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1 Overview

Stochastic volatility (SV) is the main concept used in the fields of financial economics and

mathematical finance to deal with the endemic time-varying volatility and codependence found

in financial markets. Such dependence has been known for a long time, early comments include

Mandelbrot (1963) and Officer (1973). It was also clear to the founding fathers of modern

continuous time finance that homogeneity was an unrealistic if convenient simplification, e.g.

Black and Scholes (1972, p. 416) wrote “... there is evidence of non-stationarity in the variance.

More work must be done to predict variances using the information available.” Heterogeneity

has deep implications for the theory and practice of financial economics and econometrics. In

particular, asset pricing theory is dominated by the idea that higher rewards may be expected

when we face higher risks, but these risks change through time in complicated ways. Some of

the changes in the level of risk can be modelled stochastically, where the level of volatility and

degree of codependence between assets is allowed to change over time. Such models allow us

to explain, for example, empirically observed departures from Black-Scholes-Merton prices for

options and understand why we should expect to see occasional dramatic moves in financial

markets.

The outline of this article is as follows. In section 2 I will trace the origins of SV and provide

links with the basic models used today in the literature. In section 3 I will briefly discuss some

of the innovations in the second generation of SV models. In section 4 I will briefly discuss the

literature on conducting inference for SV models. In section 5 I will talk about the use of SV

to price options. In section 6 I will consider the connection of SV with realised volatility. A

extensive reviews of this literature is given in Shephard (2005).

2 The origin of SV models

The origins of SV are messy, I will give five accounts, which attribute the subject to different

sets of people.
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Clark (1973) introduced Bochner’s (1949) time-changed Brownian motion (BM) into financial

economics. He wrote down a model for the log-price M as

Mt = Wτ t
, t ≥ 0, (1)

where W is Brownian motion (BM), t is continuous time, τ is a time-change and W ⊥⊥ τ ,

where ⊥⊥ denotes independence. The definition of a time-change is a non-negative process with

non-decreasing sample paths, although Clark also assumed τ has independent increments. Then

Mt|τ t ∼ N(0, τ t). Further, so long (for each t) as E
√
τ t < ∞ then M is a martingale (written

M ∈ M) for this is necessary and sufficient to ensure that E |Mt| < ∞. More generally if

(for each t) τ t < ∞ then M is a local martingale (written M ∈ Mloc). Hence Clark was solely

modelling the instantly risky component of the log of an asset price, written Y , which in modern

semimartingale (written Y ∈ SM) notation we would write as

Y = A+M.

The increments of A can be thought of as the instantly available reward component of the asset

price, which compensates the investor for being exposed to the risky increments of M . The A

process is assumed to be of finite variation (written A ∈ FV).

To the best of my understanding the first published direct volatility clustering SV paper is

that by Taylor (1982). His discrete time model of daily returns, computed as the difference of

log-prices

yi = Yi − Yi−1, i = 1, 2, ...,

where I have assumed that t = 1 represents one day to simplify the exposition. He modelled the

risky part of returns, mi = Mi −Mi−1 as a product process

mi = σiεi. (2)

Taylor assumed ε has a mean of zero and unit variance, while σ is some non-negative process,

finishing the model by assuming ε ⊥⊥ σ. Taylor modelled ε as an autoregression and

σi = exp(hi/2),

where h is a non-zero mean Gaussian linear process. The leading example of this is the first

order autoregression

hi+1 = µ+ φ (hi − µ) + ηi, ηi ∼ NID(0, σ2
η). (3)

In the modern SV literature the model for ε is typically simplified to an i.i.d. process, for we

deal with the predictability of asset prices through the A process rather than via M . This is
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now often called the log-normal SV model in the case where ε is also assumed to be Gaussian.

In general, M is always a local martingale.

A key feature of SV, which is not discussed by Taylor, is that it can deal with leverage effects.

Leverage effects are associated with the work of Black (1976) and Nelson (1991), and can be

implemented in discrete time SV models by negatively correlating the Gaussian εi and ηi. This

still implies that M ∈ Mloc, but allows the direction of returns to influence future movements

in the volatility process, with falls in prices associated with rises in subsequent volatility.

Taylor’s discussion of the product process was predated by a decade in the unpublished

Rosenberg (1972). Rosenberg introduces product processes, empirically demonstrating that

time-varying volatility is partially forecastable and so breaks with the earlier work by Clark. He

suggests an understanding of aggregational Gaussianity of returns over increasing time intervals

and predates a variety of econometric methods for analysing heteroskedasticity.

In continuous time the product process is the standard SV model

Mt =

∫ t

0
σsdWs, (4)

where the non-negative spot volatility σ is assumed to have càdlàg sample paths (which means

it can possess jumps). The squared volatility process is often called the spot variance.

The first use of continuous time SV models in financial economics was, to my knowledge,

in Johnson (1979) who studied the pricing of options using time-changing volatility models in

continuous time (see also Johnson and Shanno (1987) and Wiggins (1987)). The most well

known paper in this area is Hull and White (1987). Each of these authors desired to generalise

the Black and Scholes (1973) approach to option pricing models to deal with volatility clustering.

In the Hull and White approach σ2 follows the solution to the univariate SDE

dσ2 = α(σ2)dt+ ω(σ2)dB,

where B is a second Brownian motion and ω(.) is a non-negative deterministic function.

The probability literature has demonstrated that SV models and their time-changed BM

relatives are fundamental. This theoretical development will be the fifth strand of literature

that I think of as representing the origins of modern stochastic volatility research. Suppose

we simply assume that M ∈ Mc
loc, a process with continuous local martingale sample paths.

Then the celebrated Dambis-Dubins-Schwartz Theorem shows that M can be written as a time-

changed Brownian motion. Further the time-change is the quadratic variation (QV) process

[M ]t = p− lim
n→∞

n∑

j=1

(
Mtj −Mtj−1

) (
Mtj −Mtj−1

)′
, (5)
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for any sequence of partitions t0 = 0 < t1 < ... < tn = t with supj{tj − tj−1} → 0 for n → ∞.

What is more, as M has continuous sample paths, so must [M ]. Under the stronger condition

that [M ] is absolutely continuous, then M can be written as a stochastic volatility process.

This latter result, which is called the martingale representation theorem, is due to Doob (1953).

Taken together this implies that time-changed BMs are canonical in continuous sample path

price processes and SV models are special cases of this class. A consequence of the fact that for

continuous sample path time-change BM, [M ] = τ is that in the SV case

[M ]t =

∫ t

0
σ2
sds.

The SV framework has an elegant multivariate generalisation. In particular, write a p-dimensional

price process M as (4) but where σ is a matrix process whose elements are all càdlàg, W is a

multivariate BM process. Further [M ]t =
∫ t
0 σsσ

′
sds.

3 Second generation model building

3.1 Univariate models

3.1.1 General observations

In initial diffusion-based models the volatility was Markovian with continuous sample paths.

Research in the late 1990s and early 2000s has shown that more complicated volatility dynamics

are needed to model either options data or high frequency return data. Leading extensions to

the model are to allow jumps into the volatility SDE (e.g. Barndorff-Nielsen and Shephard

(2001) and Eraker, Johannes, and Polson (2003)) or to model the volatility process as a function

of a number of separate stochastic processes or factors (e.g. Chernov, Gallant, Ghysels, and

Tauchen (2003), Barndorff-Nielsen and Shephard (2001)).

3.1.2 Long memory

In the SV literature considerable progress has been made on working with both discrete and

continuous time long memory SV. This involves specifying a long-memory model for σ in discrete

or continuous time.

Breidt, Crato, and de Lima (1998) and Harvey (1998) looked at discrete time models where

the log of the volatility was modelled as a fractionally integrated process. In continuous time

there is work on modelling the log of volatility as fractionally integrated Brownian motion by

Comte and Renault (1998). More recent work, which is econometrically easier to deal with, is

the square root model driven by fractionally integrated BM introduced in an influential paper by

Comte, Coutin, and Renault (2003) and the infinite superposition of non-negative OU processes

introduced by Barndorff-Nielsen (2001).
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3.1.3 Jumps

In detailed empirical work a number of researchers have supplemented standard SV models by

adding jumps to the price process or to the volatility dynamics. Bates (1996) was particularly

important as it showed the need to include jumps in addition to SV, at least when volatility

is Markovian. Eraker, Johannes, and Polson (2003) deals with the efficient inference of these

types of models. A radical departure in SV models was put forward by Barndorff-Nielsen and

Shephard (2001) who suggested building volatility models out of pure jump processes called non-

Gaussian OU processes. Closed form option pricing based on this structure is studied briefly

in Barndorff-Nielsen and Shephard (2001) and in detail by Nicolato and Venardos (2003). All

these non-Gaussian OU processes are special cases of the affine class advocated by Duffie, Pan,

and Singleton (2000) and Duffie, Filipovic, and Schachermayer (2003).

3.2 Multivariate models

Diebold and Nerlove (1989) introduced volatility clustering into traditional factor models, which

are used in many areas of asset pricing. In continuous time their type of model has the inter-

pretation

Mt =

J∑

j=1

∫
β(j)sdF(j)s +Gt,

where the factors F(1),F(2),...,F(J) are independent univariate SV models and G is correlated

multivariate BM. Some of the related papers on the econometrics of this topic include King,

Sentana, and Wadhwani (1994) and Fiorentini, Sentana, and Shephard (2004), who all fit this

kind of model. These papers assume that the factor loading vectors are constant through time.

A more limited multivariate discrete time model was put forward by Harvey, Ruiz, and

Shephard (1994) who allowed Mt = C
∫ t
0 σsdWs, where σ is a diagonal matrix process and C

is a fixed matrix of constants with a unit leading diagonal. This means that the risky part of

prices is simply a rotation of a p-dimensional vector of independent univariate SV processes.

4 Inference based on return data

4.1 Moment based inference

The task is to carry out inference on θ = (θ1, ..., θK)′, the parameters of the SV model based on

a sequence of returns y = (y1, ..., yT )′. Taylor (1982) and Melino and Turnbull (1990) calibrated

their models using the method of moments. Systematic studies, using a GMM approach, of

which moments to heavily weight in SV models was given in Andersen and Sørensen (1996),

Genon-Catalot, Jeantheau, and Larédo (2000), Sørensen (2000) and Hoffmann (2002).
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A difficulty with using moment based estimators for continuous time SV models is that it is

not straightforward to compute the moments y. In the case of no leverage, general results for

the second order properties of y and their squares were given in Barndorff-Nielsen and Shephard

(2001). Some quite general results under leverage are also given in Meddahi (2001).

In the discrete time log-normal SV models the approach advocated by Harvey, Ruiz, and

Shephard (1994) has been influential. Their approach was to remove the predictable part of

the returns, so we think of Y = M again, and work with log y2
i = hi + log ε2i . If the volatility

has short memory then this form of the model can be handled using the Kalman filter, while

long memory models are often dealt with in the frequency domain. Either way this delivers

a Gaussian quasi-likelihood which can be used to estimate the parameters of the model. The

linearised model is non-Gaussian due to the long left hand tail of log ε2
i which generates outliers

when εi is small.

4.2 Simulation based inference

In the 1990s a number of econometricians started to use simulation based inference to tackle SV

models. To discuss these methods it will be convenient to focus on the simplest discrete time

log-normal SV model given by (2) and (3).

MCMC allows us to simulate from θ, h|y, where h = (h1, ..., hT )′. Discarding the h draws

yields samples from θ|y. Summarising yields fully efficient parametric inference. In an influential

paper Jacquier, Polson, and Rossi (1994) implemented a MCMC algorithm for this problem.

A subsequent paper by Kim, Shephard, and Chib (1998) gives quite an extensive discussion

of various MCMC algorithms. This is a subtle issue and makes a very large difference to the

computational efficiency of the methods (e.g. Jacquier, Polson, and Rossi (2003) and Yu (2005)).

Kim, Shephard, and Chib (1998) introduced the first filter using a so-called particle filter.

As well as being of substantial scientific interest for decision making, the advantage of having a

filtering method is that it allows us to compute marginal likelihoods for model comparison and

one-step ahead predictions for model testing.

Although MCMC based papers are mostly couched in discrete time, a key advantage of the

general approach is that it can be adapted to deal with continuous time models by the idea of

augmentation. This was fully worked out in Elerian, Chib, and Shephard (2001), Eraker (2001)

and Roberts and Stramer (2001).

A more novel non-likelihood approach was introduced by Smith (1993) and later developed

by Gourieroux, Monfort, and Renault (1993) and Gallant and Tauchen (1996) into what is now

called indirect inference or the efficient method of moments. Here I will briefly give a stylised

version of this approach.
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Suppose there is an auxiliary model for the returns (e.g. GARCH) whose density, g(y;ψ),

is easy to compute and, for simplicity of exposition, has dim(ψ) = dim(θ). Then compute its

MLE, which we write as ψ̂. We assume this is a regular problem so that ∂ log g(y; ψ̂)/∂ψ = 0

recalling that y is the observed return vector. Simulate a very long process from the SV model

using parameters θ, which we denote by y+ and evaluate the score not using the data but this

simulation. This produces

∂ log g(y+;ψ)

∂ψ

∣∣∣∣
ψ=ψ̂

, y+ ∼ f(y; θ).

Then move θ around until the score is again zero, but now under the simulation. Write the

point where this happens as θ̃. It is called the indirect inference estimator.

5 Options

5.1 Models

SV models provide a basis for realistic modelling of option prices. We recall the central role

played by Johnson and Shanno (1987) and Wiggins (1987). The most well known paper in

this area is by Hull and White (1987), who looked at a diffusion volatility model with leverage

effects. They assumed that volatility risk was unrewarded and priced their options either by

approximation or by simulation. Hull and White (1987) indicated that SV models could produce

smiles and skews in option prices, which are frequency observed in market data. The skew is

particularly important in practice and Renault and Touzi (1996) prove that can be achieved in

SV models via leverage effects.

The first analytic option pricing formulae were developed by Stein and Stein (1991)and

Heston (1993). The only other closed form solution I know of is the one based on the Barndorff-

Nielsen and Shephard (2001) class of non-Gaussian OU SV models. Nicolato and Venardos

(2003) provide a detailed study of such option pricing solutions. See also the textbook exposition

in Cont and Tankov (2004, Ch. 15). Slightly harder computationally to deal with is the more

general affine class of models highlighted by Duffie, Filipovic, and Schachermayer (2003).

5.2 Econometrics of SV option pricing

In theory, option prices themselves should provide rich information for estimating and testing

volatility models. I will discuss the econometrics of options in the context of the stochastic dis-

count factor (SDF) approach, which has a long history in financial economics and is emphasised

in, for example, Cochrane (2001) and Garcia, Ghysels, and Renault (2005). For simplicity I will

assume interest rates are constant. We start with the standard Black-Scholes (BS) problem,
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which will take a little time to recall, before being able to rapidly deal with the SV extension.

We model

d logY =
(
r + p− σ2/2

)
dt+ σdW, d log M̃ = hdt+ bdW,

where M̃ is the SDF process, r the riskless short rate, and σ, h, b and p, the risk premium, are

assumed constant for the moment.

We will price all contingent payoffs g(YT ) as Ct = E
(
M̃T

M̃t

g(YT )|Ft
)
, the expected discounted

value of the claim where T > t. For this model to make financial sense we require that M̃tYt

and M̃t exp (tr) are local martingales, which is enough to mean that adding other independent

BMs to the log M̃ process makes no difference to C or Y , the observables. These two constraints

imply, respectively, p + bσ = 0 and h = −r − b2/2. This means that
(
CBS , Y

)
is driven by a

single W .

When we move to the standard SV model we can remove this degeneracy. The functional

form for the SV Y process is unchanged, but we now allow

d log M̃ = hdt+ adB + bdW, dσ2 = αdt+ ωdB,

where we assume that B ⊥⊥ W to simplify the exposition. The SV structure will mean that p

will have to change through time in response to the moving σ2. B is again redundant in the

SDF (but not in the volatility) so the usual SDF conditions again imply h = −r − 1
2a

2 and

p+ bσ = 0. This implies that the move to the SV case has little impact, except that the sample

path of σ2 ⊥⊥W . So the generalised BS (GBS) price is

CGBSt (σ2
t ) = E

(
M̃T

M̃t

g(YT )|Ft
)

= E

{
CBSt

(
1

T − t

∫ T

t
σ2
udu

)
|σ2
t , Yt

}
.

Now CGBS is a function of both Yt and σ2
t , which means that

(
CGBS , Y

)
is not degenerate.

From an econometric viewpoint this is an important step, meaning inference on options is just

the problem of making inference on a complicated bivariate diffusion process. When we allow

leverage back into the model, the analysis becomes slightly more complicated algebraically.

In some recent work econometricians have been trying to use data from underlying assets

and option markets to jointly model the dynamics of
(
CGBS , Y

)
. The advantage of this joint

estimation is that we can pool information across data types and estimate all relevant effects

which influence Y , σ2 and M̃ . Relevant papers include Chernov and Ghysels (2000), Pastorello,

Patilea, and Renault (2003), Das and Sundaram (1999) and Bates (2000).
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6 Realised volatility

The advent of very informative high frequency data has prompted econometricians to study

estimators of the increments of the quadratic variation (QV) process and then to use this estimate

to project QV into the future in order to predict future levels of volatility. The literature on

this starts with independent, concurrent papers by Andersen and Bollerslev (1998), Barndorff-

Nielsen and Shephard (2001) and Comte and Renault (1998). Some of this work echoes earlier

important contributions from, for example, Rosenberg (1972) and Merton (1980).

A simple estimator of [Y ] is the realised QV process

[Yδ]t =

bt/δc∑

j=1

(
Yδj − Yδ(j−1)

) (
Yδj − Yδ(j−1)

)′
,

thus as δ ↓ 0 so [Yδ]t
p→ [Y ]t. If A ∈ FVc, then [Y ] = [M ], while if we additionally assume that

M is SV then [Yδ]t
p→
∫ t
0 σsσ

′
sds.

In practice it makes sense to look at the increments of the QV process. Suppose we are

interested in analysing daily return data, but in addition have higher frequency data measured

at the time interval δ. The i-th daily realised QV is defined as

V (Yδ)i =

b1/δc∑

j=1

(
Yi+δj − Yi+δ(j−1)

) (
Yi+δj − Yi+δ(j−1)

)′ p→ V (Y )i = [Y ]i − [Y ]i−1,

the i-th daily QV. The diagonal elements of V (Yδ)i are called realised variances and their square

roots are called realised volatilities.

Andersen, Bollerslev, Diebold, and Labys (2001) have shown that to forecast the volatility

of future asset returns, then a key input should be predictions of future daily QV. Recall, from

Ito’s formula, that if Y ∈ SMc and M ∈ M, then writing Ft as the filtration generated by the

continuous history of Y up to time t then

E(yiy
′
i|Fi−1) ' E (V (Y )i|Fi−1) .

A review of some of this material is given by Barndorff-Nielsen and Shephard (2005).

A difficulty with this line of argument is that the QV theory only tells us that V (Yδ)i
p→

V (Y )i, it gives no impression of the size of V (Yδ)i−V (Y )i. Jacod (1994) and Barndorff-Nielsen

and Shephard (2002) have strengthened the consistency result to provide a univariate central

limit theory
δ−1/2 ([Yδ]t − [Y ]t)√

2
∫ t
0 σ

4
sds

d→ N(0, 1),

while giving a method for consistently estimating the integrated quarticity
∫ t
0 σ

4
sds using high

frequency data. This analysis was generalised to the multivariate case by Barndorff-Nielsen and
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Shephard (2004a). This type of analysis greatly simplifies parametric estimation of SV models

for we can now have estimates of the volatility quantities SV models directly parameterise.

Barndorff-Nielsen and Shephard (2002), Bollerslev and Zhou (2002) and Phillips and Yu (2005)

study this topic from different perspectives.

Recently there has been interest in studying the impact of market microstructure effects on

the estimates of realised covariation. This causes the estimator of the QV to become biased.

Leading papers on this topic are Zhou (1996), Fang (1996), Bandi and Russell (2003), Hansen

and Lunde (2006) and Zhang, Mykland, and Aı̈t-Sahalia (2005). Further, one can estimate the

QV of the continuous component of prices in the presence of jumps using the so-called realised

bipower variation process. This was introduced by Barndorff-Nielsen and Shephard (2004b) and

Barndorff-Nielsen and Shephard (2006).
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