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Abstract

This paper provides limit distribution results for power variation, that is sums of powers
of absolute increments,under nonequidistant subdivisions of time and for certain types of
time-changed Brownian motion and α-stable processes. Special cases of these processes are
stochastic volatility models used extensively in financial econometrics.
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1. Introduction

In Barndorff-Nielsen and Shephard (2003) limit distribution results were derived for quantities
of the form

[Xδ ]
[r](t) =

n
∑

j=1

|X(jδ)−X((j − 1)δ)|r, (1.1)

where X denotes a special semimartingale with canonical decomposition of the form

X = A+H •W, (1.2)

r is a positive number and nδ = t for some time t > 0. The theory is based on δ ↓ 0. We refer
to (1.1) and similar quantities as power variations.

The initial limit results have been very substantially generalised and ramified in a number of
recent publications. From the applied point of view the results in question provide, in particular,
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a versatile basis for drawing inference on the process H, which expresses the volatility of X, a
key concept in the field of financial econometrics, e.g. the review in Andersen, Bollerslev, and
Diebold (2004). This is discussed in Barndorff-Nielsen and Shephard (2002), Barndorff-Nielsen
and Shephard (2003) and Barndorff-Nielsen and Shephard (2004). See also Shiryaev (1999, p.
349-350) who mentions interest in the limits of sums of absolute returns.

As a key illustration, suppose that X is a Brownian semimartingale of the form

Xt =

∫ t

0
audu+

∫ t

0
Hs

−

dW

where a is predictable and locally bounded and H is càdlàg. Then, under a very mild condition
on H (for the most general setting see Barndorff-Nielsen, Graversen, Jacod, Podolsky, and
Shephard (2004)), for any t > 0 and δ ↓ 0, we have

δ1−r/2[Xδ ]
[r](t)

p→ µrH
r∗(t)

where µr = E{|u|r} and u ∼ N(0, 1) and

Hr∗(t) =

∫ t

0
Hr(s)ds.

Furthermore,
δ1−r/2[Xδ]

[r](t)− µrHr∗(t)

δ1−r/2
√

µ−1
2r vr[Xδ][2r](t)

law→ N(0, 1) (1.3)

where vr = Var{|u|r} is the variance of |u|r.
Thus, in particular, we have that

[Xδ ]
[2](t)−H2∗(t)
√

2
3 [Xδ][4](t)

law→ N(0, 1) (1.4)

and
δ1/2[Xδ]

[1](t)−
√

2/πH∗(t)
√

(1− 2/π)δ[Xδ][2](t)

law→ N(0, 1). (1.5)

Result (1.4) appeared first in Barndorff-Nielsen and Shephard (2002), later work on this includes
Mykland and Zhang (2005). See also the related Jacod (1994) and Jacod and Protter (1998).
Result (1.5) is connected to some early work by Jacod (1994), but appeared in this form first in
Barndorff-Nielsen and Shephard (2003).

The present paper indicates how these results may be extended to non-equidistant subdivi-
sions of the time interval [0, t] and it also considers more general time changes than those implicit
in (1.2) (via the Dambis-Dubins-Schwarz theorem). Furthermore, settings where instead of the
Brownian motion W in (1.2) we have a symmetric α-stable process will be discussed.

The structure of the paper is as follows. Section 2 introduces some notation and concepts for
power variation, while in Section 3 we establish several consequences of the general central limit
theory, needed for the core part of the paper. In Sections 4-6, we derive new limit law results
for power variation in the case of nonequidistant time divisions and for time changed Brownian
motion and symmetric α-stable processes. (For simplicity, in these Sections, when discussing
processes X = A +H • S, where S is either Brownian motion or symmetric stable, we assume
that A = 0 and that H and S are independent.) The final Section 7 mentions some related
work.
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2. Notation for power variation

Let ∆ denote a subdivision 0 = t0 < t1 < · · · < tn = t of [0, t] and let δj = tj − tj−1 and
|∆| = max δj. When considering a sequence of such subdivisions ∆ we say that the sequence is
balanced if max δj/min δj is bounded above and ε-balanced, ε ∈ (0, 1), if max δj/(min δj)

ε → 0
as |∆| → 0. Clearly, if ∆ is balanced then it is a fortiori ε-balanced for every ε ∈ (0, 1). Note
that here and in the following we usually have in mind a single, generally unspecified, sequence
of subdivisions ∆ with |∆| → 0; however, for notational simplicity, we do not indicate this by
attaching a sequence index to ∆.

We consider arbitrary real functions f on the interval [0, t] and introduce the notation

[f∆][r] =
∑

|f (tj)− f(tj−1)|r (2.1)

where the sum is over j = 1, ..., n and r > 0. We call [f∆][r] the r-th order power variation of f
relative to ∆, or the r-tic variation for short.

In the special case where the subdivision ∆ is equidistant, whence δ j = δ for all j, we will
write fδ instead of f∆, etc. Thus when δ occurs as an index the subdivision is understood to be
equidistant. Furthermore, we write [f ][r] for the r-th order sup-variation or sup-r-variation 1 of
f , that is

[f ][r] = sup
∆∈D

∑

|f (tj)− f (tj−1)|r (2.2)

where D denotes the class of all possible subdivisions of [0, t]. When we wish to indicate the
dependence on t we shall write [f∆][r](t) instead of [f∆][r], etc.

We define a time-change to be a non-decreasing function T : [0,∞)→ [0,∞) with T (0) = 0
and T (t)→∞ as t→∞.

For an arbitrary function f (as above) and time-change T we have

[(f ◦ T )∆][r] = [fT (∆)]
[r] ◦ T

(where ◦ means composition of mappings) or, more specifically,

[(f ◦ T )∆][r](t) = [fT (∆)]
[r](T (t))

where T (∆) is the subdivision 0 = T (t1) < · · · < T (tn) = T (t).
Henceforth, unless otherwise mentioned, we assume that T is continuous and strictly in-

creasing. Then T is uniformly continuous on any compact interval and |∆| → 0 will imply
|T (∆)| → 0. Hence, in wide generality it will hold that

[(f ◦ T )][r] = [f ][r] ◦ T. (2.3)

Finally, when f ≥ 0, we use the notation

f∗(t) =

∫ t

0
f(s)ds (2.4)

and, more generally,

f r∗(t) =

∫ t

0
f r(s)ds. (2.5)

1We adopt this term rather than the more usual r-variation, for clarity in the context of the present paper.
We will refer to some of the literature on r-variation in Section 7 of this paper.
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3. Some Central Limit Theory results

We shall need the following special cases of the general central limit theory.
Let yn1, ..., ynkn

(n = 1, 2, ..., with kn →∞ as n→∞) be a triangular array of independent
random variables and let yn = yn1 + · · · + ynkn

.

3.1. Asymptotic normality

Theorem 3.1 (Gnedenko and Kolmogorov (1954, p. 102-103)) Suppose that E{ynj} = 0 for

all n and j and that Var{yn} = 1 for all n. Then yn
law→ N(0, 1) if and only if for arbitrary γ > 0

kn
∑

j=1

E{y2
nj1(γ,∞)(|ynj |)} → 0. (3.1)

Corollary 3.1 Suppose that ynj is of the form ynj = cnjxnj where the cnj are real con-
stants and the xnj are independent copies of a random variable x that has mean 0 and variance
1. If c2n1 + · · · + c2nkn

= 1 and cn = maxj cnj → 0 as n → ∞ then yn converges in law to the
standard normal distribution N(0, 1). �

Proof In the present case

kn
∑

j=1

E{y2
nj1(γ,∞)(|ynj|)} =

kn
∑

j=1

c2njE{x21(γ,∞)(|cnjx|)}

≤ E{x21(c−1
n γ,∞)(|x|)} → 0

and hence Theorem 3.1 applies. �

3.2. Probability limit results

Theorem 3.2 Degenerate Convergence Criterion (Loève (1977, p. 329)) We have that yn
p→ 0

and the uniform asymptotic neglibility condition is satisfied if and only if for every ε > 0 and
for some γ > 0

kn
∑

j=1

P{|ynj| ≥ ε} → 0 (3.2)

kn
∑

j=1

E{ynj1(−γ,γ)(ynj)} → 0 (3.3)

and
kn
∑

j=1

(

E{y2
nj1(−γ,γ))(ynj)} − E{ynj1(−γ,γ)(ynj)}2

)

→ 0 (3.4)

for n→∞. �

Now, let xnj , n = 1, 2, ..., j = 1, 2, ..., kn be independent copies of a random variable x having
distribution function F and mean 0, suppose that cni are arbitrary positive reals and let

ynj = cnjxnj

and yn = yn1 + · · ·+ ynkn
.
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Corollary 3.2 Suppose that x has mean 0, let cn = maxj cnj and assume that, as n→∞,

cn → 0 (3.5)

knP{|x| ≥ c−1
n ε} → 0 (3.6)

sup
n

kn
∑

j=1

cnj <∞ (3.7)

and, for some γ > 0,

cn

∫ c−1
n γ

−c−1
n γ

ξ2dF (ξ)→ 0. (3.8)

Then yn
p→ 0. �

Proof In the present setting the conditions of Theorem 3.2 take the form

kn
∑

j=1

P{|x| ≥ c−1
nj ε} → 0 (3.9)

kn
∑

j=1

cnj

∫ c−1

nj
γ

−c−1

nj
γ
ξdF (ξ)→ 0 (3.10)

and
kn
∑

j=1

c2nj





∫ c−1

nj
γ

−c−1

nj
γ
ξ2dF (ξ)−

(

∫ c−1

nj
γ

−c−1

nj
γ
ξdF (ξ)

)2


→ 0. (3.11)

The first of these conditions is implied by (3.5) and (3.6). Next, since E{x} = 0 and cn → 0,

∫ c−1

nj
γ

−c−1

nj
γ
ξdF (ξ)→ 0

uniformly in j. Combined with (3.7) the latter entails (3.10) and also

kn
∑

j=1

c2nj

(

∫ c−1

nj
γ

−c−1

nj
γ
ξdF (ξ)

)2

→ 0.

Finally (3.8) gives

kn
∑

j=1

c2nj

∫ c−1

nj
γ

−c−1

nj
γ
ξ2dF (ξ) ≤ cn

∫ c−1
n γ

−c−1
n γ

ξ2dF (ξ)

kn
∑

j=1

cnj → 0.

�

Corollary 3.3 Suppose that x has mean 0 and finite variance and assume that

cn → 0 (3.12)

knP{|x| ≥ c−1
n ε} → 0 (3.13)

sup
n

kn
∑

j=1

cnj <∞. (3.14)

Then yn
p→ 0. �

Proof Condition (3.8) follows from the assumed finiteness of Var{x}. �
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4. Power variation under general subdivisions

We shall now derive a partial extension of (1.3) to cases of non-equidistant ∆. Convergence
statements will refer to a sequence of subdivisions ∆ with |∆| → 0.

For simplicity we assume that the process a = 0, i.e. X is of the form X = H •W with H
being càdlàg and independent of the Brownian motion W . We let Q = H 2.

It is now convenient to introduce the notation

{X∆}[r] =
∑

δ
1−r/2
j |X(tj)−X(tj−1)|r (4.1)

and the condition

(V) The volatility process H is (pathwise) bounded away from 0 and has, moreover, the
property that for some γ > 0 (equivalently for all γ > 0)

∑m
j=1 δj|Hγ(ηj)−Hγ(ξj)|

√

min δj
→ 0 (4.2)

for any sequences ξj = ξj(∆) and ηj = ηj(∆) satisfying

0 ≤ ξ1 ≤ η1 ≤ t1 ≤ ξ2 ≤ η2 ≤ t2 ≤ · · · ≤ ξn ≤ ηn ≤ t.

Now recall the definition of an ε-balanced sequence of subdivisions ∆, given in Section 2.

Theorem 4.1 Let X be a semimartingale of the form X = H •W and suppose that the
volatility processH is independent of the Brownian motion W and satisfies condition (V). Then,
for any t > 0 and for any 1

2 -balanced sequence of subdivisions ∆ we have

{X∆}[r](t)
p→ µrH

r∗(t) (4.3)

as |∆| → 0 and where µr = E{|u|r} and u ∼ N(0, 1).
Furthermore, if the sequence of subdivisions ∆ is 2

3 -balanced then

{X∆}[r](t)− µrHr∗(t)
√

µ−1
2r νr

∑

δ2−rj |X(tj)−X(tj−1)|2r(t)
law→ N(0, 1) (4.4)

where νr = Var{|u|r} is the variance of |u|r. �

Proof We have

{X∆}[r] law=
∑

δ
1−r/2
j |Q∗(tj)−Q∗(tj−1)|r/2|uj |r

where the uj are i.i.d. standard normal. Hence, for arbitrary γ > 0, letting

{Q∗
∆}[γ] =

∑

δ1−γj |Q∗(tj)−Q∗(tj−1)|γ ,

we find
{Xδ}[r] − µr{Q∗

∆}[r/2]
law
=
∑

δ
1−r/2
j |Q∗(tj)−Q∗(tj−1)|r/2(|u|r − µr)

and it follows from Corollary 3.1 that

{Xδ}[r](t)− µr{Q∗
∆}[r/2]t)

√

vr
∑

δ2−rj |Q∗(tj)−Q∗(tj−1)|r
law→ N(0, 1) (4.5)
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provided

max
{

δ
1−r/2
j |Q∗(tj)−Q∗(tj−1)|r/2

}

√

∑

δ2−rj |Q∗(tj)−Q∗(tj−1)|r
→ 0. (4.6)

To show that the latter is the case we note that

max
{

δ
1−r/2
j |Q∗(tj)−Q∗(tj−1)|r/2

}

√

∑

δ2−rj |Q∗(tj)−Q∗(tj−1)|r
≤ max δj

√

min δj

max
{

δ
−r/2
j |Q∗(tj)−Q∗(tj−1)|r/2

}

√

∑

δ−rj |Q∗(tj)−Q∗(tj−1)|r

=
max δj
√

min δj

maxφ
r/2
j

√

∑

δjφ
r
j

(4.7)

where φj is given by

δ−1
j |Q∗(tj)−Q∗(tj−1)| = φj . (4.8)

By the càdlàg property of H we have φj ≤ sup0≤s≤tQ(s) <∞ and, for any γ > 0,

∑

δjφ
γ
j →

∫ t

0
Qγ(s)ds = Qγ∗(t) (4.9)

which, together with (4.7) and the assumption that the sequence of subdivisions ∆ is 1
2 -balanced

implies that (4.6) is fulfilled. Hence (4.5) has been shown to hold.
By (4.9) we also have

{Q∗
∆}[γ] → Qγ∗ = H2γ∗ (4.10)

for every γ > 0 and therefore, in view of (4.5), we will have

{Xδ}[r](t)− µrHr∗(t)
√

vr
∑

δ2−rj |Q∗(tj)−Q∗(tj−1)|r
law→ N(0, 1) (4.11)

provided
{Q∗

∆}[r/2](t)−Qr/2∗(t)
√

∑

δ2−rj |Q∗(tj)−Q∗(tj−1)|r
→ 0. (4.12)

The numerator in (4.12) may be rewritten as

{Q∗
∆}[r/2](t)−Qr/2∗(t) =

∑

δj

(

δ
−r/2
j |Q∗(tj)−Q∗(tj−1)|r/2 − δ−1

j

∫ tj

tj−1

Qr/2(s)ds

)

=
∑

δj

(

φ
r/2
j − ψr/2j

)

where φj was defined by (4.8) and

ψj =

(

δ−1
j

∫ tj

tj−1

Qr/2(s)ds

)2/r

. (4.13)

(For simplicity, we have suppressed the dependence of ψj on r in the notation.) For the denom-
inator we have

min δj{Q∗
∆}[r](t) ≤

∑

δ2−rj |Q∗(tj)−Q∗(tj−1)|r ≥ max δj{Q∗
∆}[r](t). (4.14)
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Thus

{Q∗
∆}[r/2](t)−Qr/2∗(t)

√

∑

δ2−rj |Q∗(tj)−Q∗(tj−1)|r
≤ 1
√

{Q∗
∆}[r](t)

∑

δj

(

φ
r/2
j − ψr/2j

)

√

min δj

and on account of (4.10) and condition (V) the right hand side tends to 0, verifying (4.12) and
hence (4.11).

Since by (4.14) and (4.9) the denominator in (4.11) tends to 0 we have shown the first
assertion in Theorem 4.1.

It remains to prove that, under the strengthened assumption that the sequence of subdivisions
is 2

3 -balanced, we may substitute

µ−1
2r

∑

δ2−rj |X(tj)−X(tj−1)|r(t)

for
∑

δ2−rj |Q∗(tj)−Q∗(tj−1)|r (4.15)

in (4.11). Noting that
∑

δ2−rj |Q∗(tj)−Q∗(tj−1)|r =
∑

δ2jφ
r
j

and

∑

δ2−rj |X(tj)−X(tj−1)|r − µ2r

∑

δ2−rj |Q∗(tj)−Q∗(tj−1)|r law=
∑

δ2jφ
r
j(|uj |2r − µ2r)

we must, in other words, prove that
∑

δ2jφ
r
j(|uj |2r − µ2r) is of smaller order of magnitude than

∑

δ2jφ
r
j |uj|2r, in probability as |∆| → 0. For this it is enough to show that the standard deviation

of the former sum is of smaller order than the mean of the latter sum. The ratio of these two
quantities is

√
ν2r

µ2r

√

∑

δ4jφ
2r
j

∑

δ2jφ
r
j

where for the second ratio we have
√

∑

δ4jφ
2r
j

∑

δ2jφ
r
j

≤ (max δj)
3/2

min δj

√

∑

δjφ
2r
j

∑

δjφ
r
j

The second ratio on the right hand side of this inequality is bounded, by a previous argument,
and the first ratio tends to 0 on account of the 2

3 -balancedness assumption. �

Example 4.1 If the sequence of subdivisions ∆ is balanced and if H is of local bounded
variation then condition (4.2) is satisfied. The latter requirement is met in particular by the su-
perpositions of OU processes used as models for H in Barndorff-Nielsen and Shephard (2001b),
Barndorff-Nielsen and Shephard (2001a), cf. also Barndorff-Nielsen (2001) and Barndorff-
Nielsen, Nicolato, and Shephard (2002). �

5. Power variation and time changed Brownian motion

Our focus in this Section is on time changed Brownian motion, that is we are considering local
martingales of the form

X = B ◦ T (5.1)
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and we aim to extend (1.3) to this setting, moreover allowing the subdivisions ∆ to be non-
equidistant.

Processes of the form X = H • W , where H is càdlàg, fall within this group. In fact,
supposing that

H2∗(t) =

∫ t

0
H2(s)ds→∞

for t→∞ we have, by the Dambis-Dubins Schwarz theorem2, that the process X = H •W can
be reexpressed a.s. as B ◦ T where T = H2∗ = Q∗ and the Brownian motion B is defined from

X by B = X ◦ ←−T where
←−
T denotes the inverse of the time change of T . (Of course, T and

←−
T

are themselves determined by X since T = H2∗ = [X], the quadratic variation of X.)
We assume that the time-change T is continuous and strictly increasing. As before, ∆ stands

for a subdivision 0 = t0 < t1 < · · · < tn = t of [0, t] (with t and n suppressed in some of the
notation), and the limit statements refer to a single, but arbitrary, sequence of subdivisions
∆ with |∆| → 0. Further, we assume that T is independent of B, and therefore we may argue
conditionally on T . Otherwise put, we may consider T to be deterministic.

Letting
T∆j = T (tj)− T (tj−1)

we have

[X∆][r] − µr[T∆][r/2]
law
=

M
∑

j=1

T
r/2
∆j (|uj |r − µr)

where u1, ..., un are independent copies of a standard normal variate u (and, as before, µr =
E{|u|r}). Consequently,

[X∆][r] − µr[T∆][r/2]
√

vr[T∆][r]
law
= y∆

where y∆ = y∆1 + · · ·+ y∆n and y∆j = c∆jx∆j with

c∆j =
T
r/2
∆j

√

[T∆][r]

and x∆j
law
= (|u|r − µr)/

√
vr. By Corollary 3.1 we obtain

Theorem 5.1 Suppose that

maxj T
r/2
∆j

√

[T∆][r]
→ 0 (5.2)

as |∆| → 0. Then

[X∆][r] − µr[T∆][r/2]
√

vr[T∆][r]
law→ N(0, 1). (5.3)

�

Example 5.1 Suppose r = 1. Then [T∆][r] = T (t) and, since T is uniformly continuous

on [0, t], condition (5.2) holds. More generally, since, by Jensen’s inequality,
(

[T∆][r]
)1/r

is
decreasing in r we have for r ≤ 1 that

√

[T∆][r] ≥ T (t)r/2

2The extension of this theorem to the case where instead of the Brownian motions W and B one considers stable
processes is discussed in the recent paper by Kallsen and Shiryaev (2002), the results of which are summarised in
Section 6 below.
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and hence (5.2) is, in fact, valid for all 0 < r ≤ 1. �

Note that, writing T̂∆ = maxj T∆j we have

maxj T
r/2
∆j

√

[T∆][r]
=
{

∑

(T∆j/T̂∆)r
}−1/2

.

Example 5.2 Suppose T (s) = sψ for some ψ ∈ (0, 1) and, for simplicity, take t = 1.
Taking ∆ to be the equidistant subdivision determined by tj = j/n we have T̂∆ = n−ψ and

∑

(T∆j/T̂∆)r =
∑

{jψ − (j − 1)ψ}r

where for large j
(jψ − (j − 1)ψ)r ∼ ψrj−(1−ψ)r.

Consequently, if (1 − ψ)r > 1 condition (5.2) is not satisfied. In particular, this is the case if
r = 2 and ψ < 1

2 . �

Example 5.3 In case T = Q∗, where

Q∗(s) =

∫ s

0
Q(u)du

for some positive Riemann integrable function Q on [0, t], we have

Q ≤ ∆−1
j T∆j ≤ Q

where Q and Q are, respectively, the infimum and the supremum of Q over [0, t]. Suppose further
that Q is bounded away from 0, i.e. Q > 0.

Then we have
maxj T

r/2
∆j

√

[T∆][r]
≤ 1√

n

(

max δj
min δj

)r/2

(Q/Q)/r/2 → 0

and it follows that condition (5.2) is satisfied and Theorem 5.1 applies if max δ j/min δj is
bounded above, as is the case in particular if the subdivision ∆ is equidistant. �

Now suppose that [T∆][r/2] converges as |∆| → 0, with limit [T ][r/2], irrespectively of which
sequence of subdivisions is considered. It is then of interest to consider conditions under which

[X∆][r] − µr[T ][r/2]
√

vr[T∆][r]
law→ N(0, 1). (5.4)

Clearly this will be the case provided

[T∆][r/2] − [T ][r/2]
√

[T∆][r]
→ 0

as |∆| → 0. In particular, for r = 2 we have simply [T∆][r/2] = [T ][r/2] and therefore the following
Corollary to Theorem 5.1.

Corollary 5.1 If
maxj T∆j
√

[T∆][2]
→ 0

as |∆| → 0 then

[X∆][2](t)− T (t)
√

2[T∆][2]
law→ N(0, 1).

�
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6. Power variation and time–changed stable processes

We now inquire into the question of the degree to which the results discussed above for time-
changed Brownian motion can be extended to the class of α-stable processes. For simplicity we
restrict attention to the case where X is of the form X = H • Z for some symmetric α-stable
Lévy process, and we consider only equidistant subdivisions.

We first recall some known facts about symmetric α-stable processes. Let Z be the symmetric
α-stable process with 0 < α < 2 and cumulant function

C{ζ ‡ Z(t)} = log EeiζZ(t) = −t|ζ|α. (6.1)

This process is representable by subordination as

Z(t)
law
= B(S(t)),

where S is the positive α/2-stable subordinator with kumulant function

K̄{θ ‡ S(t)} = log Ee−θS(t) = −t(2θ)α/2.

When r < α, which is needed for the moments to exist, we will write

µα,r = E{|Z(1)|r} = µrE
{

S(1)r/2
}

.

Furthermore, if H is a predictable process such that for all t > 0

∫ t

0
|H|αs ds <∞

and, for t→∞,
∫ t

0
|H|αs ds→∞

then
H • Z = Z̃ ◦ |H|α∗ (6.2)

where Z̃ is a symmetric α-stable process and (in the previously established notation)

|H|α∗t =

∫ t

0
|H|αs ds.

Remark In the case where H is nonnegative the same conclusion holds for arbitrary, i.e.
not necessarily symmetric, α-stable processes. For a proof and the history of these result, see
Kallsen and Shiryaev (2002). These authors also show that, in essence, the results cannot be
extended to more general Lévy processes. �

Henceforth, let H(t) be a nonnegative and locally Riemann integrable function on [0,∞) and
assume that

∫ t

0
Hα(s)dZ(s) <∞

for all t > 0. Then X = H • Z is a well-defined process. In line with the previous discussion,
we assume that H and Z are independent, and we write Xj = X(jδ) −X((j − 1)δ) and Zj =
Z(jδ)− Z((j − 1)δ).

As an initial consideration we look at the asymptotic behaviour of unnormalised power
variations and let H ≡ 1, i.e. we consider the simplest case, X = Z. Recall first that the
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sup-variation [Z][r](t) is finite or infinite according to whether r > α or r ≤ α (cf. Fristedt and
Taylor (1973), Mikosch and Norvaǐsa (2000)).

The law of |Xj | is the same as the law of δ1/α|Z(1)| and thus

[Xδ]
[r](t)

law
= δr/α

M
∑

j=1

|Zj |r.

The random variables |Zj | belong to the domain of normal attraction of a stable law with
index α. Hence, on account of Feller (1971, pp. 580–581), we have the following limit properties,
where for simplicity we are letting r = 1:

If 1 < α < 2 then, for a certain α-stable law Sα,

[Xδ ]
[1](t)− δ−1+1/αµα,1

law→ Sα.

If 0 < α < 1 then, for a certain positive α-stable law S+α,

[Xδ ]
[1](t)

law→ S+α.

If α = 1 then, for a certain 1-stable law S1,

[Xδ ]
[1](t)− bδ law→ S1

where

bδ =

∫ ∞

−∞

sin(δx)dP{|Z(1)| ≤ x}.

In all three cases, δ1/2[Xδ ]
[1](t)

p→ 0. Note that the above limit laws are more complicated
than the mixed Gaussian limit laws obtained in Sections 3 and 5.

Next, for general H we have, by (6.1) and (6.2),

Xj
law
=

(

∫ jδ

(j−1)δ
Hα(s)ds

)1/α

Z(1)

so that

|Xj |r law=
(

∫ jδ

(j−1)δ
Hα(s)ds

)r/α

|vj |r (6.3)

where v1, ..., vM are i.i.d. with the same distribution as Z(1). Equivalently, by the subordination
property, we have

|Xj |r law=
(

∫ jδ

(j−1)δ
Hα(s)ds

)r/α

q
r/2
j |uj |r

where the q1, ..., qM are i.i.d., with the same law as S(1) and are independent of u1, ..., uM which
are i.i.d. standard normal.

In view of these representations of |Xj |r it would be rather simple to give a complete de-
scription of the various possible limiting behaviours of realised power variation as δ → 0. Here
we shall only discuss some particular cases.
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For r = 2 we have that realised quadratic variation is

[Xδ](t)
law
=







n
∑

j=1

|uj |α
∫ jδ

(j−1)δ
Hα(s)ds







2/α

S(1).

The term in braces satisfies, conditionally on H, as δ ↓ 0

M
∑

j=1

|uj |α
∫ jδ

(j−1)δ
Hα(s)ds

p→ µαH
α∗(t).

This follows from Corollary 3.3. Consequently, for the quadratic variation we have

[X∗](t)
law
= {µαHα∗(t)}2/αS(1). (6.4)

Much simpler and statistically more powerful results are available if we use realised power
variation instead of realised quadratic variation.

Recall E |Z(1)|γ exists if (and only if) γ < α. Thus the moments of |Z(1)|r exist up to, but
not including, order α/r. Hence, still given H, if r < α and 1 < α < 2 then

δ1−r/α[Xδ ]
[r](t)

p→ µα,rH
r∗(t), (6.5)

(where µα,r = E{|Z(1)|r}). This may be verified by means of Corollary 3.2. In fact, the
assumptions made on H imply that it suffices to prove the statement in the case H ≡ 1. Then,
in the notation of Corollary 3.2, cn = n−1 and the conditions (3.5)-(3.8) are easily checked
using the well known tail behaviour of the α-stable laws. (The result (6.5) provides a simple
generalisation of the use of quadratic variation for Brownian motion based stochastic volatility
models, for then r = 2 and

[Xδ]
[2](t)

p→ H2∗(t)

exactly.)
In case r < α/2 we have the stronger result that

δ1−r/αµ−1
α,r[Xδ ]

[r](t)−Hr∗(t)

δ1/2
√

µ−2
α,rvα,rH2r∗(t)

law→ N(0, 1), (6.6)

where vα,r = Var{|z(1)|r}. This result holds both conditionally and unconditionally. This is a
consequence of Corollary 4.1.

Of course in practice the above limit theory is has an unknown denominator H 2r∗(t) and so
could not be used even if we were to know α. However, in theory we could replace H 2r∗(t) by
the consistent estimator

δ1−2r/αµ−1
α,2r[Xδ]

[2r](t).

7. Related work

There are in the literature a considerable number of important results on power variations of
semimartingales generally, and Lévy processes in particular, that are related but not directly
relevant to what we have discussed above. To complete the picture the following points contain
a brief guide to those results.

Power variation and Lévy processes A number of authors have investigated the re-
lation between the Lévy measure ν of a Lévy process L and existence of sup-variations of the
process.
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The Blumenthal-Getoor index of a Lévy process is defined by

β = inf{r > 0 :

∫

[−1,1]
|x|rν(dx) <∞}.

If β < r then pathwise (Lépingle (1976), Hudson and Mason (1976))

[Lδ]
[r](t)→

∑

0<s≤t

|∆L(s)|r <∞

whereas in general [Lδ]
[r](t)→∞ when r ≤ β.

Furthermore (see Sato (1999, Theorem 21.9)), with r = 1 we have [L][1] < ∞ or = ∞
according as β ≤ 1 or 1 < β(< 2).

Some extensions to additive processes are considered in Woerner (2002).

Power variation and semimartingales Let X be a semimartingale. Lépingle (1976)
considered sup-variations of semimartingales generally and showed that [X] [r](t) <∞ for every
r > 2 while for 1 < r < 2 we have

[Xδ]
[r](t)→

∑

0<s≤t

|∆X(s)|r

provided 〈X〉t = 0 and
∑

0<s≤t

|∆X(s)|r <∞.

Sup-r-variation and integration We briefly recall the role of sup-variation in the theory
of integration.

Young (1936) extended the Stieltjes integral to allow for integration in cases where the
integrand and/or the integrator may be of unbounded variation. Dudley (1992) and Dudley
and Norvaǐsa (1999) extended the concept further, and Mikosch and Norvaǐsa (2000) applies the
theory to give path-by-path solutions to many basic stochastic integral equations. The main
condition for the existence of such solutions is that 0 < r < 2.

An annotated bibliography on power variation is available in Dudley, Norvaǐsa, and Jinghua
Qian (1999). See also Dudley and Norvaǐsa (1998). We also refer to the related work of Lyons on
rough paths, see Lyons (1994) and Bass, Hambly, and Lyons (2002) and references given there.
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Dudley, R. and R. Norvaǐsa (1998). An introduction to p-variation and Young integrals; with
emphasis on sample functions of stochastic processes. MaPhySto Lecture Notes 1998-1,
Aarhus University: MaPhySto.
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Mikosch, T. and R. Norvaǐsa (2000). Stochastic integral equations without probability.
Bernoulli 6, 401–434.

Mykland, P. and L. Zhang (2005). ANOVA for diffusions. Annals of Statistics 33. Forthcoming.
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