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On the Production of Homeland Security Under True Uncertainty 
 

Abstract: Homeland security against possible terrorist attacks involves making decisions under 
true uncertainty. Not only are we ignorant of the form, place, and time of potential terrorist 
attacks, we are also largely ignorant of the likelihood of these attacks. In this paper, we 
conceptualize homeland security under true uncertainty as society’s immunity to unacceptable 
losses. We illustrate and analyze the consequences of this notion of security with a simple model 
of allocating a fixed budget for homeland security to defending the pathways through which a 
terrorist may launch an attack and to mitigating the damage from an attack that evades this 
defense. In this problem, immunity is the range of uncertainty about the likelihood of an attack 
within which the actual expected loss will not exceed some critical value.  We analyze the 
allocation of a fixed homeland security budget to defensive and mitigative efforts to maximize 
immunity to alternative levels of expected loss. We show that the production of homeland 
security involves a fundamental trade-off between immunity and acceptable loss; that is, for 
fixed resources that are optimally allocated to defense and mitigation, increasing immunity 
requires accepting higher expected losses, and reducing acceptable expected losses requires 
lower immunity. Greater investments in homeland security allow society to increase its 
immunity to a particular expected loss, reduce the expected losses to which we are immune while 
holding the degree of immunity constant, or some combination of increased immunity to a lower 
critical expected loss. 
 
 
Keywords: Homeland Security, Terrorism, True Uncertainty.  
 
JEL Classifications: D02, D81, H56 
 
1. Introduction 

There are essentially three ways to protect a population from terrorist attacks: (1) neutralizing 

terrorists before they can mount attacks, (2) stopping attacks after they have been started but 

before they are completed, and (3) taking steps to reduce the severity of successful attacks. There 

clearly exists an economic problem in deciding how to divide fixed resources among these 

different functions. The last two, defending pathways through which an attack may occur and 

mitigating the effects of a failure of this defense, generally correspond to the responsibilities of 

the U.S. Department of Homeland Security (DHS). A substantial part of its budget goes to a 

variety of efforts to intercept terrorist attacks before they can be consummated. Chief among 

these are the inspection programs put into place in the air, land, and sea entry ports of the 

country. Another portion of its budget goes to hardening potential targets and developing 

strategies to mitigate damage from attacks that elude detection.  
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Given known, or confidently estimated probability density functions over the form, place, 

and time of potential terrorist attacks, one could cast the problem of investing in security against 

terrorist attacks in the familiar terms of risk analysis.1 For one example among several 

possibilities, one could model the choices of defense and mitigation to minimize the expected 

losses from terrorist attacks. In principle, probability distribution functions over terrorist attacks 

can be estimated from the frequency of past attacks. But while there has been significant work to 

develop and examine time series of terrorist events over reasonably long periods (Enders and 

Sandler, 2002; Mickolus et al., 1989 and 1993; Enders et al., 1992; O’Brien, 1996) it is not 

straightforward to turn frequencies of past attacks into current attack probabilities. Terrorists can 

choose innovative tactics, as happened on 9-11-01, in ways that are not readily predictable from 

past actions. Moreover, technological change (e.g., the internet), the rapid pace of globalization, 

and the ebb and flow of political movements produce novel opportunities that can only be 

roughly characterized by past attacks. Under contemporary circumstances, we are extremely 

pessimistic about our ability to estimate probability distribution functions over terrorist attacks 

with any degree of confidence. What this strongly suggests is that it may not be useful to think 

about homeland security against terrorism as decisions involving gambles with known 

probabilities. Instead, with respect to homeland security, we are truly in a world of Knightian 

uncertainty; that is, not only are we ignorant of the form, place, and time of potential terrorist 

attacks, we are also ignorant of the likelihood of these attacks.2 Thus, any useful characterization 

of the definition and social choice of homeland security must account for this uncertainty.  

In this paper we propose that security under true uncertainty can be usefully thought of as 

the degree of immunity against unacceptable expected losses from terrorist attacks. Moreover, it 

is reasonable to assume that society’s preference for security is monotonically increasing in the 

immunity to a particular loss, and decreasing in this loss while holding immunity constant. That 

is, we are more secure if we can achieve greater immunity to a particular critical loss, if we can 

reduce the critical loss without affecting the degree of immunity to this loss, or if we can achieve 

both increased immunity to lower loss.  

                                                 
1 This approach has been taken by Kunreuther and Heal (2003), Heal and Kunreuther (2005), Keohane and 
Zeckhauser (2003), Lakdawalla and Zanjani (2005), Bueno de Mesquita (2005), and others. 
2 Knight was concerned "with situations which are far too unique, generally speaking, for any sort of statistical 
tabulation to have any value for guidance. The conception of an objectively measurable probability or chance is 
simply inapplicable." Knight referred to this as true or unmeasurable uncertainty (Knight, 1921, chapter 7).  
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 We illustrate and analyze the consequences of this notion of security with a simple 

model of allocating a fixed budget to homeland security for efforts to stop a terrorist attack and 

efforts to mitigate the damage from an attack that evades our defenses. Within this problem 

immunity is the range of uncertainty about the likelihood of an attack within which the actual 

expected loss will not exceed some critical value.  With this definition of security, we analyze 

the allocation of a fixed homeland security budget to defensive and mitigative efforts to 

maximize security to a truly uncertain terrorist attack. We demonstrate that defense is a normal 

input into the production of homeland security, while mitigation is an inferior input. That is, as 

society increases its investment in homeland security, more of these resources should be devoted 

to defense and less to mitigation. Moreover, we show that the production of homeland security 

involves a fundamental trade-off between immunity and acceptable loss; that is, for fixed 

resources that are optimally allocated to defense and mitigation, increasing immunity to loss 

requires accepting higher expected losses, and reducing acceptable expected losses requires 

lower immunity. Increasing security in the sense of increasing immunity to a particular expected 

loss, reducing the critical expected loss for the same degree of immunity, or a combination of 

increased immunity to a lower critical expected loss, is achievable only with a greater investment 

in homeland security.  

Several approaches have been developed to analyze decision making under true 

uncertainty. These approaches include application of the maximin, maximax, Laplace, and 

Hurwitz criteria (Render et al., 2003).  While none of these criteria require knowledge of prob-

ability distributions for application, the first two represent polar extremes in terms of optimism 

and pessimism while the latter two require information similar to probabilities in order to be 

applied.  Similarly, quantification of other notions related to uncertainty such as ignorance and 

surprise have also required the specification of functions confined to the unit interval (Katzner, 

1998; Horan et al., 2002).  Additionally, Kelsey (1993) has proposed a decision theory requiring 

a ranking of event probabilities rather than a specific probability distribution.  None of these 

decision criteria under uncertainty have achieved the widespread application in economics 

afforded traditional risk criteria. More importantly for our purposes, none of these decision 

criteria provide a natural conceptualization of the definition and pursuit of security under true 

uncertainty. 

 4



 

Our analysis is an application of Ben-Haim’s (2006) information-gap decision theory. 3 

The heart of Ben-Haim’s approach is the pursuit of decisions that are robust in the sense that 

they maximize the range of uncertainty about model parameters within which the decision maker 

is certain to achieve a performance criterion.4 In our problem of homeland security, we are 

uncertain about the likelihood of a terrorist attack but we seek to maximize the range of this 

uncertainty over which the expected loss from an attack will not exceed some critical value. 

Thus, Ben-Haim’s approach provides a useful way to define homeland security as immunity to 

unacceptable losses and to analyze its production.  

 
2. Homeland Security Under True Uncertainty 

The provision of homeland security against terrorism is exceedingly complex, involving 

defending the literally thousands of avenues through which terrorists might conceivably attack 

and investing in at least as many methods by which the effects of a successful attack can be 

mitigated. Our purpose, however, is not to model homeland security in all its complexity, but 

rather to formalize a useful definition of security against uncertain terrorist attacks and to analyze 

certain characteristics of its production. To that end we examine a situation in which a terrorist 

attack may be launched with an unknown probability through a large number of potential 

pathways. The number of these pathways is large enough that defending all of them is 

prohibitively costly. Since not all pathways can be defended, there is some likelihood that a 

terrorist attack will be successful, hence society invests in efforts to mitigate the loss from a 

successful attack.  Though highly stylized, our approach is applicable to any situation involving 

defending one’s borders against an attack that occurs with unknown probability and mitigating 

the effects of a failure in this defense.  

                                                 
3 Ben-Haim’s decision theory has been applied to a wide variety of problems, including financial risk assessment 
(Ben-Haim 2005), search behavior in animal foraging models (Carmel and Ben-Haim 2005), policy decisions in 
marine reserve design (Halpern et al. 2006), natural resource conservation decisions (Moilanen et al. 2006), 
inspection decisions by port authorities to detect terrorist weapons (Moffitt et al. 2005a) and invasive species 
(Moffitt et al. 2005b), technological fault diagnosis (Pierce et al. 2006) and engineering model-testing (Vinot et al. 
2005). 
4 This approach is related to recent attempts to develop robust monetary policy, where the source of uncertainty is 
unknown variation in the underlying monetary models that are used to derive policy rules. See the papers on robust 
decisions in Macroeconomic Dynamics, Vol. 6, No., 1, February 2002. Policy rules are evaluated using a reference 
model of the workings of the monetary system.  Important parameters of the model are then perturbed, leading to 
variations in outcomes under the policy rule.  The robustness of a rule is the maximum perturbation that can be 
allowed while keeping the outcome of the rule within specified bounds.  By comparing alternative rules under this 
procedure one can identify the one with maximal robustness. 
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2.1 A model of homeland security 

Let N denote the number of pathways through which an attack on a nation may occur. The 

probability of an attack that may occur through any one of these pathways is p. The uncertainty 

in this model is about p—the probability that a terrorist has launched an attack is completely 

unknown.  The pathways are identical in all regards, so a terrorist is indifferent about which 

pathway to attack. To defend against a potential attack, n N≤  of the pathways are defended. 

Since they are homogeneous, defended pathways are chosen at random. An attack on a defended 

pathway will be thwarted. Thus, the probability of a successful attack is the probability that an 

attack has been launched times the probability that the weapon gets through the nation’s 

defenses, ( ) /p N n N− . 

A successful terrorist attack results in a certain loss L.5  Mitigation efforts, m, reduce this 

potential loss, but at a decreasing rate. That is, the loss from a successful attack is L(m), with 

 Given the probability of an attack, p, the expected loss from an attack 

is . This value is unknown because the probability of an attack is completely 

unknown. We might, however, have complete confidence that the probability of an attack is no 

more than some value ; that is, we may be uncertain of the true probability of an attack, 

but we are certain that it does not exceed 

( ) 0 and ( ) 0.L m L m′ ′′< >

( ) ( ) /L m p N n N−

1cp ≤

cp . 

  

2.2 The definition of homeland security under true uncertainty 

We are now ready to formalize a definition of homeland security as the degree of immunity 

against unacceptable loss. Let L  be a critical value for the expected loss from a terrorist attack, 

and consider the problem of maximizing the range of the probability of an attack within which 

the expected loss from a possible attack does not exceed L ; that is, 

 

[0, ]
max  ( ) ( ) / ,  [0, ],  0.

cp p
L m p N n N L n N m

∈
− ≤ ∈ ≥   [1] 

 

                                                 
5 There are likely to be random elements of the damage caused by a successfully deployed weapon, and these 
elements may even be truly uncertain. We assume that this loss is known with certainty in order to focus on one 
uncertain element, that is, on the probability that an attack has been launched.  
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Given defense and mitigation efforts, ( ) ( ) /L m p N n N− , is increasing in p. Therefore, the 

solution to [1] is to set ( ) ( ) /L m p N n N L− =  and solve for p to obtain 

 

 ( , ; , ) ,  [0, ],  [0, ],  0.
( )( )c c

LNp n m L p p p n N m
L m N n

= ∈ ∈
−

≥   [2] 

 

The function ( , ; , )cp n m L p  characterizes security against an uncertain attack in the sense of 

immunity to potential loss. Specifically, given defense and mitigation efforts, ( , ; , )cp n m L p  is 

the maximum probability of an attack for which we are certain that the expected loss does not 

exceed the critical value L .  In other words, society is immune to expected loss L as long as the 

actual probability of an attack does not exceed ( , ; , )cp n m L p .  

 

2.3 The technology of security  

Equation [2] describes the ‘technology’ of homeland security under true uncertainty. It 

characterizes society’s opportunities for taking actions (defense and mitigation) to achieve 

alternative degrees of immunity to alternative levels of expected loss.  In the next section, we 

will characterize the ‘production’ of homeland security as the allocation of defense and 

mitigation efforts that maximizes [2], given the resources devoted to homeland security. Toward 

this end we first need to describe how ( , ; , )cp n m L p  varies with the number of defended 

pathways and efforts to mitigate the effects of a successful attack. The following proposition, 

which is proved in the appendix, provides this description:  

 

Proposition 1: For ( , ; , )c cp n m L p p< , (0, )n N∈ , and , 0m > ( , ; , )cp n m L p  has the following 
characteristics: 

i)  0, 0,  and 0;n m nmp p p> > >  
ii)  while the sign of 0,nnp > mmp  is indeterminate; 
iii) ( , ; , )cp n m L p  is strictly quasi-concave in (n, m) if and only if  0.mmp < ( , ; , )cp n m L p  

is strictly quasi-convex if and only if . 0mmp >
 

 7



 

Part i) of the proposition indicates that ( , ; , )cp n m L p  is montonically increasing in n and 

m so that increasing the number of defended pathways and increasing mitigation efforts both 

increase society’s immunity to the critical expected loss L . Moreover,  implies that 

defense and mitigation are complements in the sense that increased mitigation increases the 

marginal productivity of defense, and vice-versa. Part ii) of the proposition reveals that the 

marginal productivity of defense increases as more pathways are defended ( ). On the 

other hand, it is unclear how increased mitigation affects the marginal productivity of mitigation. 

If , then increasing mitigation increases society’s immunity to a critical expected loss, 

but at a decreasing rate.  On the other hand, if  then the marginal productivity of 

mitigation increases with greater mitigation effort. Part iii) of the proposition reveals that 

whether the marginal productivity of mitigation is increasing or decreasing determines whether 

0nmp >

0nnp >

0mmp <

0mmp >

( , ; , )cp n m L p  is quasi-concave or quasi-convex. This distinction has implications for the optimal 

allocation of homeland security resources to defense and mitigation, which we explore next. 

 

3. The Production of Homeland Security 

Obviously, levels of homeland security depend on the resources devoted to it. Moreover, given 

the resources devoted to security, maximal security is attained by the efficient allocation of these 

resources to defense and mitigation efforts. Let R denote the monetary resources devoted to 

homeland security, and let  denote the unit costs of defense and mitigation efforts, 

respectively. Then, the efficient allocation of resources to defense and mitigation to maximize 

immunity to a particular expected loss is the solution to: 

 and nw wm

 

   ( )
,

max     ( , , , ) ( )( )cn m
p n m L p LN L m N n= −  

  s.t. n mR w n w m≥ +  

  ( , ; , )c cp n m L p p≤  

       [3] [0, ], 0.n N m∈  ≥
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At the outset this optimization problem can be simplified a bit. First, the resource 

constraint always binds. The monotonicity of ( , ; , )cp n m L p  in n and m implies that if 

n mR w n w m> + , then ( , ; , ) .c cp n m L p p=  But then security can be increased by decreasing L  

while increasing n and/or m until the budget is exhausted.  

There is a possible solution to [3] than involves defending all pathways against possible 

attack. Since ( )( , , , ) ( )( )cp n m L p LN L m N n= − , the constraint ( , ; , )c cp n m L p p≤  can be 

written as ( )( )cL p L m N n N≤ − . Setting n = N so that all pathways are defended allows us to be 

perfectly immune to any expected loss; that is, we can achieve ( , ; , )c cp n m L p p=  for 0L = . It 

seems to us, though, that defending all potential targets of a terrorist attack is likely to be 

prohibitively expensive. Therefore, from here on, we only examine solutions to [3] that involve n 

< N.  

Moreover, let us assume that ( , ; , )cp n m L p  is strictly quasi-concave in (n, m) so that we 

can focus on solutions to [3] that involve .0 and 0n m> >

=

6 (We will briefly consider situations 

involving  later). Then the choices of defense and mitigation solve 0 or 0n m=

,
max ( , , , )cn m

p n m L p subject to . Let  denote the Lagrange equation for this 

problem and let 

0n mR w n w m− − = L

λ  denote the multiplier for the budget constraint. Under our assumptions the 

following first-order conditions are both necessary and sufficient to solve [3]: 

 

2 0;
( )( )n

LN w
L m N n

λ= −
−

L n =     [4] 

  2

( ) 0;
[ ( )] ( )m

LNL m w
L m N n

λ
′−

= −
−

L m =

                                                

    [5] 

       [6] 0.n mR w n w mλ = − − =L

 

 
6 Quasi-concavity or quasi-convexity determines the curvature of the level curves of ( , ; , )cp n m L p . If 

( , ; , )cp n m L p  is strictly quasi-convex, then its level curves are strictly concave. In these cases, the optimal choices 
of defense and mitigation will certainly be a corner solution.  
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Denote the solution to [4]—[6] as ( , , )n m λ∗ ∗ ∗ . The following proposition characterizes 

how security-maximizing choices of defense and mitigation depend on the critical loss L  and 

the resources devoted to security R. It is proved in the appendix.  

  

Proposition 2: Provided that ( , ; , )cp n m L p is strictly quasi-concave and  and :    0n∗ > 0m∗ >

i)  are independent of  and n∗ m∗ L ; 

ii)  is increasing in R while mn∗ ∗  is decreasing in R.  

 

Part i) indicates that optimal defense and mitigation are independent of the critical 

expected loss. This is true because ( , ; , )cp n m L p  is a linear function of L .   

Part ii) of the proposition reveals that the number of defended pathways is a normal input 

in the production of security, while mitigation is an inferior input. Thus, increased resources 

allocated to homeland security should be devoted to defense, while at the same time decreasing 

mitigation efforts. The intuition behind this result is straightforward. Clearly, since the marginal 

productivity of defense is increasing in higher levels of defense ( ), society should 

exploit this by allocating at least a part of an increase in security resources devoted to increased 

defense. However, doing so must be accompanied by a decrease in mitigation efforts. To 

understand why this must be the case, note that the first-order conditions [4] and [5] imply that 

defense and mitigation be chosen so that the ratio of the marginal products of these efforts in 

producing security is equal to the ratio of the prices of these efforts. That is, [4] and [5] can be 

combined to yield 

i.e., 0nnp >

/ / .n m n mp p w w=  Allocating at least a part of an increase in security resources 

to additional defense increases np , because .  To maintain 0nnp > / /n m n mp p w w= , then, 

mitigation must change to increase mp  by the same amount as the increase in np . Since the 

marginal productivity of mitigation is decreasing in this effort ( 0mmp < ), increasing mp  is 

accomplished by reducing mitigation.  
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We will not be analyzing the effects of changes in the costs of defense and mitigation on 

the optimal solution.7 Therefore, Proposition 3 allows us to simply write the optimal values for 

defense and mitigation in terms of the resources devoted to homeland security; that is  

and . Then, maximal immunity to expected loss 

( )n n R∗ ∗=

( )m m R∗ ∗= L  is  

 

( , , ) ( , ; , )
( ( ))( ( ))c c

LN
cp L R p p n m L p p

L m R N n R
∗ ∗

∗ ∗= =
−

≤ .  [7] 

 

 Clearly, with respect to L , ( )( )( )LN L m N n∗ − ∗

m∗

 has a zero intercept and is linearly increasing 

(this last follows because  are independent of  and n∗ L ).  

Figure 1 is a graph of ( )( )( )LN L m N n∗ − ∗  that we use to further refine the production 

function for security.  As seen in the graph, for sufficiently high values of L , 

( )( )( )LN L m N n∗ − ∗  exceeds cp . An example of such an outcome is ( , )p L+ + . Clearly, 

since cp p+ > , immunity to L+  exceeds the maximum probability of a terrorist attack. Then, one 

may be tempted to simply say that maximal security is given by the point ( , )cp L+  in the graph. 

Doing so suggests that optimal security ( , , )cp L R p  increases up to pc and then is constant at this 

level for higher levels of critical loss L .  However, a point like ( ,c )p L+ cannot represent the 

maximal security attainable with resources R, because such an outcome implies that society is 

willing to accept higher expected losses than it needs to. Reducing the expected critical loss 

value from L+  to kL  while holding immunity to pc represents greater security without additional 

costs. Therefore, the optimal production of security is defined only over expected critical losses 

between zero and kL , inclusive. Thus, the following proposition completely characterizes the 

optimal production of homeland security.  

 

 

 
                                                 
7 As one would guess, both defense and mitigation are decreasing in their respective unit costs. The cross-cost 
effects—the effect on defense of an increase in the unit cost of mitigation and the effect on mitigation of an increase 
in the unit cost of defense—are ambiguous.  
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Proposition 3: Given resources R devoted to homeland security, its optimal production is:  

 

( , , ) ,   [0, ( , )
( ( ))( ( ))c k

LN ]cp L R p L L R p
L m R N n R∗ ∗= ∈

−
,  

where 

 ( , ) | ( ( ))( ( )) .
( ( ))( ( ))k c c c

NLL R p L p p L m R N n R N
L m R N n R

∗ ∗
∗ ∗

⎧ ⎫
= = =⎨ ⎬−⎩ ⎭

−   [8] 

 

Our final proposition provides the fundamental characteristics of the optimal production 

of homeland security. It is proved in the appendix.  

 

 

Proposition 4: i) ( , , ) 0cp L R p =  for 0L = ;  

 ii) ( , , )cp L R p  is linearly increasing in L up to pc;   

 iii) ( , , )cp L R p  is increasing and strictly convex in R, for ( , )k cL L R p< ; 

 iv) 2 ( , , ) 0,cp L R p R L∂ ∂ ∂ >  for ( , )k cL L R p< ; 

 

Part i) of the proposition indicates zero immunity against zero expected loss; that is, 

society has no confidence that the expected loss from a terrorist attack is zero. Part ii) indicates a 

fundamental tradeoff between immunity and expected loss. Given resources devoted to 

homeland security that are optimally allocated to defense and mitigation, increased immunity 

against unacceptable expected losses is attained only by tolerating higher expected losses.  

However, parts iii) and iv) indicate that devoting more resources to homeland security allows the 

attainment of greater immunity to a particular expected loss, lower critical expected loss for the 

same degree of immunity, or some combination of greater immunity to lower critical expected 

loss. Moreover, given a critical expected loss (0, ( , ))k cL L R p∈ , immunity to this loss increases 

at an increasing rate with greater resources devoted to homeland security.  
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Figure 2 is a graph of ( , , )cp L R p  for two resource levels, 0 1R R< , which we can use to 

illustrate the main results of this paper. In the graph, 0 0( , )k cL L R p= and 1 1( , )k cL L R p=  as 

defined by [8].   

Homeland security under true uncertainty about the probability of a terrorist attack is the 

degree of immunity to unacceptable expected losses. More rigorously, a point like ( ,A A )p L  in 

Figure 2 indicates the maximum probability of a terrorist attack, Ap , up to which we are certain 

that the expected loss from such an attack does not exceed AL . Suppose that society devotes 0R  

resources to defending against a terrorist attack and mitigating the effects of a successful attack, 

but achieves only ( ,A A )p L . Clearly, the allocation of 0R  to defense and mitigation is inefficient 

because greater security can be achieved with these same resources. Combinations of immunity 

and critical expected loss on the ab segment of 0( , , )cp L R p  represent points of greater security 

than ( , )A Ap L , because they involve greater immunity to expected loss AL , reduced expected loss 

while keeping immunity to that loss constant at Ap , or some combination of greater immunity to 

lower acceptable expected loss like point ( ,B B )p L . 

Given that society efficiently allocates 0R  to defense and mitigation, changes in security 

involve a fundamental tradeoff between immunity and loss. Achieving greater immunity requires 

tolerating a higher potential expected loss, and vice versa. (Indeed, reducing the allowable loss to 

zero requires reducing immunity to zero). Achieving greater security requires a greater 

investment in homeland security. This is illustrated in Figure 2 where an increase in this 

investment from 0R  to 1R , allows the achievement of points of greater security than ( ,B B )p L on 

the cd segment of 1( , , )cp L R p . Interestingly, since defense is normal input into the production of 

security and mitigation is an inferior input (Proposition 2, part ii)), the increase in security 

resources from 0R  to 1R  calls for allocating more of these resources to defense and less to 

mitigation. 

To complete the analysis let us very briefly examine how possible corner solutions for the 

choice of defense or mitigation affect our main results. These situations may occur when 

( , ; , )cp n m L p  is quasi-convex in (n, m). Or, given that we know that defense is a normal input 

into the production of security while mitigation in an inferior input, very high levels of homeland 
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security resources may call for devoting all of these resources to defense and none to mitigation.  

Even in these corner-solution cases, ( , , )cp L R p  retains its essential characteristics provided in 

Proposition 4.  If , all security resources are allocated to mitigation so that .  

Then, 

0n∗ = / mm R w∗ =

( , , ) ( / )c mp L R p L L R w= . As in Proposition 4, ( , , ) 0 for 0cp L R p L= = and is linearly 

increasing in L . Moreover, it is easy to show 2( , , ) ( ) [ ( )] 0c mp L R p R LNL m w L m∗ ∗′∂ ∂ = − > , 

indicating that ( , , )cp L R p  is increasing in R. On the other hand, if 0m∗ = , then  and / nn R w∗ =

( , , ) (0)( / )c np L R p LN L N R w= − . It is straightforward to show that in these cases, ( , , )cp L R p  

retains the same basic characteristics. The upshot then is that corner choices of defense and 

mitigation do not change the fundamental structure of the production of homeland security as 

characterized by Proposition 4.  

 

4. Concluding Remarks: The Social Choice of Homeland Security 

We have examined the definition and production of homeland security under true uncertainty 

about terrorist attacks. We have argued that the degree of immunity to unacceptable expected 

losses from terrorist attacks is a useful way to conceptualize security under true uncertainty. We 

have illustrated this concept of security with a model of allocating a fixed budget for homeland 

security to defending the pathways through which a terrorist may launch an attack and to efforts 

to mitigate the damage from an attack that evades this defense. Immunity to unacceptable losses 

in this problem is the range of uncertainty about the likelihood of an attack within which the 

actual expected loss will not exceed some critical value. Homeland security resources are 

optimally allocated to defense and mitigation to maximize immunity to alternative levels of 

expected loss. Our most important result is that the production of homeland security involves a 

fundamental trade-off between immunity and acceptable loss; that is, for fixed resources that are 

optimally allocated to defense and mitigation, increasing immunity to loss requires accepting 

higher expected losses, and reducing acceptable expected losses requires lower immunity. 

Greater investments in homeland security allow society to increase security by increasing 

immunity to some critical expected loss, reducing the expected loss we are willing to tolerate 

while holding immunity to this loss constant, or some combination of increased immunity to a 

lower critical expected loss. 
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Although we have shown a useful way to think about the problem of homeland security 

and have analyzed characteristics of its production, we have said little about society’s preference 

and choice of security. Indeed, the variables that are important for defining and producing 

security—degree of immunity, critical expected loss, and the resources devoted to homeland 

security—are all matters of social choice. We have assumed that society prefers greater 

immunity to lower expected loss, but we have shown that achieving both with fixed resources is 

not possible. Therefore, a fuller description of the relative values that society places on immunity 

and critical expected loss is necessary to analyze the social choice over these elements of 

homeland security.  
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Appendix 

Proof of Proposition 1: For parts i) and ii) use [2] to calculate 

 

2 0
( )( )n

LNp
L m N n

= >
−

; 2

( ) 0
[ ( )] ( )m

LNL mp
L m N n

′−
= >

−
; 

3

2 0
( )( )nn

LNp
L m N n

= >
−

; 2 2

( ) 0
[ ( )] ( )nm

LNL mp
L m N n

′−
= >

−
; 

{ }2

3 3

2[ ( )] ( ) ( )
[ ( )] ( )mm

LN L m L m L m
p

L m N n

′ ′′−
=

−
. 

 

Note that the sign of pmm is equal to the sign of , and hence is 

indeterminate. For part iii), strict quasi-concavity requires  

22[ ( )] ( ) ( )L m L m L m′ ′′−

 

   2 22 ( ) (m n nm nn m mm np p p p p p p− − ) 0.>

) 0.

 

Use the calculations above to show that 22 (m n nm nn mp p p p p− =  Therefore, ( , ; , )cp n m L p  is 

strictly quasi-concave in (n, m) if and only if 2( ) 0mm np p− > , which requires  Clearly, if 

, then

0.mmp <

0mmp > ( , ; , )cp n m L p  is strictly quasi-convex, and ( , ; , )cp n m L p  is strictly quasi-convex 

only if . QED. 0mmp >

 

Proof of Proposition 2: For part i), set [4] and [5] equal to each other and simplify the result to 

obtain  

 

( ) ( )( ) 0.m nw L m w L m N n′+ − =      [A.1] 

 

This equation and the resource constraint, 0,n mR w n w m− − =  determine the optimal values for n 

and m. Note that L  does not enter either of these equations, implying that the optimal values of n 

and m are independent of this critical loss. 

 To prove part ii), note that the Hessian matrix associated with [4], [5], and [6] is 
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   .
0

nn nm n

mn mm m

n m

p p w
H p p w

w w

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

The second order condition for an optimum is that the determinant of this matrix be strictly 

positive; that is |  The comparative statics with respect to the budget are the solutions to 

the system of equations 

| 0.H >

        [A.2] 
0
0 .
1

R

R

R

n
H m

λ

∗

∗

∗

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

 

From [A.2] obtain ( ) |R nm m mm nn p w p w H∗ = − >| 0,  The sign of Rn∗  follows because  from 

part ii) of Proposition 1 and , which is required if 

0nmp >

0mmp < ( , ; , )cp n m L p  is strictly quasi-

concave. 

From [A.2] obtain ( )R nm n nn mm p w p w H∗ = − | |.  Calculate 

 

[ ]
2 3

( )( ) 2 ( )
[ ( )] ( )

n m
nm n nn m

LN w L m N n w L m
p w p w

L m N n
′− − −

− =
−

. 

 

From [A.1],  Substituting this into ( )( ) ( ).nw L m N n w L m′− − = m nm n nn mp w p w−  reveals that 

 Consequently, 0.nm n nn mp w p w− < 0.Rm∗ <  The proof is complete. QED. 

 

Proof of Proposition 4: Part i) follows from [7] and the fact that and n m∗ ∗  are independent of 

L  (Proposition 2). For part ii), use the envelope theorem to obtain ( , , )cp L R p R λ∗∂ ∂ = . If the 

first-order conditions [4] and [5] hold, then  and 0λ∗ > ( , , ) 0.cp L R p R∂ ∂ >  Note that 

2 ( , , ) .cp L R p R2
Rλ
∗∂ ∂ =  From the first order conditions [4], [5], and [6], and [A.2] obtain 

2[( ) )] | | 0.R nm nn mmp p p Hλ∗ = − >  The sign of Rλ
∗  follows because  from part ii) of 0nnp >
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Proposition 1 and , which is required for 0mmp < ( , ; , )cp n m L p  to be strictly quasi-concave.  

Finally, to prove part iv) of the proposition note that 2 ( , , ) .c Lp L R p R L λ∗∂ ∂ ∂ =  From the first-

order condition [4], 2( )( )nLN w L m N nλ∗ ∗= − ∗ m. Since and n∗ ∗  are independent of L , 

2( )( ) 0nL N w L m N nλ∗ ∗ ∗= − > . This completes the proof. QED.
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Figure 1: Refining the Production Function for Homel
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