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1 Introduction and Summary of Results

Suppose we use the standard deviation  ... of possible future returns on a stock ... as a
measure of its volatility. Is it reasonable to take that volatility as constant over time? I
think not.                                             Fischer Black

The problem of how to value an option is a fascinating one, with a relatively

long history for a financial topic.  By 1900,  Bachelier suggested a fair game
approach using a normal distribution for the underlying security price—almost
the modern model. But Bachelier’s approach became suspect once the ideas of

utility theory and risk-aversion became central in economic theory. If most
investors were averse to risk-taking, shouldn’t that influence an option’s price?
Shouldn’t an option be worth less than its fair game value, just like a stock?

This puzzle was resolved by Black and Scholes (B-S 1973) for a world where
security prices followed a geometric Brownian motion process with constant

volatility.  Their elegant solution for option pricing is, surprisingly, completely
independent of investors’ risk attitudes and expectations.

However, the assumption of constant volatility was suspect from the beginning,
as the 1976 quotation above suggests. The facing figure shows the monthly
volatility realized by the S&P 500 Index returns from 1928-1999. Statistical

tests strongly reject the idea that a constant volatility process could have
generated these data. It also became clear, although this was less immediate, that
the B-S model was in conflict with evolving patterns in observed option pricing

data. In particular, after the 1987 market crash, a persistent pattern emerged,
called the “smile” that shouldn’t exist under the B-S theory.
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In this book we study option valuation when security prices evolve with

stochastic (random) volatility. Stochastic volatility models lead to
generalizations of the B-S option pricing formula. The generalized models are
both mathematically interesting and useful because they can explain the real-

world patterns that are missing from the B-S theory.  Not only do stochastic
volatility models explain the basic shapes of smile patterns, but they also allow
for more realistic theories of the “term structure” of implied volatility.

Consequently, the material should be of interest to both financial academics and
traders.

Option valuation is still an extremely active area in finance, with many
references cited in the notes. We don’t create a comprehensive survey—instead,
our goal is to create a uniform and fairly comprehensive theoretical treatment of

the case where the stock price and volatility are described by a two-dimensional
diffusion process. We work exclusively in continuous-time with continuous
sample paths.

Once you allow random volatility into the theory, utility functions and risk
attitudes come back into the theory also. In a B-S world, where volatility is

constant, option prices are determined purely by arbitrage arguments and risk
attitudes play only an indirect role. (That is, to set the price of the primary
securities). But, with stochastic volatility, the absence of arbitrage alone does

not fix option prices. We discuss this in detail in Chapter 7 and summarize our
results below.

We consider a number of particular stochastic processes for volatility. However,
we have a particular interest in the case where volatility is described as the
diffusion limit of a GARCH-type process—a GARCH diffusion, for short. Since

the seminal work of Engle (1982), discrete-time ARCH models have become a
proven approach to modeling security price volatility. For a review of the
substantial literature, see Bollerslev, Chou, and Kroner (1992). Since Nelson

(1990), it has been understood that GARCH-type models have  well-defined
continuous-time limits.

From a practical point of view, the advantage of the GARCH diffusion model is
that you can estimate its parameters by using off-the-shelf software for GARCH
processes.(See Appendix 1 to this chapter). Although no closed-form solution is
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available for options priced under the particular process we call a GARCH

diffusion, we are able, nevertheless, to develop a fairly complete picture.

1 Summary of Results

Our security model for most of this book is an (equity) price process P  of the

general form

(1.1)                          
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where tdB  and tdZ  are Brownian motion processes with correlation ( )tVS . In
(1.1) tB  is the instantaneous expected total return of the stock, which pays the

owner dividends at the dollar rate tD . The volatility t tV T� p�
� , where tT  is

the instantaneous standard deviation of the price returns. Of course, we usually
call tT  the volatility also. In addition to using P as a simple label, as in (1.1),

we will sometimes use P to mean a probability (measure): namely, the one
under which  tdB  and tdZ  are Brownian motions. That alternative interpretation
should cause no confusion.

The “volatility of volatility” parameter Y sets the scale for the random nature of
volatility and plays a very important role in the theory. The functions ( )b V  and

( ) ( )a V VY I�  are the drift and diffusion coefficients of the (actual) volatility
process. We consider only actual volatility processes that are time-
homogeneous. Sometimes the risk-adjusted volatility process will pick up a time

dependence from the risk-adjustment.

 Examples of stochastic volatility models

I. The GARCH Diffusion Model. The GARCH diffusion model is important
because it’s the continuous-time limit of many GARCH-type processes.1. In this

book, we use ‘GARCH diffusion’ to mean an actual volatility process of the
form:

                                                       
1 In fact, the term GARCH is a loose term that accommodates many types of
discrete-time financial models and various continuous-time limits are possible
For example, Heston and Nandi (1997) have recently shown that a degenerate

case of Heston’s (1993) square root model (see below) can be obtained as a limit
of a particular GARCH-type process.
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(1.2)                            ( ) t t t tdV V dt V dZX R Y� � � .                     

The  volatility drift parameters, X  and R , are assumed to be constants and
capture the mean-reverting nature of the volatility process. Since R  has the

dimensions of  inverse time, 1/R  represents  a “half-life” for volatility shocks.

Empirically, estimates for 1/R  are quite variable against stock indices and can

range from a few weeks to more than a year. For U.S. broad-based stock indices,
Y  is typically in the range of one to two on an annualized basis, which represent
volatility uncertainty of 100 to 200% over a year. The correlation, S , captures

the association between security price changes and volatility changes. Typically,
negative price shocks are associated with higher volatility than positive shocks
of the same magnitude. For the same indices, we find .  to .S !� �� � � � .

See Appendix 1 of this chapter for a simple discrete-time GARCH model that
admits (1.2) as a continuous-time limit. In that Appendix, we provide more

examples of  parameter  estimates and formulas for estimators.

II. The Square Root Model. The square root model is described by the

volatility process

(1.3)                             (  )   t t t tdV V dt V dZX R Y� � � .                     

This model is very important because of two facts. First, as shown by Heston
(1993), it has essentially a closed-form solution for option prices which is easy
to implement. Second, that solution is typical: it displays the same qualitative

properties that we expect in general time-homogenous cases. Consequently, it
tells us, for example, how the (unknown) solution to the  GARCH diffusion
behaves in many respects.

For the square root model, clearly X  and R play the same role as in the GARCH
diffusion. Also Y  again sets the scale for the volatility of volatility, but its
numerical magnitude will be quite different when estimated against the same

pricing data because it now multiplies a factor of tV  instead of the factor of

tV  in the GARCH case. From dimensional considerations, /   tY Y Tx� � � , where

/Y
� �

 is the square root model parameter, Y� is the GARCH diffusion parameter,

and tT  is the average volatility of the data series being considered. For example,
for the S&P 500 Index, if Y�  is in the range ( , )� �  annualized, and

% .tT x ��� � �  annualized, then /Y
� �

is in the approximate range (0.1, 0.2)

annualized.
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III.  The 3/2 model.  The 3/2 model is described by the volatility process

(1.4)                  /( ) t t t t tdV V V dt V dZX R Y� � �
� � � .

This model is important because, not only does it have a closed-form solution
almost as simple as the square root model, but it displays a feature of many

stochastic volatility models that you don’t see in the square root model. That is,
even after a change of measure to the risk-adjusted process, option prices
(relative to the bond price) under the 3/2 model are sometimes not martingales,

but merely local martingales. When option prices are not martingales, this
means that they are not given by the standard expected value formula—for
example, [( ) ]r

t Te S KU� �
��  for a call option. Here t�  denotes an expectation

under the pricing process (see the subsection below titled “the risk-adjusted
process”).

This failure of the usual martingale pricing relation is actually quite common in
(unbounded) stochastic volatility models under very typical risk-adjustments,
such as log-utility. The failure can also occur in the GARCH diffusion, for

example, but only a specialized (and very complicated) closed-form solution is
currently available for that one. So the 3/2 model is one of the simplest
illustrations of this important phenomenon for financial theory, and our results

for that model illustrating this behavior, mostly discussed in Chapter 9, are
new.2

Again, from dimensionality, one expects /   ( )tY Y T �
!

�

� � � . In this case, for the
S&P 500 Index, if Y�  is in the range ( , )� � , and .tT ! � � ,  then /Y� �  is in the
approximate range (10, 20), again with all values annualized.

IV. The Ornstein-Uhlenbeck process.  With lnt ty V� , this model is
described by the process

                                                       
2 Other aspects of the 3/2 model have been independently developed by Heston
(1997). The failure of the martingale formula for the stock price in the GARCH

diffusion model was first shown by Sin (1998). These failures are specific
examples of the notion that the absence of arbitrage implies that  financial claim
prices are, in general, only strictly local martingales—not martingales. This

refinement of earlier notions about financial claim prices as martingales is due to
Delbaen and Schachermayer (1994).
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                                ( )t t tdy y dZX R Y� � �� ,    ( ty�d� �d )

By using the Ito formula (explained in Sec. 2), and letting X X Y� � ��

�
� , the

process for tV is

                              ( ln )t t t t t tdV V V V dt V dZX R Y� � � .

We don’t treat this model specifically, but it’s a very popular one among
researchers. Many of our general results apply to it.

The risk-adjusted process. To value an option, you don’t use (1.1), but a
closely related process P�  which is often called the risk-adjusted process.
Throughout this book, it has a form  similar to (1.1):

(1.5)                            
( )

:  
( , ) ( )

t t t t t t

t t t t

dS rS D dt S dB
P

dV b V t dt V dZ

T

Y I
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¤
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�

�

� �

,

To get from (1.1) to (1.5) we have made two changes: (i)  we replaced the equity
expected return by an interest rate r and (ii) we replaced the volatility drift by
another function ( , )tb V t� , the risk-adjusted volatility drift.  This procedure is

carried out explicitly for a class of equilibrium models in Chapter 7:
representative agent models with power utility functions. In addition, we will
often assume that the representative agents have very distant planning horizons.3

This allows one to further simplify (1.5) to a volatility process with a time-
homogenous drift ( ).tb V�

Equation (1.5) has an associated partial differential equation (PDE) that
determines option prices (see below). In the special case where the dividend
yield is constant, then (1.5) is proportional in the stock price and the PDE may

be solved with a transform technique.

The transform idea is explained in Chapter 2, where we introduce the

fundamental transform ˆ ( , , )H k V U . Besides the volatility V, the transform
depends upon  k, the (generalized) Fourier transform variable and U , the time to
the option’s expiration. The fundamental transform is determined by the

volatility process and not by the particulars of any option contract. Once you
have it, the same function ˆ ( , , )H k V U  is used to determine the value of every

                                                       
3 The planning horizon is the “date of death”, not to be confused with the option
expiration date, which may be very near.
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European-style financial claim. This last step only requires an integration in the

complex k-plane. So you can see why this function deserves its title.

While  the idea of a transform-based approach is not new, previous applications

have tended to be model-specific. Not only are our results more general, but
they  encompass the situation when option prices, relative to a numeraire, are
not martingales, but only strictly local martingales. Specifically, we develop two

formulas for option prices, which we call Solution I and Solution II. Solution I is
the usual martingale-style or expected value formula. Solution II is more general
and sometimes includes an additional term that relates to volatility “explosions”.

When a call option price is not a martingale, the Solution II formula yields the
desired arbitrage-free fair value.

The fundamental transform has a lot of special properties, many of which follow
from the fact that not only is it a characteristic function, but it’s an analytic

characteristic function. In particular, the function is regular in strips in the

complex k-plane and also has the ridge property. The ridge property, which is
more or less what it sounds like, plays a very important role in the theory of the
term structure of implied volatility. This property is explained in Chapter 2 and

applied in Chapter 6.

In Chapter 3, we show to solve the valuation PDE associated with (1.5) by a

power series in Y , the volatility of volatility. The first two terms of that series,
which can be rapidly evaluated on any desk-top computer, may suffice for most
trading applications.

In Chapter 4, we discuss “mixing theorems”, which show that solutions to the
valuation PDE are weighted sums of the B-S solutions. This important concept

has a number of applications, including a new Monte Carlo method.

In Chapter 5, we take up the theory of the smile. The volatility of volatility

series expansion generates an explicit formula for the smile through order Y�

that explains the qualitative patterns seen in the marketplace. Also we explore
the accuracy of “quadratic approximations” to the smile by developing

correction terms.

The term structure of implied volatility is the subject of Chapter 6. One new

result is that we show that the asymptotic theory is very simple: the asymptotic
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implied volatility is given by ( )impV kM
d

� �� , where M  is the first eigenvalue of

a differential operator and k�  is a complex number. Regardless of the current
volatility and regardless of the degree of “moneyness”, the smile flattens as a
function of the time to expiration to this same value impV

d
.

In Chapter 7, we present a utility-based equilibrium theory. This theory, with a
distant planning horizon, provides several new and explicit examples of

transformations of the volatility drift function ( )b V into a risk-adjusted drift
( )b V� . The model is the representative agent theory. The representative has a

power utility function with a constant proportional risk-aversion (CPRA)

parameter H , where H � �  corresponds to risk-neutrality. Under this CPRA
equilibrium, we find a simple pattern for the effect of risk attitudes on option
prices: with S b � ,  call or put option prices are raised in an interval

( )H HS ��� �  and lowered in an interval ( )H H S� �  relative to their risk-neutral
values.

Another key, and novel result from Chapter 7 is the following. When the
representative agent is a pure investor (no consumption until a distant planning
horizon), then the risk-adjustment problem has a simple solution. The volatility

risk premium (defined below in Sec. 5) is given by

           ( ) ( ) ( ) ( ) ( )v V V V a V VM H S Z� � �� ,   where    ( ) ( ) / ( )V u V u VZ a� .

And ( )u V is the first eigenfunction of the same differential operator that
determines M  above. The eigenfunction depends upon H . For a pure investor

with any planning horizon, and H �� , we prove that when ( , )V tZ exists, it has
the same sign as H . The leading eigenfunction is easily computed in
Mathematica in just a few seconds.

In Chapter 8, we discuss the change-of-numeraire transformation or duality for
short. This transformation generalizes a known symmetry (put-call symmetry)

under constant volatility. Under duality, two representative agents who are risk-
neutral and have log-utility, respectively, switch places. The general effect of the
change-of-numeraire transformation on stochastic volatility models has been

previously noted by Schroder (1999) and is implicit in Sin (1998); what is new
here is placing the transformation in the context of our CPRA equilibrium.

In Chapter 9, we give a detailed account of the effect of volatility explosions and
the failure of the martingale pricing formula. In economically reasonable
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models, the actual volatility is recurrent and, in many models, stationary. But,

after risk-adjustment either the risk-adjusted volatility, or a closely related
process  that we call the auxiliary volatility process, can explode. If the risk-
adjusted volatility process is written dV bdt a dZ� �� � , then the auxiliary

volatility process is ( )dV b a dt a dZS T� � �� � . An explosion means that the
volatility can reach plus infinity in finite expected time. Our main result is that,
when the auxiliary volatility process can explode prior to U , with probability

ê ( , )P V U , then the call option price is not a martingale. Instead, the price is
given by

                     ê( , , ) [( ) ] ( , )r
t TC S V e S K Se P VU EU

U U
� � �

� � �� .

We also show that this formula is identical to the Solution II formula of Chapter
2. These results, which are new, are also extended to any “call-like” claim.

In Chapter 10, we study both the fundamental transform and option prices at
large volatility. This behavior is important in a number of contexts in previous
chapters. We find that, in contrast to the B-S model, it is not always true that the

call option price tends to the stock price as the volatility increases to infinity. A
specific counter-example is found.

Finally, in Chapter 11, we develop the closed-form solutions for the
fundamental transform in our three running examples: the square root model, 3/2
model, and a special case of the GARCH diffusion (geometric Brownian

motion).

Mathematica code. For readers who are Mathematica users, many code

fragments are included, usually in Appendices. All of the Mathematica routines
can be evaluated in short periods, ranging from a few seconds to a few minutes
on a desk-top machine. But the book can also be read without these sections. No

attempt is made to explain the Mathematica system or its built-in objects, but I
do attempt to explain how the code fragments work in a general sense.

Notations. Frequently used notations are given on a page at the end of the book.
I refer to equation numbers within a chapter by their label within that chapter:
say (2.3) for the third equation in Sec. 2 of Chapter 7. But, in another chapter, I

refer to that same equation as (7.2.3). The more important equations are placed
in boxes for emphasis.
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Subjects not covered
Discrete-time theory. Virtually all of the development in this book can be
translated into a discrete-time setting. But space and time limitations, for one
thing, have forced me to omit this. Also, because the results do readily translate,

the discrete-time setting for the option valuation equations don’t really tell you
anything new.

Having said that, there is an important caveat. The continuous-time setting used
here, with its continuous sample paths may not be “variable enough” for the real
world. The discrete-time world, especially GARCH models, accommodates

“wider than normal distributions” in a straightforward way. So this may lead one
back to a discrete-time theory.

One-dimensional models. There is a large literature that considers one-
dimensional diffusions of the form ( )t t t tdS rS dt S dBL� �  as an explanation
for smile and term structure patterns. These models are difficult to interpret over

long time periods in a world with exponentially growing stock prices—so, for
the most part, we don’t discuss them. The empirical performance of this type of
model is reviewed by Dumas, Fleming, and Whaley (1998). One exception is

that, in Chapter 9, we study tdS S dBK
� ,  K � �  as a simple example of the

failure of the martingale pricing formula.

Empirical comparisons. This important area deserves a book in itself, and by
those more qualified. One very nice study, which is important to the models
here, is a careful examination of put-call parity by Kamara and Miller (1995).

All of the theoretical models in this book satisfy the put-call parity relation,
which relates European-style put and call values by an arbitrage argument. In
practice, there are many small violations, but in investigating all violations in

intraday transaction data, Kamara and Miller found that almost half of the
“arbitrages” result in a loss when execution delays are accounted for. Moreover,
the mean ex post profit in trying to exploit the violations was negative.

American-style options. The effect of stochastic volatility on the early exercise
premium for American-style options is an important subject. With one

exception, we only treat European-style options. The exception is Chapter 8,
which presents the duality relation mentioned above. This relation, as it does in
the constant volatility world, connects the early exercise boundaries of the call

option and its dual put partner.
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The remaining sections in this chapter review some hedging arguments under
both constant and stochastic volatility and the martingale pricing argument. This
material is mostly standard. Advanced readers might want to look at some

comments about risk premiums in Sec. 4, comments about local martingales in
Sec. 5, and then skip directly to Chapter 2.


