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Abstract: Many real life regression problems exhibit some kind of calender time
dependency and it is often of interest to predict the behavior of the regression function
along this calender time direction. This can be formulated as a regression model with
an added latent time series and the task is to be able to analyse this series. In this
paper we engage this through a two step procedure, firstly we treat the time dependent
elements as parameters and estimate them in the two-sided analysis of variance setup,
secondly we use the estimated time series as predictor of the latent time series. An
application to risk theory is discussed.
Key Words: regression, time series, risk theory.

1 Introduction

We start by defining the standard linear regression model with common slope and
different intercept in each group, where the groups correspond to changing calender
years. This model is well studied and estimation can be carried out by Ordinary Least
Squares. If we reformulate the model such that the intercept term in each year is
stochastic, we can use the intercept estimates from the linear model as predictions for
the latent time series. We wish to draw inference about the parameters in the model for
the time series, and the theory of the estimator for the first model gives us a starting
point for this task.
The obvious way to predict the latent time series would be to use conditional expec-

tations in some form but these are often difficult to calculate under general assumptions
and, more importantly, they require a fixed model for the time series. Our method en-
ables separating the time series analysis from the prediction of the series, and gives the
opportunity to wait deciding on the distribution of the time series until one has the
predicted series.
Suppose an unbalanced two-sided array of data is observed with a dependent variable

Yti and a q-dimensional covariate Xti so t = 1, . . . T is a time index while the number
of individuals i = 1, . . . , nt vary over time. A standard two-sided analysis of variance
model can be formulated as

Yti = αt +X 0
tiγ + eti,
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where the error terms, eti, are independent over individuals, i, and time t, and identically
distributed with mean zero and variance η2. The least squares estimators for αt and γ
are then found by minimising the sum of squared deviations

TP
t=1

ntP
i=1

n¡
Yti − Y t

¢
−
¡
Xti −Xt

¢0
γ
o2
+

TP
t=1

nt
³
Y t −X

0
tγ − αt

´2
,

where Y t and Xt represent averages over individuals with a common time index t. This
gives the estimators

γ̂ =

½
TP
t=1

ntP
i=1

¡
Xti −Xt

¢ ¡
Xti −Xt

¢0¾−1 TP
t=1

ntP
i=1

¡
Xti −Xt

¢
Yti, α̂t = Y t −X

0
tγ̂.

The total number of observations is denoted n =
PT

t=1 nt.
We will now formulate a latent time series regression model for the same array of

data. This is formulated as
Yti = µt +X 0

tiβ + εti, (1)

where µ1, . . . , µT is the latent time series. As in the two-sided analysis of variance model
we estimate the regression coefficient β and the latent time series µt by

β̂ =

½
TP
t=1

ntP
i=1

¡
Xti −Xt

¢ ¡
Xti −Xt

¢0¾−1 TP
t=1

ntP
i=1

¡
Xti −Xt

¢
Yti, µ̂t = Y t −X

0
tβ̂.

Imagining a situation where T is large and nt even larger we will show three types of
results: (i) The regression function can be estimated and analysed in the same way
as if the time component had been deterministic. (ii) The latent time series can be
estimated very accurately. (iii) Oracle efficiency: the estimated time series can be
analysed as the time series itself, had it be given by an oracle.

2 Analysis of the latent time series regression model

The three types of results for the latent time series regression model are now discussed
in detail.
To formulate the conditions precisely, let k·k be the spectral norm so kAk2 equals

the maximal eigenvalue of A0A for a matrix A and reduces to A0A for a vector A.

2.1 The regression estimator

The first result shows that the regression estimator β̂ is asymptotically normal in similar
way to what would arise in a two-sided analysis of variance model. The result is
formulated for large sample length of the time series, T →∞, in terms of a Liapounov
Central Limit Theorem.
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The essence of the conditions is that the innovations εti, given the regressors, have a
standardised distribution, while the regressors Xti are allowed to vary over both indices
as long as the information is spread across the individuals and over time. Importantly,
the limiting distribution of β̂ does not depend on neither the nature of the latent time
series nor is the number of individuals at each time point, nt, required to increase with
T.

Theorem 1 Suppose that for some sequence aT depending on T , it holds that

(i) the variables satisfy

(a) the arrays (εti, Xti, for i = 1, . . . , nt) are independent over t,

(b) the pairs (εti,Xti) are independent over i,

(ii) the innovations satisfy, for some k <∞,
(a) E(εti|Xti) = 0, (b) Var(εti|Xti) = σ2, (c) maxt,i E(kεtik4 |Xti) < k.

(iii) the regressors satisfy, for a positive definite matrix Σ,

(a) a−2T E
PT

t=1

Pnt
i=1

¡
Xti −Xt

¢ ¡
Xti −Xt

¢0 → Σ,

(b) a−2T
PT

t=1

Pnt
i=1

¡
Xti −Xt

¢ ¡
Xti −Xt

¢0 P→ Σ,

(c) a−4T E
PT

t=1 nt
Pnt

i=1

°°Xti −Xt

°°4 → 0.

Then, for T →∞,

aT
³
β̂ − β

´
P→ N

¡
0, σ2Σ−1

¢
.

2.2 Prediction of the time series

We will seek to apply time series analysis to the estimated time series µ̂1, . . . , µ̂T with
a view to predicting future values of µt. This will be possible when the estimated time
series

µ̂t = Y t −X
0
tβ̂ = µt +X

0
t

³
β − β̂

´
+ εt (2)

is close to latent time series µt uniformly over time. This issue is investigated in Theorem
2 below. Noting that β̂ − β is invariant to changes in the value of β the predicted time
series µ̂t inherits this property.
In addition to the assumptions of Theorem 1 the Theorem 2 concerning µ̂t requires

that the number of individuals nt at each point in time growths faster than T.

Theorem 2 Suppose the assumptions of Theorem 1 are satisfied, and that,

(iv) maxt(n
−1
t ) = o(T

−1),

(v) a−2T E
PT

t=1 n
−1
t

Pnt
i=1 kXtik2 → 0.
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Then, for T →∞,
TP
t=1

(µ̂t − µt)
2 = oP(1).

2.3 Analysis of the predicted time series

As an example of a time series model for µt consider the first order autoregression

µt = ρµt−1 + ξt (t = 2, . . . , T ) (3)

conditional on µ1, where the innovations ξt constitute a martingale difference sequence
with variance ω2. Had the latent time series µt been observed statistical analysis would
typically be based on the standardised least squares estimator

t =

PT
t=2 ξtµt−1³PT
t=2 µ

2
t−1

´1/2 . (4)

The asymptotic properties of this statistic are well known: when |ρ| < 1 it is normal
distributed due to a Central Limit Theorem argument for martingale differences, see
Hall and Heyde (1980, p.172), when |ρ| = 1 it has a non-standard distribution that
can be represented using Brownian motions, see Dickey-Fuller (1979), whereas when
|ρ| > 1 and the innovations are independent and normal it is asymptotically normal
distributed, see Anderson (1959).
The parameters ρ, ω2 can be estimated by least squares estimators based on the

estimated series µ̂t given as

ρ̂ =

PT
t=2 µ̂tµ̂t−1PT
t=2 µ̂

2
t−1

, ω̂2 =
1

T − 1

⎧⎪⎨⎪⎩PT
t=2 µ̂

2
t −

³PT
t=2 µ̂tµ̂t−1

´2
PT

t=2 µ̂
2
t−1

⎫⎪⎬⎪⎭ .

The following result shows that for very weak assumptions to the innovation process
the estimators ρ̂, ω̂2 will have properties similar to what could have been achieved had
the latent time series been given to us by an oracle. In particular the series µ̂t can be
analysed well regardless of whether the latent time series is stationary, or non-stable.

Theorem 3 Suppose, as stated in Theorem 2, that

TP
t=1

(µ̂t − µt)
2 = oP(1).

Suppose, further, that (ξt) is a martingale difference sequence with respect to a filtration
(Ft) satisfying E(ξ

2
t |Ft−1) = ω2 and maxt E(|ξt|3 |Ft−1) <∞. Then, for any ρ ∈ R and
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T →∞ it holds PT
t=2 µ̂

2
t−1 =

PT
t=2 µ

2
t−1 {1 + oP(1)} ,

t̂ =
³PT

t=2 µ̂
2
t−1

´1/2
(ρ̂− ρ) =

PT
t=2 ξtµt−1³PT
t=2 µ

2
t−1

´1/2 {1 + oP(1)}+ oP(1),
ω̂2 =

1

T

PT
t=2 ξ

2
t + oP(1).

3 Risk Theory

The model presented above has an application to Risk Theory. In the standard setting of
Risk Theory, see Bühlmann (1970), Beard, Pentikainen and Pesonen (1984) or Norberg
(1990), the focus concentrates on the investigation of the claim process,

Cτ =
NτX
i=1

Zi, (τ ≥ 0) ,

where Nτ is a counting process representing the number of claims occurred in a time
interval [0; τ ] and Zi is the size of the ith claim. In practice, it is of interest to study
the growth of claim sizes in order to predict future liabilities. It is therefore natural
to include a time dependency in the model for Zi to describe this pattern, and this is
where the latent time series regression model proves its worth. Grouping the claims in
years, gives us the opportunity to use the setup from the previous section,

C∗τ =
τX
t=1

ntX
i=1

Yti, (τ ∈ N0) ,

where nt is the number of claims in year t and, Yti is the size of the ith claim in the tth
year, following the model defined by (1) and (3).
A slight modification has to be made to Theorems 1 and 2 when using the latent

time series regression model in Risk Theory, to allow for stochastic behavior of nt. The
following holds.

Theorem 4 Suppose that the Assumptions (i, a) , (iii) , (v) hold, while Assumptions
(i, b), (ii) are modified to hold conditionally on nt, and (iv) is replaced by

(iv0) maxt E(n
−1
t |nt > 0) = o(T−1).

Then, for T →∞,

√
aT
³
β̂ − β

´
P→ N

¡
0, σ2Σ

¢
and

TP
t=1

(µ̂t − µt)
2 = oP(1).
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The assumptions of Theorem 4 can be shown to be valid in many specific situations.
In many Risk Theory models it is assumed that the number of individuals is Poisson(λt)-
distributed. Assuming that maxλ−1t = o (T−1) it is clear that Assumption (iv0) is
satisfied. To see this, use Jensen’s inequality,

E
¡
n−1t |nt > 0

¢
≤ {E (nt|nt > 0)}−1 =

1− exp (−λt)
λt

≤ 1

λt
= o

¡
T−1

¢
.

4 Illustration

The asymptotic theory is now illustrated by a simulation, where the covariates Xti are
chosen to be trending over time. We will assume that T = 20 periods are considered and
the numbers of individuals, nt, are independently Poisson (λ)-distributed where λ = 100,
so it is not unreasonable to assume that λ−1 = o (T−1) . The regressors Xti are assumed
to be Γ (δt, 1)-distributed where the shape parameter δt = 1 + t/10 growths linearly
over time and the regression coefficient is chosen to be β = 0 due to the invariance with
respect to β. The conditional distribution of the errors εti given regressors is assumed to
be N(0, 32), while the innovations ξt are N(0, 1

2) and thus have much smaller variation
than the errors, εti. Finally, assume an autoregressive coefficient of unity, ρ = 1.
In this situation the Assumptions (i) , (ii) , (iv0) of Theorem 4 are trivially met.

Choosing a2T = λT 2 and T−2
PT

t=1 δt → Σ = 1/20 some tedious calculations presented
in the Appendix show that Assumptions (iii) and (v) are met.

Table 1. Simulation results

λ−value 10 20 40 80 160bEPT
t=1 (µ̂t − µt)

2 22·61 10·54 5·16 2·55 1·26bEPT
t=1 ε

2
t 20·44 9·50 4·62 2·28 1·14bE(bt− t)2 3·97 1·20 0·362 0·127 0·0498

Table 1 reports the results of the simulation study. For each of five different values
of the Poisson parameter λ the expectation of three statistics were simulated using 5000
repetitions. For the smallest value, λ = 10, it happened 6 times that nt took the value
0 which was then replaced by 1.
The first row of Table 1 investigates the convergence

PT
t=1 (µ̂t − µt)

2 = oP(1) stated
in Theorem 4. The expectation of this term appear to be of order λ−1. Even for a
modest value of λ it is small compared to the expected sum of squared innovations of
the latent time series, which is E

PT
t=1 ξ

2
t = 20. The proof of the convergence result

uses the decomposition µ̂t − µt = X
0
t(β − β̂) + εt, see (2). While both terms vanish a

comparison of the first two rows of Table 1 indicates that the term εt is dominating in
accordance with the proof.
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In the third row of Table 1 the convergence of Theorem 3 is investigated. The mean
square error bE(bt− t)2 is simulated and reported in Table 1. This statistic also appears
to be vanishing fast. Once again, it is relatively small compared to the expectation
Et2, in that the limiting distribution of t2 has expectation of about 1.142, see Nielsen
(1997). When λ is larger than about 40 and thus somewhat larger than T this mean
square error is therefore of relatively minor importance.

5 Discussion

We have introduced a latent time series regression model and extended it to a specific
risk theoretical setting. While the concept of a latent time series is new in risk theory,
it has some history in the area of mortality estimation and in panel data analysis.
It was introduced in mortality estimation in a widely cited paper by Lee and Carter

(1992). First, they estimate how the mortality depends of three non-parametrically
specified functions, two depending on age and one depending on calendar time. This,
their first step, is rather similar to our first step estimating our two components from a
standard analyses of variance. Afterwards, they analyse their non-parametric function
depending on calendar time as a simple autoregressive function much like we investigate
our calendar effect as a time series. The major contribution of this paper is to consider
the latent time series to be part of the original model formulation and to formulate
standard theorems of mathematical statistics to investigate the properties of such a
model. One interesting future line of research could be to treat the important mortality
model of Lee and Carter in a similar way. Another interesting future direction of
research could be to investigate the possibility of including such a latent time series in
risk theoretic models of outstanding insurance liabilities based on aggregated data, see
England and Verrall (2000) for a review of such models.
The proposed model is also related to some recent latent time series models for

balanced panel data, so nt is constant over t. Forni, Hallin, Lippi and Reichlin (2000)
consider a model of the form

Yti = γi (L)ut + εti,

so γi (L)ut is a moving average process where the lag polynomials γi(L) have coefficients
depending on i while the innovations ut are common for all individuals. They propose
an estimator for the latent component γi (L)ut. In the simple situation where γi(L) = 1
this is done in a similar way to our formulation of µ̂t by estimating ut by Y t. Pesaran
(2003) looks at the model

Yti = αi + βiYt−1,i + γift + εti.

and analyses the regression function αi + βiYt−1,i with a view to testing the joint unit
root hypothesis βi = 1 for all i. This is done in a similar way to our model in that the
latent time series γift is replaced by ci+diY t−1 where ci and di are auxiliary parameters.
The results presented in this paper could possibly inspire the formulation of theoretical
properties of these more complicated models.
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A Proofs

Proof of Theorem 1. Consider the triangular array yTt = a−1T
Pnt

i=1

¡
Xti −Xt

¢
εti

and show that the Liapounov conditions of Davidson (1994, p. 373) are satisfied:
(1) By Assumption (i, a) then yTt is independent over t.
(2) By Assumptions (i, b) , (ii, a) then E (yTt) = 0.
(3) By Assumptions (i, b) , (ii, b) , (iii, a) then s2T = Var (yTt)→ σ2Σ.
(4) Note first, that with zti = Xti −Xt it holds

a4TE kyT,tk
4 = E

°°°° ntP
i=1

ztiεti

°°°°4 = E
ÃP

i,j

εtiεtjz
0
tjzti

!2
.

Conditioning on the regressors and nt and using Assumption (ii) this is bounded by

a4TE kyT,tk
4 ≤ k

ntP
i=1

kztik4 + 2σ2
P
i6=j
kztik2 kztjk2 .

By Jensen’s inequality this in turn is bounded, for some K <∞, by

a4TE kyT,tk
4 ≤ Knt

ntP
i=1

kztik4 .

Thus the Liapounov condition
PT

t=1 E kyT,tk
4 → 0 is met under Assumption (iii, c) .

Proof of Theorem 2. Due to the expression (2) and Markov’s inequality it suffices
to argue that

PT
t=1 ε

2
t and (β − β̂)0

PT
t=1XtX

0
t(β − β̂) vanish.

To show that
PT

t=1 ε
2
t vanish use Chebychev’s inequality to see that

P
³PT

t=1 ε
2
t > δ

´
≤ δ−1E

PT
t=1 ε

2
t = δ−1

PT
t=1 Eε

2
t .

It therefore suffices to show Eε2t = o (T
−1) . Using first Assumption (i, b) and then the

bound to nt in Assumption (iv) it holds

Eε2t = Eσ
2/nt = o

¡
T−1

¢
.

It follows from Theorem 1 that (β̂ − β) = OP
¡
a−1T
¢
so it suffices to show that

a−2T
PT

t=1XtX
0
t vanishes. Using first Chebychev’s inequality, then twice the triangle

inequality, and Jensen’s inequality

δP
³°°°PT

t=1XtX
0
t

°°° > δ
´
≤ E

°°°PT
t=1XtX

0
t

°°° ≤ EPT
t=1

°°°XtX
0
t

°°° =PT
t=1 E

°°Xt

°°2
≤

PT
t=1 E

µ
1

nt

Pnt
i=1 kXt,ik

¶2
≤
PT

t=1 E
1

nt

Pnt
i=1 kXt,ik2 .
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This is of order o(a2T ) as desired due to Assumption (v).

Proof of Theorem 3. The key to this result is to showµ
TP
t=2

µ2t

¶−1
= OP(T

−1) and
TP
t=2

ξ2t = OP(T ). (5)

For the stated assumptions to ξ this holds for any ρ ∈ R according to Lai and Wei
(1983, Theorems 1 and 3).
It is first shown that

PT
t=2 µ̂

2
t−1 =

PT
t=2 µ

2
t−1 {1 + oP(1)} . Let dt = µ̂t − µt and use

Cauchy-Schwarz’s inequality to see

PT
t=2 µ̂

2
t−1 ≤

PT
t=2 µ

2
t−1 + 2

³PT
t=2 µ

2
t−1
PT

t=2 d
2
t−1

´1/2
+
PT

t=2 d
2
t−1

Theorem 2 and the first property in (5) give the desired result.
Turning to the first expression of interest the numerator satisfiesPT
t=2

¡
µ̂t − ρµ̂t−1

¢
µ̂t−1 =

PT
t=2 (ξt + dt − ρdt−1)

¡
µt−1 + dt−1

¢
=
PT

t=2 ξtµt−1 +R,

where R is some remainder term. By the triangle inequality and Cauchy-Schwarz’s
inequality R is found to be of the order³PT

t=2 ξ
2
t

PT
t=2 d

2
t−1

´1/2
+ (1 + |ρ|)

³PT
t=2 µ

2
t−1
PT

t=1 d
2
t

´1/2
+ (1 + |ρ|)

PT
t=1 d

2
t .

Theorem 2 and (5) then show R = oP(
PT

t=1 µ
2
t )
1/2. Together with the result for denom-

inator shown above this implies the desired result.
The estimator ω̂2 satisfies

(T − 1)ω̂2 =
PT

t=2

¡
µ̂t − ρµ̂t−1

¢2 −
nPT

t=2

¡
µ̂t − ρµ̂t−1

¢
µ̂t−1

o2
PT

t=2 µ̂
2
t−1

=
PT

t=2

¡
µ̂t − ρµ̂t−1

¢2 − (ρ̂− ρ)2
PT

t=2 µ̂
2
t−1.

The first term equals
PT

t=2 (ξt + dt − ρdt−1)
2 which in turn equals

PT
t=2 ξ

2
t + oP(T ) by

an argument as that for the numerator of the first expression. The second term is
asymptotically equivalent to the statistic (4) due to the first part of this Theorem,
which in turn is of order oP(T ) according to Nielsen (2001, Lemma A3).

Proof of Theorem 4. The proofs of Theorems 1, 2 can be adapted:
Asymptotic distribution of β̂.
(a) It suffices to argue that the bound to Eε2t holds. By iterated expectations

Eε2t = E
¡
ε2t |nt > 0

¢
P (nt > 0) ≤ E

¡
ε2t |nt > 0

¢
= E

©
E
¡
ε2t |nt > 0, nt

¢
|nt > 0

ª
.
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This equals σ2E
©
n−1t |nt > 0

ª
due to Assumptions (i0) , (ii0, b) . This is in turn bounded

by T−(1+a) according to assumption (iv0).
(b) This argument can be done in the same way as (a) by conditioning on nt.
(c) Same argument as in the proof of Theorem 2.
(d) The argument concerning the bound to EX

2

t has to be adapted along the lines
of (a) .

Finally it is argued that the Assumptions (iii) and (v) are met in the illustration of
Section 4. First note that

Ent = λ, En2t = λ2 + λ,

E (Xti|nt) = δt, E
¡
X2

ti|nt
¢
= δ2t + δt,

E
©
(Xti − δt)

2
¯̄
nt
ª
= δt, κt = E

©
(Xti − δt)

4
¯̄
nt
ª
= 3δ2t + 6δt.

Noting that nt
¡
Xti −Xt

¢
= (nt − 1) (Xti − δt)−

P
k 6=i (Xtk − δt) it is seen that

E
n¡

Xti −Xt

¢2 ¯̄̄
nt
o
= δt

©
1 + O

¡
n−1t

¢ª
,

E
n¡

Xti −Xt

¢4 ¯̄̄
nt
o
= κt

©
1 + O

¡
n−1t

¢ª
+ δ2tO

¡
n−1t

¢
,

while using that
¡
Xti −Xt

¢
= (Xti − δt)−

¡
Xt − δt

¢
it is seen that, for i 6= j,

E
n¡

Xti −Xt

¢2 ¡
Xtj −Xt

¢2 ¯̄̄
nt
o
= δ2t

©
1 + O

¡
n−1t

¢ª
+ κtO

¡
n−2t

¢
.

Turning to the Assumptions it then follows for (iii, a) that

a−2T
TP
t=1

E
ntP
i=1

E
n¡

Xti −Xt

¢2 ¯̄̄
nt
o

=
1

λT 2

TP
t=1

δtEnt {1 + o (1)} =
1

T 2

TP
t=1

δt {1 + o (1)}→ Σ.

Next, for (iii, b) it suffices to prove that

E

∙
a−2T

TP
t=1

½
ntP
i=1

¡
Xti −Xt

¢2 − λδt

¾¸2
= I1 + I2 → 0,

where

I1 =
1

λ2T 4

TP
t=1

E

½
ntP
i=1

¡
Xti −Xt

¢2 − λδt

¾2
=

1

λ2T 4

TP
t=1

κλ {1 + o (1)}→ 0,

I2 =
1

λ2T 4
P
s6=t
E

½
ntP
i=1

¡
Xti −Xt

¢2 − λδt

¾
E

½
nsP
i=1

¡
Xsi −Xs

¢2 − λδs

¾
= 0.
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For (iii, c) and (iv) it holds

a−4T
TP
t=1

Ent
ntP
i=1

E
n¡

Xti −Xt

¢4 ¯̄̄
nt
o
=

1

λ2T 4

TP
t=1

κλ2 {1 + o (1)}→ 0,

a−2T
TP
t=1

En−1t
ntP
i=1

E
¡
X2

ti

¯̄
nt
¢
=

1

λT 2

TP
t=1

δ2t {1 + o (1)}→ 0.
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