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with regime switching identifies a high-variance regime and a low-variance regime, where the 
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I. Introduction 

Some two decades ago, Charles Nelson and Andrew Siegel (1987) proposed a model of 

the term structure of interest in which yields across a cross section of maturities are modeled as 

the integral from time zero to maturity of the solution to a second-order differential equation. 

This Nelson-Siegel model has found wide practical application for modeling the yield curve at a 

point in time. Recent work by Diebold and Li (2006) shows that the Nelson-Siegel curve can be 

interpreted as maturity-varying factor loadings on three factors: level, slope, and curvature. This 

has opened the way for studying the time series behavior of these factors as well as their relation 

to macroeconomic driving variables, which adds more economic content to the Nelson-Siegel 

curve. 

Our approach might be summarized succinctly as: We take Nelson-Siegel seriously. 

Nelson-Siegel posit that the short rate follows a second-order differential equation. The 

solution to that equation gives future short rates, and integrating the solution gives current long 

rates under a no-premium expectations hypothesis. Because the functional form for the long rates 

is flexible (while using very few parameters), it can fit yields across maturities quite well. 

However, nothing in these cross-section fits ties them to the original short-rate, time-series 

process. Here, in contrast, we create a tight empirical link between the short-rate process and 

yields across maturities, and in this way rejoin the underlying theory and the estimated results.1 

We start with a time series model for the short rate, where the short rate is the sum of two 

unobserved components: a stochastic trend with unit root and a stationary cycle. This model has 

a univariate ARIMA representation that is a close stochastic analog to the Nelson-Siegel 

deterministic, second-order differential equation. We then integrate the future short-rate 

forecasts. Here we make one significant departure from Nelson-Siegel. The Nelson-Siegel 

solution is based on an expectations-hypothesis model of the term structure with zero term 

premia. Zero term premia is empirically untenable (Startz (1982)). Nonetheless Nelson-Siegel 

cross-section fits are invariably made to observed yields, rather than observed yields adjusted for 

term premia. Our empirical model allows for nonzero premia. 

We then combine the time-series model for the short rate with the equations giving the 

cross section of yields at different maturities in a state-space model and estimate the underlying 

                                                 
1 For a theoretically consistent approach tying together time series and cross-section in affine models, see de Jong 
(2000). 
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process. Because modeling the cross sections adds very few parameters to the time-series model, 

a great deal of data is available to identify the parameters. This framework provides a good 

description of the dynamics of the short rate and also a satisfactory cross-sectional fit. While the 

resulting estimates allow for a level/slope/curvature factor interpretation, the decomposition into 

trend and cycle may be easier to relate to other macro decompositions, notably GDP. We 

compare our estimates of trend and cycle to appropriate level and slope estimates from 

unconstrained cross-section fits and find a close correspondence. Thus, once the time-constant 

parameters are estimated, our model can be used to draw current or future yield curves based 

only on knowledge of the short-rate. 

We also find an explanation for the fact that the “curvature factor” has been notoriously 

difficult to identify. In our three factor model; the factors are trend, cycle, and lagged cycle. The 

third factor is identified only if the lagged cycle factor matters and the lagged cycle matters only 

if the cycle follows an AR(2). The time series on observed yield data isn’t powerful enough to 

clearly identify an AR(2) component. In contrast, our combined time-series/cross-section 

approach does give good identification. 

Since our model takes uncertainty seriously and allows for term premia, we can offer 

some insight on the relation between risk and premia. While we make no attempt to build an 

optimizing model relating risk and return, the empirical relation we find between estimated 

premia and modeled uncertainty is interesting, as uncertainty is highly correlated with the level 

of the premium. We then take this further by allowing for Markov-switching in variances, while 

retaining the linear unobserved component model for levels. We find evidence that there is 

Markov-switching and that accounting for it improves the performance of the model. In 

particular, we find higher premia in higher variance states. 

II. A Serious, Stochastic Nelson-Siegel Model 

A. The Original Nelson-Siegel Model 

The original setup Nelson and Siegel article,. the process for the short rate r (with 

maturity of one period) is assumed to be a non-homogeneous second-order differential equation,  

 ar br cr d+ + =  (1) 

Following the development in Nelson and Siegel and Diebold and Li, and assuming that 

the roots of (1) are real and equal, the forward rate path, ( )fr m , as a function of maturity m , is  
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where initial conditions are ( )0r e=  and ( )0r f= . 

Integrating the forward curve from 0 to m and divide it by m , we obtain the Nelson-

Siegel yield curve ( )mr . 
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The three coefficients in (4) are usually interpreted as the level, slope, and curvature 

factors. 

In practice, equation (3) is estimated by OLS period by period, fixing the value of 1/κ  at 

0.0609. Any restrictions which might follow from equation (4) are ignored. The period t  

regression gives estimates of tL , tS , and tC  without imposing any time-series restriction, so in 

total 3T ×  structural parameters are estimated. These estimates are then collected as time series 

which summarize the dynamics of the term structure over time. The flexible functional form of 

(3) allows excellent fit of the term structure in cross-sections—the 2R  is usually over 0.99. 

Recent cross-section estimates of Nelson-Siegel curves are given in Gürkaynak, Sack and Wright 

(2006) Cross-section fits of no-arbitrage models, as surveyed in Duffee (2002) also produce 

excellent fits. 

B. A Stochastic Model 

Introducing an explicit stochastic specification in the form of a discrete time, unobserved 

components model, we write the short rate tr  as, 

 t t tr cτ= +  (5) 

 1t t tuτ τ −= + , ( )2~ 0,t uu N σ  (6) 

 ( ) t tL c vφ = , ( )2~ 0,t vv N σ , ( ) 2
1 21L L Lφ φ φ= − −  (7) 

 ( )cov ,t t k uvu v σ+ = for 0k = , 0uvσ = otherwise. (8) 
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In words, the short rate tr is decomposed into a stochastic trend (i.e. a random walk) tτ  

and an AR(2) cycle tc , and the shocks to these two unobserved components are 

contemporaneously correlated. Note that (5)-(8) imply an ARIMA(2,1,2) univariate 

representation for the short rate in which the AR terms are 1φ  and 2φ  and the MA terms depend 

on both 1φ  and 2φ  and the covariance matrix of the shocks to trend and cycle. Forward rates 

equal the current trend plus the forward forecast of the cycle. 

Under the premium-augmented expectation hypothesis with m-term premium ( )mω , we 

can write out the first few yields as 

 (1)
t t t tr r cτ= = + ,  

 ( ) ( ) ( )2 2(2) 1 2
1 1

1 1
2 2 2t t t t t t tr r E r c cφ φω ω τ+ −

+
= + + = + + + , (9) 

 ( ) ( ) ( )
2

3 3(3) 1 1 2 2 1 2
1 2 1

1 1
3 3 3t t t t t t t t tr r E r E r c cφ φ φ φ φφω ω τ+ + −

+ + + +
= + + + = + + + ,  

and so on. Note In general we can write: 

 ( ) ( ) ( )( )
1 2 1 2 1, , , ,mm

t t t tr f m c g m cω τ φ φ φ φ −= + + +  (10) 

where the functions ( )f i and ( )g i  are the factor loadings. As we show in Appendix A, the factor 

loadings can be written as functions of the inverse roots of the AR polynomial (when the roots 

are real), as shown in equation (11). As a convenience, we provide the limiting case of equal 

roots in (12). 
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Equation (10) offers a three factor model. The first factor is the trend, which is the same 

as the level factor identified in the literature. The second factor is the cycle, which is the slope 

using the definition ( ) ( ) ( )1
t tr r ω∞ ∞− − . Note that, unlike in the usual empirical implementation, we 
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separate term premia out from the slope definition. The third factor is the lagged cycle. The 

lagged cycle does not correspond to a curvature factor. 

We are going to argue that, for recent American data, only level and slope factors are 

well-identified. The form of the time series process together with equations (11) and (12) 

determines the factor loadings. If the short rate process were a pure random walk, then only the 

level factor would exist and the yield curve (aside from premia) would be a horizontal line. 

Slightly more generally, suppose that the short rate process consisted of a random walk plus 

white noise; in our formulation suppose that 1 2 0φ φ= = . By inspection of equation (12) with 

0η = , we see that the factor loading on the lagged cycle equals zero and the factor loading on 

the slope equals 1 m . The yield curve would at all times be a hyperbola with a half-life of two 

months. Neither horizontal line nor short-lived hyperbola seems sufficiently flexible to describe 

historically observed yield curves. 

If the cyclical component of the short rate follows an AR(1) then the lagged cycle drops 

out of equation (11) as one of the roots equals zero. We have a two factor model with slope 

loading 
( )

1

1

1
1

m

m
φ
φ

−
−

. This model permits quite flexible yield curves, but not ones with hump 

shapes. (Negative 1φ  permits an oscillating slope load, which is not likely to be of much 

relevance for observed yield curves.) In our data, a hump of more than five basis points occurs 

less than five percent of the time. Finally, a short rate process where 2 0φ ≠  allows for hump 

shapes as well. 

Our empirical estimates combine time-series and cross-section information in a way that 

provides good identification of both 1φ  and 2φ , including estimates that 2φ  is small—so that if 

there is a third factor its loading has been quite small in recent U.S. history. Additionally, our 

evidence suggests that the equal root model of equation (12), which is similar to the models 

commonly found in the literature, would be better eschewed as empirically one (inverse) root is 

large while the other is close to zero. As a benchmark, ARIMA representations time series 

results for the short rate are given in Table 1 (asymptotic standard errors in parentheses). 

As is evident from Table 1, the short rate looks a great deal like a random walk. While 

the t-statistic on 1φ  in the ARIMA(2,1,2) model is significant at the five percent level, the 

confidence interval tells us little other than that 1φ  is probably positive. The confidence interval 
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for 2φ  includes pretty much all interesting values. The p-value for the likelihood-ratio test of 

ARIMA(2,1,2) versus a random walk is 0.11. In summary, the time series evidence suggests 

some role for the slope factor, although one that is difficult to pin down, and tells us essentially 

nothing about loadings on a third factor. 

We turn now to a state space representation which incorporates both times series and 

cross section information. Let the M-vector of interest rates at time t be ( ) ( ) ( ) '1 3 120  ... t t t tr r r r⎡ ⎤= ⎣ ⎦ . 

We augment the time series model for the short rate given in equations (5)-(8) with the yield 

curves in equation (13). 

 ( ) ( )1 2 1 2 1, ,t t t t tr c cτ φ φ φ φ −= Ω+ + + +I F G ε , ( )~ ,t N Σε 0  (13) 

where the vector Ω contains the constant term premia for yields with maturity of more than 1 

month, and the vector tε contains the errors for all yields except the 1-month yield (i.e. the 1-

month yield is restricted as being estimated perfectly). We follow the universal convention in the 

term structure literature of treating these as measurement errors, although the reader skeptical of 

there being significant difficulty in measuring returns to U.S. Treasury securities might think ε  

more a measure of how well our model fits the data. We assume the covariance-variance matrix 

for the measurement errors, Σ , to be diagonal, except for the 1-month yield whose measurement 

error is always zero. The measurement errors tε  are assumed to be uncorrelated with the two state 

variable shocks tu and tv . The loadings ( )f i and ( )g i  are functions of the two AR(2) coefficients. 

Our state space model imposes stringent constraint on the structural parameters. There 

are M T×  observations on yields. The usual repeated cross section approach explains the 

observations with 3 1T × +  parameters, three factors each period and κ . Our model requires 4 

ARMA parameters plus M  term premia. (A second model, below, adds another 2M +  

parameters.) Note that the 3-latent factor model of Diebold, Rudebusch and Aruoba (2006) 

effectively uses only 3 means and 23  VAR(1) parameters. 
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III. Empirical Estimates 

A. Data 

Our observations come from the same data set used in Diebold and Li2 of monthly zero-

coupon CRSP Treasury data from January 1970 to December 2000 for maturities 1, 3, 6, 9, 12, 

15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months. We use unsmoothed Fama-Bliss3 

yields, and bonds with option features and special liquidity problem are eliminated. Figure 1 is a 

picture of the short (1-month) rate. Table 2 provides the summary statistics. The average 

premium of the ten-year rate over the 1-month is 160 or 190 basis points, depending on whether 

one uses mean or median. Standard deviations of yields decline modestly with maturity. 

According to our model, long maturity yields load almost entirely on a random walk 

trend while short maturity yields include a stationary component as well. Cochrane’s (1988) 

variance ratio can tell us whether this is a reasonable characterization of the data. The variance 

ratio for horizon k ,
1

k
k

VR V= , where ( ) ( )( )var m m
k t k tV r r k+= − , tells us the fraction of the monthly 

variation in the yield that is due to permanent shocks. As k  increases, the ratio kR  should stay at 

one if the yield follows a pure random walk, and the ratio kR  should decline toward zero if the 

yield tr is trend stationary. In Table 3 we see the variance ratio kR decreases with horizon for 

shorter yields, but that for the longer yields stays around one. This is consistent with our model. 

B. Estimation of the baseline model 

We estimate the model (5)-(8) and (13) by Gibbs sampling organized in two steps. Given the 

parameters { }2 2
1 2, , , , , ,u v uvσ σ σ φ φΣ Ω  and the data we run a Kalman filter to generate cycle and 

trend. Given trend and cycle, we use Gibbs sampling to draw new values of the parameters. 

Details appear in Appendix B. 

For the sampler, we choose diffuse (improper) priors for all the variance elements and 

normal, but effectively diffuse, priors for the premia with means set at the sample average 

difference ( ) ( )1mr r−  and standard deviations set at 10. Because in UC models there is always an 

identification issue in ensuring that the estimated cycle is stationary, we use persistent but 

                                                 
2 The dataset is an extract of data supplied by Robert Bliss (see Bliss (1997). 
 
3 See Fama and Bliss (1987) and Bliss (1997) for a discussion of the method. 
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stationary priors for the AR coefficients, 
1.1 1 0

N ,
.2 0 1

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎝ ⎠

. Because draws of the AR 

coefficients with near unit roots tend either be followed by nonstationary draws or long 

sequences with near unit roots, we use rejection sampling and discard draws where 

1 2 0.95φ φ+ ≥ . We run the Gibbs sampler 10,000 times, discarding the first 2,000 draws. 

Posterior means, standard deviations, and 95 percent confidence bands appear in Tables 

4a-c. The cycle variance is estimated to be something over twice the size of the trend variance, 

and the two shocks are mildly negatively correlated with an estimated correlation coefficient of -

0.31. The mean estimate of 1φ  happens to be the same as the time-series-only estimate, 0.86, but 

it is now precisely identified with 95 percent band ( )0.768,0.952  as compared ( )0.13,1.59 . 

Where 2φ  was essentially unidentified in the time series estimate, the Gibbs estimate is probably 

positive but certainly small with 95 percent band ( )0.050,0.134− . Estimates of term premia rise 

with maturity, are essentially identical—within three basis points of—mean differences in yields, 

and are tightly estimated with standard deviations between two and eight basis points. 

The model fits well, although as would be expected not so well as unconstrained cross-

section fits. The variances of the “measurement” errors show that the model has some difficulty 

fitting yields of shorter maturities in particular. For example, the standard deviation of the 

measurement error for the 9-month yield, the largest reported, is 44 basis points, corresponding 

to an 2R  of only 0.973. 

Figures 2a and 2b show mean estimates of trend and cycle from the Gibbs-sampler 

together with trend and slope factors estimated from unconstrained cross-section regressions. 

The estimates are similar to one another except in the early 1990s, when we find lower trend and 

higher cycle than appears in cross-section estimates. To compare with cross-section estimates, 

we add in the estimated 120-month term premium. 

Our model performs well, although not perfectly, in fitting the yields across time and 

maturity. Figure 3 shows slope(solid line) and lagged cycle (dotted line) loadings at mean Gibbs 

estimates. The slope loading is relatively large at least at maturities of a few years. The lagged 

cycle loading is small. Since we estimate the cycle variance to be considerably higher than the 

slope variance, the estimated slope loading is large enough that the slope factor plays an 

important role in setting the yield curve. 
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The relation between the premia and risk calculations from our model is intriguing. The 

surprise in the yield ( )k
tr  is 

( ) ( )( ) ( ) ( ) ( )( ) ( )( )
( )

1 1 1 1 1 1 1E E E E Em m m m
t t t t t t t t t t t t t

t t

r r f m c c g m c c

u f m

ω ω τ τ

ν

− − − − − − −− = − + − + − + −

= +
 (14) 

The conditional variance is a function of the model parameters, 

( )( ) ( ) ( )2 2 2var 2m
u ur f m f mν νσ σ σ= + + . Since the price of a bond is ( ) ( )( )1 1

mm mp r= + , the 

usual Taylor series approximation gives ( )( ) ( )( )2 2var varm mp m p r≈ . We compute this variance 

using the estimated parameters and mean prices4. Figure 4 shows the relation between estimated 

term premia and uncertainty. Visually quite strong, the correlation across maturities between the 

premium and standard deviation is 0.97. Regressing premia on the standard deviation, despite the 

fact the relation is not quite linear, shows that a 100 basis point increase in standard deviation 

gives a 5 basis point increase in the premium. 

C. Estimation of a regime-switching model 

Inspection of Figure 1 suggests that volatility of the short rate changes over time. 

Evidence in the last section suggests a link between uncertainty and premia, and the literature 

certainly suggests that premia are time-varying. We build changing volatility into the model 

without interfering with the link between the time-series process and cross sections in the model 

by allowing for regime-switching in the variance of trend and cycle shocks and in the term 

premia, while holding the AR parameters in common. This means that factors shift between 

regimes but factor loadings do not. Letting 1S =  denote the high-variance regime, the model 

becomes 

 ( ) ( ) ( )0 1 1 2 1 2 11 , ,t t t t t t tS S c cω ω τ φ φ φ φ −= − + + + + +r I F G ε ,  ( )~ 0,t Nε Σ  (15) 

 1t t tuτ τ −= + , ( )( )2 2
0 1~ 0, 1t u t u tu N S Sσ σ− +   (16) 

 1 1 2 2t t t tc c c vφ φ− −= + + , ( )( )2 2
0 1~ 0, 1t v t v tv N S Sσ σ− +  (17) 

 ( ) ( )0 1cov , 1t t uv t uv tu v S Sσ σ= − +  (18) 

                                                 
4 Using mean prices in the approximation adds an element of endogeneity, but note that a high premium in the yield 
gives a lower mean price and that we find a positive relationship between computed uncertainty and premium. 
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where tS evolves as a two-state, first-order Markov-switching process with transitional 

probabilities 

 [ ]1Pr 0 | 0t tS S q−= = = and [ ]1Pr 1| 1t tS S p−= = =  (19) 

We use the same priors as above, with the addition of normal mean 0.9 and standard 

deviation 1.0 priors for p  and q . Table 4 shows the posterior distributions. Both states are fairly 

persistent, with the expected duration of the low variance state (7.6 months) being greater than 

that of the high variance state (4.6 months). Figure 4 plots the posterior probability of being in 

the high-variance regime. Before the 1980s the yield curves switches frequently between the two 

regimes, and during the Volcker disinflation the yield curve is mainly in the high-variance state. 

From the mid-1980s onward the yield curve is mainly in the low-variance regime, with some 

short and infrequent spells of high variance. 

In contrast to the earlier results, 2φ , and a third factor, are now well identified. The 

loading on the third factor remains small. Both slope(dashed line) and lagged cycle (dash-dotted 

line) loadings are modestly higher than in the non-switching model. The cycle variance is half 

again as large as the trend variance in the low variance state but triple the trend variance in the 

high variance state. 

Estimated term premia show large differences between high and low variance regimes at 

the short end of the yield curve. In contrast, premium for longer maturities are neither 

economically nor statistically important much different across regimes. (See Figure 6.) Note that 

the high-state trend variance is double that in the low state, while for the cycle the high-state 

variance is quadruple that in the low state. The estimated premia are consistent with our model 

specification. Since the shorter yields load more on the cycle, the shorter yields have a larger 

difference in variance across regimes. 

Trend and cycle estimates allowing for switching are shown in Figures 2a and 2b, using 

the regime-probability weighted estimates of the 120-month premium to make them comparable 

to cross-section estimates. The new estimates of trend and cycle differ little from the non-

switching estimates, which is the expected outcome given that the short-rate parameters do not 

switch and that we find little difference in the long-term premium. 

Allowing for regime switching improves the fit of the model: the measurement errors 

variances are significantly smaller than those in the baseline model. The shorter yields, which are 
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fitted rather badly in the baseline model, now have measurement errors with standard deviations 

of less than 30 basis points. Among the seventeen yields, the nine-month yield has the worst fit, 

and the standard deviation for its measurement error is 28 basis points. Figure 5 compares the 

trend and cycle of model (adjusted by the term premium) with the level and slope factors 

estimated in cross-sections. 

 

IV. Concluding Remarks 

Taking a trend/cycle unobserved components time series model of the short rate and 

projecting the short rate into the future to give an expectations hypothesis with constant term 

premium model of the yield curve works extremely well in the sense of giving consistent time 

series/cross section fits of yields that fit the data well. We identify two clear factors, trend and 

cycle, and show that the third factor allowed by the model doesn’t seem to be very important. 

Model-based measures of uncertainty do an intriguingly good job of predicting estimated term 

premia. Allowing for regime-switching in shock variances improves model performance yet 

more, giving more definite identification of an unimportant third factor. Regime-switching also 

introduces time varying term premia into the model in a very natural way. Finally, while we have 

not pursued it in this paper, our model may prove useful in integrating the term structure into 

models of broader macroeconomic behavior. 
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Table 1 - ARIMA Representations of Unobserved Component Models of the 1-Month Rate 

 random walk trend plus white 
noise cycle 

trend plus AR(1) 
cycle 

trend plus AR(2) 
cycle 

1φ    -0.441 
(0.486) 

0.860 
(0.373) 

2φ     -0.217 
(0.314) 

1θ    0.072 
(0.052) 

0.515 
(0.464) 

-0.807 
(0.380) 

2θ     0.087 
(0.329) 

log-likelihood -378.41 -377.58 -377.14 -374.63 
2R  

 
 

0 0.004 0.007 0.020 

 

 

Table 2 – Descriptive Statistics for the Yield Data  

 
Maturity Mean Median Maximum Minimum S.D.

1 6.44 5.69 16.16 2.69 2.58
3 6.75 5.93 16.02 2.73 2.66
6 6.98 6.24 16.48 2.89 2.66
9 7.1 6.4 16.39 2.98 2.64
12 7.2 6.61 15.82 3.11 2.57
15 7.31 6.75 16.04 3.29 2.52
18 7.38 6.78 16.23 3.48 2.5
21 7.44 6.81 16.18 3.64 2.49
24 7.46 6.81 15.65 3.78 2.44
30 7.55 6.93 15.4 4.04 2.36
36 7.63 7.06 15.77 4.2 2.34
48 7.77 7.22 15.82 4.31 2.28
60 7.84 7.37 15.01 4.35 2.25
72 7.96 7.42 14.98 4.38 2.22
84 7.99 7.45 14.98 4.35 2.18
96 8.05 7.51 14.94 4.43 2.17

108 8.08 7.54 15.02 4.43 2.18
120 8.05 7.59 14.93 4.44 2.14  
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Table 3 – Cochrane Variance Ratio for Six Yields  

Horizon in months 1-month 3-month 12-month 24-month 48-month 120-month
2 1.058 1.120 1.148 1.173 1.079 1.100
3 1.028 1.110 1.129 1.161 1.045 1.110
4 0.981 1.082 1.076 1.105 1.015 1.093
5 0.929 1.037 0.999 1.040 0.966 1.087
6 0.890 1.009 0.971 1.009 0.952 1.092
7 0.833 0.951 0.933 0.982 0.949 1.104
8 0.768 0.877 0.864 0.929 0.918 1.104
9 0.751 0.848 0.830 0.902 0.906 1.100
10 0.746 0.846 0.811 0.887 0.900 1.104
11 0.752 0.863 0.803 0.875 0.897 1.123
12 0.768 0.888 0.821 0.893 0.918 1.150
24 0.753 0.915 0.822 0.853 0.856 1.007
28 0.712 0.864 0.786 0.807 0.816 0.948

120 0.359 0.453 0.486 0.601 0.714 0.965

Maturity

 
?
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Table 4a – Gibbs Sampling Results: Covariance Matrix for the State Variables, the AR(2) Parameters and the Transitional 

Probabilities 

   Posterior for Baseline Model  Posterior for Model with Switching 

 
Mean  SD  95% bands  Mean  SD  95% bands 

Trend Variance  0.196  0.019  0.168  0.232    

Cycle Variance  0.466  0.061  0.384  0.584    

Covariance  ‐0.104  0.037  ‐0.175  ‐0.055    

Low Trend Variance        0.156  0.019  0.127  0.191 

Low Cycle Variance        0.240  0.033  0.191  0.299 

 Low Covariance        ‐0.098  0.024  ‐0.140  ‐0.061 

High Trend Variance        0.281  0.068  0.186  0.403 

High Cycle Variance        1.034  0.253  0.679  1.499 

High Covariance        ‐0.198  0.122  ‐0.420  ‐0.023 

phi 1  0.861  0.054  0.771  0.950  0.823  0.039  0.753  0.879 

phi 2  0.038  0.054  ‐0.052  0.129  0.109  0.035  0.062  0.177 

q (Low Var Prob)        0.869  0.023  0.829  0.905 

p (High Var Prob)        0.796  0.033  0.740  0.848 
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Table 4b – Gibbs Sampling Results: Variance of the Measurement Errors 

  Posterior for Baseline Model Posterior for Model with Switching 
Maturity Mean SD 95% bands R-sq Mean SD 95% bands R-sq 

3 0.076 0.007 0.065 0.089 0.989 0.053 0.004 0.046 0.060 0.993 
6 0.154 0.017 0.128 0.185 0.978 0.074 0.007 0.063 0.086 0.990 
9 0.191 0.024 0.157 0.235 0.973 0.081 0.008 0.069 0.095 0.988 
12 0.180 0.024 0.148 0.224 0.973 0.073 0.007 0.063 0.085 0.989 
15 0.149 0.017 0.126 0.182 0.976 0.064 0.005 0.056 0.073 0.990 
18 0.137 0.016 0.115 0.166 0.978 0.061 0.005 0.053 0.070 0.990 
21 0.120 0.015 0.100 0.148 0.981 0.049 0.004 0.043 0.057 0.992 
24 0.100 0.013 0.082 0.125 0.983 0.040 0.004 0.034 0.046 0.993 
30 0.060 0.007 0.051 0.072 0.989 0.029 0.003 0.025 0.035 0.995 
36 0.037 0.004 0.032 0.045 0.993 0.018 0.002 0.015 0.021 0.997 
48 0.013 0.001 0.011 0.015 0.998 0.009 0.001 0.008 0.011 0.998 
60 0.003 0.001 0.002 0.004 0.999 0.005 0.001 0.004 0.006 0.999 
72 0.020 0.002 0.016 0.024 0.996 0.015 0.002 0.013 0.018 0.997 
84 0.035 0.004 0.030 0.041 0.993 0.029 0.003 0.025 0.034 0.994 
96 0.056 0.006 0.046 0.067 0.988 0.038 0.004 0.032 0.045 0.992 
108 0.071 0.008 0.058 0.085 0.985 0.050 0.005 0.042 0.058 0.990 
120 0.096 0.009 0.082 0.111 0.979 0.079 0.007 0.068 0.092 0.983 
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Table 4c – Gibbs Sampling Results: Term Premia 

Posterior for Baseline Model Posterior for Model with Switching 
  Low Variance Regime High Variance Regime 

Maturity Mean SD 95% bands Mean SD 95% bands Mean SD 95% bands 
3 0.196 0.020 0.164 0.230 0.307 0.016 0.281 0.333 0.490 0.024 0.453 0.531
6 0.317 0.034 0.265 0.377 0.532 0.026 0.489 0.575 0.889 0.038 0.830 0.955
9 0.396 0.048 0.329 0.484 0.652 0.033 0.597 0.706 1.079 0.052 1.005 1.172
12 0.485 0.060 0.402 0.596 0.745 0.038 0.682 0.807 1.189 0.064 1.100 1.301
15 0.600 0.072 0.503 0.734 0.849 0.042 0.779 0.916 1.281 0.073 1.182 1.411
18 0.679 0.082 0.570 0.831 0.920 0.045 0.846 0.992 1.345 0.084 1.234 1.489
21 0.745 0.091 0.626 0.913 0.982 0.048 0.903 1.060 1.403 0.092 1.284 1.561
24 0.775 0.099 0.648 0.960 0.997 0.051 0.913 1.078 1.401 0.101 1.272 1.573
30 0.905 0.113 0.761 1.117 1.089 0.054 0.999 1.173 1.438 0.116 1.293 1.633
36 1.001 0.125 0.841 1.233 1.166 0.058 1.071 1.258 1.492 0.126 1.335 1.703
48 1.189 0.143 1.006 1.456 1.302 0.062 1.200 1.399 1.553 0.145 1.376 1.793
60 1.288 0.155 1.089 1.577 1.373 0.066 1.265 1.473 1.582 0.159 1.391 1.843
72 1.446 0.165 1.233 1.752 1.489 0.069 1.377 1.595 1.635 0.168 1.431 1.916
84 1.484 0.172 1.262 1.801 1.520 0.071 1.405 1.628 1.657 0.175 1.445 1.951
96 1.578 0.176 1.351 1.909 1.578 0.072 1.460 1.692 1.661 0.183 1.439 1.968

108 1.606 0.182 1.368 1.943 1.611 0.074 1.489 1.726 1.701 0.185 1.474 2.014
120 1.582 0.186 1.339 1.928 1.579 0.075 1.456 1.698 1.659 0.189 1.426 1.983
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Figure 1 – One Month Treasury Bill Yields 
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Figure 2a – Estimated Trend Versus Estimated Cross-Section Level Factors 
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Figure 2b – Estimated Cycle Versus Estimated Cross-Section Slope Factors 
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Figure 3 – Slope and Lagged Cycle Loadings 
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Figure 4- Term Premia versus Conditional Standard Deviation of Prices. 
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Figure 5 – Probability of High-Variance Regime 
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Figure 6 – Estimated Term Premia 
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The upper graph shows the estimated premium, plotted against the time to maturity, with 

the 95% bands. The lower graph shows the same estimates for the regime-switching 

model, separately for the two regimes. 
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Appendix A – Solving the Discrete-Time Yield Curve Not for Publication 

 Consider the cycle part tc as a second-order difference equation 1 1 2 2t t tc c cφ φ− −= +  

(the stochastic part is left out since we are taking expectation).  We aim at solving for 

t kc + as a function of only tc and 1tc − (our factors).  To make the timing convention less 

confusing, we rename time t as 0, and define 0c and 1c− to be the initial conditions.  Our 

AR(2) setup does not exclude unequal roots in the characteristic equation, but to be 

consistent with the NS setup, we assume equal real roots 1 / 2η φ= for now (which is 

equal to the restriction 2 1 / 4φ φ= − ).  The general solution is 1 2
k k

kc P P kη η= + .   

 To determine the constants, use the initial conditions 0 1c P=  and 

1 1
1 0 2c c Pη η− −
− = − , then we have ( )0 0 1

k k
kc c c c kη η η−= + − .  “Shifting” the time by 

t (which does not affect the result) we have ( )1
k k

t k t t tc c c kη η η+ −= + − .  Summing up it 

becomes to ( )
1 1 1

1
0 0 0

1 1k k k
i i

t i t t t
i i i

c c c c i
k k

η η η
− − −

+ −
= = =

⎡ ⎤= + −⎢ ⎥⎣ ⎦
∑ ∑ ∑ .  By geometric sum we 

have
1

0

1
1

kk
i

i

ηη
η

−

=

−
=

−∑ .  The other sum
1

0

k
i

i
iη

−

=
∑ is solved as follows: 

( )
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( ) ( )
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=
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=
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=
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∑

∑
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η
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  So finally we have result [9]: 

( )
( )

( )
( )

1 1
( )

12 2

1 11 1 1
1 1 1

m m m mm
m

t t t t

m m m m
r c c

m m
η η η η η ηητ η

η η η

+ +

−

⎡ ⎤ ⎡ ⎤− + − − + −−
= + + −⎢ ⎥ ⎢ ⎥

− − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 We derive the case of unequal real roots [9’] in the same manner, using the 

general solution 1 1 2 2
k k

kc P Pη η= + with the roots 1η and 2η . 
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Appendix B - Details of the Gibbs Sampling Procedure – Not for Publication 

 This appendix describes the Gibbs sampling procedure.  For further discussion 

please consult Kim and Nelson (1999), from which this appendix borrows.  

 First write our model in state-space form: 

( ) ( ) ( )0 1 1 2 1 2 11 , ,t t t t t t tS S c cω ω τ φ φ φ φ −= − + + + + +r I F G ε ,  ( )~ 0,t Nε Σ  

1t t tuτ τ −= + , ( )( )2 2
0 1~ 0, 1t u t u tu N S Sσ σ− +   

1 1 2 2t t t tc c c vφ φ− −= + + , ( )( )2 2
0 1~ 0, 1t v t v tv N S Sσ σ− +  

( ) ( )0 1cov , 1t t uv t uv tu v S Sσ σ= − +   

 Rewrite the model in matrix notation by defining [ ]1, , 't t t tc cτ −=β : 

tt S t tω= + +r Tβ ε  

1t t t−= +β Hβ n , [ ]0 't t tu v=n ( )( )0 1~ , 1t t tN S S− +n 0 Q Q , 

where 

2
0 0

2
0 0 0

0
0

0 0 0

u uv

uv v

σ σ
σ σ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Q  and 

2
1 1

2
1 1 1

0
0

0 0 0

u uv

uv v

σ σ
σ σ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Q  

 

Step 1: Given the data [ ]1 2  ... 'T T=r r r r  and the starting values for the hyper-parameters 

{ }2 2 2 2
0 1 0 1 0 1 0 1 1 2, , , , , , , , , , , ,u u v v uv uv p qω ω σ σ σ σ σ σ φ φΣ  and the state [ ]1 2  ... 'T TS S S S=  (which is 

generated from the starting values for the transitional probabilities{ },p q ), we first run 

the Kalman filter: 

Prediction 

1. | 1 1| 1t t t t− − −=β Hβ  

2. | 1 1| 1 '
tt t t t S− − −= +P HP H Q  

Updating 

3. ( ) ( )1

| | 1 | 1 | 1 | 1' '
tt t t t t t t t t t t S

−

− − − −= + + − −β β P T TP T Σ r Tβ θ  

4. ( ) 1

| | 1 | 1 | 1 | 1' 't t t t t t t t t t

−

− − − −= − +P P P T TP T Σ TP  
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 At the end we obtain ( )| |t t t tE=β β r and ( )| |t t t tCov=P β r for 1,2,...,t T= .  Using 

|T Tβ and |T TP , which contain information from the whole sample Tr , we generate the last 

set of state variables based on the conditional distribution: 

( )| || ~ ,T T T T T TNβ r β P ,  

and for the rest of the state variables, we use the conditional distribution: 

( )* *
1 1

*
1 | , | ,

| , ~ ,
t t

t t t t t t t
N

+ +
+ β β

β r β β P  for 1, 2,...,1t T T= − −  

 To obtain the two arguments in the conditional distribution, we first define 
* * *

1 1t t t+ += +β H β n , where *
1t+β is the first two elements of 1t+β  *T is the first two rows of 

T and *
tn is the first two elements of tn .  Likewise we have *

tSQ as the first 2 by 2 block 

of 
tSQ .  The two arguments in the conditional distribution are given as:  

( ) ( ) ( )* 11

1* * * * * * *
1 | | | 1 || ,

| , ' '
tt

t t t t t t t t t S t t tt t
E

++

−

+ += = + + −
β

β β r β β P H H P H Q β H β  

( ) ( )* 11

1* * * * * *
1 | | | || ,

| , ' '
tt

t t t t t t t t t S t tt t
Cov

++

−

+= = − +
β

P β r β P P H H P H Q H P  

 The above procedures generate the state variables [ ]1 2, ,..., 'T T=β β β β , though we 

only keep the first two elements of each for future inference, i.e.  [ ]1 2  ... 'T Tτ τ τ τ=  

and [ ]1 2  ... 'T Tc c c c= . 

 

Step 2: Given the hyper-parameters { }2 2 2 2
0 1 0 1 0 1 0 1 1 2, , , , , , , , , , , ,u u v v uv uv p qω ω σ σ σ σ σ σ φ φΣ , the 

state variables [ ]1 2, ,..., 'T T=β β β β from Step 1, and the data Tr , we first run the Hamilton 

filter: 

1. ( ) ( ) ( )1 1 1 1 1Pr , | Pr | Pr |t t t t t t tS S S S Sψ ψ− − − − −=  

2. ( ) ( ) ( )
1

1 1 1 1 1| | , , Pr , |
t t

t t t t t t t t t
S S

f f S S S Sψ ψ ψ
−

− − − − −= ∑∑r r  

3. ( ) ( ) ( )
( )1

1 1 1 1

1

| , , Pr , |
Pr |

|
t

t t t t t t t
t t

S t t

f S S S S
S

f
ψ ψ

ψ
ψ

−

− − − −

−

=∑
r

r
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where ( )f i is the normal density function, and 1tψ − is the information available at 1t − .  

The initial probability ( )0 0Pr |S ψ  is steady state probability determined by{ },p q .  After 

the Hamilton filter, we obtain ( )Pr |T TS ψ  from which we generate TS .  For the state at 

time 1, 2,...,1t T T= − − , we use the iteration: 

( ) ( ) ( )

( ) ( )
1

1 1

1
0

Pr | 1 Pr 1|
Pr 1| ,

Pr | Pr |

t t t t
t t t

t t t t
j

S S S
S S

S S j S j

+
+

+
=

= =
= =

= =∑
r

r
r

 

 With each iteration we obtain ( )1Pr 1| ,t t tS S += r , and draw tS . 

 

Step 3: Now based on the state variables [ ]1 2, ,..., 'T T=β β β β from Step 1, the state  

[ ]1 2  ... 'T TS S S S=  from Step 2, and the data [ ]1 2  ... 'T T=r r r r , we generate the rest of the 

parameters { }2 2 2 2
0 1 0 1 0 1 0 1 1 2, , , , , , , , , , , ,u u v v uv uv p qω ω σ σ σ σ σ σ φ φΣ in this final step. 

 

 3.1: Based on the state [ ]1 2  ... 'T TS S S S= , we generate the transition probabilities 

by 

( )11 11 10 10| ~ ,Tp S beta u n u n+ +  

( )00 00 01 01| ~ ,Tq S beta u n u n+ +  

where ( )11 11 10/u u u+ is our prior for p and ( )00 00 01/u u u+ is our prior for q , and ijn in the 

number of transitions from state i to j calculated from [ ]1 2  ... 'T TS S S S= .  

 Next we generate the premia { }0 1,ω ω .  Rewriting the measurement equation as: 

( )0 1 0t t t tSω ω ω= + − + +r Tβ ε , and for each yield divide both sides with the standard 

deviation of the measurement error to obtain 

( )1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2
0 1 0t t t t tSω ω ω ω− = + − + = +Σ r Σ Tβ Σ Σ Σ ε X Σ ε  with 0

1 0

ω
ω

ω ω
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 .  

Given the prior for the premia ( )0 0| ~ ,Nω Σ b B  , we obtain the posterior distribution: 
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( )1 1| , , ,... ~ ,T TS Nω Σ β b B with ( ) ( )( )11 1 1/ 2 1/ 2
1 0 0 0' ' t t

−− −= + + −b B X X B b X Σ r Σ Tβ   and 

( ) 11
1 0 '

−−= +B B X X . 

 

 3.2: Now we generate the two AR(2) coefficients by rewriting the cycle as: 

1 1 2 2

t t t t

t t t t

vS vS vS vS

c c c vφ φ
σ σ σ σ

− −= + + , or to put it in matrix form = +Y Xφ v , where [ ]1 2 'φ φ=φ . 

Given a prior distribution for [ ]1 2 'φ φ=φ  as ( )2
0 0| ~ ,

tvS Nσφ b B , the posterior 

distribution is obtained as: ( )2
1 1| , , ~ ,

tvS T TS c Nσφ b B  where 

( ) ( )11 1
1 0 0 0' 'b

−− −= + +B X X B b X Y  and ( ) 11
1 0 '

−−= +B B X X .  We reject draws with non-

stationary and unstable roots, and also when the two coefficients sum up to be more than 

0.95.    

 

 3.3: For the errors in the measurement equation, we begin with the prior 

distribution for the variance for each of the yield i : ( )2 ~ / 2, / 2i i iIG v fεσ , which is the 

inverse-Gamma distribution.  The posterior distribution is defined as follows: 

( ) ( ) ( )( )( )2
1 2| , , , , ~ 2 / 2, ' / 2

t t ti T T S i i T S t T S tIG v T fεσ φ φ + − + − − − −r β θ r θ Tβ r θ Tβ  . 

 Finally we generate the errors for the state equations.  Rewriting the first two of 

the state variables in matrix form as * * * *
1t t t−= +β H β n , ( )( )* *1/ 2 *1/ 2

0 0~ , 't tN S+n 0 Q I Γ Q , 

( ) ( ) ( )1/ 2 1/ 2 1/ 2* * * *
1t t t t t tS S S−+ = + + +I Γ β I Γ H β I Γ n  

 Given the prior distribution ( )*
0 1 2 0 0| , , ~ / 2, / 2W v fφ φQ Γ , which is the Wishart 

distribution to allow for a covariance term.  The posterior distribution is 

( )
( ) ( )( )

( ) ( )( )

1/ 2 1/ 2* * *
0 1

* *
0 1 2 0 1/ 2 1/ 2* * *

1

'
| , , , , ~ / 2, / 2

t t t t

T t

t t t t

f S S
S W v T

S S
φ φ

−

−

⎛ ⎞⎛ ⎞+ + − +⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟
⎜ ⎟+ − +⎜ ⎟⎝ ⎠⎝ ⎠

I Γ β I Γ H β
Q Γ β

I Γ β I Γ H β
 

 Next we have 
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*1/ 2 * *1/ 2 * * *1/ 2 *
0 0 1 0t t t−= +Q β Q H β Q n , given a prior distribution 

( )*
0 1 2 1 1| , , ~ / 2, / 2W v fφ φ+I Γ Q , we have the posterior: 

( )
( )

( )

*1/ 2 * *1/ 2 * *
1 0 0 1* *

0 1 2 1 1 *1/ 2 * *1/ 2 * *
0 0 1

'
| , , , , ~ / 2, / 2

t t

T t

t t

f
S W v Tφ φ

−

−

⎛ ⎞⎛ ⎞+ −
⎜ ⎟⎜ ⎟+ +
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

Q β Q H β
I Γ Q β

Q β Q H β
 

 Notice that 1T is the number of times 1tS =  and the product 

( ) ( )*1/ 2 * *1/ 2 * * *1/ 2 * *1/ 2 * *
0 0 1 0 0 1't t t t− −− −Q β Q H β Q β Q H β is only counted for observations at 

which 1tS = .   

 Steps 1 to 3 complete one iteration of the Gibbs sampling procedure.  We perform 

10000 iterations, and keep the last 8000 for inference.  In the Gibbs sampling procedure 

for the baseline model, we only omit Step 2 and simplify other relevant sections (e.g. 

only one set of term premia is drawn).  

 


