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INSPECTIONS TO AVERT TERRORISM: ROBUSTNESS UNDER SEVERE 
UNCERTAINTY 

 
 

Abstract: Protecting against terrorist attacks requires making decisions in a world in which 
attack probabilities are largely unknown. The potential for very large losses encourages a 
conservative perspective, in particular toward decisions that are robust. But robustness, in the 
sense of assurance against extreme outcomes, ordinarily is not the only desideratum in uncertain 
environments. We adopt Yakov Ben-Haim’s (2001b) model of information gap decision making 
to investigate the problem of inspecting a number of similar targets when one of the targets may 
be attacked, but with unknown probability. We apply this to a problem of inspecting a sample of 
incoming shipping containers for a terrorist weapon. While it is always possible to lower the risk 
of a successful attack by inspecting more vessels, we show that robustness against the failure to 
guarantee a minimum level of expected utility might not be monotonic. Robustness modeling 
based on expected utility and incorporating inspection costs yields decision protocols that are a 
useful alternative to traditional risk analysis.  
 
Keywords: Terrorism, Robustness, Severe Uncertainty, Port Security 

 

1. Introduction 

Terrorism involves unorthodox attacks, primarily on civilians, with the aim of producing 

damage, and especially fear, within the targeted population.  There are several ways of reducing 

its potential impacts:  neutralizing the terrorists before they act; intercepting terrorist actions after 

they commence but before they are actually consummated; and hardening potential targets.  This 

paper is about the second of these options, in particular that of intercepting a surreptitious terror-

ist attack that may be launched against one of some number of similar targets.  Examples 

abound.  One is the much-commented upon problem of incoming shipping containers.  Millions 

arrive each year into the various ports of the country.  A substantial undetected weapon in one of 

them could cause great damage.  Another example is reservoirs; there are many thousands scat-

tered around the country, any one of which could be attacked with a biological or chemical 

agent.  Still another example is aircraft; with thousands of passenger and cargo flights every day, 

history has shown us that an attack on just one can produce enormous damage if it succeeds.  

Agricultural bioterrorism is still another example.  For any type of output – wheat, corn, a certain 

type of livestock, etc., there are hundreds or perhaps thousands of individual farms against which 

an attack could be launched with the intent of introducing a pathogen that would spread to other 

farms or a contaminant that would create fear among consumers. 
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Modeling this as a case of risk management implies knowing, or assuming, something 

about attack probabilities and the effectiveness of steps that might be taken to reduce the ultimate 

probabilities of damage.  There has been work to develop and examine time series of terrorist 

events over reasonably long periods (Enders and Sandler (2002); Mickolus et al. (1989, 1993); 

Enders et al. (1992); O’Brien (1996)).  But it is not straightforward to turn frequencies into attack 

probabilities for specific targets. Use of expert judgment for the purposes of risk assessment can 

also be problematic both from methodological and experiential perspectives. There is no 

formally established methodology for treating expert judgment, and Bayesian and other 

approaches suffer from limitations in practical application (Ouchi (2004)). Risk assessment in 

practice has proved to be difficult, time consuming, and expensive in some important 

applications and virtually impossible in others. What this strongly suggests is that it may not be 

useful to analyze the defense against terrorism as if they were decisions involving gambles with 

known probabilities.  In this paper, therefore, we present an analysis of decisions to intercept 

terrorist actions that can be taken without knowing, or assuming, anything about the probability 

distributions associated with terrorist actions, that is, under conditions of true uncertainty. 

Of course some tools have been developed for addressing situations of true uncertainty; 

this includes the maximin, maximax, Laplace, and Hurwitc criteria (see e.g., Render et al. 

(2003)).  While none of these criteria require knowledge of probability distributions for applica-

tion, the first two represent polar extremes in terms of optimism and pessimism while the latter 

two require information similar to probabilities in order to be applied.  Similarly, quantification 

of other notions related to uncertainty such as ignorance and surprise have also required specifi-

cation of functions confined to the unit interval (Katzner (1998); Horan et al. (2002)).  Addi-

tionally, Kelsey (1993) developed a distinctive decision theory requiring a ranking of event 

probabilities rather than a specific probability distribution.  Perhaps for these reasons, none of 

these decision criteria under uncertainty have achieved the widespread application in economics 

afforded traditional risk criteria. 

In the case of terrorism, the possibility that losses could be large encourages a 

conservative outlook, as is inherent in the maximin criterion. Maximin is maximally robust in the 

sense that it guarantees a result that equals or exceeds the worst of the possible outcomes that 

might result from a chosen strategy. But robustness is not everything; in return for better 

performance on some other important parameter one may be willing to give up some degree of 



 3

robustness. This implies a decision model which, though featuring robustness, accommodates 

tradeoffs with other parameters when the situation warrants.  

Recently Ben-Haim (1999) has developed a theory of decision-making under true 

uncertainty that he calls information (info)-gap decision theory (Ben-Haim (1994); Ben-Haim 

(1999); Ben-Haim (2001a)).  Info-gap decision theory is designed for decisions in which 

probability distributions for uncontrolled events are not available.  The essence of info-gap is 

pursuit of a performance requirement over the largest possible “range” of uncontrolled events.  

There have been a number of applications of the info-gap theory to problems ranging from 

selection of financial portfolios to optimal search in predator-prey systems (Ben-Haim (2001b)). 

In the next section we generalize info-gap theory with expected utility as a measure of 

performance.  In section 3 we use this approach to model a problem of protecting against 

terrorism: inspecting a large number of container ships for the presence of materials which, if not 

detected, would produce great damage in a target population. Uncertainty in this problem is 

about the probability that harmful material has been placed on one of the ships. We do not 

specify a utility function for the decision maker; rather we simply assume that the decision 

maker is risk averse, perhaps weakly. Our primary motivation with this model is to characterize 

the trade-off between costly inspections and robustness. Robustness in our problem is the 

maximum range of the unknown probability of a terrorist attack for which a performance 

criterion is satisfied. Thus, it is a notion of security against failing to meet a performance 

criterion. Security in our formulation has two dimensions: security against failing to avert a 

successful terrorist attack with some low probability, and security against failing to meet a 

minimum level of expected utility. As one would intuit, we show that security against failing to 

avert a terrorist attack is increasing in the number of inspected vessels. However, when the 

problem of robustness is posed in the economic terms of guaranteeing a minimum level of 

expected utility for a decision maker with an unknown degree of risk aversion, there could be a 

potentially large range of numbers of inspections for which more inspections leave the decision 

maker less secure. In some situations, therefore, a decision maker may face a difficult trade-off: 

increasing inspections to increase the level of security against a successful terrorist attack may 

reduce security against failing to meet a minimum level of expected utility.   

In section 4 we conduct a series of simulations to investigate the effects of problem 

parameters on robustness against failing to meet a minimum level of expected utility. We find 
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that for a given number of inspections, robustness is decreasing in the size of the loss from a 

successful terrorist attack, a critical failure probability, and the elasticity of the inspection costs. 

We also investigate the effects of these parameters on the monotonicity of robustness. We 

conclude in section 5.   

 
2. Uncertainty and Robustness 

Ben-Haim’s (1999) info-gap decision theory is built on the specification of four components: the 

system model, the performance requirement, the uncertainty model, and the robustness function. 

In his decision framework, the system model expresses the structure of rewards that follows from 

decisions and events. For example, it might be the structure of net benefits accruing to a decision 

maker on the basis of their choices of alternative levels of inputs, together with uncertain events 

in the environment. The performance requirement is some particular reward level deemed 

necessary in a given decision problem. Some minimum level of net benefits might be chosen as a 

performance requirement, for example. The uncertainty model consists of a family of convex, 

nested sets where the elements of each set are possible realizations of uncertain events affecting 

rewards. In this uncertainty framework, the higher the degree of nesting, the greater the 

uncertainty about events. The robustness function shows the relationship between decision 

variables and the greatest level of uncertainty at which the performance requirement will be 

achieved; it is the subject of maximization to identify the optimal robust decision. In addition, 

Ben-Haim distinguishes between the info-gap models where probability is not regarded as an 

appropriate uncertainty concept (e.g., cases involving novel events) versus “hybrid” cases where 

probability is an applicable concept but is unknown and difficult to assess.  

 While preserving the info-gap philosophy of uncertainty and robustness, we generalize 

the theory’s components to include both the basic info-gap and hybrid cases and to permit a less 

restrictive characterization of uncertainty. Let v V∈ denote possible realizations of uncertain 

elements in a decision problems where V is any set, and let x X∈ be a vector of decision 

variables in the problem with .nx R∈  The set V can encompass uncertain elements including 

parameters, exogenous variables, probability distributions, etc. The system model reflects the 

structure of rewards depending on both x and v, while the performance requirement is a 

predetermined reward level. Uncertainty about possible realizations of elements affecting 

rewards is U = P(V), where ( )⋅P  denotes the power set (all possible subsets) of V.  Note that the 
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elements of U consist of possible realizations of uncertain problem elements; however, they need 

not be convex. Given an ordering relation on U, the robustness function, ( ),xα  is a set-valued 

function : ( )X Vα → P  describing the largest element of U that satisfies the performance 

requirement conditional on decision x. An ordering relation is needed to compare elements of U 

that satisfy the performance requirement, and reflects the meaning of robustness in the decision 

problem. The robustness function indicates the most robust element of U, conditional on x that 

satisfies the performance requirement. The optimal robust decision is arg max ( );x X xα∈  that is, 

the value of the decision variable that leads to a maximum of the robustness function.  

The following decision problem will help to make the components of our decision 

framework more complete. Let the reward be a random variable v, and U(v) be the decision 

maker’s von Neuman-Morgenstern utility function. The reward is determined by the level of a 

decision variable, x, and an unknown conditional probability density function, f(v | x), that 

represents the uncertainty inherent in the decision maker’s environment. Let g(v) be a probability 

density function for v used in specifying a performance requirement.  The system model defines 

rewards and is taken to be expected utility, ( )U i , where the expectation is evaluated with respect 

to the subscripted probability density function.  The uncertainty model, U, consists of the power 

set of conditional probability density functions, { ( | )}f v x .  The robustness function, ( )xα , 

indicates the largest subset of U (the ordering relation is assumed to be the number of elements) 

over which the performance requirement (smallest acceptable expected reward) gU  will be 

achieved.   

The robust optimal decision can be found by solving  

(1)      ( )
x X

Maximize xα
∈

 

(2) Subject to  f gU U≥  

(3)   ( | )  = 1f v x dv∫  

(4)  ( | ) 0f v x ≥  

(5)   x X∈ , 

 

where the set X reflects any constraints on x other than the performance requirement and those 
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constraints on the conditional density, ( | )f v x , related to the definition of a probability density 

function.  Assuming a solution exists, the solution to (1) - (5) provides a specific value of the 

decision variable, x∗ , associated conditional density function, ( | )f v x∗ , and maximum 

robustness, ( ).xα α∗ ∗=  Given an appropriate specification of robustness, the performance 

requirement will be achieved not only under ( | )f v x∗ , but also under perhaps a wide range of 

related densities. 

As it stands, the model (1) - (5) poses a difficult constrained optimization problem.  The 

two key elements that are needed to implement (1) - (5) are specifications of the robustness 

objective function and the performance requirement, which is shown in (2) as a constraint on 

expected utility.  As demonstrated in the next section, it is possible to make meaningful 

specifications for both of these elements in the context of robust inspections of ships for a 

terrorist weapon.   

 

3. Robustness and Inspections at Containerports 

In this section we illustrate the use of the model developed in the previous section for allocating 

scarce resources to manage a security risk under uncertainty.  Risks are managed through 

detection effort consisting of inspections for a terrorist weapon of trade shipments to an 

international containerport.  Port security is a complex problem involving a variety of functions; 

random inspections of container cargo may be one part of an efficient policy (see e.g., Harrald et 

al. (2003)).  Hence, use here of the model developed in the previous section is intended to focus 

on a robust detection effort. In particular we are interested in characterizing the trade-off 

between costly inspections and robustness; that is, how the largest range of uncertainty under 

which a performance criterion is satisfied varies with the number of inspected vessels. 

Suppose that B denote the benefit due to shipping activity at a containerport without a 

security threat; p denotes the probability that a weapon is present on one of N vessels that will 

call at the port, and L denotes the cost of failure to prevent passage of this weapon through the 

port.  The port manager’s decision is to choose the number of random inspections of incoming 

vessels to prevent passage of the weapon through the port. A traditional approach would evaluate 

the opportunity costs of inspection compared to the expected benefits of this action, where these 

expected benefits would depend critically on the probability of a terrorist attack.  We will 
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proceed, however, with an assumption that we do not know what this probability is, but the port 

manager must choose the number of vessels to inspect in spite of this uncertainty. Let n denote 

the number of vessels inspected for these materials at cost C(n), with ( ) 0C n′ >  and 0C′′ ≥ . The 

probability that there is a weapon on one of the vessels, p, is completely unknown; hence, we 

adopt model (1)—(5) to investigate the trade-off between inspections and robustness. 

Given inspections, n, and a probability that a weapon is aboard one of the vessels, p, the 

conditional probability density function, f(v | n, p), for net benefit, v, is 

 

(6) 

( )

( )

1  if  =  - ( )
( | , )  

if  =  -  - ( ).

p N n
v B C n

Nf v n p
p N n

v B L C n
N

−
−= 

−


 

 

The uncertainty model is the set { }( | , ),  [0, ],  [0,1] ,f v n p n N p∈ ∈  and all its subsets. Given N, 

the uncertainty model consists of a set of probability density functions characterized by the 

inspection decision, n, and the unknown parameter, p, confined to the unit interval. Since 

uncertainty in this context is about the real value of p, the robustness function can be specified 

meaningfully as that value. Note that ( ) /p N n N− is the probability that a weapon passes 

through the port undetected. We will call this the failure probability and denote it by .π  Given n 

and p, the decision makers’ expected utility is  

 

(7) ( )( ) ( )( )( ) 1 ( ) / ( ) ( ) /fU U B C n p N n N U B L C n p N n N= − − − + − − − . 

 

The performance criterion for this problem is that f gU U≥ .  Two modeling decisions 

must be made at this point to specify the performance criterion. First, we need to specify the 

smallest acceptable expected utility, .gU  In addition we need to specify the decision maker’s 

utility function. This is a bit troubling, because in most cases the decision maker’s utility 

function will be unknown, either to him or her or to the analyst. Our approach is to assume that 

the decision maker’s utility function is unknown, but that it is known that he or she is risk averse 
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(perhaps weakly). Then we can appeal to well known results from the theory of stochastic 

dominance to specify the performance criterion. 

First let us model the smallest acceptable expected utility, .gU  In principle gU  can be 

any level deemed appropriate by the decision maker. We, however, derive gU  from another 

robustness/inspections tradeoff, but one that lacks economic content. Gauging the performance 

of stochastic systems by the probability of failure and establishing a performance requirement in 

terms of failure probability are common. Imagine a robust decision to hold the failure probability 

to be no more than some critical value, cπ , given that the probability that damaging material is 

on board one of the vessels is no more than pc. In effect, the decision maker is saying, given that 

I believe that the probability that a weapon is on one of the vessels is no more than pc, I will 

choose the number of inspections to make sure that my failure probability does not exceed cπ . 

We assume throughout that .c cp π>  Then, the performance requirement for robust inspections in 

terms of the unknown probability of a weapon passing through the port undetected is 

( ) / ,cp N n Nπ π= − ≤  for [0, ].cp p∈   

As noted above the robustness function can be specified simply with respect to p. For this 

problem the robustness function is  

 

(8) { }[0, ]
( , , ) max | max  ( ) / ,  [0, ] .

c
c c cp p

p n p p p N n N n Nπ π
∈

= − ≤ ∈  

 

Maximal robustness given inspections and the performance criterion requires choosing p so that 

the performance criterion is exactly satisfied. Therefore, the solution to (8) is  

 

(9) ( , , ) /( ),  [0, ],  [0, ].c c c cp n p N N n p p n Nπ π= − ∈ ∈  

 

The robustness function indicates security against failing to hold the probability of a 

successful terrorist attack to no more than the critical failure probability. Given inspections, n, if 

the actual probability of a terrorist attack is less than ( , , )c cp n pπ , then the probability of a 

successful attack is less than the critical failure probability, cπ ; but if the actual probability of an 
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attack is greater than ( , , )c cp n pπ  the probability of a successful attack will exceed cπ . Thus, 

higher values of robustness indicate greater security against failing to hold the probability of 

terrorist’s success to no more than the critical failure probability.  

 Note that ( , , )c cp n pπ is monotonically increasing in inspections. That is, security against 

failing to hold the probability of a successful attack to no more than the critical failure 

probability is increasing in the number of inspected vessels. This is a rather intuitive 

conclusion—more inspections increase the range of attack probabilities for which the required 

failure probability is not exceeded.  Choosing inspections to maximize robustness in this context 

is to simply choose ( )c c c cn N p pπ= −  so that ( , , ) .c c cp n p pπ =  That is, the strategy of 

inspecting cn vessels guarantees that the critical failure probability is not exceeded for any 

chance that an attack has occurred up to the constraint on this chance.1  

Now define the probability density function for payoffs, v, with inspections, 

( )c c c cn N p pπ= − , evaluated at maximum constrained robustness, pc: 

 

(10) 
1  if ( )

( | , )
 if  = ( ).

c c
c c

c c

v B C n
g v n p

v B L C n
π

π
− = −

=  − −
 

 

Expected utility of ( | , )c cg v n p  is  

 

 (11) ( )( ) ( )( ) 1 ( )g c c c cU U B C n U B L C nπ π= − − + − − .2 

 

Now let us turn to guaranteeing that f gU U≥  when U is unknown. Assuming that the 

                                                 
1 Note that cn  is decreasing in cπ  and increasing in pc. Thus, inspections to meet the performance criterion are 
decreasing in the maximum allowable failure probability, and increasing in the upper bound the decision maker 
places on the probability that harmful material is on one of the ships. 
2 It is easy to demonstrate that gU  is monotonically decreasing in pc. This is intuitive. If the decision maker 
considers a larger range of probabilities that harmful material is on board one of the vessels, then more inspections 
are needed to make sure that the failure probability does not exceed cπ . Thus, a higher pc implies higher inspection 
costs and lower expected utility of ( | , )c cg v n p . It is not possible to determine how gU  changes with the critical 
failure probability cπ  without additional structure on the decision makers’ utility function.  
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decision maker is risk averse, then f gU U≥  can be replaced with a condition based on second-

degree stochastic dominance (SSD). Let the cumulative distribution functions of ( | , )f v n p  and 

( | , )c cg v n p  be ( | , )F v n p  and ( | , )c cG v n p , respectively. Then, ( | , )f v n p  dominates 

( | , )c cg v n p  in the sense of SSD if and only if   

 

(12) ( )( | , ) ( | , ) 0,
v

c cG t n p F t n p dt
−∞

− ≥∫  for all v. 

 

Furthermore, if ( | , )f v n p  dominates ( | , )c cg v n p , then ( | , )f v n p is at least as preferred to 

( | , )c cg v n p  by any risk averse decision maker (Hadar and Russell 1969, 1971). Thus, when a 

risk-averse decision maker’s utility function is unknown, the performance requirement, f gU U≥ , 

can be replaced with (12).   

 The cumulative distribution functions in this problem are step functions corresponding to 

the discrete probability density functions specified in (6) and (10).  An example is provided in 

Figure 1.  Note that (12) holds if and only if cn n≤ and B A≤ . The latter inequality is  

 

( ) ( )( ) ( ( )) ( ( )) ( ( )) ( ( ))c c c c
p N n B C n B L C n B L C n B L C n

N
π π− − − − − − ≤ − − − − − 

 
, 

 

which simplifies to ( )( )( ) / ( ) ( ) 0.c cp N n N L C n C n Lπ− + − − ≤  

 We are now ready to specify the robustness function for the port manager. It is 

 

(13) ( , , , , )c cp n L C pπ =  

( )( ){ }[0, ]
max | max  ( ) / ( ) ( ) 0,  [0, ( ) / ] .

c
c c c c cp p

p p N n N L C n C n L n N p pπ π
∈

− + − − ≤ ∈ −  

 

In this problem the robustness function depends not only on the number of inspections, n, but 

also the potential loss from a weapon passing through the port undetected, L, the inspection cost 

function, C, the critical failure probability used to specify the performance criterion, and the 

upper bound the decision maker places on the probability that a weapon is present on one of the 
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vessels, pc. Given these conditions of the problem, the robustness function specifies maximal 

values of p for each value of n for which any risk averse decision maker prefers the probability 

density function ( | , )f v n p  to ( | , )c cg v n p . Thus maximizing robustness given n is constrained 

by the SSD conditions [0, ( ) / ]c c c cn n N p pπ∈ = −  and 

( )( )( ) / ( ) ( ) 0.c cp N n N L C n C n Lπ− + − − ≤  Since maximizing p, given n, requires that this latter 

constraint hold with equality when [0, ],cp p∈  the robustness function is  

 

(14) ( , , , , )c cp n L C pπ =  

( ) ( )( ) [0, ],  [0, ( ) / ].
( ) ( ) /

c
c c c c

c c c

N L p n N p p
N n L C n C N p p

π π
π

∈ ∈ −
− + − −

3 

  

Specifying the decision maker’s performance criterion in terms of a minimum level of expected 

utility changes the notion of security against failure. Given inspections, n, the robustness 

function indicates the largest range of the unknown probability of a terrorist attack for which the 

expected utility of any risk averse decision maker does not fall below the expected utility of 

guaranteeing that the probability of a successful attack does not exceed some critical failure 

probability.  Thus, greater levels of ( , , , , )c cp n L C pπ indicate that the decision maker is more 

secure against failing to guarantee the minimum level of expected utility.  

 Not surprisingly, a solution to choosing n to maximize ( , , , )cp n L C π  is to inspect 

( ) /c c c cn N p pπ= − vessels to induce robustness p = pc.  Of course, this is the robust optimal 

strategy for making sure that the critical failure probability, ,cπ  is not exceeded. Consequently 

this is not a very informative strategy for a decision maker because it has no economic content. 

Moreover, this strategy may be unreasonably costly.  A decision maker will want a full 

accounting of the fundamental trade-off between robustness against a terrorist attack and the 

costly activity of inspecting cargo vessels. In the next section we pursue this issue by examining 

the characteristics of ( , , , , )c cp n L C pπ . 

 

                                                 
3 Note that any fixed costs of inspections will cancel out in ( , , , )cp n L C π . Thus, robustness in this context does not 
depend on fixed inspection costs, only variable costs.  
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4. Robustness Against a Terrorist Attack 

In this section we examine the characteristics of the robustness function, particularly how it 

varies with inspections and alternative parameter values.  It is useful at this point to put this into 

context. Our ultimate search is for a way to offer guidance to a port manager who must make 

decisions with very little information to go on. In particular we assume he, or she, does not know 

the attack probabilities they face, and in fact knows little about their own utility function, other 

than that they are risk averse.  

Given inspections, n, ( , , , , )c cp n L C pπ  is the maximum probability of an attack for which 

the port manager is guaranteed a minimum expected utility.  Figure 2 shows the robustness 

function under the following assumptions: B = 925 10× ; L = 91 10× ; C(n) = 1000n2; N = 1000; 

cπ  = 0.05, and cp  = 1.0. We do not include fixed inspection costs, because we’ve already noted 

that robustness does not depend on these costs. Moreover, our assumption that pc = 1.0 means 

that the decision maker does not place an upper bound the range of attack probabilities that he or 

she is considering. The most obvious feature of the relationship between robustness and 

inspections in Figure 2 is that it is not monotonic; it has a local maximum at n , and a global 

maximum at ( ) / (1 ).c c c c cn N p p Nπ π= − = −  

 At first blush, one might expect that robustness would increase as the number of 

inspected vessels increases, but this is clearly not always the case. We have been using 

robustness to indicate the decision maker’s security against failure. Recall that security in our 

formulation has two dimensions: security against failing to guarantee that the probability of a 

successful attack does not exceed some low probability, and security against failing to meet a 

minimum level of expected utility. The former is clearly increasing in the number of inspected 

vessels because, for some attack probability, more inspections imply a lower probability of a 

successful attack.  On the other hand, Figure 2 makes it clear that security against failing to 

guarantee a minimum level of expected utility may not be monotonic in inspections. Thus, when 

the problem of robustness is posed in the economic terms of benefits and costs under unspecified 

risk aversion, there could be a potentially large range of numbers of inspections for which more 

inspections leave the decision maker less secure. In some situations, therefore, a decision maker 

may face a difficult trade-off: increasing inspections to increase the level of security against a 
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successful terrorist attack may reduce security against failing to meet a minimum level of 

expected utility.   

Let us investigate the non-monotonicity of ( , , , , )c cp n L C pπ  more thoroughly. Ignoring 

the boundary constraints on the robustness function for the moment, from (14) obtain 

 

( ){ }
( )( ) 2

( ) / ( ) ( )( )( , , , , ) .
( ) ( ) / ( )

c c c cc c

c c c

NL L C N p p C n C n N np n L C p
n N n L C N p p C n

π ππ

π

′− − + − −∂
=

∂  − − − + 
 

 

Clearly, robustness is increasing in n if and only if  

 

(15) ( )( ) / ( )( ) ( ).c c cL C N p p C n N n C nπ ′− − > − −  

 

On the left hand side of (15), ( )( ) /c c cL C N p pπ− −  is a constant: the cost term is the 

total cost of inspecting enough vessels to guarantee that the failure probability does not exceed 

cπ , for any [0, ]cp p∈ . For our numerical example, ( )( ) / $97.5 million.c c cL C N p pπ− − =  On 

the right hand side of (15) we have ( )( ) ( ).C n N n C n′ − −  For our example: ( )( ) ( )C n N n C n′ − −  

is equal to zero when n is zero; it is strictly concave, reaching a maximum of $333.33 million at 

about 333 inspected vessels, and is negative for about 667 inspected vessels and greater. Clearly, 

the robustness function is not monotonic if and only if the maximum of ( )( ) ( )C n N n C n′ − −  

exceeds ( )( ) /c c cL C N p pπ− −  as it does in our example. Note further that for low n 

( )( ) / ( )( ) ( ),c c cL C N p p C n N n C nπ ′− − > − −  so robustness is increasing. At some level ( n  in 

Figure 2), ( )( ) ( )C n N n C n′ − −  rises above ( )( ) /c c cL C N p pπ− − , driving robustness down. 

The final increase in robustness comes about because ( )( ) ( )C n N n C n′ − −  falls below 

( )( ) /c c cL C N p pπ− −  and rather quickly becomes negative, driving robustness ultimately up to 

pc = 1.    

 It is clear that the term ( )( ) /c c cL C N p pπ− −  has an important impact on the robustness 

function. Therefore, the robustness function is determined, in part, by the levels of the potential 

loss from an attack, L; the range of attack probabilities that the decision maker is willing to 
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allow, [0, pc], and the critical failure probability used to determine the decision maker’s 

performance criterion, .cπ  Let us examine the effects of the first two parameters on the 

robustness function.  

It is easy to demonstrate that the robustness function of (14) is montonically decreasing in 

the potential damage. Figure 3 depicts three robustness functions for three different levels of loss 

L: L(med) = $1 billion; L(large) = $1.3 billion; and L(small) = $0.98 billion.  Clearly, for any 

number of inspections, robustness is lower the larger is the damage from a successful attack. 

Thus, the range of probabilities over which the port manager meets or exceeds his or her chosen 

level of minimum expected utility is smaller the larger the damage from a successful attack.   

 Note also that the monotonicity of the robustness function is associated with the size of 

potential damage—relatively large levels of potential loss imply that the robustness function is 

monotonically increasing. This effect can be deduced directly from (15). Recall that the 

robustness function is monotonically increasing if and only if ( )( ) /c c cL C N p pπ− −  is greater 

than the maximum of ( )( ) ( )C n N n C n′ − − . With L(large) = $1.3 billion, ( )( ) /c c cL C N p pπ− −   

$397.5 million= while [ ]max ( )( ) ( ) $333.33 million.C n N n C n′ − − =   

Achievable levels of robustness are also related to the minimum level of performance that 

is required. In general, the higher this minimum performance the lower the attainable level of 

robustness. We have set the performance requirement in terms of a level of expected utility, in 

particular that level of utility achieved with a robustness of unity under a critical failure rate of 

0.05. One could argue that setting p = 1.0 is unnecessarily conservative, that the authorities may 

be confident in thinking that the true attack probability is, say, no greater than 0.5, or perhaps 

even lower. Thus, although they do not know the probability, they can, with some confidence, 

give it a realistic upper bound.  

 This argues for changing the minimum expected utility, specifying it as the expected 

utility of guaranteeing the failure rate of no more than 0.05, but a maximum value of the real 

attack probability, pc, held to be realistic by the authorities. Reducing pc reduces the number of 

vessels that must be inspected to hold the probability of a successful attack to no more than a 

given value. That is ( ) /c c cN p pπ−  declines as pc is reduced, which raises the minimum level of 
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expected utility the decision maker specifies in his or her performance criterion.4  Consequently, 

for any level of inspections, robustness is lower for a lower maximum value of possible attack 

probabilities that the decision maker deems reasonable.  Figure 4 confirms that the robustness 

function is monotonically decreasing in pc.  

Note also that the monotonicity of ( , , , , )c cp n L C pπ  is related to the maximum value of 

the attack probability—very low maximum levels of this probability tend to make robustness 

monotonic in inspections. With pc = 0.2, only 750 vessels need to be inspected to guarantee that 

the failure probability does not exceed 0.05 for possible attack probabilities between 0 and 0.2. 

The cost of inspecting this many vessels is ( )( ) / $562.5 millionc c cC N p pπ− =  and 

( )( ) / $437.5 million.c c cL C N p pπ− − =  Since this is larger than [ ]max ( )( ) ( )C n N n C n′ − − = 

$333.33 million, the robustness function is monotonically increasing in inspections. 

 

5. Conclusions 

In this paper we have sought to find a new way of modeling decisions in situations where the 

probabilities of certain key precipitating events are unknown. We have modified the info-gap 

model of Ben-Haim (2001b) to model inspection decisions for incoming terrorist weapons  when 

the probability that a weapon is actually on an incoming vessel is unknown. The model proceeds 

by using the concept of robustness, defined as a level of assurance that an outcome will be no 

worse for the decision maker than some chosen critical value of performance. In our case the 

critical value is defined in terms of expected utility of guaranteeing that the probability of failing 

to avert a successful terrorist attack does not exceed some low probability. The decision maker 

chooses the number of incoming vessels to inspect in the light of the implications of this for the 

level of robustness that is attainable relative to this critical value. We show that this approach 

does offer a way of characterizing trade-offs despite the ignorance of attack probabilities. 

Perhaps our most interesting finding is that, while security against failing to hold the probability 

of a successful terrorist attack to no more than some critical failure probability is increasing in 

the number of inspected vessels, security against the failure of a decision maker with an 

unknown degree of risk aversion to guarantee a minimum level of expected utility may not be 

monotonic. We also show that the achievable levels of robustness are affected by many factors, 
                                                 
4 It is evident that the minimum level of expected utility could be increased in two ways: by lowering the critical 
failure rate, or by maintaining the critical failure rate but reducing pc. We have chosen the latter. 
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including inspection costs, the size of the prospective losses if an attack succeeds, and the level 

of expected utility taken as the critical performance level. 
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Figure 1: Depiction of the Stochastic Dominance Performance Requirement 

 

 

 

 
Figure 2: Robustness and Inspections 
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Figure 3: Robustness and the Loss from a Successful Attack.  
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Figure 4: Robustness and the Maximum Probability of an Attack. 
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