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6 The Term Structure of Implied
Volatility

The term structure of implied volatility is the relation between the option
implied volatility and time to maturity: o™ (7). Using our previous notation,
it's the square root of V™ (X,V,7), holding the moneyness X and the initia
volatility V fixed. In practice, the implied volatility is usually measured at a
strike price close to the money. (X =0 is a natural choice). In fact, the
qualitative behavior is the same at any strike a graph of o™ () vs. 7
ultimately flattens to a limiting asymptotic value, '™ = (V.™)!/2  that is
independent of both X and V. This general behavior is anaogous to the term
structure of interest rates and the existence of along-run rate of interest.

The asymptatic implied volatility depends only upon the parameters of the
volatility process. It can be calculated from the smplerelation

VP = 8A(ko)

where )\ isthefirst eigenvalue of a differential operator, and k, is a complex
number. We illustrate 3 ways to calculate V™ for genera models: a series
method, a variational method, and a differential equation-based method.
Computation times for the latter two methods are just a couple of seconds in
Mathematica.



178 Option Valuation Under Stochastic Volatility

1 Deterministic Volatility

The volatility models that we consider in this book typically have a smilar
structure: dV; = b(\;)dt + a(V,)dW; , where the drift term b(V;) exhibits mean-
reversion. For example, the GARCH diffusions and other models have the linear
drift form b(\;) = w—&,;, where w and 6 are positive constants. If the
volatility becomes small, then b(\;) is positive, causing the volatility to tend to
grow larger. If thevolatility islarge, then b(V;) is negative, causng the volatility
totend to grow smaller.

To afirst approximation, the term structure is explained by |etting the Brownian
noise term vanishl. For the linear drift models, we are |eft with the deterministic
volatility evolution V; = w— 6V, , where the dot means a time derivative. The
solution to the differential equation y = w — @y, where y(0) =V isgiven by

(6.2) y(t,V) = % +(V - %)e*“ )

In (6.1), the behavior is especialy simple as t — oo; no matter what the
starting value V, the volatility tends to the fixed point V* = w/8 . Thisvalueis
called afixed point because if the volatility starts there, it stays there. The fixed
point is attractive or stable because small departures of the volatility from V*
are damped over time.

Option valuation under deterministic volatility is a well-known application of
the B-S theory. Options are till priced by the B-S formula, but the volatility
parameter in the formulais modified. The modified volatility is ssmply the time-
average of the deterministic volatility. In other words, if C(S,V,7)isthe generd
call option value and c(S,\V,7)is the B-S value, then under deterministic
volatility:

1 For smplicity, we call the term structure of implied volatility just the term
structure. With the exception of one subsection, in this chapter the risk-adjusted
volatility process and the actual volatility process are assumed identical (a risk-
neutral world). See Chapter 8 (Duality and Changes of Numeraire) to convert
theresultsin this chapter to log-utility.
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(6.2) C(SV,7)=c(SuV,7),7),

T _ a0
where M(T,V):%fo y(s,V)ds:%+(V_%)[1 09; ]

The B-Simplied volatility is given by o™ (7,V)] = [u(7,V)]"'2.

Shown in Fig. 6.1 isaplot of both ¢'™(7,V) and [y(7,V)]"? versus 7, where
wa = 0.02 and 6, = 2, (annualized parameters). We show two cases: (i) initial
volatility ca = 8% (V, = 0.0064) and (i) initial volatility
0a =12% (V, = 0.0144) . Notice that the implied volatility (the bold line)
behaves alot like the actual volatility y(7,V) (thethin ling); the only difference
is that the implied volatility changes more dowly because it's a time-average.
But both functions begin at V and evolve in a smooth monotonic fashion with a
limiting asymptotic value o'™ = (w/6)"? =10% . The asymptotic value is
independent of the starting valueV, aswell as S,K,r,and & .

Therate of convergence to the asymptotic value is determined by the parameter
6 , which hasthedimensions [1/7] . Since the “decay rate’ is determined by the
exponentia term exp(—07) , this type of behavior is often described as having a
“haf-life" 71,5 =1/6 .In our example, 71,5 = 0.5 yearsand one can see from
Fig 6.1 that both the actual and implied volatilities have moved, very roughly,
about half-way toward their final asymptotic valueat = = 0.5 years.

Many other models of interest to researchers have a determinigic limit that
behaves in the same way as this example. In general, volatility evolution in the
determinigtic limitis V; = b(V;) , where b(") is the drift coefficient. If amodel is
mean-reverting, b(V) will typicaly have a single zero at some V =V*. The
zero will be attractive, meaning not only b(V*) = 0 but also b’(V*) <0, where
the prime means a derivative. If you picture the graph of b(V;) you can see that
the volatility evolution will be similar to Fig. 6.1. It follows from V, = b(V;)
that b(V) has the dimensions of [V /t], so that b'(V*) has the dimensions
[1/t]. This causes |1/b'(V*) | to play the role of the half-life parameter in
general models, at least asymptotically.
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Fig. 6.1 Term Structure of Implied Volatility ( Deterministic Model )
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Fig. 6.2 Term Structure of Implied Volatility ( Stochastic M odel )
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2 Deterministic Volatility Il: a Transform
Perspective

In the last section we showed that the determinigtic volatility model
V; = w—6V; has an asymptotic implied volatility V™ = /6. In this section
we consider this same problem with the transform method. The advantage of the
transform method is that it also solves the case we are redly interested in—
stochastic volatility.

Call option Solution 11 of (2.2.10) is.
ik +-00 |:| KV
(1) C(SV,r)=S " —Ke 'L e X (’—fT)dk , 0<Imk<1.
27 k? —ik
iki—co
The natural strike price K a which to measure the term structure is given by
X =0, which corresponds to Ke "™ =Se % . If r =6 and you measure at
K =S, you are systematicaly moving to one side of the volatility smile
pattern as the time to expiration increases. With the better choice X =0, (2.1)
simplifiesto:
c(SV Ak
( ’ ’T):l_L (1 ,T)dk

Ke™ 2m I K ik

2.2)

We established in Chapter 2 that, under constant volatility, this solution was
valid for the entire strip 0 < Imk < 1. The same holds true under determinigtic
volatility because, as we will show, H(k,V,7)is an entire function under either
constant or deterministic volatility.

We established the solution for the fundamental transform H(k,V,7) under
determinigtic volatility in Appendix 3.1 at (3.A.2). For the drift function
b(V) = w— 06V , that formula becomes

HO(kV,7) = exp[—c(k)U (V,7)] , where c(k) =1 (K> —ik),

and U(v,T):fOTy(s,V)ds:%TJr(v—%)[1—9‘9’%].

This shows that H(® (k)is an entire function of k in the complex k-plane. A
general plot of themodulus | H® (k) | has already been given in Chapter 2, Fig.
2.1. The asymptotic theory considers © — oo . Suppose we are integrating in
(2.1) dong Imk =1/2. In Fig. 6.3, we plot |[HO (k; +i/2) | versus k, for
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T =235, 20, and 100 years, using the previous numerical example w, = 0.02,
0y =2,and V, = 0.0064 .

Fig. 6.3. |H(#)| along an Integration Contour (Imk = 1/2)
Various Timesto Maturity 7 (Deterministic M odel)
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As you can see from Fig. 6.3, the fundamental transform becomes increasingly
peaked about k, =0 as the time to maturity increases. For 7 >>1, (2.2
becomes

ik +00
_ii&fmexp[—c(k)%T—C(k)%(v 2|
Of course because thisis the B-S theory, we could evaluate this integral exactly
(see Chapter 2, Appendix 1). But an alternative method will also work in the
stochastic volatility case: the asymptotic method of steepest descent.2 As
T — o0, Fig. 6.3 shows that the exponential factor in the integra damps the
contribution everywhere except near k, = 0, which is our integration origin. If

dk

C(SV,7) _ 1
k? —ik

KefrT T—00

2 For anice discussion of the methods of stegpest descent, saddle points, and the
method of stationary phase, see Carrier, Krook, and Pearson (1966, Chapt. 6).
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we didn’t know this point, we could find it by looking for the stationary point
k, determined byc'(ky) = 0, which has the solution k, =i/2. This solution
ko isalso a saddle point because, while the modulus |H | is decreasing in the
real direction, it’sincreasing in the imaginary direction (see Fig. 2.1 in Chapter
2). Along thisintegration contour, c(k) =1/8+k? /2. Thisis an exact rlation,
but in the stochastic case (see below), we will expand the integrand in a Taylor
series about the saddle point. In this special case, the Taylor series only has the
two terms. Theleading asymptotic contribution to theintegral is given by

S mrenl ool gV - )] f (e g

Theintegra that remainsisjust a Gaussian

Texp(—k?Q—WaT)dkr = 270

wT

So we obtain the result

CEV.7) o [80 [_L( _z)] (_ﬁ )
Ke '™ Tjool muTeXp 80 v 0 &P AR

This result can be compared with the Black-Scholes formula, which is easily
shown to be, in thislimit,

c(SV,7) 8 ( \V; )
2. 220 - 2 -2 7).
(2.3) =T HOol pry exp g7
Comparing the last two equationsimplies that V™ = /6, just as we expected.
The important ideaisthat we now have a method for the stochastic case.

3 Stochastic Volatility—The Eigenvalue
Connection

Notice that as 7 — oo, the fundamental transform in the previous section had
the following specia form

HOkV,7) = exp[—c(kU (V,7)] ~ exp[-AK)7]u(k,V),

T—00

where
MR =cl)2  and u(kV) = exp[—c(k)%(v —%)} .
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This form is special because, first of all, the dependence upon V and 7 has
separated into the product of two terms, one depending upon = and one
depending upon V. (Both terms depend upon K) . Suppose, that under stochastic
volatility, the same form of solution holds:

(3.2 H(kV,7) ~ exp[-A(K)7]u(k,V)
with new functions A(k) and u(k,V) to be determined. If we substitute this

form into the PDE (2.2.19) satisfied by the fundamental transform, then we are
|eft with the ordinary differentia equation for u(k,V) :

(3.2 Lou=AK)u,
where

L= —%aQ(\/)gTQ‘; ~[BV) —ikp(v)aqv V2 |94+ v u.

Thisis an eigenvalue equation, where A(k) isan eigenvalue of the differentia
operator £y, and u is the associated eigenfunction.3. In generd, there can be
many solutions to (3.2). In fact, you may be able to develop the fundamental
transform at all times = (not just 7 — oo) asasum over such solutions—thisis
called an eigenfunction expansion®. But, in the limit 7 — oo, the dominant term
of such a sum uses the smallest or first eigenvalue. This may seem confusing at
this point because there are alot of complex numbers appearing in (3.2), so what
do we mean by smallest? Below, we show that, in fact, everything we calculate
isreal-valued and the first or smallest eigenvalue iswell-defined.

What does the first eigenfunction look like? In Fig. 6.4 we show plots of
uk,V)vs. V with k=i/2. The modd is the GARCH diffuson process
daV = (w—V)dt + &VdW(t), with w=0.02, =2, £=15 and
p=—1,0,1. How we calculated that function is explained in Sec. 8.

SEigenval ue problems are not well-defined until we specify a class of admissible
functions. Thisisdiscussed later in Sec. 7
4 Seemy article (Lewis 1998).
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Fig. 6.4 First Eigenfunction for the GARCH Diffusion Process
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Notes. The figure shows a plot of the first eigenfunction u(k,V) for the GARCH
diffusion moddl, dV = (w—&)dt + &VdW(t), with w =10.02, 6=2, £ =15 and
p=—1,0,1. The parameter k is set to i/2 The function has been normalized so that
uV =w/d) =1.8nce w/0 =001, therange V < w/8 isdifficult to resolve in the
scale of the main plot and is shown in the inset. The Mathematica code for this plot is
given in the Appendix to this chapter.
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With this general form of solution, then (2.2) becomesin the ochagtic case:
ik +-00
1 - _dk
o R GGl

c(sV.1)

3.3
( ) KefrT T—00

The Ridge Property. Suppose that A\(k) has a saddle point k; in the complex
k-plane determined by the solution to \'(ky) = 0 . We showed in Chapter 2 that
the fundamental transform is often an analytic characteritic function. As we
explained in that chapter, analytic characteristic functions have the ridge
property, which means that any saddle point must lie along the purely
imaginary axis. In other words, ky =iy, where y, is a real number. This
saddle point location will be confirmed in computational examples below.

The reality of the eigenvalue problem (3.2). Recall the reflection property
from (2.2.20): H"(k,V,7) = H(—k*,V, 7). Combining this property with the
ridge property, any saddle point must be found along k =iy, where
H*(iy,V,7) = H(iy,V,). That is: the fundamental transform is real along the
imaginary k-axis. In turn, this shows that both the first eigenvalue and the
associated eigenfunction are real along the imaginary axis. And finally, we can
see from (3.2) that each of the coefficients of the equation will bereal aong that
axis. In other words, to summarize: the asymptotic term sructure is determined
by the smallest solution to an eigenvalue problem, where the eigenvalue,
eigenfunction, and associated PDE are all real-valued.®

An important element of the saddle point method is moving the integration
contour so that it traverses the saddle point. Before we can do that, recall that
(3.3) isavalid formula as long as the integration contour lies in the intersection
of the fundamental strip o < Imk < 3 with the strip 0 < Imk < 1; thisis the
strip of regularity. We now make the further assumption that the saddle point
ki = Imk =y, lieswithin the strip of regularity®. If it does, then, by Cauchy’s
theorem (See Chapter 2, Appendix 1), we can move the integration contour to

5 The complex-valued coefficients in (3.2) are needed for the full transform, but
not for its asymptotic saddle point behavior.

6 Practical numerical examples—see Table 6.1—show that v, is often close to
1/2, sothisisnot problematicin my experience.
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Imk =y, without changing the value of the integral. Next, expand A(k) in a
Taylor seriesabout K :

AK) = Ako + kr) =2 Ako) + 3 KkPA" (ko)

s0 (3.3) becomes
C(SV.7) _ 1 uko.V) T y
Wijl—%exp[—A(ko)T]kgi—%fooexp[—;k?k (ko)7 |k,

Note that this last integra is over a rea integration variable. We know
A(ky) > 0 because of the ridge property. Performing theintegral gives us

a4 C(SV.7) . ,_uleN) 1

T B AN s U ra

Notice that the denominator term k2 —iky = yo(1—Vy,) >0 since, by
assumption 0 < y, <1. Thearbitrage bound C(S,V,7) < Se *" combined with
Ke" =S¥, impliesthat in (3.4) we must have C(S\V,7)/Ke "™ <1. This
implies that not only is u(ky,V) red, but it's non-negative as well. That same
bound also strengthens the inequality A\’(ky) >0 to X'(ky) > 0. Findly,
comparing (3.4) with (2.3) vyields a simple result for the (at-the-money)
asymptotic implied volatility:

VAP(X = 0) = 8A(ko)

Next, we repeat the calculation for an arbitrary value for the moneyness measure
X. Inthat case, (3.4) becomes:

C(S,V,T) ~ X _ u(k() ,V) 1
(39) Ke' rom® K — ik y2mN (k)T

But the B-S solution, for general X , has the asymptotic form:

C(S,V,T) ~ X _ 8
(3.6) Ke o~ e ,_WVT exp

Comparing the two solutions (3.5) and (3.6) implies that

exp[ (k)T — iko X ].

|

2
37 —;[\/\}Tp—;\/v‘m%] & =Mk —iko X

After some rearrangement, (3.7) is equivalent to
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3.8 i T) ~ - l_ X2 7—73
(39 VIP(XV,7) ~ 8M(K) +(4—8Y0)~ 2>\(k0)72+o( )

where recall that ky =iy, . This last equation is important because it implies
that, as 7 — oo, the amile flattens to a common asymptotic value regardless of
the moneyness X. And that common valueis

(3.9) VI = [imVI™(X,V,7) =8)\(ky)

We will see in examples below that, when p = 0 (the symmetric case), then
Yo = 1/2 and thelinear termin (3.8) vanishes.

4 Example I: The Square Root Model

For this modd, volatility process (under risk neutrality) is
dV = (w—&)dt + &vVdW(t) , where the Brownian motion has correlation p
with the stock price process. In Fig. 6.1, we showed an example of the term
structure with w/6 = 0.01and £ = 0. Next, we keep the same parameters but
turn on the volatility of volatility parameter to £ =1, keeping p=0. (We
chose a value for ¢ larger than would typically be measured in order to
emphasize the effects).

The term structure under stochastic volatility is shown in Fig. 6.2. Now thereis
more structure to the plot. Ingead of a monotonic evolution in = to 10%, there
isadip to asgnificantly lower value when 7 lessthan a year. At large 7, there
isaclear indication of a common asymptote, just as we would expect from the
theory of the last section. The new asymptotic value is no longer 10% but lower
at approximately 9.92%. We found this value by applying the genera theory of
the previous section, aswe how show.

The formulas for the fundamental transform are given a (2.3.1) and (2.3.2),
taking the parameter v =1. (We will refer to expressions used there). We
showed in Chapter 2 that the fundamental strip for thismodel is at least as large
astheunit grip 1p ={k |0 <Imk <1} .
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With k in the unit strip, then Red > 0, which leads to the limiting behaviors
fi(t) = @gt and f,(t) =~ gas t — oo . Being careful to note the time rescaling
that occurred in (2.3.1), thismeansthat, as 7 — oo,

H(k,V,7) ~ exp[-AK)T]uk,V),

where
@41 AK) =-wg(k) = 5—“;{[(9 +ikp€)? + (K2 —iK)EX T2 — (0 +ikpe) }
and u(k,V) = exp[g(k)V].

The dationary point k; in the complex k-plane is the solution to
dXA(k)/dk = 0. Thisequation has two solutions:

(42) o=15{1-

- [91%[49%52—4;)95]“2]} .

I
£

As promised, it's purely imaginary. As £ — 0, we want k; — i/2 in order to
reproduce the B-S solution. This limit will be correct if we choose the minus
signin (4.2). Substituting that valuefor k, into (4.1) yields

]1/2

(43 Ak) =5 10+ —4p 0] — 20— pe)}

Pl

]1/

{[eo—pe?+a-pe]” - o-pe)}.

T A1- e

In the second line of (4.3), the positivity of A(kp) is manifest, assuming w > 0,
€2 >0, and | p|< 1. Infact, thelimit | p |— 1iswell-defined, and is given by
4.4 limA(kg) = ——4———.

44 =1 (ko) 4120 — sign(p)&]

A more practical limit is p=0. When p =0, then (4.2) shows that the
stationary point sticks at ky =i/2. Thishappensin generad modds, as you will
see several times in different examples below. 1t's only when p = 0 that the
stationary point moves away from k, =i/2. Which direction it moves (north
or south) depends upon thesign of p.
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Finally, the asymptotic implied volatility is given by

(4.5) v;;“p:(1_4%{[49%52—4;)95]“2—(29—;)5)}
_w, wp e W(=145p%) o wp(=3+7p%) s
_9+292£+ 16 6° St 320" :
w(l —14p +21p*) 4 5
1286° §HoE.

For Fig. 6.2, the parametersare p = 0,w, = 0.02, 0, =2, and & =1, which
yields

[ _m 4w 2 2 /2 _ 1
v;;“P(p_O)_?{[zw +¢] —29}_%(%/1_7—8).
Or, in otherswords ¢'™ = 9.92% .

The volatility of volatility expansion in the square root model. The second
line of (4.5) shows that a volatility of volatility expansion for V.™ exists, at
least for | £ | indde aradius of convergence. Two terms of that expansion, when
p=0, ae V™ = (w/6) — we? /(166%) , which yidds o™ =~ 9.93%for the
same example above. This suggests that, for models that cannot be solved
exactly, the ¢ — expansion can provide a good approximation for o™ . See
Sec. 6 and 7 for an example.

The convergence of the expansion in (4.5) is determined by the power series
expansion of the square root term:

[1 L (€2 —10pg) ]“2
46* '

This radius is determined by considering £ as a complex parameter. In the
complex ¢ — plane, there are branch point singularities at & = &*, where &*
solves €2 —40p€ +46> = 0. If R isthe distance to the solution closest to the
origin; then the serieswill convergefor | ¢ |< R.

For example, when p = 0, the branch points are at &* = +2i0, so0 the series
will converge for |£|< 2|6 |. More generdly, the branch points are found at
& =z(p)0, where z(p) isasolution to zZ2 —4p z+ 4 = 0. The solutions to
this equation are given by z=2p+2i [1 — p?]*'?, which traces out a circle of
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radius 2 as p ranges from -1 to 1. Hence |£|<2]|8] is the radius of
convergencein the squareroot modd for all |p |<1.

In Sec. 6, we develop the ¢ — expansion for V™ for the GARCH diffusion—in
that case, we don’t know if the series convergesin any radius.

5 Example Il: The 3/2 Model

The fundamental solution is given at (2.3.3). In thelimit 7 — oo, we have

2w ~ 2 —wT) .
X[W,UJT]NfQVEXp( )

Thisimpliesthat H(k,V,7) again separates to the eigenfunction form:
(5.1) H(k,V,7) ~ exp[—A(k)7] u(k,V), wherenow

(52)  AK) = wa(K)

— w0+ ikpe +262)2 + (k2 —ik)e? 7 — (0 +ikpe + e,
52 2 2

and

T(BK) = (k) 20 "
o =S &

The gtationary point k; is given by

“ 1—ip2 {%_%(GJF%EQ) *2_[)5[(29+ &) + & — 20 (20+ 52)]“2}.

Again, the dationary point resides on the imaginary axis. The asymptotic
implied volatility is given by

63 VP = s {[eo € - e + (-] -0+ € 0]
_w, wp Cw(l4+80—5p%) .o wp(B+160 —7p%) 5
AR g 16 63 g 326* g

Lel= 14p7 4+ 21p* + 3207 + 120 — 600p?)

1286° € +0E).
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It's interesting that (5.3) may be obtained from (4.5) by making the substitution
6 — 6+ £%2/2in (4.5). Theradius of convergence of (5.3) again vanishes with
6 , but that radius has a more complicated dependence on parameters now.

6 Example lll: The GARCH Diffusion Model

The GARCH diffusion model, under risk neutrality, has the volatility process
dV = (w— &) dt + &/dW(t), so that the eigenvalue problem (3.2) becomes
12,2 d?u ; 3/271du _

61 -lev W—[w—@\/ —ikpeVv ]WJrc(k)Vu = A(K)u

We don’t have an exact solution, so we need approximate methods. In this
section, we show one such method: the volatility of volatility series expansion.
Previoudly, in Chapter 3, we showed how to use that expansion to develop the
full time dependence for the fundamenta transform. Now, we don’t want the

time dependence—only the first eigenvalue solution to (6.1). There are two
unknowns: the eigenfunction u(k,V) and the first eigenvalue A(K) .

It's convenient to change variables from V to x = c(k)V . While this would
generally make x complex-valued, the solution we need resides on the purely
imaginary k-axis. That meansit sufficesto let k be purely imaginary and within
the strip 0 < Imk < 1. With that restriction, c(k) is area, positive number and
xisared, positive number, just like V.

We let u(k,V) = f(x), where we will suppress the explicit k-dependence.
Finally, introduce the new paametees A=c(k)w, B=6, and
D = ipk/+[c(k) . All three parameters are real with k restricted as indicated.
With these changes, (6.1) becomes

(6.2) £,f=X, (0<Imk<1, Rek=0)
d?f j2\ Of
where L, f :—%fgxgw—(A— Bx—fDx“)&erf.

To create the series, substitute into (6.2) the formal expansions
A=y, f(0 =3¢ f0(x)

For example, f® satisfies
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63) —(A- Bx}————%fD WQdL FxFO = \OFO fADFO
When ¢ = 0, we already have shown that
A0 = c(k) and u® = exp[—c(k)%(v —%)}

In terms of the new variables, thistrandatesinto
2O :é and fO(x)= exp[—%(x— x*)], where x* = 2
So (6.3) can berewritten

df @
(6.4) 77+%f®:%%@,

()\(1) + Dyanr )

where h® (x) = — A Bx

exp[—%(x— X*) 1.

Now (6.4) isan ordinary differential equation with the general solution
(65) f(l)(x) — Cefx/B + efx/Bery/Bh(l)(y)dy,
%o

where C and X, are constants. The solutions to an eigenvalue equation
L f =X\f are clearly determined only up to some constant multiplier. So we
need a normaization. Because fO(x=x*)=1, we will enforce the
normalization f(x= x*) =1. Thismeansthat f(x=x*)=0foral i >1.
Potentialy, f®(x=x*)=0can be achieved by choosing C=0 and
Xp = X* in(6.5).

But (6.4) shows the integrand h® has a denominator term that vanishes at
X=Xx*, s0 we have to be careful. We need an assumption: suppose
df /dx exists a& x= x*. Then, from (6.4) we see that df ' /dx exists at
x=x* if and only if h®(x=x*)exists (snce fO(x*)=0 by the
normalization condition). By L’'Hospita’s rule, h)(x = x*) exists if the
numerator expression for h®(x)also vanishes at x = x*. This determines
AL, we must have

W _ _Q(A o
(6.6) A BB).
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Then we can indeed take C =0, X, =x* and satisfy the normalization.
Moreover, f®(x)hasnow been determined:

(6.7) fO(x) = e*X’Bf;ey’Bh(l)(y)dy

This basic argument works to dl ordersin the expanson. The general recursion
systemis, for n=1,2,...

M _[py32d s _1,2d> r(n9)
(6.8) A le dxf 5 X dx2f

X=X*
FO(x) =8 ["e//® h(y)dy,
X*

0 = x"Bg

n
SOAD ) _pysrz 4 g L1y 0 fn)
=1 dx 2 dX2

wheretermswith (n—2) are omitted at n = 1. Applying thisagorithm, we find

A (AV2D A2 9\ £2
6.9 A:——(—) B¢ 5pr(1—3D
(6.9) B \8/ B° 284( %
A3/2 D 9 2\ ¢3
+ (_) —3B2 + 40A— 42AD
B 1684( )
2
+ 32AB7 [4A(8—73D? + 40D") — B2(8 —27D?) ] £' + O(¢’)

The gationary point must also be determined order by order in £ . Wefind

w(—6+41p%) + 607

3 4
2560* & roE)

o b1 g e o5

As expected, k; is pure imaginary. The stationary point gicks at ky, =i/2 if
p = 0. Findly, the asymptotic implied volatility is given by

(6.10) V™ =8)\(ko)

(1470 po  (w VPP Ae(=10431p%) 4+ 66°]

T : ;
16 0 640

207 [P (4 — 81p% +157p%) + 40262 (—2 +15p2)] £+ +O(£9) .

w w3/2p
=(e) Lot

+

25
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A dimensionality check. Recall the time dimensions for the GARCH diffusion
parameters. [V] =1/[t] , [0] = 1/[t], [«w] = 1/[t]?, [€*] = 1/[t] . Soif we write
VI™ — 9 g(+), then g(-)must be afunction of dimensionlessratios. With only
3 parameters with dimensions, there are only two independent ratios, so we must
have
imp __ [ f

v =09l )

Indeed, one can check that (6.10) is equivalent to

0(x,2) = x+1ipx*Pz+ L(-1+7p°)XZ
+ a0 [(10431p°)x%"% +6x°%] 2
oL [(4 - 81p% +157p%)x% + (=8 + 60p?)x*] 2* +O(2°) .

Numerical examples. We have extended (6.10) through O(£*), although the
expressions are too lengthy to report here. However, numerica examples
showing the behavior of the partial sums through O(¢') are given in Table 6.1.
As one sees, the series is fairly well-behaved for typical parameter values and
the partial sumstend to stabilize at higher order if ¢ isnot too smal. The series
results are consistent with variational estimates, which are explained in the next
section.
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Table6.1 Asymptotic Implied Volatility o!TP
GARCH Diffusion Modd: Seriesand Variational M ethods

Model Parameters: w, =0.02, 6, =2, &, =1.5.

Correlation, p, between stock prices and volatility

Series Or der -1 -0.5 0.0 05 1.0
¢ 10.0 10.0 10.0 10.0 10.0
& 9.8215  9.9071  9.9982 10.0946 10.1961
¢t 97870  9.8881 99973 10.1150 10.2418
¢ 97783 98828 99967 101212 10.2577
¢ 9.7764 98814 99964 101232 10.2640
£10 97762 98811 99962 10.1238 10.2669
 Variational  9.7759  9.8812  9.9961 10.1233 10.2708
Stationary Pt. 04891  0.494 05i  0507i 0515]

Notes for Tables 6.1 and 6.2 The tables show the asymptotic (7 — o0) implied
volatility for the GARCH diffusion model: dV = (w —&V)dt + &VdW (t) versus the
correlation p . Parameters are annualized. Two methods of calculation are shown; (i) a
series expansion in powers of ¢ and (ii) a variationa method. The series results are the
partial sums. Generally, there is good agreement between the two sets of results. The
agreement is better in Table 6.1 than 6.2 because the series performs better at larger 6 .
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Table 6.2 Asymptotic Implied Volatility &P
GARCH Diffusion Model: Seriesand Variational M ethods

Model Parameters: w, =0.01, 6, =1, & =1.5.

Correlation, p, between stock prices and volatility

Series Or der -1 -0.5 0.0 05 1.0
¢ 10.0 10.0 10.0 10.0 10.0

& 96615  9.8161 99930 10.1910 10.4083

¢t 95453 97425 99851 10.2747 10.6143

¢ 95015 97041 99763 103271 10.7722

¢ 95001  9.6868  9.9666  10.3615 10.9163

£10 95242 96834 99562 103833 11.0712

 Variational 94789 96924  9.9577  10.3253 10.9712

Stationary Pt. 0.478i 0.486 i 0.5i 0.522i  0.578i
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7 A Variational Principle Method

There is a deep connection between eigenvalue problems and variationa
principles’. In this section, we make that connection for our application. Very
briefly, the first eigenvalue is a minimum of a certain functional. This extremal
property can be exploited as a calculation tool, enabling the first eigenvalue
(and hence the asymptotic implied volatility) to be estimated to high accuracy.
What makes our application special is the presence of the complex-valued
parameter k , a complication that requires careful handling.

We begin with the GARCH diffusion process of Sec. 6. After completing a full
treatment including an example, we then extend the development to general
processes.

We gave the full time-development equation for the fundamental transform at
(2.2.19). With the volatility process given by the GARCH diffusion, we make
the same change of variables as in Sec. 6, letting x=c(k)V, A=c(k)w,
B=26,and D =ipk/+/c(k) . In addition, welet H(k,V,7) = f(x,7), where
we imply the k-dependence. Then (2.2.19) becomes

Ll
2

oy

L f =le2ye =2
(7.2) L f =1ex o o

+(A—Bx—¢DX?)
The k-plane restriction. Throughout this section, we take the parameter k to be
purely imaginary and restricted to the interval 0 < Imk < 1. Because of that
restriction, the new variable xisrea and positive, and the coefficientsin (7.1)
are all real. Because of the ridge property and the martingale property, that
restricted interval in the complex k-plane suffices to determine the asymptotic
implied volatility for the option problem.

An auxiliary stochastic process. With our k-plane redtrictions, (7.1) can be
associated with the real-val ued, auxiliary stochastic process

(7.2) dx = (A—Bx—£D X2 )dt 4+ ExdB(t),  0< X< oo,

7 A classical and extensive reference is Courant and Hilbert (1989), Chapts IV
and V1.
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where dB(t) is a Brownian maotion. We use “auxiliary” because (7.2) is not
where we started. We began with the GARCH diffusion under risk neutrality,
whichis dV = (w—&V)dt 4 &VdB(t) —the auxiliary process has an extra term
with the D coefficient.

The forward equation. Next, consider the so-called “forward equation” for the
auxiliary process:

W i 1202 12y O A ry_ 3/2
(7.3) 5 =Ap=4¢ o (x*p) aX[(A Bx—¢Dx¥?)p].
Our notation is that A is the generator for the stochastic process (7.2) and
Alisthe formal adjoint. A time-independent solution to (7.3) is

_ -2-2B/¢ _%_4D«/§
(7.4) p(x) = exp[ ox €

We use the notation p(x) to stress the positivity of the solution. When p(x)
can be normalized, (;” p(X)dx < ), it may be interpreted as the long-run
Stationary probability distribution for the auxiliary process®. But we want to
emphasize that the variational theory of this section does not require that
p(x) be integrable. The properties that are important are (i) Afp(x) =0 and
(ii) p(x)>0.

The variational principle. Recall the egenvalue problem £,u= A(k)u
defined at (6.2), where X isthe first eigenvalue and uisthe first eigenfunction.
Multiply both sides by u(x) p(x) and integrate by parts. Using Afp(x) =0 and
some algebra, you can establish the formula:

fooo p(x){%fgxg[u’(x) [+ x[u(x) P }dx
. POOTUOO T e

(7.5) A=

if 4(i) the boundary terms from the partsintegrations vanish:
IiEn X2 p(x)u(x)u’(x) =0,
X—U,00

and 4(ii) dl theintegralsin (7.5) exist.

8 See Karlin and Taylor (1981, Chapter 15)
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These are typical conditions associated with a variational method—Iet’s call
4(i) the endpoint conditions. We pointed out previoudy that £, u = A(k)uisnot
well-defined until we specify a class of functions on which £, acts. Different
classes can give different eigenvalues. One natura class of functions for our
problem is seen to be al twice differentiable functions f(x) such that the
integrals in (7.5) exist and the endpoint conditions (i) hold. We call such
functions admissible and denote the set of all such function by 4, so (7.5)
holdsif ue é .

The variationa principle assertsthat, for al f(x) € &, then
- ! 2 9
(7.6) N min J; p(x){éixg[f (O + X[ (] fekx
f(x)ca ﬁ) p(x)[ f(X) ]2 dx

Specifically, afunction f(x) isadmissibleif

(i) lim X*p(x) fF(X) F'(x) =0,
and theintegrals
a(ii) fp(x)dex, fp(x)fodx, fp(x)xQ(f’)de

are convergent. Note that the endpoint conditions do not require that
either f(x) or f'(x) individualy exist at x = 0,00 . As we stressed before, the
integrability conditions do not require that p(x) itsef be integrable. For
example, when D < 0, then p(x)isnotintegrable, but f(x) = exp(—ax) for
a >0 isadmissible. We use exactly this form in our computational example
bel ow.

The variationa principle (7.6) follows from the Euler-Lagrange equations of
the theory of the calculus of variations. It's a powerful tool that may be used to
estimate A\ to high accuracy by selecting suitable trial functions f(x). Of
course, a tria function should be admissible a the very least. In fact, for
admissible f(x), theinequdity

L7 {Lene[ H00F + X[ (0T Jox

(7.7) A< —
. peorf 0 o
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is the tightest possible upper bound because it will be realized as an equdlity if
f (x) is chosen to be thefirst eigenfunction.

It's interesting that in (7.7), the only explicit parameter that appearsis 2. Of
course, we know that the eigenvalue A depends upon the four parameters of the
problem: AB, D, and £ or equivaently w,0,p,and £2. The other three
parameters have not disappeared, but are contained in p(x) .

The case p = 0for the GARCH diffusion. Fig. 6.2 shows an example term
structure when p = 0. Note how the asymptotic implied volatility, 9.92%, is
less than the deterministic value, 10%. While Fig. 6.2 isaplot of the square root
model, it suggests a result for the GARCH diffusion because the two models
share the same linear drift form. Indeed, the variational principle implies that,
when p =0, then o™ never exceeds (w/6)'? in the GARCH diffusion.
Let’s see why.

We assume that w >0 and 6 >0. If p=0, then D=0 and p(x) is
normalizable. Inthat case f(x) =1 isadmissible and (7.7) implies that

[pO)xdx _ A w

The dationary point for c(k) is ky,=i/2, so we obtan
Mko) < c(i/2)w/! 6 = wl(86) . In other words, when p =0, then V™ < w/6 .
[

When p =0, then V™ > /6 is possible. For example, the first two terms of
the £ — expansion for the GARCH diffusion at (6.10) are
vire =@y (2172 e e,
6 \6 20

and thiswill be larger than w/6 for small ¢ and positive p. See Tables 6.1,
6.2 or Fig. 6.5 for more examplesof V™ > /0.

Numerical example. We continue with the GARCH diffusion for a numerica
example using the variational principle. Although we have suppressed the k-
dependence in many formulas, to actually calculate, we need to reinstate it.
More explicitly, (7.7) is a bound for A\(k), where k =iy, yisred and in the
interval 0 < y < 1. Theweight function ismore explicitly p(k,x) , where
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w(kQ—ik)_4ipk[ 2%
£2x £ (K —ik)

p(k,x) = x>/ exp{—

1/2}
Let p(y,x) = p(iy,x), ared positive function, given by

_ 220/ _wyd—y)  dp | 2y B
(78) P9 =x eXp{ x| ¢ [(1—y)] '

Then, we can cal culate the asymptotic implied volatility from

s~ {lenel 2 ; 2] 4
(7.9) VI < max min fo i X){:f LR } X
0<y<l  f(x)ea fo p(y, X)[ f (%) ]2 dx

Note that its a maximum over y because the fundamenta transform has a saddle
point in the k-plane, which happens to have a maximum in the real direction and
a minimum in the imaginary direction. So the fundamental transform has a
minimum as a function of y at the saddle point. But the eigenvalue affects the
fundamental transform through a multiplicative term exp(—Ar) ; that means we
need a maximum in the eigenvalue as afunction of y.

Let’s check the consistency of these new ideas with the series solution of Sec. 6.
Choosing asuitabletria function is something of an art. Your goal isto select a
function that is admissible, produces integras that can be calculated, and
captures the qualitative behavior of the firgt eigenfunction. For example, for the
GARCH diffusion , we choose the tria function f(x) = exp(—ax) , where «
is a parameter which is optimized. This choice for thetrial function is motivated
by the series solution u(x) = exp(—x/8)[1+ O(£)]. The integralsin (7.9) may
be computed by using

(7.10) fOOOT“’l exp(—s —%) dr =2 s#2K,(28"%),

where K, (-) isthe modified Bessel function of the second kind of order 1. In
this example, we find that (7.9) becomes
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2

) imp - in S
(7.11) Voo < orgei(l pies g.(y.a,b)

1_
gpfg(y,a,b)+%gpfl(y,a,b) ,

_ _(2V 5[ by )"L
using 9.(va0) = (2] S | Kenn@, e
8
ﬁ:?’;—f, b:f—g«/w, and ,u:1+§—§.

In (7.11), the minimization over the original parameter o has been replaced by
aminimization over anew parameter a. The relationship between the two is that
a =4 aA/¢ . The optimization (7.11) is very straightforward to implement in
Mathematica: see Appendix 1 to this Chapter.

Numerical results from computing the right-hand-side of (7.11) are given in
Tables 6.1 and 6.2. The implied volatility estimate (an upper bound) is given in
the table under “Variational”. And “Stationary Point” reports ky =iy, , where
Yo isthe maximizing value in (7.11). The table shows a good match to the
series results, which helps support the consistency and assumptions of both
approaches.

Again using the bounds from (7.11), in Fig. 6.5 we plot o™ versus the
correlaion p. The other parameters are wy = 0.01, 6, =1, and & =1.5.
Since w/6# =0.01, the deterministic volatility value for '™ is 10%. The
figureillustrates the fact that o™ can be higher or lower than the deterministic
value, depending upon the correlation.

In Fig. 6.6 we plot o™ versus the volatility of volatility ¢ for p=0 and
p=—0.5. The other parameters are the same as Fig. 6.4. This figure shows
that '™ stays quite close to the determinigtic value when p =0, even for
relatively large ¢. But, for p=—0.5, o™ drops off from the deterministic
value much morerapidly with ¢ .

General processes. We now extend the variational principle to general risk-
adjusted processes of the form dV = b(V)dt + a(V)dW , with correlation p(V).
This is the one subsection in this chapter where we assume a genuine risk-
adjustment may be present. Under this general process, the evolution equation
for the fundamental transform has been given at (2.219).
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It's not useful to make exactly the same change of variable that we made for the
GARCH diffusion. But we can make (2.2.19) similar by letting x=V and
H(k,V,7) = f(x,7). Then (2.2.19) becomes

of
(7.12) 5-=—Lf,

%f . 12 10f
where  —L, f :%ag(x)a—xg—i—[b(x)—|kp(x)a(x)x 2]a—x—c(k)xf.
Just asin the GARCH diffusion, we assume that k =iy, where yisrea andin

theinterval 0 < y < 1. Then, al of the coefficientsin (7.12) are real-valued and
we can associate it with the auxiliary process:

(7.13) dx = [b(x) —ikp(x)a(x)x"* |dt + a(x)dB(t),
whee 0 < X <oo, k=iy, O0<y<1.

This can be written more compactly by defining the (real-valued) auxiliary drift

coefficient

(7.14) Bc(¥) = b(x) —ikp(x)a(x)x"’?,

so that (7.13) reads

(7.15) dx = G (X)dt +a(x)dB(t), (0<x<oo, k=iy, 0<y<1).

The forward equation for the auxiliary processis

(7.16) P — Alp = L2 [P0 |~ 25009

And thereis a (time-independent) solution to AT p, = 0 given by

(7.17) pe(X) = agl(x) expl f XQaﬁgk(%) dy] ,

which is the analog of (7.4). Note that pc(X)is a positive real number for al
(x,k)suchthat 0 < x <00, k=iy, (0<y<1).But p(X)isnot necessarily
integrabl e with respect to x.

The variational principle for thefirst eigenvalue then becomes
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LT RO {La00[ FOOT + cliox] F () el
(7.18)  A(K)= min 0 )
f(x)ea(k) fooo ()] (%) ]2 dx

The space 4 (k) of admissible functions consists of all real-valued functions that
satisfy, for k =iy, (0 < y<1), theconditions:

@ Jim a?()p()f()F'()=0,

(i) [ PfOIfdx<oo, [ pIX[F(] dx< oo,

[ P22 /() P < oo

Note that if a first eigenvalue exists for k =iy, (0 <y <1), then it must be
strictly positive since every term in (7.18) is positive. So we really have a two-
sided bound: A > 0 and X < the upper bound of (7.18).

General process (zero correlation). Let’'s apply the general process variational
principle to the case p=0. In that case, the auxiliary process (7.14) is
independent of k and coincides with the risk-adjusted volatility process. So
P« (X) isindependent of k . Let’s assume that the risk-adjusted volatility process
has a long run stationary distribution p(V)and a finite firs moment. Then
pc(xX) = pV), p(x)isintegrable and f =1 is admissible. If we choose
f =1for atrial function, then (7.18) implies that

JV pv)av

p(V)dv

(7.19) AK) < c(k)

The dationary point for the right-hand-side of (7.19) is, as we expect, at
ko =1i/2, where c(i/2)=1/8. Moreover, since p(V)is integrable, let's
normalize the denominator to 1. Then, we have the bound:

(7.20) vim < fo TVpV)dV.  (p=0) n

Let’s check thisresult for the exactly solvable models. For example, for the 3/2
model, it's easy to find the stationary distribution

V) = CV 2 exp[ —2w (V)]
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where C is the normalization constant. For smplicity, assume w,8 > 0. Then,
(7.20) reads
Vvime < 20

—2V_9 - (3/2 modd
T2 4620 ( )

This can be proven correct using the exact solution (5.3). It's a tighter bound
than simply the deterministic limit (¢2 = 0).

A second check is any mode with a linear  drift:
dvV = (w—&V)dt +a(vV)dw(t) . In the case of linear drift moddls, we proved
in Appendix 5.1 (Example 1) that the long-run expected volatility is aways
wl@, regardless of a(V). So for al linear drift modes, (7.20) reads
V™ < /6 , which was our previous result under the GARCH diffusion alone.

Finally, we could relax the assumption that p(V) have a first moment, since the
inequality (7.20) aso makes senseif theright-hand-sideis +oc.

An open issue. Suppose you've solved the PDE problem (2.2.19) for the
fundamental transform H(k,V,7). Your solution turns out to be a regular
function in the complex k-plane in the strip a <Imk < 3. Next, you let
k =iy, whee max[0,a]<y<min[l,3]. As 7—o0, you find that
H(k,V,7) ~ exp[—A(K)7] ¢(k,V) .

Separately, with kin the sameinterval, you've found A(k), the first eigenvalue
solution to £, u=A(k)u, ued(k), where d(k)is the class of admissible
functions defined in this section.

The open issue: isit always true that A(k) = A(K) ? In other words, we' ve really
just summarized the developments in Secs. 3 and 6, and are asking if they
always lead to the same value for the asymptotic implied volatility. If they don't,
then the conditions that define the function space (k) must be revised.
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8 A Differential Equation (DSolve) Method

In this section, we explain how to find the asymptotic implied volatility by
solving a differential equation®. Numerically, we do this with Mathematica's
DSol ve function (actually NDSol ve, to be precise)—hence the reference in
the section title.

The method is very fast and produces values in just a couple seconds of desktop
computer time. The variational method can be fast, too, with only a single
parameter being optimized. But if you want higher accuracy in the variational
method, you have to develop more complex trial functions, with more
parameters. As we indicated, thisis something of an art. In contrast, the method
in this section, if you can set it up, can be made arbitrarily accurate just by
adjusting function arguments.

A tradeoff is that the method in this section requires a certain asymptotic
anadysis, which is explained below. The method works for the GARCH
diffusion, which is one of our main interests, because we can perform that
anaysis. For other models, you have to investigate.

Consider again the eigenvalue problem under GARCH diffusion process, given
at (6.1) and we repeat here for convenience

81  —lev? 372‘; =t —ikpev¥? |9+ ooV u = (K.

As before, consider k a purely imaginary parameter: k =iy and y is in the
interval 0 <y < 1. Soall of the coefficientsin (8.1) arereal numbers.

It makes the discussion simpler if we do a rescaling first, so multiply both sdes
of (8.1) by 2/&?, and define new (real) parameters

o=2u, §="29, d:%, c=2¢c, z=2)

& & &’ &
Then (8.1) becomes

(8.2 VAU 4+ (0— 0 —dV*? )i —eVu+zu=0.

9 The method in this section is adapted from a similar procedure in Asanyan
and Davies (1998)
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We can find the first eigenvalue by the following procedure. Firg, forget that
zin (8.2) isrelated to an eigenvalue and just think of it a parameter that is fixed
at some red value, say 6. Then, it's possible to devel op asymptotic solutions for
(8.2) bothasV — 0 and V — oo, which are singular points. Because (8.2) isa
second order equation, there are two such solutions in any regime. But the one
we report is the smaller one. Exactly how to do thisis explained in Chapter 10;
here we merely quote theresults:

Firg, asV — 0, wefind that the “well-behaved” solution has the form:

(8.3) UNaO[ —éV}—i-O(\/m),

where a, isarbitrary. Atthe other extreme, as V — oo, we find that the well-
behaved solution has the form:

1

(8.4) umexp[(ﬁ—d)N]V(4%)[“*%*O(\%)]’

_d(1+20) _ 2 __2 — 2y

and by, and b, are constants that play no role. In genera, the method of this
section “works’ whenever you can develop asymptotic solutions to the
eigenvalue equation. This will be true in many models of interest. Next,
consider the function

where

_uw)
(®5) 90V =y

This function satisfies the first order (non-linear) differential equation, called
the Riccati equation:

(8.6) V23—8+V292+(J;—§\/—6V3’2)g—év+z:0

Now pick a smal value V., , a large value V., and an arbitrary point ain

between: Viin < @ <V -

We can solve (8.6) intheinterval V,;, <V <a by starting the solution at Vi, -
We dtart the solution by using (8.3), which implies that for small enough Vi,

(8-7) g(vmin) ~ =

&N
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Cal this solution go(V,2). Similarly, we can solve (8.6) in the interval
a<V <V, byusing (8.4), which implies that for large enough Vi -

(6-d) , (1=2a+20)

8.8 o~
®9) Qv ) > o0 (2

Call thissolution g;(V, 2) . Finaly, define the function

ui (8, 2)uy(a,2) — Uy (a, 2)uy (a, 2)

89 FR@=w@2d-0@2= W (a,2)u(a,2)

Now for ageneral value of z, the solution which behaveslike (8.3) asV — 0, if
continued beyond the point V =a, will not behave like (84) as V — .
There's a second solution that grows much more rapidly than (8.4) as V — oo;
call that one the “ill-behaved” solution (see Chapter 10 for its form). For an
arbitrarily chosen value of z if you start the solution with (8.3), and continue
that solution beyond the point V = a, you'll get a mixture of the well-behaved
solution and theill-behaved solutionasV — co.

But, for z=12 =2X/¢%, whee X\ is the first eigenvalue, the solution
u(V,2), if it was continued beyond V = a, would be found proportional to
the well-behaved solution u;(V,z), at least in the limit where V;, — 0 and
Viax — 00 If U(V,2) = mu(V,Zz), with ma constant, then the numerator
in (8.9) vanishes and the denominator is proportional to u?(a, z) , the square of
thefirg eigenfunction.

If you increase z from zero, the first value at which F,(z) vanishes must then be
the firgt (smallest) eigenvalue. Moreover, since we know the first eigenfunction
u(a, z) is positive for al V, the denominator in (8.9) will not vanish when the
numerator does. To summarize, in thelimit where V;,, — 0 and Vo — +00,
the first eigenvalue X =¢%7/2, where z, is the first (smallest) zero of
F.(2) on thereal positive z-axis.

In Mathematica, the NDSol ve function easily finds numerical solutions to
(8.6), creating F.(2). Then, Fi ndRoot findsthe zero z, of F,(2). All this
happens when the parameter k is fixed at a pure imaginary value in the vicinity
of k=i/2. That is z, = (2/£*)\(k) and finaly we use Fi ndM ni mum to
find the stationary value k; . The code is in the Appendix to this chapter.
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A by-product of the calculation of A is that you then have available the full
function g(V,z) , which isdefined over the entirerange Vin <V <Vpax by

g(](V,Z()) Vmin Svga
a(V,z) a<V <V

Note that g(V,z) is continuous a& V =a for any values of V,,and
Vmax beCaUSE go(a,2) = gi1(a,2) . Then, the first eigenfunction is given by the
limiting value, asthe boundaries become exact, of

fav g(x,ZO)dXI

g(\/,z()):{

(8.10) uv) =exp

In Mathematica, the expression (8.10) evaluates extremely rapidly because
0(x,zy), being the result of a solution to a differential equation is an
“interpolating function” and such functions are rapidly integrated. We used
(8.10) to produce the plots shown in Fig. 6.4. This code is aso given in the
Appendix.

The eigenvalues are independent of a in the limit that V,;, — 0and
Vmax — 00 . In practice, there's a very weak dependence with finite endpoints.
Since aisavoalatility value, anatural choice for the GARCH diffusion and the
one we sdlected was a = w/60. A brief senditivity analysis showed very little
difference in resultsif the value was 50% higher or lower.

Numerical results are shown in Table 6.3 below. As you can see, the values for
the asymptotic implied volatility are virtualy indistinguishable from the
variational method results. The method is very straightforward, fast, and should
be easy to adapt to many models.
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Fig. 6.5 Asymptotic Implied Volatility
vs Correlation:
GARCH Diffusion Model

o™ (per cent)

Determnistic voatility

10 -

9.8

9.6

-1 -0.5 0 0.5 1
Correlation p

Notes. The figure shows the asymptotic implied volatility for the GARCH diffusion
model dV = (w— W )dt + &VdW(t) versus the correlation parameter p . The other
parameters are w, =001, 6,=1, and & =15. Snce w/6=001, the
deterministic volatility valuefor o'¥ is10%. The figureillustrates the fact that o™ can
be higher or lower than the deterministic value, depending upon the corrdation. The
values are upper bounds caculated from a variational method, but both a series and a
differential equation method produce the same plot.
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Fig. 6.6 Asymptotic Implied Volatility
vs. Volatility of Volatility:
GARCH Diffusion M odel

o™ (percent)

10+

9.9+
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9.7+

9.6

9.5

0 0.5 1 1.5 2

Volatility of Volatility £

Notes. The figure shows the asymptotic implied volatility for the GARCH diffusion
model dV = (w — &V )dt + &VdW(t) versus the volatility of volatility parameter & .
The other parameters are w, = 0.01, 8, = 1. This figure shows that o stays quite
close to the deterministic value (10%) when p = 0, even for relatively large £ . But, for
p=—0.5, o™ drops off from the deterministic value much more rapidly with £ . The
values are upper bounds cal culated from a variational method.
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Table 6.3 Asymptotic | mplied Volatility o'MP (GARCH Diffusion)
Variational and Differential Equation (DSolve) M ethods

I.Model Parameters: w, =0.02, 0, =2, £, =1.5.

Correlation, p, between stock pricesand volatility

M ethod -1 -0.5 0.0 0.5 1.0
(i) Variational

oimp 9.7759 0.8812 9.9961 10.1238 10.2708
Stationary Point 0.489i 0.494 i 0.5i 0.507i 0.515i
(i) DSolve

gimp 9.7759 0.8812 9.9961 10.1237 10.2701

o0

Stationary Point 0.490i 0.494 i 0.499i 0507i  0.517i

Il. Model Parameters w, =0.01, 0, =1, & =1.5.

Correlation, p, between stock pricesand volatility

M ethod -1 -0.5 0.0 0.5 1.0
(i) Variational
oimp 9.4789 9.6924 9.9577 10.3253 10.9712
Stationary Point 0.478i 0.486 i 0.5i 0.522i  0.578i
(i) DSolve
oimp 9.4785 9.6919 99570 10.3243 10.9649
Stationary Point 0.478i 0.488 i 0.5i 0.521i 0.577i

Notes. The panes show the asymptotic (7 — oo) implied volatility for the GARCH
diffusion modd: dV = (w — V) dt 4 {VdW (t) versus the correlation p . Parameters are
annudized. Two methods of calculation are shown: (i) a variaiona method and (ii) a
differential equation method (DSolve). The results are extremely close. While both
methods produce values in just a couple of seconds in Mathematica, the DSolve method
ran the fastest and can be made arbitrarily accurate.



