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The Fundamental Transform 35

2 The Fundamental Transform

In this chapter we introduce a transform-based approach to solving the option
valuation PDE that we developed in Chapter 1. The method is based on a
generalized Fourier transform. A particular function, which we cal the
fundamental transform, plays an important role throughout the book. While the
idea of a transform-based approach is not new, previous applications have
tended to be model-specific. Not only are our results more general, but they
encompass the dtuation when option prices, relative to a humeraire, are not
martingales, but only strictly local martingales.

1 Assumptions

In Chapter 1, we developed a PDE for valuing options under stochastic volatility
at (1.4.10). Now we specialize to time-homogeneous volatility processes of the
form dV; = b(V;)dt + a(V;)dW, . In other words, the volatility changes in time
only through the Brownian noise and level-dependent coefficients; but there is
no explicit time dependence.

Indeed, most models of the actual volatility process that are proposed by
researchers are time-homogeneous. In particular, both GARCH-style models and
their continuous-time limits are time-homogeneous. And, as we show later in
Chapter 7, the time-homogeneity property can be preserved after risk
adjustment. Briefly, this can be achieved with a power utility function using an
infinite consumption horizon or a pure investor mode with a distant planning
horizon.
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We take as constant both the dividend yield on the underlying security and the
short-term interest rate. This too can be made consistent with a risk adjustment
model. Finally, we make a smoothness assumption that we use in later chapters.
In summary, we employ in this chapter and throughout much of the book the
basic model given by:

Assumption 1. The martingale pricing process P has the general form

5 {ds:(r—é)SdtJratSdF}t
ldV =bM)dt+aMv)dwp

where dB, and dW; are correlated Brownian motions under P, with correlation
p(M). The interest rate r and the dividend yiedd ¢ ae constants. The
coefficient functions b(V) and a(V) may be differentiated any number of times
on 0<V <.

(1.1)

Under Assumption 1, we can rewrite the PDE (1.4.10) for generalized
European-style claims with price F(S,V;,t) and expiration T . That equation,
defined in theregion 0 < (S,V) < oo , t < T, becomes

_OF _
v rF+AF,
1.2
321 here AF_(r—cS)SaF g OF
oS
- 1.2 112e O°F
+b(\/)a +3 a(\/)3V2+p(V)a(V)V Sosv

We almost always assume the payoff function is independent of volatilityl.
Then, European-style option prices are solutions to (1.2) with terminal
condition F(S,V,t=T) = g(S). As we will see below, sometimes there are
multiple solutions to (1.2) with the same payoff function; briefly, this occurs
because of volatility explosions. When that happens, we have to determine
which solution is the “fair-valug’. Note that the first line defining the operator

1 Our approach also accommodates very naturally a pure volatility-dependent
payoff, such as a volatility future. The demands of traders for hedging and
replication srategies under ochastic volatility would make such securities
quite useful, athough there are many real-world design issues
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A is the linear operator of the B-S theory and the second line contains the
stochastic volatility corrections.

2 The Transform-based Solution

In this section, we reduce (1.2) from two “space’ variables to one. There are
fundamental solutions to the reduced equation that provides a representation for
the price of every (volatility independent) payoff function. As we will show,
those fundamental solutions have a number of special properties.

Thisreduction to 1D is nat the proverbial free lunch because the one variable
PDE is then dependent upon a continuous transform parameter. Nevertheless,
the reduction is extremely useful and it provides the basis for much of our
subsequent devel opment.

The firg gep issimply a change of variable from Sto x =1InS in (1.2), letting
F(SV,t) = f(x,V,t). Then f must solve, using subscripts for derivatives

(1) —fi=—rf+(r—6—IV)f+1IVig+bfy +1a’fy +paVv!/?fyy .
Now consider the Fourier transform of f(x,V,t) with respect to x:

2.2) f(kV,1) :L]:OO &R (xV, 1) dx

where i =+/—1 and k is the transform variable. The first issue is to determine
under what conditions (2.2) exists for typical option solutions. The simplest
caseist — T (expiration), where we know the functional form f(x,V,T)

For example, cal option solutions ae given a expiration by
C(SV,T) = Max[S—K,0] = (S— K)T, where K is the strike price. Hence,
f(x,V,T) = (e — K)" andby asimpleintegrationin (2.2),

X=00

(2.3) fkVv,T)=

expl(ik +1)x] K exp(i kx))
ik+1 ik

X=InK

The upper limit Xx=o0c in (2.3) does not exist unless Im k > 1, where Im
means Imaginary part. Assuming this restriction holds, then (2.3) is well-
defined, giving the payoff transform



38 Option Valuation Under Stochastic Volatility
K1+ik

(2.4) fkVv,T)= e

So the key to the existence of (2.2) isthat the Fourier transform variable k has to
have an imaginary part—making k =k, +ik a complex number2. Because k
has been generalized to complex values, (2.2) is caled a generalized Fourier
transforms. In general, (2.2) exists for typical option payoffs only when Imk is
restricted to a strip a < Imk < 3. The reason that grips occur as a general
feature of the theory is explained in Sec. 4. Given the transform  f (k,V, 1), the
inversion formulais
ik +00

(2.5) f(x,V,t) = L f e 0 F (k,V, 1) dk .

2 iki—co
Thisisan integral along astraight line in the complex k-plane paralldl to the real
axis. In the case of the call option at expiration, thisline can lie anywhere in the
region Im k >1: say along k = 3/2 for example. Actually selecting a contour
for computations is discussed further below. We can go through the same
exercise for various standard payoff functions and see what restrictions are
necessary for their Fourier transforms to exist. The results are summarized in
Table 2.1 below.

Table 2.1 Generalized Fourier Transformsfor Various Financial Claims

Financial Payoff Payoff k-plane
Claim Function Transform Restrictions
Call max[ Sy — K, 0] K k1 Imk >1
option _k2 —ik
""""" Put max[K-S7,00 gk Imk<0
option K2 —ik
Coveredcallor  min[StK] Kkt 0O<Imk<l
Jcashesecuredput K =ik
Delta function o(InSy —InK) K ik none
Money market 1 2wé(K) none

2|f z=x+iy =Rez+ilmzis any complex number, we write |z | for the
modulus or absolute value of z, and z* = x —iy for the complex conjugate.

3 Sometimes the term complex Fourier transform is used. A comprehensive
referenceis Titchmarsh (1975).
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The dédta function. Two of the entries in the table use the Dirac delta function
6(x—y), which can be thought of as the limit of a function of x that is sharply
peaked a x = y. In the limit, the function is zero everywhere else, while
maintaining unit area under its “graph”. More rigoroudy, the delta function is
really a linear “functional” because it transforms well-behaved functions into
numbers via [ 6(x—y) f(X)dx = f(y). This function occurs naturally in the
theory; for example, to prove the inversion formula, you insert (2.2) into (2.5)
and rely upon this last equation and [, "> exp[—ik(x — y)]dk = 2x6(x —y) .

Continuing with the development, we next trandate (2.1) into a PDE for
f(k,v,t) . That's done by taking the time derivative of both sides of (2.2), and
inside theintegrd replacing f; by the (negative of the) right-hand-side of (2.1).
Then, after parts integrations, the net effect is that x-derivatives of f in (2.1)
become multiplicationsof f by (—ik).

An important point is that we assumed that the boundary terms associated with
the parts integrations can be neglected. This is similar to the issue that we
discovered at (2.3) and led to our introduction of the generaized transform.
Typically, there exists a strip « <Imk < 8 such that the boundary terms
vanish. Thisis proved in the subsection “Neglected boundary terms’ below. It's
aso typical that o and 5 depend upon the parameters of the problem as well,
such asthetimeto expiration. We also show examples of «(7) and G(7) below.
With Imk appropriately restricted, the PDE satisfied by f (k,V,t) is

—fo =[—r —ik(r —8)]f —1v(K® —ik) f +(B—ikpaV'?)f, +Lafy
We remove the dependenceonr and 6 ,using = =T —t, and letting
(2.6) f(kV,t) = exp{[—r —ik(r — 6)]7 } h(k,V,7) .

Also, introducing c(k) = (k? —ik)/2, we see that ﬁ(k,V,T) satisfies the
initia-value problem

(2.7) g_ﬁ = %ag(\/)g—\j@—i-[ﬁ(\/)—ikp(\/)a(V)Vl’Q]g—\F/‘—C(k)Vﬁ

The initia condition is that ﬁ(k,V,T = 0) is given by the Fourier transform of
the payoff function—the entriesin Table 2.1.

The fundamental transform. Notice that the entriesin Table 2.1 do not depend
upon V. They don't because we have restricted our theory to volatility
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independent payoffs. Because of this assumption, it suffices to take the special
case h(k,V,7=0) =1. To obtain the solution to (2.7) for any other payoff of
this type, multiply the solution for the special case by the “Payoff Transform”
entry in Table 2.1 . This deserves a formal definition and some distinguishing
notation:

Definition. A solution H(k,V,7) to (2.7) at a (complex-valued) point k , which
satisfies the initidl condition H(k,V,7 =0)=1, is caled a fundamental
transform.

Given the fundamental transform, to obtain a (not necessarily unique) solution
F(SV,t) for aparticular payoff, here are the steps:

o multiply the fundamenta transform by the expiration payoff transform;

o further multiply by the factor that we removed in (2.6);

¢ invert theresult with the k-plane integration (2.5), keeping Imk in an
appropriate strip; thisgivesa solution f(x,V,t) to (2.1);

e intermsof S thesolutionis F(S,V,t) = f(InS,V,t)

For this procedure to work, we need a strip for which a fundamental solution to
(2.7) exists; then we can carry out theinversion along any line contained within.
Let’ s define a class of problems where this procedure is especially well-defined:

Definition. We call the initia-value problem (2.7) regular? if there exists a
fundamenta solution to (2.7) which is regular as a function of k within a grip
a<Ilmk< g, whee o« and S are rea numbers. We call this strip the
fundamental gtrip of regularity. In typical examples, o <0 and 5> 1.

Given the fundamental transform, the steps above are quite straightforward. For
an example using Mathematica, see Appendix 2 to this chapter. For closed-form
examples of the fundamental transform, see Sec. 3 below.

Call option Solution |. The call option payoff transform is given in Table 2.1
and it existsfor Imk > 1. Thecall option solution in this subsection exists only
under the following assumption: the initial-value problem (2.7) isregular in a

4 A function f(k)is analytic at a complex-valued point k if it has a derivative
there. If it’s both analytic and single-valued in aregion, it's called regular
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strip a < Imk < 5 and g > 1. In other words, we are assuming that the strip
associated with the payoff transform and the fundamental strip intersect. If they
don’t, then this particular solution formula does not exist (but see below—there
will always be an alternative formula that does exist). See Example Il below for
an example where there is such an intersection and further examples in Sec. 3.
Carrying out the prescription above yields the solution representation

ik +00

—rT . . ik+1 .
C(sV.r)=-8 [ einsgikrar K Ay, rydk, 1<Imk < 5.
2 I k? —ik
We continue to employ 7 =T —t. This equation can be simplified by
introducing the dimensionless variable

%76%

X =1In .
Ke ™"

Then, in terms of X, we have Solution I:

ikj +-00 A
(28) C| (S,V,T) = —Ke '™ L e*ikx H(k,V,T) dk ,

2 K2 —ik

1<Imk < 3.

Frequently, H(k,V,)is the Fourier transform of a norm-preserving transition
density for the risk-adjusted process. Thisis discussed further below. For now,
we simply note that when H s norm-preserving, then one can show, by Fourier
inversion, that

Ci(SV,7) =e "B [(S—K)" ],

which isthe martingal e-style solution. As we will see, sometimes there are other
solutions and sometimes the martingale-style solution is not the arbitrage-free
fair value.

Homogeneity. One immediate property of (2.8) is that the call option price is
homogeneous of degree 1 in the stock price and the drike. That is,
C(SV,7) = Kc(S/K). If we multiply both the stock price and the srike by
the same constant: K — AK and S — AS, then C — AC. Thisisawell-known
consequence of starting, as we did at Assumption (1.1), with a proportional
stock price process. That is, the (risk-adjusted) stock price return distribution,
although dependent upon theinitial volatility, isindependent of the level of S°

5 See Theorem 8.9 of Merton (1973).
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Call option Solution I1. In practice, we often do the k-plane integrations in
0<Imk<1: usudly aong k =1/2. In this strip, His often free of
singularities—see Example Il below and the discussion in Sec. 4. The reason
that thisstrip isthe “regular” oneisthat solutionsto (2.7) are usualy quite well-
behaved aslong as Rec(k) > 0, which istrue when 0 <Imk <1. Thisstripis
especially important both in the asymptotic 7 — oo behavior of the theory,
which is explained in Chapter 6, and when the martingale-style solution is not
the fair value, which is explained in Chapter 9.

We can obtain a formula for the call option with this restriction by using the
put/call parity relation

(2.9) C(S\V,7) = Sexp(—67) — [K exp(—r7) — P(SV,7)] ,

where P(S,V,7)is the put option value. The expression in brackets in (2.9) is
the cash-secured put entry in Table 2.1. As you can see from the table, the
payoff function for the cash-secured put has (i) the same Fourier transform as
the call option, except for a minus sign, and (ii) the different restriction
0<Imk < 1. Now we assume that H isregular in a fundamental strip which
intersects 0 < Imk < 1. With that assumption, we have solution II:

ik +-00 -
B _ _ix HK,V,7)
(210)| C,(SV,r) =% —Ke'™ L [ ixEKN.T) 4
n 7) 27Tikifoo k? —ik

max[0,«] < Imk < min[1, 3]

In the same way, we define B to be the put option solution in itsnatural domain
of definition, using Table 2.1:

ik +-00 ~
R(SV.7)= ke L [ g HKV.TD) g

2m I K2 —ik

a<Imk<O0.

Again, when H(k,V,)isthe Fourier transform of a norm-preserving transition
density, then

R(SV.,7)=e "B [(K-S)"],
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And, using (2.9) and (2.10), we aso have the second put option solution in the
same strip as C;,

ikj +-00

_ o H(kV 7)
R (SV,7)=Ke " [1—-L x dk
II( 7—) IKfOO k2_|k

max[0,a] < Imk < min[1, 3]

Relationships between the solutions. There is a very simple relationship
between the Solution | and Solution Il formulas under the assumption that the
fundamental strip of regularity for H extends at least slightly above Imk =1
and at leagt dightly below Imk = 0. In that case, one can apply the Residue
Theorem (see Appendix 2.1) to show that

Ci=C +S[1-Hk=iV,7)]
Ri=R+Ke"[1-Hk=0V,7)]

The meaning of these relationshipsis discussed further below and extensively in
Chapter 9. For now, we smply note that in many situations, the fundamental
transform is the transform of a norm-preserving transition density that is also
martingale-preserving. These properties are defined below; when they hold,
then

H(k=0V,7)=Hk=iV,7r)=1 andso C;, =C, and P, =R .

Example |. Constant or deterministic volatility. In the case of constant
volatility, the volatility process is dVy =0 and the fundamentd transform
satisfies H, = —c(k)V H . Applying theinitial condition, it's el ementary to find
H(k,V,T) = exp[—c(k)V7]. Thisis an entire function of k; i.e., anadytic in the
entire k-plane. So the only singularities of the integrandsin both (2.8) and (2.10)
aesmplepolesat k=0and k =i . In this case, (2.8) holds for the entire strip
1 <Imk < 0o and (2.10) holds for the strip 0 < Imk <1 and C;, =C,. Of
course, we should recover the B-S formula from both (2.8) or (2.10). Thisis
shown in the Appendix 2.1 to this chapter.

In the case of deterministic volatility, the volatility process is dV; = b(V;)dt .
The fundamental transform satisfies H, = b(V)H, — c(k)V H . The solution to
this eguation is obtained by first finding Y (u,V), which is defined as the
solution to dY/du=Db(Y), Y(0) =V . Then, the fundamenta transform is



44 Option Valuation Under Stochastic Volatility

given by H(k,V,7) =exp[—c(k)U(V,7)], where U(V,7) = J; Y(u,V)du. So
the k-plane behavior isidentical to the case of constant volatility. Again the B-S
formulaisrecovered, but the volatility V that appearsin the formulais replaced
by v(V,7)=U(V,7)/ 7. Agan, see Appendix 2.1

Fig. 2.1 shows a plot of the modulus |H (k,1,1) |, for the constant volatility
case. Notice the saddle shape. Also the modulus is symmetrical about the
Im(k) axis, we show below that this reflection symmetry is a general feature of
the fundamental transform:

Fig. 2.1 | H | for the Constant Volatility Case
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Example Il. The square root modd. In the simplest case of this model, the
volatility processis dV; = &V, dW . Initially, we will assume that the volatility
process is uncorrel ated with the stock price process, but then subsequently relax
that assumption.

When p =0, H satisfies H, = (1/2)¢% Hy —c(k)V H . Applying the initia
condition, the solutionis
e

The Taylor series for tanh z (the hyperbolic tangent) about z = 0 contains only
odd powers of z and converges for |z| < 7 /2. Thisimpliesthat H is analytic
incnear c=0.Because c=0 a k=0 and k=i, H isregular near those
two points. Notethat H(k = 0,V,7) = H(k =i,V,7) =1.

(2.11) A(kV,7) = exp{—%mc(k) tanh

Fig. 2.2 again plots |H(k,1,1) | with &€ =1 ; we still have reflection symmetry
about the Im(Kk) axis, but now singularities on the Imk axis are suggested:

Fig. 2.2 | H | for the Square Root Model (p = 0)
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Along the pure imaginary axis, let k =iyso that c(k) = (y— y?)/2. Thislast
expression becomes negative for y<0 or y>1, which means that the
argument of the hyperbolic tangent, (c/2)Y2¢7, will be purely imaginary. So
write  (c/2)Y2¢ér =iy, where ¢ is a red number. But tanh(ip) =itanyp
which will of course diverge whenever ¢ = (2n+1)7/2, for n=0,£1,42,---.
Let k, be the locations of the k-plane singularities of H . The singularities in
thefigure correspond tothecase n = 0. Setting ¢ = 7 /2, wefind

2 3.68113
; ~ { (€ =7=1)

Ko =1y, where yi(T):%i Z+§§TQ = -268113
In the limits where €2 — 0 or 7 — 0, we recover our previous results (an
entire function) because the singularities move off to infinity. In the opposite
limit where €2 — oo, the singularities moveto y, =0,1. So aslong as &2 is
finite, we see that for this modd, the integrand H(k,V, 7)/(k? —ik) is free of
singularities for the strips (i) a<Imk <0 (i) 0<Imk <1, and (iii)
l<Imk <g,wheea=y (7) and 3=y, (7). Thisistypical.

In Fig 2.2, the line Imk =1/2 is symmetrically located between the two
singularities. This occurs whenever p = 0. The sguare root model can also be
solved when p = 0 (see Sec. 3 for formulas). Fig 2.3 shows the same model
with the same parameters except that now p = —1/2; the reflection symmetry
about Rek = 0 is4ill present but now the symmetry about Imk =1/2 islost.

Fig. 2.3 | H | for the Square Root Model (p = —1/2)
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A Green function. Consider the entry in Table 2.1 for the delta function claim
6(InSy —InK), but with K =1. From the table, the transform of the payoff
function is 1. So the fundamental transform is a solution to the problem with a
delta function payoff and it's not too surprising that general clams can be
developed in terms of this special one.

A closely related payoff function is 6(S;y — K) , which has a fair value which is
sometimes called a Green function or Arrow-Debreu security price. To get from
one delta function to the other, apply the formula

6(f(x)):%, where f(x) =0.

Applying thisin our case tells usthat
8(Sr —K) = %wnsr —InK).

That is, §(Sr — K) has the payoff transform K™ where k is any complex
number. But, for times prior to expiration, we may still have afinite strip where
the transform exigs. So, a solution to the PDE (1.2) for this payoff, which we
denoteby G(S,V,K,7) for Green function, isgiven by

—rT koo . . . ~
G(S,V, K,T) — 62r f e—lkInSeflk(rfé)TKlkle(k,V,T)dk
& ik —oo
. ikj +-co
_e'"” —ikX 1]
= an e ™A KV, T)dk, a<Imk<g

Interpretation of the fundamental transform. The last equation can be
interpreted as follows. Associated with the martingale pricing process (1.1) isa
risk-adjusted trandgtion dendty p(S\V,Sr,7). Specificaly pdSy is the
probability that the stock price Swith ingantaneous variance V' will, after the
dapse of time-7, reach the interval (S, Sy + dSy) with any variance. Since
the stock price must end up somewhere, p(S,V, Sr,7) isnorm-preserving with
respect to S; . Thatis, [,"p(S,\V,Sr,7)dS =1. Also, we have the initid value
p(SV,Sr,0) = 6(S— Sr) . From the above, we know that both G(S,V, Sr,7)
and p(S\V, S, ) saisfy the same PDE, (1.1), with the same initial condition.
Are these two functions equal? The answer is yes, if G(S,V,Sr,7) is norm-
preserving. As we now show, there is a very simple test to determine when
G(S,V,Sr,7) isnorm-preserving.
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We can smply redabd K — S; and re-write the last eguation, using

X =In é]-‘r(l’—&)T,aS
—rT tki+00 G A
(2.12) G(S\V,S;,7) :;T_Srmf e A (k,V,, ) dk,

Inversion. Multiply both sides of (2.12) by exp(ik’X) and integrate with
respect to S; from Sp =0to Sy =oco. On the right-hand-sde this is
accomplished by changing variablesto y =1InS; and using the delta function
formula given above. Theresultis

A (k,V,7) :L];”ékx”e(s,v,sm)dsr.

This last formula shows that H(k =0,V,7) = [*G(SV, S, 7)dS; ; hence
G(S\V,Sr,7) isnorm-preserving if, and only if, H(k=10,V,7) =1. That is,
we can identify the fundamental transform as the Fourier transform of the norm-
preserving transition density in S; if and only if H(k=0)V,7)=1. In
addition, thelast formula shows that the martingal e property for the stock price:

St = e*”fOOOSrG(S,V,ST,T) ds; ,

ispreserved by G, if and only if H(k=1i,V,7) = 1. These results prompt the
following definitions:

Definitions. A fundamenta transform H(k,V,7) is called norm-preserving if it
has the property H(k =0,V,7) =1. If a fundamental transform is not norm-
preserving, it's called norm-defective. A fundamental transform is cdled
martingale-preserving if it has the property H(k =i,V,7) =1; othewise it's
called martingal e-defective.

Examples. The fundamental transform solution for the square root mode! is both
norm-preserving and martingae-preserving.  The fundamental transform
solutions for the 3/2 model and the GARCH diffusion solution (see Sec. 3 below
and Ch. 11) are sometimes norm-defective or martingal e-defective.

With these definitions, we can assert that, when a fundamental transform is
norm-preserving, then it's the Fourier transform of the risk-adjusted transition
density p(S\V,Sr,7);i.e,
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(2.13) A(k,V,7) = fomeikx” p(SV,Sr,7)dSr,

where X =In

§]+(r—6)7,

ifandonlyif H(k=0,V,7) =1

Failure of the martingale pricing formula. We shadl find that it's possible for
a fundamentd transform, in very typical models, to be norm-preserving, but
martingal e-defective. Since it's norm-preserving, it's the Fourier transform of
the risk-adjusted trangtion density p(S,V,Sr,7). In that case, as we noted
earlier, we can interpret call option Solution | as an expectation

Ci(SV,7)=e "B (St —K)"].

The expectation is taken with respect to the norm-preserving density of the risk-
adjusted process. p(S\V,Sr,7). But, as we showed earlier, because the
fundamentd transform is martingal e-defective, we have a second PDE solution
C,, = C, . Moreover, we show in Chapter 9 that the arbitrage-free fair valueis
given by C, . In other words, the usual martingale pricing formula
e "By |(Sr —K)" |, while always a solution to the valuation PDE, does not
aways give the far value of an option. Sometimes, option prices are not
martingales, but only strictly local martingales.

Relationship to volatility explosions. When a fundamental transform is norm-
preserving but martingale-defective, we aso show in Chapter 9 that
1-Hk=iV,7) = I5@<p(\/,7) , Where the right-hand-side is an explosion
probability. Specifically, ﬁ@(p(\/,f) isthe probability that a particular volatility
process, the auxiliary volatility process, reaches V =400 prior to time 7.
Very briefly, to get a sense of what it going on in these cases, take k =i in (2.7)
and consider solutions to (2.7) I5@<p(\/,7) with vanishing initial condition and
with ﬁ@(p(v =o00,7) =1. If you can find such solutions, the auxiliary process
can explode. Similarly, if the risk-adjusted volatility process can explode, then
there exigss a norm-defective fundamental transform such  that
1-Hk=0V,7) = Pop(V,7), where the right-hand-side is the explosion
probability for the risk-adjusted process. In this case, take k = 0 in (2.7) Again,
see Chapter 9 for a detailed discussion.
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Reflection symmetry. Note that we always have the property, because the
fundamental transform is the transform of a red-valued function,
H"(k,V,7) = H(—k*,V,7) . Thisadways holds, whether or not the transform is
defective.

With the exception of the results for the 3/2 moddl given in Sec. 3 below, we
generally assume without further comment that for the remaining devel opment
in this chapter, the fundamenta transform is both norm- and martingale-
preserving.

Power law behavior and scaling. Since Xis a function of the ratio S/ Sy,
then (2.13) shows that the transition density satisfies the scaling behavior

(2.14) p(SV,Sr,7) = é@(u) , whereu=S/S;,

and ¢ (u) is some scaling function. So if we know the behavior of p(S,V, Sr,7)
for S — o0, (S —0) then we adso know the behavior as
S— 0, (S— oo) respectively. In fact, if the problem is regular, then we can
deduce a lot about that behavior. For example, (2.13) exists for k =iy,
wherey = 5 — ¢ for every e > 0. Thatis, forany S> 0

L];”s?*p(s,v,sm)dsr <.

This implies that p(S,V,Sr,7) =O(S; 7 ) as St — oo, for every e >0.
Similarly, taking y=a+e¢ implies that p(S\V,S;,7) =0(S ™) as
St — 06, In turn, these relations may be restated in terms of the scaling
function:
(2.15) w(u) = {O(uﬂ+ ) asu=0 for every € > 0.

O(u ") asu— oo
Neglected boundary terms. One application of (2.14) is to show that the
neglected boundary terms associated with the call option solution (2.8) can
indeed be neglected. Writing f(x) = C(e*,V,t), where x=1InS, the two
neglected boundary terms from parts integrations were

6 The notation, as X — X,, f(X)=0(g(x)), means that f(x)/g(x)is
bounded as x — X;. For a more rigorous discussion of the power law order
behavior for p, see Fourier’stheorem for analytic functions (Titchmarsh 1975,
Theorem 26, p.44)
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X=+00 i Of (X) e
0

et (0| and € where 1 < Imk < 3

X=—00
X=—00

In Appendix 2.3 to this chapter, we show the general arbitrage bounds
C<S=¢*,and Cs <1, which implies that both f <e*anddf /9x < e*for
large enough x. So, since Imk > 1, both boundary terms vanish at the upper
limit x=+o0.

When option prices are martingales, they are given by the pricing formula
C(SV,7) = e*”fooo p(SV,S;,7) max[S; — K,0]dS,

_ g[S [_5 }@
=e Sfo p(u)|1 Su 2

where we subgtituted from (2.14). Letting S — 0, we have from (2.15) that
©(u) =0(U’*)as u— 0. Substituting this expression into the above integral
implies that C(S) =0(S°"*)as S— 0 for every > 0. Or, in other words
both f =0O(e*?*)) and of /9x = O(eX?*))as x — —c0. Since Imk < 3,
both boundary terms a so vanish at the lower limit Xx=—oc . B

The fundamental transform as a characteristic function. By a characteristic
function, we mean any function that has the form

(2.16) H (k) = ffo dG(x) = ffo g g(x)dx,

where G(x)is a cumulative distribution function and g(x) =dG/dx is its
probability density. For our purposes in this chapter, a cumulative distribution
function is function of a rea variable x that is (i) non-decreasing, and (ii)
satisfies G(—o0) =0, G(+o0) =1. Of course, for this to occur, then
g(x) must be non-negative and integrable.

To show that H is a characteristic function, change integration variables in

(2.13) from S; to X =In(S/S)+(r—48)7 and define a new function
g(X;S\V,7) by

P(SV,Sr,7)Sel X = g(X;S\V,7).
Or, suppressing arguments again,

dG(X) = g(X) dX = p(S\V, S X, 7)sel )" XdX .

Thisshowsthat H(X) isnon-negative and now (2.13) reads
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H (k) = f‘” dXdG(X) ,

where  G(X) :fi;p(S,V,Se“*‘s)T*X,T)Se(H”T*de
= [ psv.s 7S
Sexpl(r—6)7—X |
This lagt equation shows that G(X) is indeed non-decreasing and satisfies
G(—o0) =0, G(+00)=1. And, since H(k)is of the form (2.16), with
x = X , this shows that H (k) is a characteristic function. In fact, the examples
show that H(k) can typically be further characterized as an analytic
characterigtic function. Thisimportant topic is discussed in Sec. 4.

The martingale pricing density. We can also consider the probability density
p(S.V:, Sr,7) that the actual volatility process, starting from (S,V;) reaches
Sy with any variance. Theratio of the two probabilities

p(s 1\/'[ 1 SI' 17—)
M - M 1V1 17— == .~
t (S t Sr ) p(Sy\/tysl'yT)
also values arbitrary payoffs. That is, we have two general pricing formulas that
work for any volatility-independent claim price, when it' samartingale:

217 F(SM)=e" [7pS M, S r)o(s)ds:

=" [TM(SV. S TIPS Ve S r)g(Sn S

These are explicit integral kernel versions of the martingale pricing formulas
presented in Chapter 1. As a genera rule, (2.17) is the long way around,
however, from the Solution | and Il formulas based upon a direct k-plane
integration, since it forces you to do an extra integration. So we don’t
recommend (2.17) for most computations—but we have seen aready that it was
useful in consideringthe S— 0 and S — oo limitsof the theory.

Forward contracts and options on forwards. The formulas are easly
modified to handle forwards. For example, the forward stock price F; isdefined
to be the fair value at timet for delivery of one share of the stock attime T . As
usual, this price is determined by arbitrage to be F =¢€9"S, whee
7 =T —1. Hence by Ito's formula, the martingale pricing process P of (1.1)
becomes dFR = o;FdB;, with the same volatility evolution. Under P, the
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forward price behaves like a stock with a dividend yield of r. Using thisidea, a
call option on the forward, say solution Il a Imk =1/2, becomes

i /2400 ~
e ik H(KV,
Cy(FV,r)=¢" F—Ki f e'kx—lfg_“:)dk,
i/2—co

where X =In(F/K).

Summary. If theinitial-value problem in the box below isregular in astrip
a<Imk< g in the complex k-plane, then the solution can be used to
determine option prices by a k-plane integration:

(2.19) % =1a’(V) gi/";' +[b(V) —ikp(V)a(V)v*/2 ]% —c(k\VH

where c(k) = (k? —ik)/2. Inaddition toH (k,V,7 = 0) =1, the
fundamental solution hasthe following properties:

(2.20) (i) H'(k,V,7) = H(=k*,V,7)
(i) Hk=0,V,7) =1— Pyp(V,7)
(ii)H(k=iV,7) =1—Pyp(V,7),

where Py, and Py, are the probabilities that the auxiliary volatility

process and risk-adjusted volatility process can explode to +oco

3 Some Models with Closed-form Solutions

In general, even with the assumption of a smple process for the actual
volatility, the smplest risk-adjustments (via utility theory) can produce complex
results for the martingale pricing process. Risk-adjustment is discussed in detail
in Chapter 7. To obtain a model that can be solved in closed-form generally
requires two assumptions. (i) arelatively smple process for the actud volatility,
and (ii) a relatively simple preference model, such as the representative agent
model with power utility.

Making both of these assumptions, here is a short lis of models that can be
solved in closed-form. Each volatility process has constant correlation p with
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the stock price process. All other parameters are aso constants. The agent is
assumed to be a pure investor (no consumption until a final date) with a distant
planning horizon. The parameter ~ is the representative's risk-averson
parameter. It's restricted to v <1 plus some additional restrictions that are
shown. Therisk-aversion adjustments are derived in Chapter 7.

Some solvable models and their volatility processes

Squar e root model

P: dV = (w—6V)dt+ &Vdw

P:dVv={w-0V}dt+&NVdw,
where 6 = (1 —7)p& 46> — (1 —)&?
Conditions: v(1 —~) < 6?

3/2 model

P: dV = (wV —&V?)dt + £V3/2dw

P: v ={wV—&v>}dt+cv*dw,
where 0 =—L1&+(1-7)p€+/(0+1€%)? — 11— )¢
Conditions: (1 —7)&* < (0 +1¢%)?

Geometric Brownian motion

P: dV = —6Vdt+EVdw

P: dV:{—(l—'y)pr?’/Q—i-%fQV[l—i- yK“(y) }dt—l—deW,
K. (y)
where y:%/—v(l—y)v and uzl—l—?—g.

Conditions: (—20 <&? and y<0)or y=1

The solution for the fundamenta transform under geometric Brownian motion is
quite complex and difficult to work with when the correation is non-zero. In
contrast, both the square root model and the 3/2 model have short solutions that
we how show. Both models use the reduced variables
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(3.1) t=1Ler, ajzg%w, c:g—%o(k).
In terms of these variables, the fundamental transforms are given below. The
resultsfor al three models are derived in Chapter 11.

Thesquareroot model” [y <1 and (1 — )&% <67]

(3.2) H(kV,7) =exp[ fi(t) + f(t)V], using
. 1—hexp(d t) _ 1—exp(d t)
w0 =2 [to-n{ 2R no=o0 {5t
d =[0% +4¢]"2, =L1(@0+d), h:?%‘j,

where 00 = Z =7+ K+ 8> =1 (1= )¢

The32model8 [y <1 and v(1—7)¢% < (0 +1¢)?]

3.3 |:|(k,V,T) = F(?(;)a)[)((\%,w T)r M [a,ﬁ,—X(\%,w 7)} ,

using  X(xt)= Xl' p=11+9), 6:[u2+é]1/2,

et

where é(k):—1+£—22[\/(9+§52)2—7(1—7)§2+(1—7+ik)pg .
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7 Heston's (1993) call option solution is also achieved with a transform-based
approach: an ordinary Fourier transform with respect to the log-strike price. In

Heston' s approach, there are two transforms instead of the one here.

8 Caution: this fundamental transform is sometimes either norm-defective or
martingale-defective. Using risk-neutral preferences only, the 3/2 model has
been independently developed by Heston (1997), using an approach similar to

his 1993 paper.
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In (3.3), I'(z) is the Gamma function and M(«,3,2) is a confluent
hypergeometric function® . Also, note that the second argument for X(-, - )in
B3ussswr=0ot.

Deter mining the fundamental strip. Onceyou have H for amodel, then you
can analyze it to determine the fundamental strip of regularity: o <Imk < g
and whether it's norm- and/or martingale-preserving. Once you know that, you
know the regions of validity for al of the option formulas presented previoudly.
As an example, consider the square root model above. Rather than a complete
andysis, let's just edstablish that the strip 0<Imk <1lis free from
singularities—this places the boundaries of the fundamental strip outside this
region.

The singularities occur where 1 = he™ | which causes divergencesin both f (t)
and fy(t) . We know the sngularities occur along the imaginary axis, so
consider k =iy, where yis red. We see from (3.1) that 4 is real aong that
axis. Moreover, for 0 <Imk <1, then ¢ >0 (and red). Hence d is real and
satisfies d > |6 |, which impliesthat §+d > 0and § —d < 0. In other words,
h<0.Sncedisrea and h <0, there can be no solutions to h = e % inside
thestrip 0 < Imk < 1. Hence 0 < Imk < lisfreefrom singularities. B

Integrating. Once you know where you can legally integrate, then you're a k-
plane integration away from the call option price. For these remaining steps, see
Appendix 2.2 to this chapter. When you obtain those prices, you'll find that both
models exhibit the typical qualitative behavior that we discuss in subsequent
chapters. implied volatility smile patterns (see Chapter 5) and an implied
volatility term sructure that flattens to a constant as = — oo (see Chapter 6).
For the derivation of the formulas (3.2) and (3.3) see Chapter 11.

4 Analytic Characteristic Functions

We have seen from examplesthat H(k,V,7) is often an analytic function of k in
some neighborhood. In general, a characteristic function (k) is any function
which has the representation

9 See Abramowitz and Stegun (1970) for properties of these and other special
functions.
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f(k) = ff” &% p(x) dx ,

where p(X)is a probability density for some cumulative distribution function.
Lukacs (1970, Chapter 7) proves two theorems that are relevant to our
application. To achieve a more symmetrical notation, we write H (k) for our
fundamental transform and f (k) for ageneric characteristic function

If f(k) isregular in a neighborhood of k =iy, where yisrea, then we call
f(k) an analytic characterigic function (Lukacstakes y = 0). We have shown
in a number of examples that the regions of regularity for H(k) are typically
gtrips in the complex k-plane. And, we have suggested strips as regions of
regularity in general. The rationale for the general case lies in the following
theorem, quoted without proof:

THEOREM 2.1 (Lukacs Theorem 7.1.1): If a characteristic function f(k)is
regular in the neighborhood of k =0, then it is also regular in a horizontal
strip and can be represented in this gtrip by a Fourier integral. This strip is
either the whole plane, or it has one or two horizontal boundary lines. The
purely imaginary points on the boundary of the strip of regularity (if this strip is
not the whole plane) are singular points of f (k).

Discussion. In our application, we have often found that the fundamenta
transform H(K) is regular in the horizontal strip a < Imk < 3, where o < 0
and § > 1. We have aready pointed out that the PDE (2.19) is especially well-
behaved when Rec(k) >0, which occurs when 0<Imk<1. In this
subsection, we try to understand a little better why the strip 0 <Imk <1is
often free of singularities of H (k). We know from (2.13) that H (k) has the
representation

A(kV,7) = L];”e‘kx”@ﬁp(s,v,srm) ds; ,

where X(S) =In

S
= |+ (r —8)7 . Therefore
5 (r=2o)r

A™ () =AM =i [ XS p(sV, S, ) s

Let K=k, +iy,where k;, andy arered. Then,

Ak +iy) =ime 07 [T X(50)[" e (%)yp(S:V,SryT)dSr
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Along the purely imaginary axis, we have
- o y
41  HM(y) = ime*w*éﬁfo [x(sr)]m(%) p(S\V,Sr,7)dS; .
And in particular for the fundamental transform itself, we have
y
Yiy) = ime Voo St
(4.2) H(iy) =ime fo (s) p(S\V,Sr,7)dS; .
Now it's known from complex variable theory that if a function is analytic in a

region R, then it has derivatives of all orders and a Taylor series in R
Consequently, if H (k) isregular near the point k = iy, then the series

. 0 F )]
A = > BB g—iyym
m=0 '

is convergent. This means that H (k) is an analytic characteristic function near
k =iy if and only if the following two conditions are satisfied:

(4.3 (i) H™(iy) existsforal m=0,1,2,...
-~ 1/m
e 1 L A (7)1 | S Ry
(4.9 (i) nlgrgo —m | = A isfinite.

Then if these conditions hold, H(k) is regular in the strip
(y=A)<Imk <(y+A).

Now recall the normalization and martingal e identity:
@ [7PpSV.S rdS =1 ad () S =" [Sp(SV,Sr,7)ds .

These two relations strongly restrict the possible behavior of p(S;) hear
Ss=0 and Sy =c0, where we suppress the other arguments in
p(S,V,Sr, 7). Because of (a), it must be true that p(Sr) = O(S; ™) for every
e>0 as Sy — 0. In other words p(Sr), if it diverges at all as S — 0,
diverges no faster than Sy'**. Similarly, because of (b), it must be true that
p(Sr) =0O(Sr¥ =) for every € >0, as S; — oo . Because of these two end-
point behaviors, if you keep y in (4.2) in therange 0 < y < 1, then you will
have a convergent integral. Similarly, with the same restriction, (4.1) should
exist for any m because, (1) as X — oo, XY |In(1/x) "= O(x) for anyy <1
and(INas x — 0, x¥ [In(1/x) "=0O(1)forany y >0
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Unfortunately, this argument establishes (4.3) but not (4.4). Nevertheless, it
provides some additional insght intowhy 0 < Imk < 1 isthe “natural” strip for
the financial claim problem.

Stationary points. In Chapter 6, “The Term Structure of Implied Volatility”, we
examine the asymptotic = — oo behavior of the theory. It turns out that the
asymptotic implied volatility is determined by an eigenvalue of a differential
operator. This eigenvalue is also a stationary or saddle point of H(k)in the k-
plane (recal the saddle shapes from the figures). We discover, in particular
models, that these stationary points always lie along the purely imaginary axis.
The general reason for this behavior liesin the following theorem:

THEOREM 2.3 (Lukacs Theorem 7.1.2): Let f(k) be an analytic characteristic
function. Then | f (k) |attains its maximum along any horizontal line contained
in the interior of its strip of regularity on the imaginary axis. The derivatives
d?I f /dk? of even order of f have the same property.

PROOF: We know that (k) hasthe representation
fl=[" e*pydx, a<Imk<s,
£ (m) _ﬂA _im [0 mjkx
Therefore  fY™(k) = o f(k)=i fioox e p(x) dx .
Let K=k, +iy,where k;, andy arered and where oo < y < §. Then,
T +iy)| < [ Ix"e ™ p(x)dx.
If m=2j (j=0,1,2,...) isan even integer, then this becomes
1T +iy) | < [~ xleppydx = | FE(y)|,

so that max | fC(k +iy)| = | fCD(iy)|.

—oo<k, <co

Theridge property. Thereation
| fk +iy) | < [fay)]

is very important in the theory of analytic characterigtic functions, and is called
the “ridge property”. It plays an important role in our application in the
asymptotic 7 — oo theory. So we have learned that if the fundamenta
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transform H (k) is an analytic characteristic function, then it is also a “ridge
function”.



