it guarantees the local stability of the equilibrium price and also the possibility of

nice, i.e., intuitive, local comparative statics.
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The major advantage of our approach is that we no longer require endowments to be

collinear. We take as given the distribution of demand and endowments at the equilibrium

price and ask what restrictions on agents’ risk attitudes will guarantee that the economy’s

excess demand function for securities will obey the weak axiom. We recover, as a special

case, the known result pertaining to collinear endowments; more generally, we show that

the less collinear is the endowment distribution relative to the demand distribution (in some

formal sense), the more stringent will be the conditions on agents’ coefficient of relative risk

aversion.

The paper is organized as follows. Section 2 contains a formal discussion of results per-

taining to the monotonicity of individual demand and also of various concepts central to the

MMP approach. The major result here is a ‘translation theorem’ that relates monotonicity

conditions given in terms of direct utility functions with those given in terms of indirect

utility functions. This is of great technical importance for us, since, following Quah (2000),

the approach taken in this paper makes central use of the indirect utility function. Indeed,

the conditions needed for our main results are first obtained as conditions on agents’ indirect

utility functions, and are only then translated into conditions on direct utility functions via

the translation theorem. The main results of the paper, which pertain to the local weak

axiom in financial economies, are presented in Section 3. This section also contains a com-

parison of the MMP approach to the aggregation problem that we have adopted in this

paper, with the other major approach which focuses on conditions leading to ‘increasing

dispersion’ (see Jerison (1999) for a survey and analysis of this approach).
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2. The Monotonicity of Individual Demand for Securities 7

We assume that there are two dates, 0 and 1. There is one good for consumption at

date 0, and at date 1 there are l states of the world, with one good in each state. The

economy has m securities or assets, with m ≤ l. The m × l matrix D gives the payoffs of

these securities at date 1, with the ijth entry being the payoff of the ith security in state

j. We assume that the rank of D is m, so there are no redundant securities.

We assume that the commodity space is Rl+1
++; for a typical bundle x = (x0, x1, x2, ..., xl),

the first entry x0 represents consumption at date 0, while contingent consumption at date 1

is represented by the vector x−0 = (x1, x2, ..., xl). A function u : Rl+1
++ → R is a regular utility

function if it has the following properties: it is C2, its partial derivatives are strictly positive,

it is differentiably strictly quasi-concave, and the sets Cx̄ = {x ∈ Rl+1
++ : u(x) ≥ u(x̄)} are

closed in Rl+1 for any x̄ in Rl+1
++. We call a preference (more formally, a preorder) on Rl+1

++

regular if it is representable by a regular utility function.

We denote the set of arbitrage free security prices by Q′, which we know from standard

theory satisfies Q′ = {q′ ∈ Rm : q = Dp for some p ∈ Rl
++}. In other words, Q′ is the set

of security price vectors implied by strictly positive state price vectors. It follows that Q′

is an open and convex cone in Rm. The contingent consumption implied by a portfolio of

securities θ in Rm is DT θ; we assume that there exists some portfolio θ such that DT θ À 0.

Consider an agent who, at date 0, has a regular preference º (represented by some regular

utility function u) over Rl+1
++. This agent chooses a portfolio of securities which maximizes his

utility, subject to the constraint implied by his wealth and the prevailing prices. We denote

his wealth by w > 0; the prices he faces is represented by some vector q = (q0, q1, ..., qm) in
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the set Q = R++×Q′; so q0 is the price of the date 0 good, and q−0 = (q1, q2, ..., qm) is the

vector of security prices. The agent is constrained to choose from his budget set; at wealth

w and price q, the set is

B(q, w) = {x ∈ Rl
++ : x0 ≤ (w − θT q−0)/q0 and x−0 ≤ DT θ for some θ ∈ Rm}.

Since we assume that there is θ such that DT θ À 0, this set is nonempty for all (q, w) in

Q×R++.

The regularity of u guarantees that there is a unique solution x∗ to the problem of

maximizing u(x) subject to x in B(q, w); since D is of rank m, the portfolio choice θ∗

required to achieve x∗ is also unique. We define the function g : Q × R++ → Rm+1 by

g(q, w)0 = x0∗ and g(q, w)−0 = θ∗. We shall refer to g(q, w) as the demand of the agent at

(q, w), with the first entry representing his choice of consumption level at date 0 and the

other entries representing his chosen portfolio of securities. The regularity of u guarantees

that g obeys the budget identity, i.e., qT g(q, w) = w, and is C1.

The function g is said to obey monotonicity or the law of demand if for any (q, w) and

(q′, w) in Q × R++, with q 6= q′, we have (q − q′)T (g(q, w) − g(q′, w)) < 0. In particular,

this property guarantees that when the price of security increases, its demand will fall. A

sufficient (and effectively necessary) condition for monotonicity is that ∂qg(q, w) is negative

definite at all (q, w) in Q× R++. By the Slutsky decomposition we can write ∂qg(q, w) as

the difference between the substitution and income effect matrices; so long as g is generated

by utility maximization, the former is always negative semidefinite, but the presence of the

income effect matrix means that ∂qg(q, w) is not generally negative definite. So additional

conditions on the utility function are needed to guarantee that substitution effects dominate
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income effects. We will discuss this next.

At each x in Rl+1
++, let U(x) be the collection of regular and concave utility functions

which represent º is some open and convex neighborhood of x. That º is representable

by a regular utility function is true by definition; less trivially, it is also true that local

representations which are both concave and regular exist, so that U(x) is always nonempty.8

For each û in U(x), we can compute

ψû(x) ≡ −xT ∂2û(x)x
∂û(x)x

.(1)

Following Quah (2003), we define the direct MMP coefficient (or, for short, MMP coefficient)

of º at x by

ψº(x) = inf
û∈U(x)

ψû(x).

Since û is concave, ψû(x) ≥ 0, so ψº(x) ≥ 0 for all x. It is possible for ψº ≡ 0; indeed, if º

is homothetic, it must be representable by a concave and 1-homogeneous utility function û

and one could check that ψû(x) = 0 for all x. The next result identifies a condition on the

MMP coefficient which is sufficient to guarantee that g obeys monotonicity. It is a fairly

straightforward adaptation, to a financial setting with incomplete markets, of the original

monotonicity theorem due to Milleron (1974) and Mitjuschin and Polterovich (1978).

Note that the matrix (m + 1) × (l + 1) matrix D̄ = (d̄ij)0≤i,j≤l referred to in the next

proposition has d̄00 = 1, d̄0j = d̄i0 = 0 for all i and j, and d̄ij = dij for all i, j ≥ 1.

We introduce it so that the consumption implied by g(q, w), which is g(q, w)0 at date 0

and contingent consumption of DT g(q, w)−0) at date 1 can be more succinctly written as

D̄T g(q, w).
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Proposition 2.1 (The MMP monotonicity theorem): Suppose that the demand function

g : Q×R++ → R++ ×Rm is generated by a regular preference º on Rl+1
++.

(i) If at some (q, w), we have ψº(D̄T g(q, w)) < 4, then there exists an open neighborhood

N around q in which g is monotonic, i.e., (q′ − q′′)T (g(q′, w) − g(q′′, w)) < 0 whenever q′

and q′′ are in N and q′ 6= q′′.

(ii) If ψº(x) < 4 for all x in Rl+1
++, then g is a monotonic demand function.

As we had pointed out earlier, a homothetic preference will have an MMP coefficient

which is identically zero, so we conclude that such a preference will generate a monotonic

demand function. Indeed when the preference is homothetic, it is not difficult to prove

the monotonicity of g directly, using the fact that g is now linear in w (see Mas-Colell et

al (1995)). So we can view Proposition 2.1 as a far reaching generalization of the simple

observation that homothetic preferences give rise to monotonic demand functions.

The condition ψº < 4 is not just sufficient for monotonicity - there is also a sense in

which it is necessary for monotonicity. In one form or another, this fact is well known

(see, for example, Mas-Colell (1991) and Quah (2003)). Quah (2003) also provides an

economic interpretation of ψº which is valid for any regular preference º, but the special

attractiveness of the MMP coefficient in the context of financial decision making has to do

with the next result we present.

Suppose thatº is representable by an additive utility function u, i.e., u(x) =
∑l

i=0 ui(xi),

where u′i > 0 and u′′i < 0 for i = 0, 1, 2, ..., l. In this case, one could impose a very useful
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bound on ψº. Define the function Bu : Rl+1
++ → R by

Bu(x) = max
0≤i≤l

(
−xiu′′i (x

i)
u′i(xi)

)
− min

1≤i≤l

(
−xiu′′i (x

i)
u′i(xi)

)
;(2)

the next result can be found in Quah (2003).

Proposition 2.2: Suppose u is a regular and additive utility function defined on

Rl+1
++,and let º be the preference over Rl

++ that it represents. Then for any x in Rl
++,

ψº(x) ≤ Bu(x).

In the context of financial decision making, the assumption that u is additive is standard

and has sound axiomatic foundations. Indeed, it is commonplace to formulate u as

u(x) = ū(x0) + δ

[
l∑

i=1

πiū(xi)

]
(3)

where δ represents the discount rate and πi > 0 the subjective probability of state i oc-

curring, so
∑l

i=1 πi = 1. In this case, Bu(x) is uniformly bounded by the variation in the

agent’s coefficient of relative risk aversion, i.e., for all x in Rl+1
++, Bu(x) ≤ Vū, where

Vū = max
r>0

(
−rū′′(r)

ū′(r)

)
−min

r>0

(
−rū′′(r)

ū′(r)

)
.(4)

Proposition 2.2 is very useful: combining it with Proposition 2.1, we see that a regular

and additive utility function u will generate a monotonic demand function if Bu(x) < 4

for all x. More generally, imagine any theorem which includes a condition of the form

‘ψº(x) < M ’; if º is representable by a regular and additive utility function u, then the

claim of the theorem is still true if the condition ‘ψº(x) < M ’ is replaced by the condition

‘Bu(x) < M .’ Whether or not the latter condition is strong depends on the size of M , but

at least the economic interpretation on the condition, in terms of the agent’s coefficient of

relative risk aversion, is completely straightforward.
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There are other ways of formulating sufficient conditions for monotonicity besides using

the MMP coefficient. In particular, conditions could be stated in terms of the indirect

preference. For any (p, w) in Rl+2
++, the regularity of º guarantees that there is a unique

bundle x̂ in Rl+1
++ which satisfies the following conditions: pT x̂ ≤ w and x̂ º x for all x

satisfying pT x ≤ w. In other words, x̂ is the demand at (p, w) in the classical sense, i.e., it

is the demand at (p, w) when markets are complete. We denote this by f(p, w) and will refer

to f as the classical demand function. The indirect preference induced (or generated) by

º refers to the preorder º′ defined on (p, w) in Rl+1
++, such that (p, w) º′ (p′, w′) whenever

f(p, w) º f(p′, w′).

If u is a regular utility function representing º, then the induced indirect preference º′

is representable by the indirect utility function v : Rl+2
++ → R, where v(p, w) = u(f(p, w)).

It is well known that the regularity of u will guarantee that v is a regular indirect utility

function; by this we mean that it has the following properties: it is homogeneous of degree

zero, it is C2, its partial derivative with respect to the price of any good is strictly negative,

and it is differentiably strictly quasiconvex in prices (see Mas-Colell (1985)). We call an

indirect preference on Rl+2
++ regular if it admits a regular indirect utility function. It follows

that a regular preference must generate a regular indirect preference.

We denote by V (p, w) the set of indirect utility functions which are both regular and

convex in prices and which represent º′
in an open and convex neighborhood of (p, w). It

is known that for all (p, w) in Rl+2
++, the set V (p, w) is nonempty.9 For each v̂ in V (p, w), we

may construct

φv̂(p, w) = −pT ∂2
p v̂(p, w)p

∂pv̂(p, w)p
;(5)
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the indirect MMP coefficient of º′ at (p, w), denoted by φº′ (p, w), is defined as

φº′(p, w) = inf
v̂∈V (p,w)

φv̂(p, w).(6)

Note that φº′ is always nonnegative. The next result gives us the relationship between φº′

and ψº.

Theorem 2.3 (The translation theorem): Let º′ be the indirect preference generated

by the regular (direct) preference º on Rl+1
++. Then ψº(f(p, w)) = φº′(p, w) for all (p, w)

in Rl+2
++.

This result is very useful since it allows us to translate conditions stated in terms of ψº

into conditions stated in terms of φº′ and vice versa. So for example, we conclude from this

theorem and Proposition 2.1 that the demand function g generated by º will be monotonic

if the indirect preference º′ obeys φº′(p, w) < 4 for all (p, w) in Rl+2
++. In fact, the principal

use of Theorem 2.3 in this paper is in the opposite direction. All the results of the next two

sections are stated in terms of conditions on ψº—we do this because direct preferences are

usually thought of as more familiar than indirect preferences and also (crucially) because

ψº is bounded by Bu, which has a very straightforward interpretation—but an examination

of the proofs will reveal that the conditions in our results were originally imposed on φº′

and translated into conditions on ψº only at the final step, using Theorem 2.3.

3. The Local Weak Axiom for Market Excess Demand

In this section we will examine the structure of demand near an equilibrium in a financial

economy, which we will denote as F . As in Section 2, we assume that there are two dates, 0

and 1. At date 1 there are l states of the world, with one good in each state. The economy
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has m securities, with m ≤ l. The m× l matrix D gives the payoffs of these securities and

the rank of D is m. Note that the familiar complete markets exchange economy, which we

shall refer to as a classical exchange economy can be thought of as a financial economy with

m = l and the payoff matrix D = I.

The agents in F are drawn from a compact metric space of types, A. The distribution

of types in F is given by the Borel probability measure µ on A. To each type a is associated

an endowment ωa in Rm+1, so ω0
a represents type a’s endowment of the date 0 good while

ω−0
a in Rm is type a’s endowment of securities. We assume that the map from a to ωa is

continuous. We also assume that ω0
a ≥ 0 and DT ω−0

a ≥ 0, with either strictly positive. To

each a is also associated a C1 demand function ga : Q×R++ → Rm+1 which is generated by

a regular preference ºa. We assume that the maps from (a, q, w) to ga(q, w) and ∂qga(q, w)

are continuous.

The agent in F derives his wealth from his endowment; we denote type a’s demand, as

a function of the security price vector by g̃a, i.e., g̃a(q) = ga(q, qT ωa). Note that since q is

in Q, there is p À 0 such that q−0 = Dp, so that, given our assumptions on ωa, the agent’s

wealth at price q,

qT ωa = q0ω0
a + pT (DT ω−0

a ) > 0.

The mean demand function of F is G : Q → Rm+1, given by G(q) =
∫
A g̃a(q)dµ; this is

well-defined and C1, with ∂qG(q) =
∫
A ∂qg̃a(q)dµ. The excess demand at price q in Q is

defined as ζ(q) = G(q)− ω̄, where ω̄ =
∫
a∈A ωadµ is the economy’s mean endowment. The

function ζ is C1, homogeneous of degree zero, and satisfies Walras’ Law, i.e., qT ζ(q) = 0 at

all q in Q. We assume that F has an equilibrium price at q̄, i.e., ζ(q̄) = 0.
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We wish to identify the conditions under which ζ obeys the weak axiom locally at q̄;

formally, this property requires that there be a neighborhood of q̄ such that (q− q̄)T ζ(q) < 0

whenever q is in that neighborhood and q̄ and q are not collinear. In particular, this implies

that a small rise in the price of i above q̄i leads to excess supply, and a small fall in the

price of i below q̄i leads to excess demand. A sufficient condition for the local weak axiom

is to require ζ to obey the differentiable weak axiom at q̄, by which we mean that ∂qζ(q̄) is

negative definite on the set q̄ ⊥ = {z ∈ Rm+1 : zT q̄ = 0}, i.e., zT ∂qζ(q̄)z < 0 for all z 6= 0 in

q̄ ⊥.

Our goal is to formulate a condition which guarantees the local weak axiom at q̄ in

terms of the distribution of demand and endowments at that price and some bound on

agents’ MMP coefficients. Put another way, we first observe that at any given equilibrium

price, there are many ways demand and endowments can be distributed. For any given

distribution, we wish to determine the restrictions (if any) on the local behavior of demand,

as measured by the MMP coefficients, which will guarantee that excess demand obeys

the local weak axiom. Potentially, the type of distributional information on demand and

endowments needed for the formulation of a sensible theorem could be complicated, or at

least complicated to state, but happily, it turns out that all the distributional information

required can be captured by a few properly constructed covariance matrices.

Firstly, by re-scaling q̄ if necessary, we can assume that q̄T ω̄ = 1. In other words, we

have normalized the equilibrium price vector so that the mean wealth is 1. We define a new

probability measure µ̂ on A: for any measurable subset S of A, define µ̂(S) =
∫
S q̄T ωadµ.

The effect of µ̂ is to ‘re-weigh’ agents according to their contribution to average wealth at the
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equilibrium price q̄. For each a, we define ĝa(q̄) by ĝa(q̄) = g̃a(q̄)/q̄T ωa. So ĝa(q̄) is just the

projection of g̃a(q̄) onto the mean endowment budget plane, B = {x ∈ Rm+1 : q̄T x = q̄T ω̄}.

Similarly we define ω̂a = ωa/q̄T ωa, the projection of ωa onto B. In Figure 1, projected

demand bundles are depicted by squares, and projected endowments by circles. The dis-

tributional information we require is captured by the covariance matrices Cov(ĝ(q̄), ĝ(q̄)),

Cov(ω̂, ω̂) and Cov(ĝ(q̄), ω̂), where all of them are computed with the probability measure

µ̂.

To specify the local behavior of demand (as opposed to the position of each demand

bundle) we impose a condition on the agents’ MMP coefficients. Recall that the consumption

(in Rl+1
++) implied by g̃a(q̄) is D̄T g̃a(q̄); at that bundle, type a has an MMP coefficient of

ψºa(D̄T g̃a(q̄)). We denote

ψ̄(q̄) = sup
a∈A

ψºa(D̄
T g̃a(q̄))

and will refer to ψ̄(q̄) as the MMP bound. The next result, which is the main theorem of

this paper, gives a condition for the local weak axiom at q̄ which involves the MMP bound

and the distribution of endowments and demand, as captured by the covariance matrices.

Theorem 3.1: Suppose that the economy F has a normalized equilibrium price at q̄.

Then ζ obeys the differentiable weak axiom at q̄ whenever the matrix

L(q̄) = −4 [Cov(ĝ, ĝ)− Cov(ĝ, ω̂)] + ψ̄(q̄)Cov(ĝ − ω̂, ĝ − ω̂)(7)

is negative definite on the plane q̄ ⊥.

(Note that the argument q̄ has been dropped from ĝ to save space. Note also that, if we so

wish, we can write Cov(ĝ − ω̂, ĝ − ω̂) as Cov(ĝ, ĝ) + Cov(ω̂, ω̂)− 2Cov(ĝ, ω̂).)
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Theorem 3.1 gives sufficient conditions for ζ to satisfy the weak axiom at q̄ in terms

of the distribution of projected demand and endowments (as measured by their covariance

matrices) and the local behavior of demand as measured by the MMP bound ψ̄(q̄). We argue

that an examination of these conditions will show them to be reasonably mild, so that there

is indeed a sound foundation for assuming the local weak axiom at an equilibrium price.

Note firstly that the theorem contains the known result for collinear endowments as

a special case. If ωa are collinear for all a, ω̂a is identical for all a, so that L(q̄) =

Cov(ĝ, ĝ)(ψ̄(q̄) − 4). Since the matrix Cov(ĝ, ĝ) is always positive semidefinite, the ma-

trix L(q̄) will be negative semidefinite if ψ̄(q̄) < 4 and it will be negative definite on the

plane orthogonal to q̄ if Cov(ĝ, ĝ) is positive definite on that plane. More generally, the re-

striction implied by the negative definiteness of L(q̄) can be usefully broken into two parts.

Since Cov(ĝ− ω̂, ĝ− ω̂) is positive semidefinite and ψ̄(q̄) ≥ 0, L(q̄) can be negative definite

only if

(A) Cov(ĝ, ĝ)− Cov(ĝ, ω̂) is positive definite on q̄ ⊥.

Provided (A) is satisfied, L(q̄) will be negative definite on q̄ ⊥ if

(B)

ψ̄(q̄) < min
{z∈Rm: z 6=0 and z ⊥ q̄}

Var(zT ĝ, zT ĝ)− Cov(zT ĝ, zT ω̂)
Var (zT (ĝ − ω̂), zT (ĝ − ω̂))

.

Condition (A) guarantees that the right hand side of this inequality is strictly positive, so

there will always be some nonempty range of values for ψ̄(q̄) which satisfies (B). In short,

it is clear that L(q̄) is negative definite on q̄ ⊥ if and only if conditions (A) and (B) are

satisfied, so by Theorem 3.1, conditions (A) and (B) imply that ζ obeys the local weak axiom

at q̄. We now examine, in turn, the significance of conditions (A) and (B).
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How restrictive is condition (A)? It is reasonable to say that it is a big improvement

over assuming collinear endowments; whether distributions of demand and endowments

actually satisfy the property is an empirical issue, but (unlike collinear endowments) it

is not prima facie implausible. The type of equilibrium situation which creates problems

for the aggregate weak axiom occurs when those agents who are relatively well endowed

with a particular commodity also tend to consume more of that commodity. It stands to

reason that this will cause problems: in this case, a rise in the price of the commodity will

raise the wealth of the greatest consumers of that commodity, which potentially negates

the tendency to substitute away from it. Condition (A) does not completely exclude the

possibility of positive correlation between demand and endowments, but it does require that

this phenomenon be, in a specific sense, smaller than the variance of demand.

Is condition (A) necessary? More specifically, we can ask the following: for any partic-

ular distribution of demand and endowments at equilibrium, is there some restriction on

ψ̄(q̄) which guarantees the local weak axiom? The answer to the second question is ‘no’, so

the answer to the first is ‘yes.’ To understand this, first note that the MMP coefficient for

a homothetic preference is everywhere zero. The tightest possible restriction on ψ̄(q̄) that

one could impose is to require it to be zero, but even then all homothetic preferences will be

admissible. So if it were the case that for any distribution of demand and endowments, some

restriction on agents’ MMP coefficients is sufficient to guarantee the weak axiom, we will

in effect be saying that so long as preferences are homothetic, the local weak axiom holds,

never mind how demand and endowments are distributed at equilibrium. Such a result

will run up against the indeterminacy theorem of Hens (2001), which says that the excess
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demand function of a financial economy need not have any structure (and in particular need

not obey the weak axiom) even if all agents have homothetic preferences. (Hens’ result is

a generalization to financial economies of the well known indeterminacy theorem of Mantel

(1976), which only applies to classical exchange economies.10) In short, when preferences

are homothetic, condition (B) is automatically satisfied so condition (A) is sufficient to

guarantee the local weak axiom. However, when condition (A) is violated, the Mantel-Hens

indeterminacy theorem tells us that local violations of the weak axiom can indeed occur

even if all preferences are homothetic.

We now turn to condition (B). When endowments are collinear, the bound on ψ̄(q̄) is 4,

which, at least when interpreted as a restriction on the variation of the coefficient of relative

risk aversion, seems very permissive. One would expect this restriction to be more stringent

when endowments are non-collinear. To have some sense of the magnitudes involved, it is

useful to have some way measuring the dispersion of demand relative to that of endowments.

We assume that Var(ĝ, ĝ) is positive definite on q̄⊥. This matrix is always positive

semidefinite, so to assume that it is positive definite is a very modest extension. With this as-

sumption, we know there must exist a nonnegative number θ such that θVar(ĝ, ĝ)−Var(ω̂, ω̂)

is positive semidefinite on q̄⊥. Similarly, there must be nonnegative numbers K1 and K2

such that K2Var(ĝ, ĝ)−Cov(ĝ, ω̂) and K1Var(ĝ, ĝ)+Cov(ĝ, ω̂) are positive semidefinite ma-

trices. We assume that θ, K1 and K2 are chosen to be the smallest nonnegative numbers for

which the conditions are satisfied. Clearly, a large θ will mean that the variance of demand

is small relative to the variance of endowment; K1 and K2 can be similarly interpreted.

Intuitively, we would expect that the larger are these coefficients the more stringent will be
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the conditions on the MMP bound needed to guarantee the local weak axiom. This is borne

out by the following corollary which gives a list of conditions guaranteeing monotonicity. We

intersperse each condition with our comments. Note that distributional conditions imposed

in all four cases of the corollary satisfy condition (A).11

Corollary 3.2: Suppose that economy F has a normalized equilibrium price at q̄ and

that Cov(ĝ, ĝ) is positive definite on q̄ ⊥. Then ζ satisfies the differentiable local weak at q̄,

if any of the following situations hold.

(i) θ < 1 and ψ̄(q̄) ≤ 2.

Remark: Note that θ < 1 if and only if demand is more dispersed than endowments in the

sense of having a bigger variance, i.e., Var(ĝ, ĝ)− Var(ω̂, ω̂) is positive definite on q̄ ⊥. So

(i) can be re-phrased as saying that the local weak axiom at q̄ is guaranteed if demand is

more dispersed than endowments and the MMP bound is less than 2. This provides a very

clean generalization of the known result that an MMP bound of 4 guarantees the local weak

axiom when endowments are collinear.

(ii) K1 = K2 = 0 and ψ̄(q̄) < 4/(1 + θ).

Remark: We consider here a highly stylised (thought not completely unrealistic) scenario

in which the covariance of the endowment and demand distributions is zero. (Of course,

it is sufficient for this that endowments and demand are independently distributed.) This

brings into sharp relief the impact of θ on the MMP bound. Since 4/(1 + θ) is decreasing

in θ, the greater is the dispersion of endowment relative to demand, the more stringent is

the condition on the MMP bound needed for the weak axiom. When θ = 0 it equals 4 (as

expected), when θ = 1, it equals 2 (in agreement with (i)) and tends to zero as θ goes to

20



infinity. (Note that the MMP bound cannot, by definition, fall below zero.)

(iii) θ < 1 and ψ̄(q̄) < 2(2 + 2K1)/(1 + θ + 2K1).

Remark: This is just a more refined version of (i), which uses the precise values of θ and K1

to give a more permissive MMP bound: note that the bound on the MMP bound is now

larger than 2.

(iv) θ ≥ 1, K2 < 1, and ψ̄(q̄) < 4(1−K2)/[(θ − 1) + 2(1−K2)].

Remark: This concerns the case where demand is less dispersed than endowments (so θ ≥ 1)

and where the covariance between demand and endowments is not too great (in the sense

that K2 < 1). The condition on the MMP bound (it is now lower than 2) is tighter than

in (i) and (iii), as one would expect. The condition becomes more stringent as K2 or θ

increases, and in fact it tends to zero as θ tends to infinity or K2 tends to 1 from below.

Suppose that each for each type a in the economy, ºa is representable by a utility

function of the form

ua(x) = ūa(x0) + δa

[
l∑

i=1

πaiūa(xi)

]

where δa represents type a’s discount rate and πai is a’s subjective probability of state

i occurring, so
∑l

i=1 πai = 1. As we had pointed out in the Section 2, type a’s MMP

coefficient is then uniformly bounded by the variation in the coefficient of relative risk

aversion; formally, ψºa ≤ Vūa , with the latter as defined by (4). Thus Theorem 3.1 and

Corollary 3.2 will still be true if supa∈A Vūa were to replace ψ̄(q̄). In other words, it suffices

to impose bounds on the variation in the coefficient of relative risk aversion for all agent

types in the economy. For example, Corollary 3.2(i) will say that when demand is more
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dispersed than endowments, the local weak axiom holds if, for each agent type, the variation

in the agent’s coefficient of relative risk aversion is smaller than 2. It is worth pointing out

the obvious here: we are not imposing a bound on the variation of the coefficient of relative

risk aversion across agents, but rather a bound on the variation for each agent. So one

agent type can have a coefficient of relative risk aversion between 5 and 7, another between

15 and 17, etc.

Relationship with the increasing dispersion approach to the aggregation problem

Finally, we wish to relate the approach to the aggregation problem adopted in this paper

with the other approach commonly used to deal with this issue. The approach adopted in

this paper - via the MMP coefficient - has sometimes been referred to as the “dominating

substitution effects” approach (see Mas-Colell (1991)). This is an apt description, since by

controlling an agent’s MMP coefficient we are controlling the degree to which his substitu-

tion effects dominate his income effects. The contribution of this paper is to determine, in

an economy with non-collinear endowments, a precise bound on agents’ MMP coefficients

which is sufficient to guarantee that, following any small price change from the equilib-

rium price, the substitution effects which arise across all agents dominate, on average, the

corresponding income effects.

There is another approach to the aggregation problem which focuses, not on getting

substitution effects to dominate income effects, but on getting average income effects to

be well-behaved. To put it in differentiable terms, since the substitution effect matrix of

each agent in the economy is always negative semidefinite, a sufficient condition for the
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excess demand function to satisfy the differentiable weak axiom at some equilibrium price

is for the average of income effect matrices at that price to be positive definite. As pointed

out in Jerison (1999), what is needed for this property to hold is increasing dispersion: in

exchange economies this means that if all agents were to receive a little more income (while

holding prices fixed), the distribution of their excess demand will have a greater variance

than before. Thus in this approach, either directly or indirectly, conditions are imposed on

the collective behavior of agents’ income expansion paths.

We wish to demonstrate that the MMP approach is distinct from the increasing dis-

persion approach to the aggregation problem. To do this, we show with an example that

a bound on the MMP coefficient of an agent imposes no restriction on the direction of his

income expansion path, so that any positive bound on the MMP coefficients for all agents

in the economy cannot imply the increasing dispersion property.

Consider the utility function u(x) =
∑l

i=0 ki(xi− bi)θ where k = (k0, k1, ..., kl) À 0 and

b = (b0, b1, ..., bl) À 0. Assume that markets are complete and that D = I. Suppose that

at some price p̂ and income 1, the demand is x̂, where p̂T x̂ = 1. So long as x̂ À b, this

can always be arranged: by the first order conditions, we need only choose ki to satisfy

kiθ(x̂i − bi)θ−1 = λp̂i where λ is the Langrange multiplier. With k chosen as such, locally

at x̂, the income expansion path is in the direction of x̂ − b, which could be any positive

direction since b can take on any values provided x̂ À b. Turning to the MMP coefficient,

ψu(x̂) =
∑

θ(1− θ)ki(x̂i)2(x̂i − bi)θ−2

∑
θx̂iki(x̂i − bi)θ−1

=
∑

(1− θ)(x̂i)2(x̂i − bi)−1p̂i

∑
p̂ix̂i
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= (1− θ)
∑ (x̂i)2p̂i

(x̂i − bi)
,

which will be arbitrarily close to zero when θ is sufficiently close to 1. Geometrically, as θ

increases to one and ψu(x̂) approaches zero, the indifference surface around x̂ flattens.

So we see that a bound on this agent’s MMP coefficient, however close to zero, is

compatible with an income expansion path in any positive direction. This means that one

can easily construct a classical exchange economy where, at an equilibrium price, agents

have income expansion paths which violate the dispersion property, and yet the economy

has an MMP bound which is small enough to ensure that its excess demand function satisfies

the differentiable local weak axiom.

Note that the opposite is also true. Consider a classical exchange economy with collinear

endowments. The MMP approach says that an MMP bound of 4 will guarantee monotonic-

ity for individual demand and hence the aggregate weak axiom for excess demand. In this

approach, agents need not have the same preference, but the preference of every agent

must satisfy the bound on the MMP coefficient. The increasing dispersion approach gives

alternative conditions for the weak axiom in such an economy. An early and influential

paper using this approach is Hildenbrand (1983). The paper assumes that all agents share

the same demand function generated by some regular preference. It shows that when en-

dowments are collinear and has a distribution represented by a downward sloping density

function, then the average of income effects will be positive semidefinite. Such an economy

will have an average (or mean) excess demand function which obeys the weak axiom, even

though the preference need not generate a monotonic individual demand function and the
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MMP coefficient of the preference need not be bounded above by 4 or any other number.

So the MMP approach employed in this paper, and the increasing dispersion approach

are two distinct approaches to the aggregation problem. Of course, this is not the same

as saying that the (loosely speaking) ‘regularizing’ effects of both approaches could not be

operating in the same setting to give some weak axiom-type structure to aggregate demand

or excess demand. Indeed, in the context of classical exchange economies with collinear

endowments, Quah (2000) has shown how both approaches may work in combination. In

the context of economies with non-collinear endowments, it remains to be seen that a hybrid

approach to the aggregation problem will lead to interesting results.

Appendix

The proof of Proposition 2.1 relies on the following lemma, which relates g with the

classical demand function f . Though it is not always stated in the form presented here, the

result is well known so we will skip the proof (see, for example, Magill and Quinzii (1996)).

Lemma A: Let º be a regular preference generating the demand function g. There is a

C1 function P : Q → Rl+1
++ such that D̄T g(q, w) = f(P (q), w) and D̄P (q) = q

Proof of Proposition 2.1: The original MMP monotonicity result was set in a complete

markets context, i.e., they identify conditions which guarantee the monotonicity of the

classical demand function f . This proposition is just an extension of the MMP result to

the function g. Our proof will rely on the original MMP result and also on Lemma A, with

the latter allowing us to ‘move’ between g and f .

(i) By Lemma A, D̄T g(q, w) = f(P (q), w). It is known that when ψº(D̄T g(q, w)) =
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ψº(f(P (q), w)) < 4, there is an open and convex neighborhood N of P (q) such that for any

distinct p′ and p′′ in N , we have (p′−p′′)T (f(p′, w)−f(p′′, w)) < 0 (see Mas-Colell (1991) and

Quah (2003)). Lemma A tells us that P is C1, so in particular it is continuous and there is

an open and convex neighborhood M of q such that whenever q′ is in M , P (q′) is in N . So if

q′ and q′′ are distinct prices in M , we have (P (q′)−P (q′′))T (f(P (q′), w)−f(P (q′′), w)) < 0.

Substituting D̄T g(q′, w) = f(P (q′), w) and D̄T g(q′′, w) = f(P (q′′), w) into this inequality

tells us that (q′ − q′′)T (g(q′, w)− g(q′′, w)) < 0.

(ii) By Lemma A, we have

(q′ − q′′)T (g(q′, w)− g(q′′, w)) = (P (q′)− P (q′′))T (f(P (q′), w)− f(P (q′′), w)).

The latter will be less than zero if q′ and q′′ (and hence P (q′) and P (q′′)) are distinct and

ψº(x) < 4 for all x (see Mas-Colell (1991) and Quah (2003)). QED

The proof of Theorem 2.3 requires the following lemma.

Lemma B: Let u be a regular utility function that generates a regular indirect utility

function v. (i) If u is locally concave at x∗ = f(p∗, 1), then φv(p∗, 1) ≤ 2. Conversely, if

φv(p∗, 1) < 2, then u is locally concave at x∗ = f(p∗, 1). (ii) If v is locally convex in prices

at (p∗, 1), then ψu(f(p∗, 1)) ≤ 2. Conversely, if ψu(f(p∗, 1)) < 2, then v is locally convex in

prices at x∗ = f(p∗, 1).

Proof: See and adapt the proof of Proposition 2.4 in Quah (2000).

Proof of Theorem 2.3: Without loss of generality, we may assume that w = 1.

We will show that at p = p∗, we have ψº′ (f(p∗, 1)) ≥ φº(p∗, 1). The proof of the other

direction is analogous. Let u be a locally concave and regular representation of º′
. Using

a linear transformation on u if necessary, we could guarantee that ∂xu(x∗)x∗ = 1, where

26



x∗ = f(p∗, 1). The function ũ = h ◦ u, where h is increasing, satisfies

ψũ(x) = −h′′(u(x))
h′(u(x))

(∂xu(x)x)− xT ∂2
xu(x)x

∂xu(x)x
.(8)

If ψu(x∗) = M , then by choosing h such that h
′′
/h

′
= M ′− 2, with M ′ greater than M , we

find that ψũ(x∗) < 2. By Lemma B(ii), ṽ = h◦v, the indirect utility generated by ũ is convex

in prices in a neighborhood of (p∗, 1). Note that −∂pv(p∗, 1)p∗ = vw(p∗, 1) = ∂xu(x∗)x∗ = 1,

and that φv(p∗, 1) ≤ 2, the latter following from the concavity of u (by Lemma B(i)).

Therefore

φṽ(p∗, 1) = −
[
h′′(v(p∗, 1))
h′(v(p∗, 1))

]
∂pv(p∗, 1)p∗ + φv(p∗, 1) ≤ M ′.

Since M ′ could be chosen to be arbitrarily close to M , we obtain ψº′ (f(p∗, 1)) ≥ φº(p∗, 1).

QED

The proof of Theorem 3.1 is quite elaborate, so it is best that we break it up into a few

more manageable lemmas. Let v : Rl+2
++ → R be an indirect utility function. We define

εv(p, w) =
wvww(p, w)
vw(p, w)

.

Since vw is the marginal utility of wealth, εv is the wealth elasticity of the marginal utility

of wealth. The relationship between φv(p, w) and εv(p, w) is given in the next lemma. (This

result can also be found in Quah (2000) but we reproduce it here for completeness.)

Lemma C: For any regular indirect utility function v : Rl+2
++ → R,

φv(p, w) = 2 + εv(p, w).(9)
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Proof: Since v is zero-homogeneous, the denominator of φv(p, w), which is ∂pv(p, w)p

(see (5)), equals −vw(p, w) (by Euler’s identity). The numerator of the φv(p, w) formula,

which is −pT ∂2
pv(p, w)p, can also be re-written in terms of vw and vww. Since ∂v/∂pi is

(-1)-homogeneous, Euler’s identity tells us that

l∑

j=0

∂2v

∂pj∂pi
pj = − ∂v

∂pi
− w

∂2v

∂w∂pi
.

(Note that we have omitted the arguments to save space.) So

pT ∂2
pv(p, w)p =

l∑

i=0

−pi ∂v

∂pi
−

l∑

i=0

wpi ∂2v

∂w∂pi
.

Using Euler’s identity again, we see that the first sum on the right equals wvw and the

second sum equals wvw + w2vww. So we obtain (9). QED

The next lemma is the central technical result of this paper because it links type a’s

indirect MMP coefficient, φº′a , with ∂qg̃a. The proof makes crucial use of Roy’s identity.

Lemma D: Suppose that there is an open and convex neighborhood Na of (q, qT ωa) in

which ga is generated by a regular indirect preference º′a. Then for any z ∈ Rm+1,

4zT ∂q g̃a(q)z ≤ −4

[
(zT g̃a(q))2

qT ωa
− (zT ωa)(zT g̃a(q))

qT ωa

]

+φº′a
(
P (q), qT ωa

)
[
zT (g̃a(q)− ωa)

]2

qT ωa
.(10)

Proof: To simplify notation, we will drop the subscript a. Since g̃(q) = g(q, qT ω), we

have

∂q g̃(q) = ∂qg(q, qT ω) + ∂wg(q, qT ω)ωT(11)
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Our first objective is to show that for any z in Rm+1, and denoting the vector ∂qP (q)z in

Rl+1 by ẑ, we have

zT ∂q g̃(q)z = ẑT ∂pf(P (q), qT ω)ẑ +
[
ẑT ∂wf(P (q), qT ω)

] [
ẑT (D̄T ω)

]
.(12)

By Lemma A, q = D̄P (q); differentiating this with respect to q we obtain I = D̄∂qP (q).

So the matrix ∂qP (q) is a right inverse of D̄. Differentiating the identity D̄T g(q, w) =

f(P (q), w) with respect to q we obtain

D̄T ∂qg(q, w) = ∂pf(P (q), w)∂qP (q).(13)

If we pre-multiply D̄T ∂qg(q, w) by ẑT = (∂qP (q)z)T and post-multiply it by z, we obtain

z∂qg(q, w)z so we conclude that

zT ∂qg(q, w)z = (∂qP (q)z)T ∂pf(P (q), w)(∂qP (q)z) = ẑT ∂pf(P (q), w)ẑ.(14)

Since g is zero-homogeneous, ∂qg(q, w)q = −w∂wg(q, w). Similarly, because the map from

(q, w) to D̄T g(q, w) = f(P (q), w) is zero-homogeneous, ∂pf(P (q), w)∂qP (q)q = −w∂wf(P (q), w).

Post-multiplying (13) by q, we obtain D̄T ∂wg(q, w) = ∂wf(P (q), w). Since ∂qP (q)T is the

left inverse of D̄T , pre-multiplying this equation by zT ∂qP (q)T gives us

zT ∂wg(P (q), w) = (∂qP (q)z)T ∂wf(P (q), w) = ẑT ∂wf(P (q), w).(15)

Equations (11), (14) and (15), with w = qT ω will give us (12).

Suppose that g is generated by the direct preference º, which has º′ as its associated

indirect preference. Let v be an indirect utility function which represents º′ in some open

neighborhood of (p, pT θ), We will now show that for any vector ẑ in Rl+1,

4ẑT ∂pf(p, θT p)ẑ + 4
(
ẑT ∂wf(p, θT p)

) (
ẑT θ

)
(16)
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≤ −4

[
(ẑT f(p, θT p))2

pT θ
− (ẑT θ)(ẑT f(p, θT p))

pT θ

]
+ φv(p, pT θ)

[ẑT (f(p, pT θ)− θ)]2

pT θ
.

By making the substitutions ẑ = ∂qP (q)z, p = P (q), D̄P (q) = q, θ = D̄T ω, and f(P (q), (D̄T ω)T P (q)) =

D̄g(q, qT ω) in (16), and replacing the left hand side by 4zT g̃(q)z (which we can do by (12)),

we obtain

4zT ∂qg̃(q)z ≤ −4

[
(zT g̃(q))2

qT ω
− (zT ω)(zT g̃(q))

qT ω

]
+ φv(P (q), qT ω)

[
zT (g̃(q)− ω)

]2

qT ω
.

By the definition of φ, we may replace φv(P (q), qT ω), with φº′a(P (q), qT ω) and so obtain

(10).

It remains for us to proof (16). By Roy’s identity, f(p, w) = −∂pv(p, w)T /vw(p, w).

Differentiating this with respect to p and using the fact that vw(p, w) = −∂pv(p, 1)p/w, we

obtain

∂pf = −∂2
pv

vw
− (∂pv)T pT ∂2

pv

wv2
w

− (∂pv)T (∂pv)
wv2

w

.(17)

(Note that we have omitted the arguments to save space.) Differentiating Roy’s identity

with respect to w gives us

∂wf =
vww(∂pv)T

v2
w

+
(∂pv)T

wvw
+

∂2
pv p

wvw
(18)

Combining (17) and (18) and using Roy’s identity again, we see that

ẑT ∂pfẑ + (ẑT θ)(∂wfT ẑ)

= − ẑT ∂2
pvẑ

vw
+

[
ẑT (f + θ)

] pT ∂2
pv ẑ

wvw
− (ẑT f)2

w
+

(
− 1

w
− vww

vw

)
(ẑT f)(ẑT θ)

Using Lemma C and denoting s = zT (f + θ)/w, the right hand of this equation could be

re-written (by ‘completing squares’) as

− 1
vw

(
ẑ − s

2
p

)T

∂2
pv

(
ẑ − s

2
p

)
+

ws2

4
φ− (ẑT f)2

w
+

(
− 1

w
− (φ− 2)

w

)
(ẑT f)(ẑT θ),
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which is clearly less than

ws2

4
φ− (ẑT f)2

w
+

(
− 1

w
− φ− 2

w

)
(ẑT f)(ẑT θ).

Substituting pT θ for w, re-substituting ẑT (f + θ)/w for s, and re-arranging the terms in

this expression, we obtain (16). QED

Proof of Theorem 3.1: Note that by Theorem 2.3, we may replace φº′a(P (q), qT ωa)

in (10) with ψºa(D̄T g̃(q)). Furthermore, at the equilibrium price q̄, we may replace

ψºa(D̄T g̃(q̄)) with ψ̄(q̄) since the latter is greater than the former by definition. Making

this replacement and then aggregating the inequality over A, we obtain

4zT ∂qζ(q̄)z = 4zT ∂qG(q̄)z

≤ −4

[∫

A

(zT g̃a(q̄))2

q̄T ωa
dµ−

∫

A

(zT ωa)(zT g̃a(q̄))
q̄T ωa

dµ

]
+ ψ̄(q̄)

∫

A

[
zT (g̃a(q̄)− ωa)

]2

q̄T ωa
dµ.(19)

Recall that the equilibrium price q̄ was normalized to satisfy q̄T ω̄ = 1. Recall also the

definitions of µ̂, ω̂a and ĝa in Section 3. The first integral on the right hand side of (19)

∫

A

(zT g̃a(q̄))2

q̄T ωa
dµ =

∫

A
(zT ĝa(q̄))2dµ̂;

a similar transformation can be made to the other integrals on the right hand side of (19).

This gives us

4zT ∂qζ(q̄)z ≤ −4
[∫

A
(zT ĝa(q̄))2dµ̂−

∫

A
(zT ω̂a)(zT ĝa(q̄))dµ̂

]

+ψ̄(q̄)
∫

A

[
zT (ĝa(q)− ω̂a)

]2
dµ̂.(20)

Since q̄ is the equilibrium price,

∫

A
zT ĝa(q̄)dµ̂ =

∫

A
zT ga(q̄)dµ =

∫

A
zT ωadµ =

∫

A
zT ω̂adµ̂.
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It follows that the right hand side of (20) equals

−4
[
Var(zT ĝ, zT ĝ)− Cov(zT ĝ, zT ω̂)

]
+ ψ̄(q̄)Var(zT (ĝ − ω̂), zT (ĝ − ω̂)),

which is zT L(q̄)z. It follows that if L(q̄) is negative definite on q̄ ⊥, so is ∂qζ(q̄). QED

Proof of Corollary 3.2: By Theorem 3.1, we need only show that the conditions in (i)

to (iv) all lead to L(q̄) being negative definite on q̄ ⊥. For (i), we re-write

L(q̄) = −2 [Cov(ĝ, ĝ)− Cov(ω̂, ω̂)] + (ψ̄(q̄)− 2)Cov(ĝ − ω̂, ĝ − ω̂).(21)

If θ < 1, Cov(ĝ, ĝ)−Cov(ω̂, ω̂) is positive definite on q̄ ⊥ while Cov(ĝ− ω̂, ĝ− ω̂) is positive

semidefinite, so L(q̄) is negative definite on q̄ ⊥ if ψ̄(q̄) ≤ 2.

For (ii) to (iv), it useful to re-write

L(q̄) =
(−4 + ψ̄(q̄)

)
Cov(ĝ, ĝ)− 2(ψ̄(q̄)− 2)Cov(ĝ, ω̂) + ψ̄(q̄)Cov(ω̂, ω̂).(22)

If K1 = K2 = 0, for z 6= 0 in q̄ ⊥,

zT L(q̄)z ≤ (−4 + ψ̄(q̄))Var(zT ĝ, zT ĝ) + ψ̄(q̄)θVar(zT ĝ, zT ĝ).

The right hand side is negative if ψ̄(q̄) < 4/(1 + θ). So we have shown (ii). The proofs for

(iii) and (iv) are similar. QED
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Footnotes

1. For a textbook reference to all the claims in this paragraph see Mas-Colell et al

(1995). On comparative statics, some recent results which make use of a weak axiomatic

structure on the excess demand function can be found in Nachbar (2002, 2004) and Quah

(2003); Quah (2003) also has a discussion of comparative statics in a financial economy.

2. Milleron’s paper is in French and never published, while the paper of Mitjuschin

and Polterovich is in Russian. English language versions of their theorem can be found in

Mas-Colell (1991) and Quah (2000, 2003), amongst other places. These English language

versions repeat (or adapt) the proof used by Mitjuschin and Polterovich rather than the

proof of Milleron.

3. For an alternative characterization of monotonicity using the normalized gradient

function see Kannai (1989).

4. The usual (and perhaps better known) application of the MMP monotonicity theorem

says that an upper bound of 4 on the coefficient of relative risk aversion is sufficient to

guarantee monotonicity (see, for example, Mas-Colell (1991), Dana (1995) and Bettzuge

(1998)). The subtler result here is from Quah (2003).

5. For the claims in this paragraph, see Mas-Colell (1991) or Mas-Colell et al (1995).

6. When markets are complete and agents maximize expected utility, there is a result

which says that market excess demand obeys gross substitutability (and hence all the other

nice properties which flow from it (see Mas-Colell et al (1995)) if all agents have coefficients

of relative risk aversion which are bounded above by one (see Mas-Colell (1991) or Hens and

Loffler (1995)). Note that this is an upper (and quite stringent) bound on the coefficient of
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relative risk aversion, unlike the MMP condition which is a bound on the coefficient’s vari-

ation across income. Nonetheless, this result is very nice because it requires no substantial

assumptions on agents’ endowments. Unfortunately, this result does not extend easily to

incomplete markets. (See also Hens and Pilgrim (2002) for an extensive discussion of gross

substitutability and related concepts in financial economies.)

7. The formulation of a financial economy in this section and the next is broadly along

standard lines. See Magill and Quinzii (1996) for a textbook introduction.

8. This claim is rather misleading only because the truth is considerably stronger (see

Mas-Colell (1985)).

9. Once again, see Mas-Colell (1985). The results there pertain to the existence of

concave utility representations for regular (direct) preferences, but it is clear they also

apply, mutatis mutandi, to the representation of regular indirect preferences by indirect

utility functions which are convex in prices.

10. The rationalizing economy constructed in Hens’ indeterminacy theorem have agents

with homothetic preferences and also, as in the model considered here, endowments which

are in the asset span.

11. This is explicit in (ii) and (iv) where it is assumed that K2 < 1. In (i) and (iii), we

assume that Cov(ĝ, ĝ)−Cov(ω̂, ω̂) is positive definite on q̄ ⊥, which implies (A); we can see

this by expanding the positive semidefinite matrix Covĝ − ω̂, ĝ − ω̂).
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