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6 The Term Structure of Implied
Volatility

The term structure of implied volatility is the relation between the option

implied volatility and time to maturity: ( )imp
T U . Using our previous notation,

it’s the square root of ( , , )impV X V U , holding the moneyness X and the initial
volatility V fixed. In practice, the implied volatility is usually measured at a

strike price close to the money. ( X � �  is a natural choice). In fact, the
qualitative behavior is the same at any strike: a graph of ( )imp

T U  vs. U

ultimately flattens to a limiting asymptotic  value, /( )imp impVT
d d
�

� � , that is

independent of both X and V. This general behavior is  analogous to the term
structure of interest rates and the existence of a long-run rate of interest.

The asymptotic implied volatility depends only upon the parameters of the
volatility process. It can be calculated from the simple relation

                                               ( )impV kM
d

� �� ,

where M  is the first eigenvalue of a differential operator, and k�  is a complex

number. We illustrate 3 ways to calculate impV
d

 for general models: a series
method, a variational method, and a differential equation-based method.
Computation times for the latter two methods are just a couple of seconds in

Mathematica.
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1 Deterministic Volatility

The volatility models that we consider in this book typically have a similar

structure: ( ) ( )t t t tdV b V dt a V dW� � , where the drift term ( )tb V exhibits mean-
reversion. For example, the GARCH diffusions and other models have the linear
drift form ( )t tb V VX R� � , where X  and R  are positive constants. If the

volatility becomes small, then ( )tb V is positive, causing the volatility to tend to
grow larger. If the volatility is large, then ( )tb V is negative, causing the volatility
to tend to grow smaller.

To a first approximation, the term structure is explained by letting the Brownian
noise term vanish1. For the linear drift models, we are left with the deterministic

volatility evolution t tV VX R� �� , where the dot means a time derivative. The
solution to the differential equation y yX R� �� , where ( )y V��  is given by

(6.1)                                ( , ) ( ) ty t V V e RX X

R R

�

� � � .

In (6.1), the behavior is especially simple as tld ;  no matter what the
starting value V, the volatility tends to the fixed point * /V X R� . This value is

called a fixed point because if the volatility starts there, it stays there. The fixed
point is  attractive or stable because small departures of the volatility from V*
are damped over time.

Option valuation under deterministic volatility is a well-known application of
the B-S theory. Options are still priced by the B-S formula, but the volatility

parameter in the formula is modified. The modified volatility is simply the time-
average of the deterministic volatility. In other words, if ( , , )C S V U is the general
call option value and ( , , )c S V U is the B-S value, then under deterministic

volatility:

                                                       
1 For simplicity, we call the term structure of implied volatility just the term

structure. With the exception of one subsection, in this chapter the risk-adjusted
volatility process and the actual volatility process are assumed identical (a risk-
neutral world). See Chapter 8 (Duality and Changes of Numeraire) to convert

the results in this chapter to log-utility.
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(6.2)                              	 
( , , ) , ( , ),C S V c S VU N U U� ,

where          	 
( , ) ( , ) eV y s V ds V
RUU X XN U

U R R RU

�� ¬� ­�� � � � ­� ­�� ®¨
�

� � .

The B-S implied volatility is given by /( , )] [ ( , )]imp V VT U N U� � � .

Shown in Fig. 6.1 is a plot of both ( , )imp VT U  and /[ ( , )]y VU � � versus U , where
.aX � � ��  and aR � � , (annualized parameters).  We show two cases: (i) initial

volatility %aT � � ( . )aV � � ����  and (ii) initial volatility
%aT � �� ( . )aV � � ���� . Notice that the implied volatility (the bold line)

behaves a lot like the actual volatility ( , )y VU  (the thin line); the only difference

is that the implied volatility changes more slowly because it’s a time-average.
But both functions begin at V and evolve in a smooth monotonic fashion with a
limiting asymptotic value /( / ) %impT X R

d
� �� �

�� . The asymptotic value is

independent of the starting value V,  as well as , , ,S K r and E .

The rate of convergence to the asymptotic value is determined by the parameter

R , which has the dimensions [ / ]U� . Since the “decay rate” is determined by the
exponential term exp( )RU� , this type of behavior is often described as having a
“half-life” / /U R�� � � . In our example, / .U �� � � �   years and one can see from

Fig 6.1 that both the actual and implied volatilities have moved, very roughly,
about half-way toward their final asymptotic value at .U � � � years.

Many other models of interest to researchers have a deterministic limit that
behaves in the same way as this example. In general, volatility evolution in the
deterministic limit is ( )t tV b V�� , where ( )b ¸ is the drift coefficient. If a model is

mean-reverting, ( )b V will typically have a single zero at some *V V� . The
zero will be attractive, meaning not only ( *)b V � �  but also ( *)b Va � � , where
the prime means a derivative. If you picture the graph of ( )tb V  you can see that

the volatility evolution will be similar to Fig. 6.1. It follows from ( )t tV b V��

that ( )b V has the dimensions of [ / ]V t , so that  ( *)b Va  has the dimensions
[ / ]t� . This causes | / ( *) |b Va�  to play the role of the half-life parameter in

general models, at least asymptotically.



180                         Option Valuation Under Stochastic Volatility

Fig. 6.1 Term Structure of Implied Volatility ( Deterministic Model )

    Implied Volatility (Timp , percent)

                                    Years to Option Expiration

Fig. 6.2 Term Structure of Implied Volatility ( Stochastic Model )

   Implied Volatility (Timp , percent)

                                Years to Option Expiration
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2 Deterministic Volatility II: a Transform
Perspective

In the last section we showed that the deterministic volatility model

t tV VX R� ��  has an asymptotic implied volatility /impV X R
d

� . In this section

we consider this same problem with the transform method. The advantage of the
transform method is that it also solves the case we are really interested in—
stochastic volatility.

Call option Solution II of (2.2.10) is:

(2.1)    
ˆ ( , , )

( , , )
i

i

ik

r ikX

ik

H k V
C S V Se Ke e dk

k ik
EU U U

U
Q

�d

� � �

�d

� �
�¨ �

�

�
,  Im k� �� � .

The natural strike price K at which to measure the term structure is given by
X � � , which corresponds to rKe SeU EU� �� . If r Ev  and you measure at
K S� ,  you are systematically moving to one side of the volatility smile

pattern as the time to expiration increases. With the better choice X � � , (2.1)
simplifies to:

(2.2)                        
ˆ ( , , )( , , )

i

i

ik

r
ik

H k VC S V
dk

Ke k ikU

UU

Q

�d

�

�d

� �
�¨ �

�
�

�

We established in Chapter 2 that, under constant volatility, this solution was

valid for the entire strip Im k� �� � . The same holds true under deterministic
volatility because, as we will show, ˆ ( , , )H k V U is an entire function under either
constant or deterministic volatility.

We established the solution for the fundamental transform ˆ ( , , )H k V U  under
deterministic volatility in Appendix 3.1 at (3.A.2). For the drift function

( )b V VX R� � , that formula becomes

            < >( )ˆ ( , , ) exp ( ) ( , )H k V c k U VU U� ��  ,   where ( ) ( )c k k ik� ���

�
,

and                	 
( , ) ( , ) eU V y s V ds V
RUU

X X
U U

R R R

�� ¬� ­�� � � � ­� ­�� ®¨
�

� .

This shows that ( )ˆ ( )H k� is an entire function of k in the complex k-plane. A

general plot of the modulus ( )ˆ| ( ) |H k�  has already been given in Chapter 2, Fig.
2.1. The asymptotic theory considers U ld . Suppose we are integrating in
(2.1) along Im /k � � � . In Fig. 6.3, we plot ( )ˆ| ( / ) |rH k i��

�  versus rk for
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,  ,  and U � � �� ���  years, using the previous numerical example .aX � � �� ,

aR � � , and .aV � � ���� .

          Fig. 6.3.    ˆ| |H� �N  along an Integration Contour (Im 1/2)k  
                Various Times to Maturity  U  (Deterministic Model)

         ˆ| |H

 

                                                              Re k

As you can see from Fig. 6.3, the fundamental transform becomes increasingly
peaked about rk � �  as the time to maturity increases. For U �� � , (2.2)
becomes

       	 
( , , )
exp ( ) ( )

i

i

ik

r
ik

dkC S V
c k c k V

Ke k ikU
U

U X X
U

Q R R R

�d

�
ld

�d

  ¯
x � � � �¡ °

¢ ± �
¨ �

� �
�

�

Of course because this is the B-S theory, we could evaluate this integral exactly
(see Chapter 2, Appendix 1). But an alternative method will also work in the
stochastic volatility case: the asymptotic method of steepest descent.2 As

U ld , Fig. 6.3 shows that the exponential factor in the integral damps the
contribution everywhere except near rk � � , which is our integration origin. If

                                                       
2 For a nice discussion of the methods of steepest descent, saddle points, and the
method of stationary phase, see Carrier, Krook, and Pearson (1966, Chapt. 6).
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we didn’t know this point, we could find it by looking for the stationary point
k�  determined by '( )c k �� � , which has the solution /k i�� � . This solution
k�  is also a saddle point because, while the modulus ˆ| |H  is decreasing in the
real direction, it’s increasing in the imaginary direction (see Fig. 2.1 in Chapter

2). Along this integration contour, ( ) / /rc k k� � �
� � � . This is an exact relation,

but in the stochastic case (see below), we will expand the integrand in a Taylor
series about the saddle point. In this special case, the Taylor series only has the

two terms. The leading asymptotic contribution to the integral is given by

    	 
 	 
 	 
( , , )
exp exp exp r rr

C S V
V k dk

Ke U
U

U X X X
U U

Q R R R R

d

�
ld

�d

  ¯
x � � � � �¡ °

¢ ± ¨
�� �

�
� � � �

The integral that remains is just a Gaussian

                                  	 
exp r rk dkX QR
U

R XU

d

�d

� �¨ � �

�
.

So we obtain the result

                     	 
 	 
( , , )
exp exp

r

C S V
V

Ke U
U

U R X X
U

QXU R R R�
ld

  ¯
x � � � �¡ °

¢ ±

� �
�

� �
.

This result can be compared with the Black-Scholes formula, which is easily

shown to be, in this limit,

 (2.3)                         	 
( , , )
exp

r

c S V V
VKe U

U

U
U

Q U�
ld

x � �
�

�
�

.

Comparing the last two equations implies that /impV X R
d

� , just as we expected.

The important idea is that we now have a method for the stochastic case.

3 Stochastic Volatility—The Eigenvalue
Connection

Notice that as U ld , the fundamental transform in the previous section had
the following special form

                   < > < >( )ˆ ( , , ) exp ( ) ( , ) exp ( ) ( , )H k V c k U V k u k V
U

U U M U
ld

� � x �� ,

where

                   ( ) ( )k c k X
M

R
�      and   	 
( , ) exp ( )u k V c k V X

R R

  ¯
� � �¡ °

¢ ±

�  .
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This form is special because, first of all, the dependence upon V and U  has
separated into the product of two terms, one depending upon U  and one

depending upon V . (Both terms depend upon k) . Suppose, that under stochastic
volatility, the same form of solution holds:

(3.1)                            < >ˆ ( , , ) exp ( ) ( , )H k V k u k V
U

U M U
ld

x �

with  new functions ( )kM and ( , )u k V  to be determined.  If we substitute this
form into the PDE (2.2.19) satisfied by the fundamental transform, then we are
left with the ordinary differential equation for ( , )u k V :

This is an eigenvalue equation, where ( )kM  is an eigenvalue of the differential

operator k$ , and u is the associated eigenfunction.3.  In general, there can be
many solutions to (3.2). In fact, you may be able to develop the fundamental
transform at all times U  (not just U ld ) as a sum over such solutions—this is

called an eigenfunction expansion4. But, in the limit U ld , the dominant term
of such a sum uses the smallest or first eigenvalue. This may seem confusing at
this point because there are a lot of complex numbers appearing in (3.2), so what

do we mean by smallest? Below, we show that, in fact, everything we calculate
is real-valued and the first or smallest eigenvalue is well-defined.

What does the first eigenfunction look like? In Fig. 6.4 we show plots of
( , )u k V vs. V with /k i� � . The model is the GARCH diffusion process

( ) ( )dV V dt VdW tX R Y� � � , with .X � � �� , R � � , .Y � � �  and

, ,S ��� � � . How we calculated that function is explained in Sec. 8.

                                                       
3Eigenvalue problems are not well-defined until we specify a class of admissible

functions. This is discussed later in Sec. 7
4 See my article (Lewis 1998).

(3.2)                                         ( )k u k uM�$ ,
where

            /( ) ( ) ( ) ( ) ( )k
d u duu a V b V ik V a V V c k V u

dVdV
S  ¯� � � � �¢ ±

�
� � ��

� �

�$ .
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           Fig. 6.4 First Eigenfunction for the GARCH Diffusion Process

( )u V

                                                        Volatility  V

Notes. The figure shows a plot of the first eigenfunction ( , )u k V for the GARCH

diffusion model, ( ) ( )dV V dt VdW tX R Y� � � , with .X � � �� , R � � , .Y � � �  and

, ,S ��� � � . The parameter k is set to /i �  The function has been normalized so that

( / )u V X R� � � . Since / .X R � � �� , the range /V X R�  is difficult to resolve in the

scale of the main plot and is shown in the inset. The Mathematica code for this plot is

given in the Appendix to this chapter.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

0 0.002 0.004 0.006 0.008 0.01
1

1.0001

1.0002

1.0003

1.0004

1.0005

1.0006

r = 1

r = 0

r = -1



186                         Option Valuation Under Stochastic Volatility

With this general form of solution, then (2.2) becomes in the stochastic case:

 (3.3)              < >
( , , )

exp ( ) ( , )
i

i

ik

r
ik

dkC S V
k u k V

Ke k ikU
U

U
M U

Q

�d

�
ld

�d

x � �
�

¨ �

�
�

�
,

The Ridge Property. Suppose that ( )kM  has a saddle point k�  in the complex

k-plane determined by the solution to ( )kM a �� �  . We showed in Chapter 2 that
the fundamental transform is often an analytic characteristic function. As we
explained in that chapter, analytic characteristic functions have the ridge

property, which means that any  saddle point must lie along the purely
imaginary axis. In other words, k iy�� � , where y�  is a real number. This
saddle point location will be confirmed in computational examples below.

The reality of the eigenvalue problem (3.2). Recall the reflection property

from (2.2.20): *ˆ ˆ( , , ) ( *, , )H k V H k VU U� � . Combining this property with the

ridge property, any saddle point must be found along k iy� , where
*ˆ ˆ( , , ) ( , , )H iy V H iy VU U� . That is: the fundamental transform is real along the

imaginary k-axis. In turn, this shows that both the first eigenvalue and the

associated eigenfunction are real along the imaginary axis. And finally, we can

see from (3.2) that each of the coefficients of the equation will be real along that

axis. In other words, to summarize: the asymptotic term structure is determined

by the smallest solution to an eigenvalue problem, where the eigenvalue,

eigenfunction, and associated PDE are all real-valued.5

An important element of the saddle point method is moving the integration

contour so that it traverses the saddle point. Before we can do that, recall that
(3.3) is a valid formula as long as the integration contour lies in the intersection
of the fundamental strip Im kB C� �  with the strip Im k� �� � ; this is the

strip of regularity. We now make the further assumption that the saddle point
Imik k y� � �  lies within the strip of regularity6. If it does, then, by Cauchy’s

theorem (See Chapter 2, Appendix 1), we can move the integration contour to

                                                       
5 The complex-valued coefficients in (3.2) are needed for the full transform, but
not for its asymptotic saddle point behavior.
6 Practical numerical examples—see Table 6.1—show that y�  is often close to
1/2, so this is not  problematic in my experience.



                                          The Term Structure of Implied Volatility            187

Imk y� � without changing the value of the integral. Next,  expand ( )kM  in a

Taylor series about k� :

                               ( ) ( ) ( ) ( )r rk k k k k kM M M Maa� � � ��
� � ��

� ,

so (3.3) becomes

         < >
( , , ) ( , )

exp ( ) exp ( )r rr

C S V u k V
k k k dk

Ke k ikU
U

U
M U M U

Q

d

�
ld

�d

  ¯aax � � �¢ ±� ¨ �� �
� ���

� �

�
�

�
.

Note that this last integral is over a real integration variable. We know
( )kM aa p� �  because of the ridge property. Performing the integral gives us

 (3.4)              < >
( , , ) ( , )

exp ( )
( )r

C S V u k V
k

Ke k ik kU
U

U
M U

QM U
�

ld

x � �
aa�

�
��

� � �

�
�

�

.

Notice that the denominator term ( )k ik y y� � � ��

� � � �� �  since, by
assumption y� ��� � .  The arbitrage bound ( , , )C S V Se EU

U
�b combined with

rKe SeU EU� �� , implies that in (3.4) we must have ( , , ) / rC S V Ke U
U

� b� . This

implies that not only is ( , )u k V�  real, but it’s non-negative as well. That same
bound also strengthens the inequality ( )kM aa p� �  to ( )kM aa �� � . Finally,
comparing (3.4) with (2.3)  yields a simple result for the (at-the-money)

asymptotic implied volatility:

                                              ( ) ( )impV X kM
d

� � �� �

Next, we repeat the calculation for an arbitrary value for the moneyness measure
X.  In that case,  (3.4) becomes:

(3.5)        < >
( , , ) ( , )

exp ( )
( )

X
r

C S V u k V
e k ik X

Ke k ik kU U

U
M U

QM U
�

ld

x � � �
aa�

�
� ��

� � �

�

�

.

But the B-S solution, for general X , has the asymptotic form:

(3.6)                  	 
( , , )
expX

r

c S V Xe V
V VKe U U

U
U

Q U U
�

ld

  ¯
¡ °x � � �
¡ °¢ ±

�

� �

� �

� .

Comparing the two solutions (3.5) and (3.6) implies that

(3.7)                  ( )imp

imp

X V k ik X
V U

U M U

U ld

� ¬­�� � x � �­� ­­�� ®

�

� �
� �� �

After some rearrangement, (3.7) is equivalent to
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(3.8)

where recall that k iy�� � .  This last equation is important because it implies

that, as U ld , the smile flattens to a common asymptotic value regardless of
the moneyness X.  And that common value is

(3.9)

We will see in examples below that, when S � � (the symmetric case), then
/y �� � �  and the linear term in (3.8) vanishes.

4 Example I: The Square Root Model

For this model, volatility process (under risk neutrality) is
( ) ( )dV V dt V dW tX R Y� � � , where the Brownian motion has correlation S

with the stock price process. In Fig. 6.1, we showed an example of the term

structure with / .X R � � �� and Y � � . Next, we keep the same parameters but
turn on the volatility of volatility parameter to Y � � , keeping S � � .  (We
chose a value for Y  larger than would typically be measured in order to

emphasize the effects).

The term structure under stochastic volatility is shown in Fig. 6.2. Now there is

more structure to the plot. Instead of a monotonic evolution in U  to 10%, there
is a dip to a significantly lower value when U less than a year. At large U , there
is a clear indication of a common asymptote, just as we would expect from the

theory of the last section. The new asymptotic value is no longer 10% but lower
at approximately 9.92%. We found this value by applying the general theory of
the previous section, as we now show.

The formulas for the fundamental transform are given at (2.3.1) and (2.3.2),
taking the parameter H � � . (We will refer to expressions used there). We

showed in Chapter 2 that the fundamental strip for this model is at least as large
as the unit strip { | Im }I k k� � �� � � .

      ( , , ) ( ) ( ) ( )
( )

imp X XV X V k y O
kU

U M U
U M U

�

ld

x � � � �
�

�

� � �

�

� � �
�

lim ( , , ) ( )imp impV V X V k
U

U M
d

ld

� � ��
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With k in the unit strip, then Re d � � , which leads to the limiting behaviors
( )f t gtXx� �  and ( )f t gx� as t ld . Being careful to note the time rescaling

that occurred in  (2.3.1), this means that, as U ld ,

                            < >ˆ ( , , ) exp ( ) ( , )H k V k u k V
U

U M U
ld
x � ,

where

(4.1)     \ ^/( ) ( ) [( ) ( ) ] ( )k g k ik k ik ikXM X R SY Y R SY
Y

�� � � � � � �� � � � �

�

and                                        ( , ) exp[ ( ) ]u k V g k V� .

The stationary point k�  in the complex k-plane is the solution to

( ) /d k dkM � � . This equation has two solutions:

(4.2)                  \ ^/
  ik

S
R R Y S R Y

YS

� ¬­� ­� ­� ­­�� ®
  ¯� � o � �¡ °¢ ±�

� �� �� �
� �� �

� �
�

 .

As promised, it’s purely imaginary. As Y l � , we want /k il� �  in order to
reproduce the B-S solution. This limit will be correct if we choose the minus
sign in (4.2).  Substituting that value for k�  into (4.1) yields

(4.3)        \ ^/
( )   ( )

( )
k XM R Y S R Y R SY

S Y
  ¯� � � � �
¢ ±�

� �
� �

� � �
� � �

� �

                         \ ^/
( ) ( ) ( )

( )
X R SY S Y R SY
S Y

  ¯� � � � � �
¢ ±�

� �
� � �

� �
� � �

� �
.

In the second line of (4.3), the positivity of ( )kM � is manifest, assuming  X � � ,
,Y ��
�  and | |S � � . In fact, the limit | |S l � is well-defined, and is given by

(4.4)                      
| |
lim ( )

[ ( ) ]
k

signS

XM
R S Yl

�
�

�
� � �

.

A more practical limit is S � � . When S � � , then (4.2) shows that the
stationary point sticks at /k i�� � . This happens in general models, as you will
see several times in different examples below. It’s only when  S v �  that the

stationary point moves away from  /k i�� � . Which direction it moves (north
or south) depends upon the sign of S .
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Finally, the asymptotic implied volatility is given by

(4.5)       \ ^/
  ( )

( )
impV X R Y S R Y R SY

S Y
d

  ¯� � � � �
¢ ±�

� �
� �

� �

�
� � �

�

                       
( )

 
XS X SX Y Y

R R R

� �
� � �

�
�

� �

� �

� ��

( )XS S
Y

R

� �
�

�
�

�

� �

��

                                                         
( )

( )O
X S S

Y Y
R

� �
� �

� �
� �

�

� �� ��

���
.

For Fig. 6.2, the parameters are S � � , .aX � � �� , aR � � , and aY � � , which
yields

               \ ^/
( ) ( )impV XS R Y R

Y
d

  ¯� � � � � �
¢ ±

� �
� �

�

� �
� � � � �� �

��
.

Or, in others words 9.92%impT
d

! .

The volatility of volatility expansion in the square root model. The second
line of (4.5) shows that a volatility of volatility expansion for impV

d
 exists, at

least for | |Y  inside a radius of convergence. Two terms of that expansion, when
S � � , are ( / ) /( )impV X R XY R

d
! � � �

�� , which yields 9.93%impT
d

! for the
same example above. This suggests that, for models that cannot be solved

exactly, the Y� expansion can provide a good approximation for impT
d

.  See
Sec. 6 and 7 for an example.

The convergence of the expansion in (4.5) is determined by the power series
expansion of the square root term:

                  
/

( )Y RSY

R

  ¯�
¡ °�
¡ °¢ ±

� ��

�

�
�

�
.

This radius is determined by considering Y  as a complex parameter. In the
complex Y� plane, there are branch point singularities at *Y Y� , where *Y

solves Y RSY R� � �� �
� � � . If R  is the distance to the solution closest to the

origin; then the series will converge for | | RY � .

For example, when S � � , the branch points are at * iY R� o� , so the series

will converge for | | | |Y R� � . More generally, the branch points are found at
* ( )zY S R� , where ( )z S  is a solution to  z zS� � ��

� � � . The solutions to
this equation are given by / [ ]z iS S� o � � � �

� � � , which traces out a circle of
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radius 2 as S  ranges from -1 to 1. Hence | | | |Y R� �  is the radius of

convergence in the square root model  for all | |S b � .

In Sec. 6, we develop the Y� expansion for impV
d

for the GARCH diffusion—in

that case, we don’t know if the series converges in any radius.

5 Example II: The 3/2 Model

The fundamental solution is given at (2.3.3). In the limit U ld , we have

    , exp( )X
V V
X XXU XU

Y Y

� ¬­� x �­� ­­�� ®� �

� � .

This implies that ˆ ( , , )H k V U  again separates  to the eigenfunction form:

(5.1) ˆ ( , , ) exp[ ( ) ] ( , )H k V k u k VU M Ux � ,    where now

(5.2) ( ) ( )k kM XB�

        \ ^/
( ) ( ) ( )ik k ik ikX R SY Y Y R SY Y

Y
  ¯� � � � � � � �¢ ±

� �
� � � � �� �

� ��
,

and                          
	 


	 


( )
( ) ( )

( , )
( )

k
k k

u k V
k V

B

C B X
C Y

� ¬( � ­�� ­� ­­�( � ®�

� .

The stationary point k� is given by

       \ ^/ 
( ) ( )  ( )ik

S S
R Y R Y Y SY R Y

Y YS
�   ¯� � � � � � �¢ ±�

� �� � � � �� �
� � ��

� � �
��

.

Again, the stationary point resides on the imaginary axis. The asymptotic
implied volatility is given by

(5.3)  \ ^/
( ) ( ) ( )

( )
impV X R Y SY S Y R Y SY

S Y
d

  ¯� � � � � � � �¢ ±�

� �
� � � � �

� �

�
� � �

�

                  
( ) ( )

 
XS X R S XS R SX Y Y Y

R R R R

� � � �
� � � �

� �
� �

� � �

� � � � �� �

� �� ��

                                   
( )

( )O
X S S R R RS

Y Y
R

� � � � �
� �

� � � �
� �

�

� �� �� �� �� ��

���
.
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It’s interesting that (5.3) may be obtained from (4.5) by making the substitution
/R R Yl � �
� in (4.5).  The radius of convergence of (5.3) again vanishes with

R , but that radius has a more complicated dependence on parameters now.

   6 Example III: The GARCH Diffusion Model

The GARCH diffusion model, under risk neutrality, has the volatility process

( ) ( )dV V dt VdW tX R Y� � � , so that the eigenvalue problem (3.2) becomes

(6.1)        / ( ) ( )d u duV V ik V c k V u k u
dVdV

Y X R SY M  ¯� � � � � �¢ ±

�
� � � ��

� �

We don’t have an exact solution, so we need approximate methods. In this

section, we show one such method: the volatility of volatility series expansion.
Previously, in Chapter 3, we showed how to use that expansion to develop the
full time dependence for the fundamental transform. Now, we don’t want the

time dependence—only the first eigenvalue solution to (6.1). There are two
unknowns: the eigenfunction ( , )u k V and the first eigenvalue ( )kM .

It’s convenient to change variables from V  to ( )x c k V� . While this would
generally make x complex-valued, the solution we need resides on the purely
imaginary k-axis. That means it suffices to let  k be purely imaginary and within

the strip Im k� �� � . With that restriction, ( )c k is a real, positive number and
x is a real, positive number, just like V.

We let ( , ) ( )u k V f x� , where we will suppress the explicit k-dependence.
Finally, introduce the new parameters ( )A c k X� , B R� , and

/ ( )D i k c kS� . All three parameters are real with k restricted as indicated.

With these changes, (6.1) becomes

(6.2)                  k f fM�$ ,       ( Im k� �� � ,  Re k � � )

where               	 
/
k

d f df
f x A Bx D x x f

dxdx
Y Y�� � � � �

�
� � � ��

� �
$ .

 To create the series, substitute into (6.2) the formal expansions

              ( )j jM Y M� � ,              ( )( ) ( )j jf x f xY� �

For example, ( )f � satisfies
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(6.3)     	 

( ) ( )

/ ( ) ( ) ( ) ( ) ( )df df
A Bx D x x f f f

dx dx
Y M M� � � � � �

� �

� � � � � � � .

When Y � � , we already have shown that

                 ( ) ( )c k XM
R

��        and     	 
( ) exp ( )u c k V X
R R

  ¯� � �¡ °
¢ ±

� � .

In terms of the new variables, this translates into

          ( ) A
B

M ��   and  ( ) ( ) exp ( *)f x x x
B

  ¯� � �¡ °¢ ±
� � ,    where * Ax

B
� .

So (6.3) can be rewritten

(6.4)                               
( )

( ) ( ) ( )
df

f h x
dx B

� �
�

� ��   ,

where                 
	 
( ) /

( ) ( ) exp ( *)

D x
Bh x x x

A B x B

M �
  ¯�� � �¡ °� ¢ ±

� � �

� � .

Now (6.4) is an ordinary differential equation with the general solution

(6.5)                 ( ) / / / ( )( ) ( )
x

x B x B y B

x
f x Ce e e h y dy� �� � ¨

�

� � ,

where C and x�  are constants. The solutions to an eigenvalue equation
f fM�$ are clearly determined only up to some constant multiplier. So we

need a normalization. Because ( ) ( *)f x x� ��
� , we will enforce the

normalization ( *)f x x� � � . This means that ( ) ( *)if x x� � � for all i p � .
Potentially, ( ) ( *)f x x� ��

� can be achieved by choosing C � �  and

*x x��  in (6.5).

But (6.4) shows the integrand ( )h � has a denominator term that vanishes at

*x x� , so we have to be careful. We need an assumption: suppose
/df dx exists at *x x� . Then, from (6.4) we see that ( ) /df dx�  exists at

*x x�  if and only if ( ) ( *)h x x�� exists (since ( ) ( *)f x ��
�  by the

normalization condition). By L’Hospital’s rule, ( ) ( *)h x x��  exists if the
numerator expression for ( ) ( )h x� also vanishes at *x x� . This determines

( )M � ; we must have

(6.6)                                           	 

/

( ) D A
B B

M ��
� �

� .



194                         Option Valuation Under Stochastic Volatility

Then we can indeed take C � � , *x x��  and satisfy the normalization.
Moreover, ( ) ( )f x� has now been determined:

(6.7)                           ( ) / / ( )

*
( ) ( )

x
x B y B

x
f x e e h y dy�

� ¨� �

This basic argument works to all orders in the expansion. The general recursion
system is, for , ,n � � �!

(6.8)             ( ) / ( ) ( )

*

n n n

x x

d dD x f x f
dx dx

M � �

�

  ¯
� �¡ °

¡ °¢ ±

�
� � � � ��

� �
,

                        ( ) / / ( )

*
( ) ( )

x
n x B y B n

x
f x e e h y dy�� ¨ ,

      ( ) ( ) ( ) / ( ) ( )( )
( )

n
n j n j n n

j

d dh x f Dx f x f
A Bx dx dx

M � � �

�

  ¯
� ¡ °� � �

¡ °� ¡ °¢ ±
�

�
� � � � ��

� �

�

� ,

where terms with ( )n�� are omitted at n � � . Applying this algorithm, we find

(6.9)     	 

/

( )A A D A D
B B B B

M Y Y� � � �
� � �

� �

�
� �

�

           	 

/

  ( )A D B A AD
B B

Y� � � �
� �

� � �

�
� �� ��

��

                           ( ) ( )  ( )[ ]A A D D B D O
B

Y Y� � � � � �
�

� � � � � �

�
� � �� �� � ��

��

 The stationary point must also be determined order by order in Y . We find

	 
 	 

/ / ( )

 ( )k i O
S X S RS S XX XY Y Y Y

R R RR R
�

£   ¯ ²¦ ¦� � �¦ ¦¢ ±� � � �¤ »
¦ ¦
¦ ¦¥ ¼

� ��� � � �
� � �

� � �

� �� �
�

� � � ���

As expected,  k�  is pure imaginary. The stationary point sticks at /k i�� �  if
S � � . Finally, the asymptotic implied volatility is given by

(6.10)    ( )impV kMd � ��

  	 
 	 

/ /( ) [ ( ) ]

 
S X S S X S RX X XY Y Y

R R R RR R

� � � � �
� � � �

� � � �� � � �
� �

� �

� � �� �� �

� �� ��

                    [ ( ) ( )] ( )OX S S X R S Y Y
R

� � � � � � �� � � � � � � �

�

�
� �� ��� � � ��

���
.
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A dimensionality check. Recall the time dimensions for the GARCH diffusion

parameters:  [ ] /[ ]V t� �  , [ ] /[ ]tR � � , [ ] /[ ]tX �

�
� , [ ] /[ ]tY �

�
� . So if we write

 (  )impV gR
d

� < , then (  )g < must be a function of dimensionless ratios. With only
3 parameters with dimensions, there are only two independent ratios, so we must

have

                                            	 
 ,impV g
YXR
RR

d
�

�
.

 Indeed, one can check that (6.10) is equivalent to

   /( , )  ( )g x z x x z x zS S� � � � �
� � � � �� �

� ��
� �

                      / / [( ) ] x x zS S� � � �
� � � � � ��

��
�� �� �

                               [( ) ( ) ] ( )x x z O zS S S� � � � � � �
� � � � � � ��

���
� �� ��� � �� .

Numerical examples. We have extended (6.10) through ( )O Y�� , although the
expressions are too lengthy to report here. However, numerical examples
showing the behavior of the partial sums through ( )O Y�� are given in Table 6.1.

As one sees, the series is fairly well-behaved for typical parameter values and
the partial sums tend to stabilize at higher order if R  is not too small.  The series
results are consistent with variational estimates, which are explained in the next

section.
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                   Table 6.1    Asymptotic Implied Volatility T
d

imp

     GARCH Diffusion Model: Series and Variational Methods

 Model Parameters: .aX � � �� , aR � � , .aY � � � .

Correlation, S , between stock prices and volatility

Series Order -1 -0.5 0.0 0.5 1.0

Y� 10.0 10.0 10.0 10.0 10.0

Y� 9.8215 9.9071 9.9982 10.0946 10.1961

Y� 9.7870 9.8881 9.9973 10.1150 10.2418

Y� 9.7783 9.8828 9.9967 10.1212 10.2577

Y� 9.7764 9.8814 9.9964 10.1232 10.2640

Y�� 9.7762 9.8811 9.9962 10.1238 10.2669

Variational 9.7759 9.8812 9.9961 10.1238 10.2708

 Stationary Pt. 0.489 i 0.494 i 0.5 i 0.507 i 0.515 i

Notes for Tables 6.1 and 6.2  The tables show the asymptotic ( )U ld  implied

volatility for the GARCH diffusion model: ( ) ( )dV V dt VdW tX R Y� � � versus the

correlation S . Parameters are annualized. Two methods of calculation are shown; (i) a

series expansion in powers of Y  and (ii) a variational method. The series results are the

partial sums. Generally, there is good agreement between the two sets of results. The

agreement is better in Table 6.1 than 6.2 because the series performs better at larger R .
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        Table 6.2         Asymptotic Implied Volatility T
d

imp

    GARCH Diffusion Model: Series and Variational Methods

  Model Parameters: .aX � � �� , aR � � , .aY � � � .

Correlation, S , between stock prices and volatility

Series Order -1 -0.5 0.0 0.5 1.0

Y� 10.0 10.0 10.0 10.0 10.0

Y� 9.6615 9.8161 9.9930 10.1910 10.4088

Y� 9.5453 9.7425 9.9851 10.2747 10.6143

Y� 9.5015 9.7041 9.9763 10.3271 10.7722

Y� 9.5001 9.6868 9.9666 10.3615 10.9163

Y�� 9.5242 9.6834 9.9562 10.3833 11.0712

Variational 9.4789 9.6924 9.9577 10.3253 10.9712

 Stationary Pt. 0.478 i 0.486 i 0.5 i 0.522 i 0.578 i
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7 A Variational Principle Method

There is a deep connection between eigenvalue problems and variational

principles7. In this section, we make that connection for our application. Very
briefly, the first eigenvalue is a minimum of a certain functional. This extremal
property  can be exploited as a calculation tool, enabling the first eigenvalue

(and hence the asymptotic implied volatility) to be estimated to high accuracy.
What makes our application special is the presence of the complex-valued
parameter k , a complication that requires careful handling.

We begin with the GARCH diffusion process of Sec. 6. After completing a full
treatment including an example, we then extend the development to general

processes.

We gave the full time-development equation for the fundamental transform at

(2.2.19). With the volatility process given by the GARCH diffusion, we make
the same change of variables as in Sec. 6, letting ( )x c k V� , ( )A c k X� ,
B R� , and / ( )D i k c kS� . In addition, we let  ˆ ( , , ) ( , )H k V f xU U� , where

we imply the k-dependence.  Then (2.2.19) becomes

(7.1)           	 
/
k

f f f
f x A Bx D x x f

xx
Y Y

U

s s s
� � � � � � �

s ss

�

� � � ��

� �
$ .

The k-plane restriction. Throughout this section, we take the parameter  k to be
purely imaginary and restricted to the interval Im k� �� � . Because of that
restriction, the new variable  x is real and positive, and the coefficients in (7.1)

are all real. Because of the ridge property and the martingale property, that
restricted interval in the complex k-plane suffices to determine the asymptotic
implied volatility for the option problem.

An auxiliary stochastic process. With our k-plane restrictions, (7.1) can be
associated with the real-valued, auxiliary stochastic process

(7.2)                     	 
/ ( )dx A Bx D x dt x dB tY Y� � � �
� � ,       x� �d� ,

                                                       
7 A classical and extensive reference is Courant and Hilbert (1989), Chapts IV

and VI.
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where ( )dB t is a Brownian motion. We use  “auxiliary”  because  (7.2) is not

where we started. We began with the GARCH diffusion under risk neutrality,
which is  ( ) ( )dV V dt VdB tX R Y� � � —the auxiliary process has an extra term
with the D coefficient.

The forward equation. Next, consider the so-called “forward equation” for the
auxiliary process:

(7.3)             /( ) ( )
p

p x p A Bx D x p
xx

Y Y
U

s s s   ¯� � � � �
¢ ±s ss

c
�

� � � ��

� �
$ .

Our notation is that  $  is the generator for the stochastic process (7.2) and
c

$ is the formal adjoint. A time-independent solution to (7.3) is

(7.4)                  /( )  expB A D xp x x
x

Y

YY

� �

  ¯
¡ °� � �
¡ °¢ ±

�
� �

�

� �

We use the notation ( )p x  to stress the positivity of the solution. When ( )p x

can be normalized, ( ( )p x dxd

¨ �d
�

), it may be interpreted as the long-run

stationary probability distribution for the auxiliary process8.  But we want to
emphasize that the variational theory of this section does not require that

( )p x be integrable. The properties that are important are  (i) ( )p x �c
�$ and

(ii) ( )p x � � .

The variational principle. Recall the eigenvalue problem ( )k u k uM�$

defined at (6.2), where M  is the first eigenvalue and u is the first eigenfunction.
Multiply both sides by ( ) ( )u x p x and integrate by parts. Using ( )p x �c

�$  and
some algebra, you can establish the formula:

(7.5)                
< > < >\ ^

< >

( ) ( ) ( )

( ) ( )

p x x u x x u x dx

p x u x dx

Y
M

d

d

a �
�
¨

¨

� �� ��

�
�

�

�

if            (i)$  the boundary terms from the parts integrations vanish:

                                   
,

lim ( ) ( ) ( )
x

x p x u x u x
l d

a ��

�

� ,

and        (ii)$  all the integrals in (7.5) exist.

                                                       
8 See Karlin and Taylor (1981, Chapter 15)
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These are typical conditions associated with a variational method—let’s call
(i)$ the endpoint conditions. We pointed out previously that ( )k u k uM�$ is not

well-defined until we specify a class of functions on which k$  acts. Different
classes can give different eigenvalues. One natural class of functions for our
problem is seen to be all twice differentiable functions ( )f x  such that the

integrals in (7.5) exist and the endpoint conditions (i)$  hold. We call such
functions  admissible and denote the set of all such function by $ , so (7.5)
holds if u �$  .

The variational principle asserts that, for all ( )f x � $ , then

 (7.6)             
< > < >\ ^

< >( )

( ) ( ) ( )
min

( ) ( )f x

p x x f x x f x dx

p x f x dx

Y
M

d

d

�

£ ²¦ ¦a �¦ ¦¦ ¦¦ ¦� ¤ »
¦ ¦¦ ¦¦ ¦¦ ¦¥ ¼

¨

¨

� �� ��

�
�

�

�

$

Specifically, a function ( )f x is admissible if

      (i)$  
,

lim ( ) ( ) ( )
x

x p x f x f x
l d

a ��

�

� ,

and the integrals

               (ii)$  ( )p x f dx¨ � ,     ( )  p x x f dx¨ � ,      ( ) ( )p x x f dxa¨ � �

are convergent. Note that the endpoint conditions do not require that
either ( )f x or ( )f xa  individually exist at ,x � d� . As we stressed before, the
integrability conditions do not require that ( )p x  itself be integrable. For

example, when D � � , then  ( )p x is not integrable,  but  ( ) exp( )f x xB� �  for

B� �  is admissible. We use exactly this form in our computational example
below.

The variational principle (7.6)  follows from the Euler-Lagrange equations of
the theory of the calculus of variations. It’s a powerful tool that may be used to

estimate M  to high accuracy by selecting suitable trial functions ( )f x . Of
course, a trial function should be admissible at the very least. In fact, for
admissible ( )f x , the inequality

(7.7)           
< > < >\ ^

< >

( ) ( ) ( )

( ) ( )

p x x f x x f x dx

p x f x dx

Y
M

d

d

a �
b
¨

¨

� �� ��

�
�

�

�
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is the tightest possible upper bound because it will be realized as an equality if

( )f x is chosen to be the first eigenfunction.

It’s interesting  that in (7.7),  the only explicit parameter that appears is Y� . Of

course, we know that the eigenvalue M  depends upon the four parameters of the
problem: ,A B , D, and Y�  or equivalently , , ,X R S and Y� . The other three
parameters have not disappeared, but are contained in ( )p x .

The case = 0S for the GARCH diffusion.  Fig. 6.2 shows an example term
structure when S � � . Note how the asymptotic implied volatility, 9.92%, is

less than the deterministic  value, 10%. While Fig. 6.2 is a plot of the square root
model, it suggests a result for the GARCH diffusion because the two models
share the same linear drift form. Indeed,  the variational principle implies that,

when S � � , then  impT
d

 never exceeds  /( / )X R � �  in the GARCH diffusion.
Let’s see why.

We assume that X � �  and R � � . If S � � , then D � �  and ( )p x  is
normalizable. In that case ( )f x � �  is admissible and (7.7) implies that

                                     
( )

( ) ( )
( )

p x xdx Ak c k
p x dx B

XM
R

¨

¨
b � � .

The stationary point for ( )c k  is /k i�� � , so we obtain
( ) ( / ) / /( )k c iM X R X Rb �� � � . In other words, when S � � , then /impV X R

d
b .

�

When S v � , then /impV X R
d

�  is possible. For example, the first two terms of

the Y� expansion for the GARCH diffusion at (6.10) are

       	 

/

( )impV O
SX X Y Y

R R R
d

� � �
� �

�

�
,

and this will be larger than /X R  for small Y  and positive S .  See Tables 6.1,

6.2 or Fig. 6.5 for more examples of  /impV X R
d

� .

Numerical example. We continue with the GARCH diffusion for a numerical

example using the variational principle. Although we have suppressed the  k-
dependence in many formulas, to actually calculate, we need to reinstate it.
More explicitly, (7.7) is a bound for ( )kM , where k iy� , y is real and in the

interval y� �� � . The weight function is more explicitly ( , )p k x , where
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/

/   ( )    
( , )  exp

( )
k ik i k xp k x x

x k ik
R Y X S

YY

� �

£ ²¦ ¦  ¯�¦ ¦¦ ¦¡ °� � �¤ »
¡ °¦ ¦�¢ ±¦ ¦¦ ¦¥ ¼

�

� ��

� �

� �

� � .

Let ( , ) ( , )p y x p iy x�� , a real positive function, given by

(7.8)          
/

/   ( )  
( , )  exp

( )
y y xy

p y x x
yx

R Y X S

YY

� �

£ ²¦ ¦  ¯�¦ ¦� � � ¡ °¤ »
¦ ¦�¡ °¢ ±¦ ¦¥ ¼

�

� �

� �

�

� � �

�
� .

 Then, we can calculate the asymptotic implied volatility from

(7.9)    
< > < >\ ^

< >
   

( )

( , ) ( ) ( )
max min   

( , ) ( )

imp

y f x

p y x x f x x f x dx
V

p y x f x dx

Y
d

d d
� �

�

£ ²¦ ¦a �¦ ¦¦ ¦¦ ¦b ¤ »
¦ ¦¦ ¦¦ ¦¦ ¦¥ ¼

¨

¨

� �� ��

�
�

� � �

�

�

$

Note that its a maximum over y because the fundamental transform has a saddle
point in the k-plane, which happens to have a maximum in the real direction and
a minimum in the imaginary direction. So the fundamental transform has a

minimum as a function of y at the saddle point. But the eigenvalue affects the
fundamental transform through a multiplicative term exp( )MU� ; that means we
need a maximum in the eigenvalue as a function of y.

Let’s check the consistency of these new ideas with the series solution of Sec. 6.
Choosing a suitable trial function is something of an art.  Your goal is to select a

function that is admissible, produces integrals that can be calculated, and
captures the qualitative behavior of the first eigenfunction. For example, for the
GARCH diffusion , we choose the trial function ( ) exp( )f x xB� �  , where B

is a parameter which is optimized. This choice for the trial function is motivated
by the series solution ( ) exp( / )[ ( )]u x x OR Y� � �� . The integrals in (7.9) may
be computed by using

(7.10)             	 
 / /exp   ( )s d s K sN N
NU U U

U

d
� �� � �¨ � � � �

�

�
� � ,

where ( )KN ¸  is the modified Bessel function of the second kind of order N .  In
this example, we find that (7.9) becomes
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 (7.11)    
( )

max min  ( , , ) ( , , )
( , , )

imp

ay

y y
V g y a b g y a b

g y a b a
N N

N

Y L
d � �

�� �

  ¯�
b �¡ °

¡ °¢ ±

�

� ���� �

�
,

using                 	 
 	 
 /( , , ) ( )
!

n

n
n

by
g y a b K a

a na

N

N N

d

�

�

� � �

�

� � ,      and

                           XL
Y

�
�

�� ,   b
S

X
Y

�
�

�
,  and  RN

Y
� �

�

�
� .

In (7.11), the minimization over the original parameter B  has been replaced by

a minimization over a new parameter a. The relationship between the two is that
/a AB Y� � . The optimization (7.11) is very straightforward to implement in

Mathematica: see Appendix 1 to this Chapter.

Numerical results from computing the right-hand-side of (7.11) are given in
Tables 6.1 and 6.2.  The implied volatility estimate (an upper bound) is given in

the table under “Variational”. And “Stationary Point” reports k iy�� � , where
y�  is the maximizing value in (7.11). The table shows a good match to the

series results, which helps support the consistency and assumptions of both

approaches.

Again using the bounds from (7.11), in Fig. 6.5 we plot impT
d

versus the

correlation S . The other parameters are  .aX � � �� , aR � � , and  .aY � � � .
Since / .X R � � �� , the deterministic volatility value for impT

d
is 10%.  The

figure illustrates the fact that impT
d

can be higher or lower than the deterministic

value, depending upon the correlation.

In Fig. 6.6 we plot impT
d

versus the volatility of volatility Y  for S � �  and

.S ��� � .  The other parameters are the same as Fig. 6.4. This figure shows
that impT

d
 stays quite close to the deterministic value when S � � , even for

relatively large Y . But, for  .S ��� � , impT
d

drops off from the deterministic

value much more rapidly with Y .

General processes. We now extend the variational principle to general risk-

adjusted processes of the form ( ) ( )dV b V dt a V dW� �� , with correlation ( )VS .
This is the one subsection in this chapter where we assume a genuine risk-
adjustment may be present. Under this general process, the evolution equation

for the fundamental transform has been given at (2.219).
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It’s not useful to make exactly the same change of variable that we made for the
GARCH diffusion. But we can make (2.2.19) similar by letting x V�  and

ˆ ( , , ) ( , )H k V f xU U� . Then (2.2.19) becomes

(7.12)                                        k
f

f
U

s
��

s
$ ,

where        /( ) ( ) ( ) ( ) ( )k
f f

f a x b x ik x a x x c k x f
xx

S
s s

  ¯� � � � �¢ ± ss

�

� � ��

� �

�$ .

Just as in the GARCH diffusion, we assume that  k iy� , where y is real and in

the interval y� �� � . Then, all of the coefficients in (7.12) are real-valued and

we can associate it with the auxiliary process:

(7.13)                /( ) ( ) ( ) ( ) ( )dx b x ik x a x x dt a x dB tS  ¯� � �¢ ±
� �

� ,

                          where x� �d� ,  k iy� ,  y� �� � .

This can be written more compactly by defining the (real-valued) auxiliary drift
coefficient

(7.14)                          /( ) ( ) ( ) ( )k x b x ik x a x xC S� � � �
� ,

so that (7.13) reads

(7.15)       ( ) ( ) ( )kdx x dt a x dB tC� � ,   ( x� �d� ,  k iy� ,  y� �� � ).

The forward equation for the auxiliary process is

(7.16)                   < >( ) ( ) ( ) ( )k
k k k k

p
p a x p x x p x

xx
C

U

s s s  ¯� � �
¢ ±s ss

c
�

��

� �
$ .

And there is a (time-independent) solution to kp �c
�$  given by

(7.17)                            
( )

( ) exp
( ) ( )

x
k

k
y

p x dy
a x a y

C  ¯
¡ °�
¡ °¢ ±
¨� �

��   ,

which is the analog of (7.4).  Note that ( )kp x is a positive real number for all

( , )x k such that x� �d� ,  k iy� ,  ( y� �� � ). But ( )kp x is not necessarily
integrable with respect to x.

The variational principle for the first eigenvalue then becomes
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(7.18)     
< > < >\ ^

< >( ) ( )

( ) ( ) ( ) ( ) ( )
( ) min

( ) ( )

k

f x k
k

p x a x f x c k x f x dx
k

p x f x dx
M

d

d

�

£ ²¦ ¦a �¦ ¦¦ ¦¦ ¦� ¤ »
¦ ¦¦ ¦¦ ¦¦ ¦¥ ¼

¨

¨

� ���

�
�

�

�

$

.

The space ( )k$ of admissible functions consists of all real-valued functions that

satisfy, for  k iy� ,  ( y� �� � ),  the conditions:

       (i)  
,

lim ( ) ( ) ( ) ( )k
x

a x p x f x f x
l d

a ��

�

� ,

      (ii)  < >( ) ( )kp x f x dx �d¨ � ,       < >( ) ( )kp x x f x dx �d¨ � ,

                                 < >( ) ( ) ( )kp x a x f x dxa �d¨
�� .

Note that if a first eigenvalue exists for k iy� ,  ( y� �� � ), then it must be
strictly positive since every term in (7.18) is positive. So we really have a two-
sided bound: M � � and M � the upper bound of (7.18).

General process (zero correlation). Let’s apply the general process variational
principle to the case S � � . In that case, the auxiliary process (7.14) is

independent of k and coincides with the risk-adjusted volatility process. So
( )kp x is independent of k . Let’s assume that the risk-adjusted volatility process

has a long run stationary distribution ( )p V� and a finite first moment. Then

( ) ( )kp x p V� � ,  ( )p x is integrable and f � �  is admissible. If we choose
f � � for a trial function, then (7.18) implies that

 (7.19)                          
( )

( ) ( )
( )

V p V dV
k c k

p V dV
M

d

d
b

¨

¨
�

�

�

�

,

 The stationary point for the right-hand-side of (7.19) is, as we expect, at

/k i�� � , where ( / ) /c i �� � � . Moreover, since ( )p V� is integrable, let’s
normalize the denominator to 1. Then, we have the bound:

(7.20)                                  ( )impV V p V dV
d

d b ¨
�

� .      ( )S � �                     �

Let’s check this result for the exactly solvable models. For example, for the 3/2

model, it’s easy to find the stationary distribution

                                   /( ) exp /( )p V CV VR Y X Y� �   ¯� �¢ ±
�

� � �
�� ,
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where C is the normalization constant. For simplicity, assume ,X R � � . Then,
(7.20) reads

                                            impV R X
RR Y

d
b

� �

�

�
 .    (3/2 model)

This can be proven correct using the exact solution (5.3). It’s a tighter bound
than simply the deterministic limit ( Y �

�
� ).

A second check is any model with a linear drift:
( ) ( ) ( )dV V dt a V dW tX R� � � . In the case of linear drift models, we proved

in Appendix 5.1 (Example 1) that the long-run expected volatility is always

/X R , regardless of ( )a V . So for all linear drift models, (7.20) reads
/impV X R

d
b , which was our previous result under the GARCH diffusion alone.

Finally, we could relax the assumption that ( )p V� have a first moment, since the
inequality (7.20) also makes sense if the right-hand-side is �d .

An open issue.  Suppose you’ve solved the PDE problem (2.2.19) for the
fundamental transform ˆ ( , , )H k V U . Your solution turns out to be a regular

function in the complex k-plane in the strip Im kB C� � . Next, you let
k iy� , where  max[ , ] min[ , ]yB C� �� � . As U ld , you find that
ˆ ( , , ) exp[ ( ) ] ( , )H k V k k VU M U Kx �� .

Separately, with  k in the same interval,  you’ve found ( )kM , the first eigenvalue
solution to ( )k u k uM�$ , ( )u k� $ , where ( )k$ is the class of admissible

functions defined in this section.

The open issue: is it always true that ( ) ( )k kM M� � ? In other words, we’ve really

just summarized the developments in Secs. 3 and 6, and are asking if they
always lead to the same value for the asymptotic implied volatility. If they don’t,
then the conditions that define the function space ( )k$  must be revised.
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8 A Differential Equation (DSolve) Method

In this section, we explain how to find the asymptotic implied volatility by
solving a differential equation9. Numerically, we do this with Mathematica’s
DSolve function (actually NDSolve,to be precise)—hence the reference in

the section title.

The method is very fast and produces values in just a couple seconds of desktop

computer time. The variational method can be fast, too, with only a single
parameter being optimized. But if you want higher accuracy in the variational
method, you have to develop more complex trial functions, with more

parameters. As we indicated, this is something of an art. In contrast, the method
in this section, if you can set it up, can be made arbitrarily accurate just by
adjusting function arguments.

A  tradeoff is that the method in this section requires a certain asymptotic
analysis, which is explained below. The method works for the GARCH

diffusion, which is one of our main interests, because we can perform that
analysis. For other models, you have to investigate.

Consider again the eigenvalue problem under GARCH diffusion process, given
at (6.1) and we repeat here for convenience

(8.1)         / ( ) ( )d u duV V ik V c k V u k u
dVdV

Y X R SY M  ¯� � � � � �¢ ±

�
� � � ��

� �
.

As before, consider  k a purely imaginary parameter: k iy�  and y is in the
interval y� �� � . So all of the coefficients in (8.1) are real numbers.

It makes the discussion simpler if we do a rescaling first, so multiply both sides
of (8.1) by / Y�� , and define new (real) parameters

     X X
Y

�
�

�
� ,   R R

Y
�

�

�
� ,     

ik
d

S

Y
�

�
� ,   c c

Y
�

�

�
� ,    z M

Y
�

�

� .

Then (8.1) becomes

(8.2)                    	 
/V u V dV u cV u z uX Raa a� � � � � �� � �
�� �

� � .

                                                       
9 The method in this section is adapted from a similar procedure in Aslanyan
and Davies (1998)
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We can find the first eigenvalue by the following procedure. First, forget that
z in (8.2) is related to an eigenvalue and just think of it a parameter that is fixed

at some real value, say 6. Then, it’s possible to develop asymptotic solutions for
(8.2) both as V l �  and V ld , which are singular points. Because (8.2) is a
second order equation, there are two such solutions in any regime. But the one

we report is the smaller one. Exactly how to do this is explained in Chapter 10;
here we merely quote the results:

First, as V l � , we find that the “well-behaved” solution has the form:

(8.3)                             /( )zu a V O V
X

  ¯
x � �¡ °

¢ ±

� �

� �
�

,

where a�  is arbitrary.  At the other extreme,  as  V ld , we find that the well-
behaved solution has the form:

(8.4)         	 

	 
 	 
exp

b
u d V V b O

VV

B R

C
� �   ¯  ¯x � � �¡ °¢ ± ¡ °¢ ±

�

�� � �
�

�
�

� ,

where      
( )d R

B
C

�
�

� �

�

� �

    and   ( ) ( )k k ikC I S
Y Y

�� �� � �� �� �
�

and b�  and b�  are constants that play no role. In general, the method of this
section “works” whenever you can develop asymptotic solutions to the
eigenvalue equation. This will be true in many models of interest. Next,

consider the function

(8.5)                                                  
( )

( )
( )

u V
g V

u V

a
� .

This function satisfies the first order (non-linear) differential equation, called
the Riccati equation:

(8.6)             	 
/dg
V V g V dV g cV z

dV
X R� � � � � � �� � � � �

�� �

� �

Now pick a small value minV , a large value maxV  and an arbitrary point  a in

between:  min maxV a V� � .

We can solve (8.6) in the interval minV V ab b  by starting the solution at minV .

We start the solution by using (8.3), which implies that for small enough minV ,

(8.7)                                  min( ) zg V
X

x�
�

.
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Call this solution ( , )g V z� . Similarly, we can solve (8.6) in the interval

maxa V Vb b  by using (8.4), which implies that for large enough maxV .

(8.8)                        max
maxmax

( ) ( )
( )

d
g V

VV

C B R� � �
x �

� � �

��

� �

.

Call this solution ( , )g V z� . Finally, define the function

(8.9)       
( , ) ( , ) ( , ) ( , )

( ) ( , ) ( , )
( , ) ( , )a

u a z u a z u a z u a z
F z g a z g a z

u a z u a z

a a�
� � � � � � �

� �

� �

.

Now for a general value of z, the solution which behaves like (8.3) as V l � , if
continued beyond the point V a� , will not behave like (8.4) as V ld .

There’s a second solution that grows much more rapidly than (8.4) as V ld ;
call that one the “ill-behaved” solution (see Chapter 10 for its form). For an
arbitrarily chosen value of z, if you start the solution with (8.3), and continue

that solution beyond the point V a� , you’ll get a mixture of the well-behaved
solution  and the ill-behaved solution as V ld .

But, for /z z M Y� w �

� � , where M  is the first eigenvalue, the solution
( , )u V z� � , if it was continued beyond V a� , would be found proportional to

the well-behaved solution ( , )u V z� � , at least in the limit where minV l �  and

maxV l�d . If ( , ) ( , )u V z mu V z�� � � � , with m a constant, then the numerator
in (8.9) vanishes and the denominator is proportional to ( , )u a z�

� , the square of
the first eigenfunction.

If you increase z from zero, the first value at which ( )aF z vanishes must then be
the first (smallest) eigenvalue. Moreover, since we know the first eigenfunction

( , )u a z� is  positive for all V, the denominator in (8.9) will not vanish when the
numerator does.  To summarize, in the limit where minV l �  and maxV l�d ,
the first eigenvalue /zM Y� �

� � , where z�  is the first (smallest) zero of

( )aF z on the real positive z-axis.

In Mathematica, the NDSolve function easily finds numerical solutions to

(8.6), creating ( )aF z . Then, FindRoot finds the zero z�  of ( )aF z . All this
happens when the parameter k is fixed at a pure imaginary value in the vicinity
of /k i� � . That is ( / ) ( )z kY M� �

� �  and finally we use  FindMinimum to

find the stationary value k� . The code is in the Appendix to this chapter.
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A by-product of the calculation of M  is that you then have available the full
function ( , )g V z� , which is defined over the entire range min maxV V Vb b  by

                         min

max

( , )    
( , )  

( , )    

g V z V V a
g V z

g V z a V V

£ b b¦¦� ¤
¦ b b¦¥

� �

�

� �

Note that ( , )g V z�  is continuous at V a�  for any values of minV and

maxV because ( , ) ( , )g a z g a z�� � � � . Then, the first eigenfunction is given by the
limiting value, as the boundaries become exact, of

(8.10)                             ( ) exp ( , )
V

a
u V g x z dx

  ¯
� ¡ °

¡ °¢ ±
¨ �

In Mathematica, the expression (8.10) evaluates extremely rapidly because
( , )g x z� , being the result of a solution to a differential equation is an

“interpolating function” and such functions are rapidly integrated. We used
(8.10) to produce the plots shown in Fig. 6.4. This code is also given in the
Appendix.

 The eigenvalues are independent of a in the limit that minV l � and

maxV l d . In practice, there’s a very weak dependence with finite endpoints.

Since a is a volatility value, a natural choice for the GARCH diffusion  and the
one we selected was /a X R� . A brief sensitivity analysis showed very little
difference in results if the value was 50% higher or lower.

Numerical results are shown in Table 6.3 below. As you can see, the values for
the asymptotic implied volatility are virtually indistinguishable from the

variational method results. The method is very straightforward, fast, and should
be easy to adapt to many models.
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   Fig. 6.5           Asymptotic Implied Volatility
                                                vs Correlation:
                                       GARCH Diffusion Model

                 imp
d

T (percent)

                                               Correlation S

Notes.  The figure shows the asymptotic implied volatility for the GARCH diffusion

model ( ) ( )dV V dt VdW tX R Y� � �  versus the correlation parameter S . The other

parameters are  .aX � � �� , aR � � , and  .aY � � � .  Since / .X R � � �� , the

deterministic volatility value for impTd is 10%.  The figure illustrates the fact that impTd can

be higher or lower than the deterministic value, depending upon the correlation. The

values are upper bounds calculated from a variational method, but both a series and a

differential equation method produce the same plot.
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               Fig. 6.6           Asymptotic Implied Volatility
                                         vs. Volatility of Volatility:
                                         GARCH Diffusion Model

                   imp
d

T (percent)

                                                   Volatility of Volatility Y

Notes.  The figure shows the asymptotic implied volatility for the GARCH diffusion

model ( ) ( )dV V dt VdW tX R Y� � �  versus the volatility of volatility parameter Y .

The other parameters are  .aX � � �� , aR � � . This figure shows that imp
Td  stays quite

close to the deterministic value (10%) when S � � , even for relatively large Y . But, for

.S ��� � , imp
Td drops off from the deterministic value much more rapidly with Y . The

values are upper bounds calculated from a variational method.
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Table 6.3  Asymptotic Implied Volatility T
d

imp  (GARCH Diffusion)
        Variational and Differential Equation (DSolve) Methods

I. Model Parameters: .aX � � �� , aR � � , .aY � � � .

Correlation, S , between stock prices and volatility

Method -1 -0.5 0.0 0.5 1.0

(i)     Variational

T
d

imp 9.7759 9.8812 9.9961 10.1238 10.2708

 Stationary Point 0.489 i 0.494 i 0.5 i 0.507 i 0.515 i

(ii)       DSolve

T
d

imp 9.7759 9.8812 9.9961 10.1237 10.2701

 Stationary Point 0.490 i 0.494 i 0.499 i 0.507 i 0.517 i

II. Model Parameters: .aX � � �� , aR � � , .aY � � � .

Correlation, S , between stock prices and volatility

Method -1 -0.5 0.0 0.5 1.0

(i)     Variational

T
d

imp 9.4789 9.6924 9.9577 10.3253 10.9712

 Stationary Point 0.478 i 0.486 i 0.5 i 0.522 i 0.578 i

(ii)       DSolve

T
d

imp 9.4785 9.6919 9.9570 10.3243 10.9649

 Stationary Point 0.478 i 0.488 i 0.5 i 0.521 i 0.577 i

Notes. The panels show the asymptotic ( )U ld  implied volatility for the GARCH

diffusion model: ( ) ( )dV V dt VdW tX R Y� � � versus the correlation S . Parameters are

annualized. Two methods of calculation are shown: (i) a variational method and (ii) a

differential equation method (DSolve). The results are extremely close. While both

methods produce values in just a couple of seconds in Mathematica, the DSolve method

ran the fastest and can be made arbitrarily accurate.


