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Abstract

Though Hamilton's (1989) Markov switching model has been widely estimated in

various contexts, formal testing for Markov switching is not straightforward. Univariate

tests in the classical framework by Hansen (1992) and Garcia (1998) do not reject the

linear model for GDP. We present Bayesian tests for Markov switching in both univariate

and multivariate settings based on sensitivity of the posterior probability to the prior.

We ¯nd that evidence for Markov switching, and thus the business cycle asymmetry, is

stronger in a switching version of the dynamic factor model of Stock and Watson (1991)

than it is for GDP by itself.
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\The Bayesian moral is simple: Never make anything more than relative

probability statements about the models explicitly entertained. Be suspicious

of those who promise more!" [Poirier (1995), p. 614]

1. Introduction

As Diebold and Rudebusch (1996) have pointed out, during the ¯rst half of this

century research on empirical business cycle was focused on organizing business cycle

regularities within a model-free framework, leading to the two de¯ning characteristics of

the business cycle by Burns and Mitchell (1946): `comovement' and `asymmetry'. Mod-

ern econometric research has investigated each of these two key features of the business

cycle. Stock and Watson's (1991) dynamic factor model of coincident economic variables

is an example that highlights the `comovement' feature of the business cycle. Hamilton's

(1989) Markov-switching model and Tong (1983) and Potter's (1995) threshold autoregres-

sive model of real output are the representative examples that highlight the `asymmetric'

feature of the business cycle. 1 With advances in computing and the development of

numerical and simulation techniques, more recent research has been devoted to an inte-

gration of the two features of the business cycle in a comprehensive time series framework

(Diebold and Rudebusch (1996) and Kim and Nelson (1998a, 1998b)).

In general, however, there seems to be less consensus on the asymmetric feature of the

business cycle than on the comovement among business cycle indicators [see Diebold and

Rudebusch (1996), p. 75.]. Focusing on the type of asymmetry generated by Markov-

switching, we ¯nd that the literature on testing procedures is relatively new and that

tests have been performed only within the univariate context. While estimation of the

Markov-switching models have been well developed in both the classical and the Bayesian

perspectives and their applications are abundant, there apparently seems to be a lag in

the literature in the development of testing procedures for Markov-switching. In most of

1 Unlike the Markov-switching model of Hamilton (1989), the regime switches according
to the observable past observations of a time series in the `threshold' model.
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applied work, Markov-switching has just been assumed without testing for its existence.

Furthermore, the literature reports mixed results on empirical tests of business cycle asym-

metry or Markov-switching. For example, based on the classical approach, neither Hansen

(1992) nor Garcia (1998) reject the null hypothesis of no Markov-switching in quarterly

real output. On the contrary, using Garcia's (1998) test, Diebold and Rudebusch (1996)

report strong evidence of Markov-switching in the composite index of monthly coincident

economic indicators by the Department of Commerce (DOC) as well as each individual

indicators. Using a Bayesian approach, Koop and Potter (1996) conclude that the Markov-

switching model and linear AR models receive roughly equal support for quarterly real

output , though Chib (1995) concludes that the data support a Markov-switching model.

While univariate tests in the literature have produced somewhat con°icting evidence of

Markov-switching, we speculate that tests in a multivariate framework may provide more

reliable and consistent results.

In this paper, we present Bayesian tests of Markov-switching in both univariate and

multivariate contexts. Along the lines of the work by Carlin and Polson (1991), George and

McCulloch (1993), Geweke (1996), and Carlin and Chib (1995), our testing procedure or

Bayesian model selection procedure is based on the sensitivity of the posterior probability

of a model indicator parameter to the prior probability. In implementing the Markov

Chain Monte Carlo (MCMC) method of Gibbs sampling, a major di± culty arises since

the parameter space is not ¯xed in the algorithm. For example, conditional on no Markov-

switching the shift parameters (the parameters of interest) are zero, and thus, the state

vector and the transition probabilities that describe the dynamics of the state vector are

not identi¯ed. This potentially causes a convergence problem in the Gibbs sampler, as in

Carlin and Chib (1995). To overcome the problem of convergence, we employ a pseudo

prior for the shift parameters that are otherwise set to zero conditional on no Markov-

switching. We ¯rst present our procedure for Bayesian model selection and the modi¯ed

Gibbs sampler within a relatively straightforward univariate framework. We then extend

our univariate procedure to the multivariate framework of the dynamic factor models of

business cycle by Stock and Watson (1991) and Diebold and Rudebusch (1996). In the

multivariate framework, an additional di± culty arises since we want to test for Markov-
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switching in the common factor component that is unobserved. This is overcome by

combining the univariate test with Kim and Nelson's (1998a) Bayesian approach to the

dynamic factor models.

In Section 2, we present model speci¯cations employed. Conditional on no Markov-

switching, Hamilton's (1989) univariate model collapses to linear autoregressive model

and Diebold and Rudebusch's (1996) multivariate model collapses to Stock and Watson's

(1991) linear dynamic factor model. Basic issues associated with our tests are then dis-

cussed. Section 3 deals with a univariate test of Markov-switching. In Section 4, the basic

test within a univariate framework is extended to a multivariate framework. In Section 5,

For a univariate test, we employing as data quarterly real GDP growth (1952.II-1997.II).

For a multivariate test, we employ as data the four monthly series used by the Depart-

ment of Commerce (DOC) to construct its index of coincident indicators (1960.1-1995.1).

Section 6 concludes the paper.

2. Model Speci¯cations and Problem Setup

2.1. A Model Speci¯cation for a Univariate Test

For a univariate test of Markov-switching, we ¯rst consider the following model for a

univariate process ¢ Ct, in which a model indicator parameter (¿) is employed to represent

both a linear AR process and an AR process with Markov-switching mean:

Á(L)(¢ Ct ¡ ¹st ¡ ±) = vt; vt » i:i:d:N (0; ¾2); ¿ = 0 or 1 (1)

¹st = ¹0(1 ¡ St) + ¹1St; (2)

where the unobserved state variable St evolves according to a Markov-switching process

with the transition probabilities given by:

Pr[St = 0jSt¡ 1 = 0] = p00; Pr[St = 1jSt¡ 1 = 1] = p11; (3)

and the parameters ¹0 and ¹1 are de¯ned as:
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¹0

8
<
:

= 0; if ¿ = 0;

= ¹1
0 » N(!0; ­ 0)1[¹1

0<0]; if ¿ = 1,
(4)

¹1

8
<
:

= 0; if ¿ = 0;

= ¹1
1 » N(!1; ­ 1)1[¹1

1>0]; if ¿ = 1,
(5)

where 1[:] refers to an indicator function. Thus, conditional on ¿ = 0, we have a linear

AR model and conditional on ¿ = 1, we have Hamilton's (1989) Markov-switching model.

In the above speci¯cation, the parameter ± determines the long-run growth rate of

¢ Ct. Conditional on ¿ = 1 (a Markov-switching model), ¹st represents a deviation of ¢ Ct

from its long-run growth ±. Correspondingly, the growth rate of ¢ Ct during a recession is

given by ±+¹1
0 < ± and that during a boom is given by ±+¹1

1 > ±. The parameters ±, ¹1
0,

and ¹1
1, however, are not separately identi¯ed due to over-parameterization, conditional

on ¿ = 1. We solve the problem of over-parameterization is by expressing the data in

deviation from mean, since then the long run growth rate ± disappears from equation (1),

and we have:

Á(L)(¢ ct ¡ ¹st) = vt; vt » i:i:d:N(0; ¾2); (10)

where ¢ ct = ¢ Ct ¡ ¢ ¹C. In this speci¯cation, a linear model is nested within a Markov-

switching model.

An alternative way of avoiding the problem of over-parameterization in (1) conditional

on ¿ = 1 would be to specify the model as:

Á(L)(¢ Ct ¡ (¹¤0 + ¹dSt)) = vt; vt » i:i:d:N (0; ¾2); ¹d ¸ 0; (6)

where ¹¤0 = ± + ¹0 and ¹d = ¹1 ¡ ¹0. A linear model is obtained by the constraint

¹d = 0. In this speci¯cation, however, a linear model is not really nested within a

Markov-switching model. This is clear by examining the ¹¤0 parameter in (6). ¹¤0 is not

a parameter common to both models. For example, we have ¹¤0 = ± for a linear model,

while we have ¹¤0 = ±+ ¹1
0 < ± for a Markov-switching model. That is, the parameter ¹¤0

is model-dependent and it has di®erent interpretations for the two competing models.

4



Di®erent speci¯cations of the model (equation (1') and equation (6)) do not a®ect

inferences about the parameters of alternative models and the unobserved state St con-

ditional on ¿ = 1, within either the classical or the Bayesian framework. When we come

to the hypothesis testing, however, they may have di®erent implications for the testing

procedure within the Bayesian framework. 2 If one adopts the model speci¯cation in (6)

within the framework discussed in this paper, for example, the model-dependent nature of

the ¹ ¤0 parameter would have to be taken into account when designing a test. Throughout

this paper, we stick to the model written in deviation from mean (equation (1')).

2.2. A Model Speci¯cation for a Multivariate Test: A Dynamic Factor Model

While Ct is an observed series in the speci¯cation for a univariate test in Section 2.1,

we consider a case in which Ct is an unobserved component which is common to more

than one observed coincident economic variables (Yit, i = 1; 2; ::; n) for a multivariate test.

If each observed variable has a unit root and the variables are not cointegrated, the ¢ Ct

term in equation (1) is a common factor component in the following model (Stock and

Watson (1991) and Diebold and Rudebusch (1996)):

¢ Yit = °i(L)¢ Ct +Di + eit; i = 1; 2; ::; n; (7)

Ã i(L)eit = ²it; ²it » i:i:d:N(0; ¾2
i ) (8)

where roots of Ã i(z) = 0, i = 1; ::; n; lie outside the complex unit circle; ²it, i = 1; ::; n,

and vt are independent of one another. Each observed series ¢ Yit consists of an individual

component (Di+eit) and a linear combination of current and lagged values of the common

factor component (°i(L)¢ Ct). Ct has an interpretation of the index of coincident economic

indicators. Thus, the model potentially captures the two de¯ning features of the business

cycle established by Burns and Mitchell (1946): comovement and asymmetry.

As the model given by (1)-(5) and (7)-(8) is not identi¯ed due to over-parameterization

of the mean of data, ¢ Yit, we ¯rst express data as deviation from means. Also for

2 For a discussion of related issues, see Zivot (1994). In the classical framework, di®er-
ent speci¯cations of the model may not a®ect the testing procedure, as the asymptotic
distribution or a bound for the asymptotic distribution (Hansen (1992)) is obtained under
the null hypothesis, which is assumed true.
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identi¯cation purpose, we set ¾2 = 1. Then the full model on which our test will be based

is given by:

Model

¢ yit = °i(L)¢ ct + eit; i = 1; 2; ::; n; (70)

Ã i(L)eit = ²it; ²it » i:i:d:N(0; ¾2
i ) (8)

Á(L)(¢ ct ¡ ¹ st) = vt; vt » i:i:d:N (0; ¾2); ¿ = 0 or 1 (10)

¹st = ¹0(1 ¡ St) + ¹1St; (2)

Pr[St = 0jSt¡ 1 = 0] = p00; Pr[St = 1jSt¡ 1 = 1] = p11; (3)

¹0

8
<
:

= 0; if ¿ = 0;

= ¹1
0 » N(!0; ­ 0)1[¹1

0<0]; if ¿ = 1,
(4)

¹1

8
<
:

= 0; if ¿ = 0;

= ¹1
1 » N(!1; ­ 1)1[¹1

1>0]; if ¿ = 1,
(5)

where ¢ yit = ¢ Yit ¡ ¢ ¹Yi; ¢ ct = ¢ Ct ¡ ±; and 1[:] refers to an indicator function.

Conditional on ¿ = 0, we have a linear dynamic factor model of Stock and Watson (1991)

and conditional on ¿ = 1, we have a dynamic factor model with Markov-switching of

Diebold and Rudebusch (1996).

2.3. Problem Setup

Assume that data ¢ ~zT = [ ¢ z1 : : : ¢ zT ]
0

have arisen from either a linear model

(¿ = 0) or a Markov-switching model (¿ = 1) according to a probability function (marginal

likelihood) p(¢ ~zT j¿ = 0) or p(¢ ~zT j¿ = 1), where ¢ zt = ¢ ct in the univariate framework

of Section 2.1, and ¢ zt = [ ¢ y1t : : : ¢ ynt ]0 in the multivariate framework of Section

2.2. Then, given prior probabilities for the model indicator parameter, ¼1 = Pr(¿ = 1)

and ¼0 = 1 ¡ ¼1, the data ¢ ~zT produce posterior probabilities, ¹¼1 = Pr(¿ = 1j¢ ~zT ) and

¹¼0 = 1 ¡ ¹¼1, according to:

¹¼1 =
p(¢ ~zT j¿ = 1)¼1

p(¢ ~zT j¿ = 1)¼1 + p(¢ ~zT j¿ = 0)¼0

=
B10¼1

B10¼1 + (1 ¡ ¼1)
; (9)
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where B10 is the Bayes factor in favor of a Markov-switching model. By rearranging

equation (9), the Bayes factor, which is given by the ratio of the marginal likelihoods for

the two alternative models, can be shown as summarizing the e®ect of data in modifying

the prior odds (¼1=(1 ¡ ¼1)) to obtain posterior odds (¹¼1=(1 ¡ ¹¼1)):

B10 =
p(¢ ~zT j¿ = 1)

p(¢ ~zT j¿ = 0)
=

¹¼1=(1 ¡ ¹¼1)

¼1=(1 ¡ ¼1)
: (10)

The posterior distributions of the parameters for given ¿ are readily available via

the Markov Chain Monte Carlo (MCMC) method of Gibbs sampling as in Albert and

Chib (1993) and Kim and Nelson (1998a) for the univariate model in Section 2.1 and

the multivariate model in Section 2.2, respectively. However, the computation of the

marginal likelihood based on the posterior distribution would be more di± cult since the

marginal likelihood is obtained by integrating the likelihood function with respect to the

prior density, not with respect to the posterior density. See Kass and Raftery (1995) for

a comprehensive review of the issues related to the Bayes factors.

Recent attempts to compute the marginal likelihoods and the Bayes factor within

the univariate framework with potential Markov-switching in Section 2.1 include Koop

and Potter (1996) and Chib (1995). For example, Koop and Potter (1996) employ the

`Savage density ratio method' by Dickey (1971). As the linear model is nested within

the Markov-switching model, the Bayes factor in favor of the Markov-switching model

may be simpli¯ed to be the ratio of the marginal posterior density of the shift parameters

(~¹1 = [ ¹1
0 ¹1

1 ]
0
) to prior density, conditional on ¿ = 1. In order to employ the `Savage

density ratio method', one of the necessary conditions that needs to be satis¯ed would

be:

p( ~Áj¿ = 0) = p(~Áj~¹ = 0; ¿ = 1); (11)

where ~Á = [ Á1 : : : Ár ]0 is the vector of autoregressive parameters for ¢ ct. However,

forcing the shift parameters to be zero when a Markov-switching process is a true data

generating process may potentially result in more persistent autoregressive parameters

than otherwise, as implied by Perron (1990).

Chib's (1995) approach to calculating the marginal likelihoods (and the Bayes factor)

that relies on the output from the Gibbs sampling algorithm would be more appropriate
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for our purpose. However, even though Chib's approach is readily available within the

univariate framework in Section 2.1, extending the approach to the multivariate frame-

work in Section 2.2 would be extremely challenging, in the presence of multiple blocks

of parameter vectors, and especially, in the presence of the two blocks of latent variables

( ~ST = [S1 : : : ST ]0 and ¢ cT = [ ¢ c1 : : : ¢ cT ]0), conditional on ¿ = 1.

In this paper, we deal with such di± culties by computing the Bayes factors without

attempting to calculate the marginal likelihoods. Along the lines of the work by Carlin

and Polson (1991), George and McCulloch (1993), Geweke (1996), and Carlin and Chib

(1995), our Bayesian model selection procedure is based on the sensitivity of the posterior

probability of the model indicator parameter ¿ to the prior probability. Di®erent prior

probabilities for the model indicator parameter, when combined with data, could be

associated with di®erent values for the Bayes factors, suggesting di®erent e®ects of data

for di®erent priors in modifying the prior odds to obtain the posterior odds. An additional

advantage of the approach in this paper is that it also provides the sensitivity of the

Bayes factor to di®erent prior probabilities unlike the usual approach based on a direct

calculation of the marginal likelihoods. In the usual approach, the e®ect of data in

modifying the prior odds to obtain the posterior odds are assumed the same for di®erent

prior probabilities.

In implementing the MCMC method of Gibbs sampling to sample from an appropriate

joint posterior distribution of the model indicator parameter ¿, the other parameters of

the models, and the latent variable(s), one potential problem is that the parameter space

is not ¯xed in the algorithm. For example, conditional on ¿ = 1, we have ~¹ = ~¹1 and all

the variates are well identi¯ed, where ~¹ = [ ¹0 ¹1 ]0 and ~¹1 = [ ¹1
0 ¹1

1 ]0. Conditional on

¿ = 0, however, we have ~¹ = 0 and a vector of transition probabilities ~p = [ p00 p11 ]0 and

a vector of latent state variables ~ST = [S1 : : : ST ]
0
are not identi¯ed. Thus, the vectors

~¹1, ~p, and ~ST are forced out of the model for both the univariate and multivariate models

and the Gibbs sampler skips a generation of these vectors. This potentially creates an

absorbing state, which is a violation of a condition for the convergence of Gibbs sampling

(Tierney (1994) and Carlin and Chib (1995)).

The problem is solved by employing a `pseudo prior' for ~¹1 conditional on ¿ = 0, in
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the line of the work by Carlin and Chib (1995). In fact, the approach in this paper may

be considered as an extension of Carlin and Chib (1995) to the case of testing for Markov-

switching. Given pseudo values for ~¹1 conditional on ¿ = 0, corresponding vectors ~p and

~S are pseudo-identi¯ed. Sections 3 and 4 discuss how the usual Gibbs sampling method

may be modi¯ed without skipping a generation of ~¹1, ~ST , and ~p conditional on ¿ = 0, by

taking advantage of the pseudo prior for ~¹1.

3. A Univariate Test of Markov-Switching

3.1. Technical Development

Within the univariate framework in Section 2.1, the problem of Bayesian model se-

lection reduces to generating ¿, ~µc = [ ~Á 0 ¾2 ]0, ~p, ~¹1, and ~ST from the joint posterior

distribution:

p(~µc; ~p; ~¹; ~ST ; ¿j¢ ~cT ) / p(¢ ~yT ; ~µc; ~p; ~¹; ~ST ; ¿)

= p(¢ ~cT j~µc; ~p; ~¹; ~ST ; ¿)p( ~ST j~µc; ~p; ~¹; ¿)p(~µc; ~p; ~¹ j¿)p(¿);
(12)

where ~µc is a vector of parameters common to both the linear and Markov-switching

models; ~p and ~ST = [S1 : : : ST ]0 are the variates that are identi¯ed only under the

Markov-switching model; ¢ ~cT = [ ¢ c1 : : : ¢ cT ]0 is a vector of observed data. Thus, for

given priors for the parameters, our goal would to generate, via Gibbs sampling, ~µc, ~¹1, ~p,

~ST , and the model indicator parameter ¿ from appropriate full conditional distributions.

Conditional on ¿ = 1, all the variates are identi¯ed and the posterior distribution of

~µc, ~p, ~¹1, and ~ST is given by:

p(~µc; ~p; ~¹1; ~ST j¢ ~cT ; ¿ = 1)

/ p(¢ ~cT ; ~µc; ~p; ~¹1; ~ST ; j¿ = 1)

= p(¢ ~cT j~µc; ~p; ~¹1; ~ST ; ¿ = 1)p( ~ST j~µc; ~p; ~¹1; ¿ = 1)p(~µc; ~p; ~¹1j¿ = 1)

= p(¢ ~cT j~µc; ~p; ~¹1; ~ST j¿ = 1)p( ~ST j~µc; ~p; ~¹1; ¿ = 1)p(~µcj¿ = 1)p(~pj¿ = 0)p(~¹1j¿ = 1);
(13)
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where p(~µcj¿ = 1), p(~pj¿ = 1), p(~¹1j¿ = 1) are the usual prior densities, and it is a priori

assumed that ~µc, ~p, and ~¹1 are independent of one another over the admissible regions.

Conditional on ¿ = 0, however, the variates ~¹1, ~p, and ~ST are forced out of the model

and the posterior distribution is given by:

p(~µcj¢ ~cT ; ¿ = 1) / p(¢ ~cT ; ~µcj¿ = 0)

= p(¢ ~cT j~µc; ¿ = 0)p(~µcj¿ = 0);
(14)

where p(~µcj¿ = 0) is the usual prior density, and the usual Gibbs sampler skips a generation

of ~¹1, ~p, and ~ST . To circumvent the problem of slow convergence in the presence of these

variates forced out of the model and the Gibbs sampler, we adopt a pseudo prior for ~¹1 in

the line of the work by Carlin and Chib (1995). Given the pseudo prior for ~¹1, the variates

~p and ~ST are then pseudo-identi¯ed under the linear model (¿ = 0). The following joint

posterior density of ~µc, ~p, ~¹1, and ~ST provides us how the Gibbs sampling may proceed

without forcing these variates out of the model conditional on ¿ = 0:

p(~µc; ~ST ; ~p; ~¹1j¢ ~cT ; ¿ = 0)

/ p(¢ ~cT ; ~µc; ~ST ; ~p; ~¹1j¿ = 0)

= p(¢ ~cT jµc; ~ST ; ~p; ~¹1; ¿ = 0)p( ~ST ; ~µc; ~p; ~¹1j¿ = 0)

= p(¢ ~cT jµc; ¿ = 0)p( ~ST j~µc; ~p; ~¹1; ¿ = 0)p(~µc; ~p; ~¹1j¿ = 0)

= p(¢ ~cT jµc; ¿ = 0)p(~µcj¿ = 0)p( ~ST j~µc; ~p; ~¹1; ¿ = 0)p(~pj~¹1; ¿ = 0)p(~¹1j¿ = 0);

(140)

where ~p and ~¹1 are a priori assumed independent of ~µc conditional on ¿ = 0; p(~µcj¿ = 0)

is the usual prior density; p(~¹1j¿ = 0) is the pseudo prior density of interest.

Equation (14') suggests that the vector of the parameters common to both models,

~µc, is generated in the usual fashion conditional on data, given ~¹ = 0. Pseudo generation

of ¹1, ~ST , and ~p can be done as follows: ¯rst, we generate ~¹1 from an appropriate pseudo

prior distribution; then, conditional on ~µc, ~p, the pseudo value for ~¹1, and data, we can

generate a pseudo vector of the state variables, ~ST ; ¯nally, conditional on ~ST , a pseudo

vector of the transition probabilities ~p can be generated.

Notice that, as in the case of Carlin and Chib (1995), the presence of the pseudo

vectors ~¹1, ~p, and ~ST in equation (14') does not a®ect the marginal likelihood for the
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linear model (¿ = 0) at all, since integrating the right-hand-side of equation (14') with

respect to these variates will result in the right-hand-side of equation (14), proving their

irrelevance. As the pseudo prior for ~¹1 and the corresponding pseudo vectors for ~p and

~ST do not a®ect the marginal likelihood, their existence does not a®ect the Bayes factor

or inferences for the Bayesian model selection. The pseudo prior, or the linking density

in the terminology of Carlin and Chib (1995), is employed to ensure the convergence of

the Gibbs sampler.

3.2. Details of Gibbs Sampling and Full Conditional for ¿

With an implementation of the pseudo prior for ~¹1 for ¿ = 0 (linear AR model),

a modi¯ed version of Gibbs sampling can be applied to generate ¿, ~µc = [ ~Á 0 ¾2 ]
0
, ~p,

~¹1, and ~ST from the joint posterior distribution. Given appropriate prior distributions

and the pseudo prior distribution for ~¹1, and for given arbitrary starting values for all

the parameters, the following provides a full description of the modi¯ed Gibbs sampling

procedure, designed based on equations (12), (13) and (14'):

Step 1:

Generate ¿ from p(¿j~Á; ¾2; ~¹; ~p; ¢ ~cT ).

Step 2:

If ¿ = 0:

i) Generate ~¹1 from the pseudo prior distribution, p(~¹1j¿ = 0).

ii) Set ~¹ = 0.

If ¿ = 1:

i) Generate ~¹1 from p(~¹1j~Á; ~¾2; ~p; ~ST ;¢ ~cT ; ¿ = 1).

ii) Set ~¹ = ~¹1.

Step 3:

Generate ~Á and ¾2 from p( ~Á; ¾2j~¹; ~ST ; ¢ ~cT ), where, if conditional on ~¹ = 0, ~ST is

irrelevant.

Step 4:

Generate ~ST from p( ~ST j~Á; ¾2; ~p; ~¹1; ¢ ~cT ).

11



Step 5:

Generate ~p from p(~pj ~ST ), where, conditional on ~ST , ~p is independent of data and

all other parameters.

Step 6: Go to Step 1.

To complete the above procedure, we need to specify the full conditional distribution

for each of the variates to be generated. Full conditional distributions for ~Á, ¾2, ~¹1,

~p conditional on ¿ = 1 are the same as those in Albert and Chib (1993). Concerning

the generation of ~ST , even though Albert and Chib's single-move algorithm is readily

available, we adopt the multi-move Gibbs sampling employed in Kim and Nelson (1998a)

for its simplicity.

Consider the distribution of ¿ conditional the parameters of the model, ~Á, ¾2, ~p, and

~¹, and data, but not on ~ST :

p(¿ = 1j¢ ~cT ; ~Á; ¾2; ~¹; ~p) =
p(¢ ~cT ; ~Á; ¾2; ~¹1; ~pj¿ = 1)¼1P1
j=0 p(¢ ~cT ; ~Á; ¾2; ~¹1; ~pj¿ = j)¼j

; (15)

where ¼j is the prior probability that ¿ = j. Dividing both the numerator and the

denominator of the right-hand-sides of equation (15) by p(¢ ~cT ; ~Á; ¾2; ~¹1; ~pj¿ = 0) and

rearranging terms, we get:

p(¿ = 1j¢ ~cT ; ~Á; ¾2; ~¹; ~p) =
C10¼1

C10¼1 + (1 ¡ ¼1)
; (150)

where C10 is the conditional Bayes factor in favor of the Markov-switching model (¿ = 1)

given by:

C10 =
p(¢ ~cT j~Á; ¾2; ~¹1; ~p; ¿ = 1)p(~Á; ¾2; ~¹1; ~pj¿ = 1)

p(¢ ~cT j~Á; ¾2; ~¹1; ~p; ¿ = 0)p(~Á; ¾2; ~¹1; ~pj¿ = 0)

=
p(¢ ~cT j~Á; ¾2; ~¹1; ~p; ¿ = 1)p(~Áj¾2; ¿ = 1)p(¾2j¿ = 1)p(~¹1j¾2; ¿ = 1)p(~pj¿ = 1)

p(¢ ~cT j~Á; ¾2; ¿ = 0)p(~Áj¾2; ¿ = 0)p(¾2j¿ = 0)p(~¹1j¿ = 0)p(~pj¿ = 0)

=
p(¢ ~cT j~Á; ¾2; ~¹1; ~p; ¿ = 1)p(~¹1j¾2; ¿ = 1)

p(¢ ~cT j~Á; ¾2; ¿ = 0)p(~¹1j¿ = 0)
;

(16)

where it is a priori assumed that ~¹1 and ~p are independent of the other parameters

conditional on ¿ = 0. It is also assumed that priors for these common parameters are
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the same for both models (¿ = 0; 1) and that p(~pj~¹1; ¿ = 0) = p(~pj¿ = 1) without loss

of generality. The term p(¢ ~cT j~Á; ¾2; ~¹1; ~p; ¿ = 1) can be evaluated as a byproduct of

running the Hamilton ¯lter (1989), given the conditioning parameters. To generate ¿,

we generate a random number from a Uniform distribution in the interval [0; 1]. If the

generated random number is less than or equal to the value calculated using (15'), we set

¿ = 1; otherwise, we set ¿ = 0.

4. A Multivariate Extension of the Test Based on a Dynamic Factor Model

4.1. Technical Development

In a multivariate framework of the dynamic factor model in Section 2.2, additional

di± culty arises since we want to test for Markov-switching in the common factor com-

ponent that is unobserved. ¢ ~cT = [ ¢ c1 : : : ¢ cT ]0 is no longer a vector of observed

data. It is a vector of latent factor component common to multiple observed series. We

denote ¢ ~yT = [ ¢ y01 : : : ¢ y0T ]0 to be a T £ n matrix of data on the observed series,

where ¢ yt = [ ¢ y1t : : : ¢ ynt ]0. We also de¯ne a vector of parameters common to both

linear and Markov-switching models to be ~µc = [ ~° 0 ~¾20 ~Ã 0 ~Á 0 ]0, where ~° and ~Ã are

the vectors of parameters associated with °i(L) and Ã i(L), respectively, for i = 1; ::; n;

~¾2 = [ ¾2
1 ::: ¾2

n ]0; ~Á is the vector of parameters associated with Á(L). The other

notations used in this section are the same as in Section 3.

Consider the following decomposition of the joint posterior density of ¢ ~cT , ~ST , ~µc, ~p,

~¹, and ¿, based on Bayes theorem:

p(¢ ~cT ; ~ST ; ~µc; ~p; ~¹; ¿j¢ ~yT )

/ p(¢ ~cT ; ~ST ; ~µc; ~p; ~¹; ¿; ¢ ~yT )

= p(¢ ~yT j¢ ~cT ; ~µc; ~p; ~¹; ¿)p(¢ ~cT j ~ST ; ~µc; ~p; ~¹; ¿)p( ~ST j~µc; ~p; ~¹; ¿)p(~µc; ~p; ~¹j¿)p(¿);

(17)

which allows us to sample the variates ¿, ¢ ~cT , ~ST , ~µc, ~¹, ~p from the full conditional

distributions.

Conditional on ¿ = 1, we have ~¹ = ~¹1 and all the variates ¢ ~cT , ~µc, ~p, ~¹1, and ~ST are

identi¯ed and the conditional joint posterior density from which these variates are to be

13



drawn is given by:

p(¢ ~cT ; ~ST ; ~µc; ~p; ~¹1j¢ ~yT ; ¿ = 1)

/ p(¢ ~cT ; ~ST ; ~µc; ~p; ~¹1; ¢ ~yT j¿ = 1)

= p(¢ ~yT j¢ ~cT ; ~µc; ~p; ~¹1; ¿ = 1)p(¢ ~cT j ~ST ; ~µc; ~p; ~¹1; ¿ = 1)

£ p( ~ST j~µc; ~p; ~¹1; ¿ = 1)p(~µcj¿ = 1)p(~pj¿ = 1)p(~¹1j¿ = 1);

(18)

where ~µc, ~p and ~¹1 are a priori assumed independent conditional on ¿ = 1, and p(~µcj¿ = 1),

p(~pj¿ = 1), and p(~¹1j¿ = 1) are the usual prior densities.

Conditional on ¿ = 0, however, we have ~¹ = 0 and the variates ~¹1, ~p, and ~ST are not

identi¯ed and they do not show up in the conditional joint posterior density:

p(¢ ~cT ; ~µcj¢ ~yT ; ¿ = 0) / p(¢ ~yT ; ¢ ~cT ; ~µcj¿ = 0)

= p(¢ ~yT j¢ ~cT ; ~µc; ¿ = 0)p(¢ ~cT j~µc; ¿ = 0)p(~µcj¿ = 0);
(19)

where p(~µcj¿ = 0) is the usual prior density. The Gibbs sampler skips a generation of ~¹1,

~p, and ~ST .

In order not to force ~¹1, ~p, and ~ST out of the model and the algorithm conditional on

¿ = 0, we employ a pseudo prior for ~¹1, as in Section 3.1. While ~p and ~ST are not identi¯ed

conditional on ¿ = 0, pseudo vectors of ~p and ~ST can be de¯ned that correspond to the

pseudo values for ~¹1. Also de¯ned is the pseudo vector of the common factor component,

¢ ~c¤T , that corresponds to the pseudo values for ~¹1 conditional on ¿ = 0. A reason for an

introduction of ¢ ~c¤T will be clear later.

Now, instead of equation (19), we consider the following joint posterior density of ¢ ~cT

14



and ~µc, along with the pseudo vectors, ~¹1, ~p, ~ST , and ¢ ~c¤T , conditional on ¿ = 0:

p(¢ ~cT ; ~µc; ¢ ~c¤T ; ~p; ~¹1; ~ST j¢ ~yT ; ¿ = 0)

/ p(¢ ~cT ; ~µc; ¢ ~c¤T ; ~p; ~¹1; ~ST ; ¢ ~yT j¿ = 0)

= p(¢ ~yT j¢ ~cT ; ~µc; ¢ ~c¤T ; ~p; ~¹1; ~ST ; ¿ = 0)p(¢ ~cT ; ~µc; ¢ ~c¤T ; ~p; ~¹1; ~ST j¿ = 0)

= p(¢ ~yT j¢ ~cT ; ~µc; ¿ = 0)p(¢ ~cT ;¢ ~c¤T ; ~ST j~µc; ~p; ~¹1; ¿ = 0)p(~µc; ~p; ~¹1j¿ = 0)

= p(¢ ~yT j¢ ~cT ; ~µc; ¿ = 0)p(¢ ~cT j¢ ~c¤T ; ~ST ; ~µc; ~p; ~¹1; ¿ = 0)

£ p(¢ ~c¤T ; ~ST j~µc; ~p; ~¹1; ¿ = 0)p(~µc; ~p; ~¹1j¿ = 0)

= p(¢ ~yT j¢ ~cT ; ~µc; ¿ = 0)p(¢ ~cT j~µc; ¿ = 0)

£ p(¢ ~c¤T j ~ST ; ~µc; ~p; ~¹1; ¿ = 0)p( ~ST j~µc; ~p; ~¹1; ¿ = 0)p(~µc; ~p; ~¹1j¿ = 0)

= p(¢ ~yT j¢ ~cT ; ~µc; ¿ = 0)p(¢ ~cT j~µc; ¿ = 0)p(~µcj¿ = 0)

£ p(¢ ~c¤T j ~ST ; ~µc; ~p; ~¹1; ¿ = 0)p( ~ST j~µc; ~p; ~¹1; ¿ = 0)p(~pj¹1; ¿ = 0)p(~¹1j¿ = 0);

(190)

where ~µc a priori assumed independent of ~p and ~¹1 conditional on ¿ = 0; p(~µcj¿ = 0) is

the usual prior density for ~µc; p(~¹1j¿ = 0) is the pseudo prior density of interest which

serves as a linking density in the Gibbs sampler; p(~pj~¹1; ¿ = 0) may also be called a

pseudo prior density but it does not serve as a linking density.

The densities p(¢ ~c¤T j ~ST ; ~µc; ~p; ~¹1; ¿ = 0) and p( ~ST j~µc; ~p; ~¹1; ¿ = 0) describe the pseudo

conditional distributions for ¢ ~cT and ~ST that correspond to pseudo prior for ~¹1. An

introduction of the pseudo vectors ¢ ~c¤T , ~ST , and ~p conditional on ¿ = 0, along with

a pseudo prior for ~¹1, does not a®ect the marginal likelihood and the inference at all.

The is because integrating the right-hand-side of (19') with respect to ~µu, ~ST , and ¢ ~c¤T

result in the right-hand-side of (19), which proves an irrelevance of ~µu, ~ST , and ¢ ~c¤T .

Equation (19'), however, provides us with how we may proceed with the Gibbs sampling

procedure conditional on ¿ = 0, avoiding the problem of slow convergence due to non-

generation of ~¹1, ~p, and ~ST . For example, conditional on ¿ = 0, ¢ ~cT and ~µc are drawn

from p(¢ ~cT j~µc; ¢ ~yT ; ¿ = 0) and p(~µcj¢ ~cT ; ¢ ~yT ; ¿ = 0), respectively, in the usual fashion.

In order to generate ~¹1, ~p, and ~ST conditional on ¿ = 0 at a particular run of the Gibbs

sampler, we can proceed as follows:

i) Draw ~¹1s from the pseudo prior distribution, p(~¹1j¿ = 0);

15



ii) Draw ¢ ~c¤sT from p(¢ ~cT j~µc; ~p; ~¹1s; ~ST ; ¢ ~yT );

iii) Draw ~SsT from p( ~ST j¢ ~c¤sT ; ~µc; ~p; ~¹1s; ¢ ~yT );

iv) Draw ~ps from p(~pj ~SsT ),

where the superscript s denotes that the variate is associated with the pseudo priors for

~¹1.

4.2. Details of Gibbs Sampling and Full Conditional for ¿

In designing the Gibbs sampling procedure based on (17), (18), and (19'), the following

consideration would be useful, due to the independence of the shocks and the hierarchical

structure of the model for given ¿: First, conditional on ~ST and all the parameters, the

model is a linear Gaussian state space model and we can generate ¢ cT using the procedure

proposed by Carter and Kohn (1994). Second, conditional on ¢ ~cT and ~µ, we can focus

on (1') to generate ~ST . Third, conditional on ¢ ~cT and ~ST , each of the n+ 1 equations in

(7') and (1') can be treated separately to generate corresponding parameters in ~µ.

For given prior distributions, pseudo prior distribution, and the arbitrary starting

values for ~°i, ~Ã i, ¾
2
i , i = 1; 2; 3; 4, ~Á, ~p, ~¹1, and ~ST , the following steps can be iterated for

Gibbs sampling:

Step 1:

i) Generate ¢ ~c0
T from p(¢ ~cT j~µc; ¢ ~yT ; ~¹ = 0; ¿ = 0).

ii) Generate ¢ ~c1
T from p(¢ ~cT j~µc; ~p; ~¹ = ~¹1; ~ST ; ¢ ~yT ; ¿ = 1).

Step 2:

Generate ¿ from p(¿j¢ ~cT ; ~µc; ~p; ~¹; ¢ ~yT ).

Step 3:

If ¿ = 0:

i) Generate ~¹1 from the pseudo prior distribution, p(~¹1j¿ = 0).

ii) Set ~¹ = 0.

iii) Set ¢ ~cT = ¢ ~c0
T .

If ¿ = 1:
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i) Generate ~¹1 from p(~¹1j~Á; ~ST ; ¢ ~c1
T ; ¿ = 1). Conditional on ¢ ~c1

T , ~¹1 is independent

of data.

ii) Set ~¹ = ~¹1.

i) Set ¢ ~cT = ¢ ~c1
T .

Step 4:

Generate ~ST from p( ~ST j~Á; ~¹1; ~p; ¢ ~c1
T ). Conditional on ¢ ~c1

T , ~ST is independent of

data.

Step 5:

Generate ~p from p(~pj ~ST ). Conditional on ~ST , ~p is independent of data and the

other parameters of the model.

Step 6:

Generate ~Á from p( ~Áj~¹; ~ST ; ¢ ~cT ), where, if conditional on ~¹ = 0, ~ST is irrelevant.

Conditional on ¢ ~cT , ~Á is independent of data.

Step 7:

Generate ~°i, ~Ã i, and ¾2
i from p(~°i; ~Ã i; ¾ij¢ ~yiT ;¢ ~cT ), i = 1; 2; 3; 4, where ¢ ~yiT is a

vector of data on individual coincident indicator.

Step 8:

Go to Step 1.

For the full conditional distributions from which the parameters of the model, ¢ ~cT ,

and ~ST are to be drawn for given ¿, readers are referred to Kim and Nelson (1998a).

The following derives the full conditional distribution from which the model indicator

parameter ¿ is to be drawn:

p(¿ = 1j¢ ~yT ; ¢ ~cT ; ~µc; ~p; ~¹)

=
p(¢ ~yT ; ¢ ~c1

T ;
~µc; ~p; ~¹1j¿ = 1)¼1

p(¢ ~yT ;¢ ~c1
T ;

~µc; ~p; ~¹1j¿ = 1)¼1 + p(¢ ~yT ; ¢ ~c0
T ;

~µc; ~p; ~¹1j¿ = 0)¼0

=
C10¼1

C10¼1 + (1 ¡ ¼1)
;

(20)

where ¼1 is the prior probability of ¿ = 1 and C10 is the conditional Bayes factor:
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C10

=
p(¢ ~yT ; ¢ ~c1

T ;
~µc; ~p; ~¹1j¿ = 1)

p(¢ ~yT ; ¢ ~c0
T ;

~µc; ~p; ~¹1j¿ = 0)

= p(¢ ~yT j¢ ~c1
T ;

~µc; ~p; ~¹1; ¿ = 1)p(¢ ~c1
T j~µc; ~p; ~¹1; ¿ = 1)p(~µcj¿ = 1)p(~pj¿ = 1)p(~¹1j¿ = 1)

p(¢ ~yT j¢ ~c0
T ;

~µc; ¿ = 0)p(¢ ~c0
T j~µc; ¿ = 0)p(~µcj¿ = 0)p(~pj~¹1; ¿ = 0)p(~¹1j¿ = 0)

=
p(¢ ~yT j¢ ~c1

T ;
~µc; ~p; ~¹1; ¿ = 1)p(¢ ~c1

T j~µc; ~p; ~¹1; ¿ = 1)p(~¹1j¿ = 1)

p(¢ ~yT j¢ ~c0
T ;

~µc; ¿ = 0)p(¢ ~c0
T j~µc; ¿ = 0)p(~¹1j¿ = 0)

;

(21)

where the numerator is obtained by integrating the right-hand-side of (18) with re-

spect to ~ST and the denominator is obtained by integrating the right-hand-side of (19')

with respect to ~ST and ¢ ~c¤T . It is assumed that p(~µcj¿ = 0) = p(~µcj¿ = 0) and

p(~pj~¹1; ¿ = 0) = p(~pj¿ = 1) without loss of generality. The terms p(¢ ~yT j¢ ~cT ; ~µc; ¿ = 0)

and p(¢ ~yT j¢ ~cT ; ~µc; ~p; ~¹1; ¿ = 1) can be computed by focusing on equations (7') and (8), by

treating ¢ ~cT as a vector of data. Similarly, p(¢ ~cT j~µc; ¿ = 0) and p(¢ ~cT j~µc; ~p; ~¹1; ¿ = 1)

can be computed based on (1'). For example, p(¢ ~cT j~µc; ~p; ~¹1; ¿ = 1) is evaluated as a

byproduct of running Hamilton's (1989) basic ¯lter using ¢ ~cT .

5. Applications: Testing for Markov-Switching in the Business Cycle

5.1. Data Description

Data we employ for a univariate test of Markov-switching is the quarterly real GDP

growth rate for a period of 1952.II-1997.II. The coincident variables employed for a mul-

tivariate test are the four monthly series for the United States used by the Department

of Commerce (DOC) to construct its composite index of coincident indicators: industrial

production (IP), total personal income less transfer payments in 1987 dollars (GMYXPQ),

total manufacturing and trade sales in 1987 dollars (MTQ), and employees on nonagri-

cultural payrolls (LPNAG). 3 The time period is 1960.1 through 1995.1, which covers

Kim and Nelson's (1998a) sample period. We use the demeaned log-di®erences for all the

series.
3 The abbreviations IP, GMYXPQ, MTQ, and LPNAG are DRI variable names.
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5.2. Speci¯cation of the Priors and the Pseudo Priors

We employ non-informative (°at) priors for all the parameters of the models expect

for the shift parameters ~¹1 = [ ¹1
0 ¹1

1 ]0 and the transition probabilities ~p = [ p00 p11 ]0.

The priors employed are summarized as follows: 4

Priors

p(~°i; ~Ã i; ¾
2
i j¿ = 0) = p(~°i; ~Ã i; ¾

2
i j¿ = 1) / 1

¾i
; i = 1; 2; 3; 4 (22)

p(~Á; ¾2j¿ = 0) = p( ~Á; ¾2j¿ = 1) / 1

¾
(23)

p00 j ¿ = 1 » beta(® 00; ® 01); (24)

p11 j ¿ = 1 » beta(® 11; ® 10); (25)

¹0 j ¿ = 1 » N(0; ­ 0)1[¹0<0]; (26)

¹1 j ¿ = 1 » N(0; ­ 1)1[¹1>0]; (27)

where equation (22) is relevant only within the multivariate framework, ¾ = 1 in the mul-

tivariate framework, beta(:; :) refers to a Beta distribution, and 1[:] refers to an indicator

function.

Notice we that cannot employ non informative priors for ¹1
0 and ¹1

1, the shift parame-

ters being tested. A consequence of employing non informative priors for the parameters

being tested will be to force the test results to favor the null hypothesis. 5 But we want

their variances large enough to give support to values that are substantially di®erent from

0, but not so large that unrealistic values are supported (George and McCulloch (1993)).

For both the univariate and multivariate tests, we consider three di®erent sets prior spec-

i¯cations. The three alternative sets of prior speci¯cations we consider for the univariate

tests are: i) ® 00 = 4, ® 01 = 1, ® 11 = 4, ® 10 = 1, ­ 0 = 2, and ­ 1 = 2 [Case 1]; ii) ® 00 = 8,

® 01 = 2, ® 11 = 18, ® 10 = 2, ­ 0 = 2, and ­ 1 = 2 [Case 2]; ii) ® 00 = 8, ® 01 = 2, ® 11 = 18,

4 For issues concerning the sensitivity analysis and the choice of the priors in a Bayesian
model selection, refer to Kass and Raftery (1995).

5 This is sometimes called Bartlett's (1957) paradox. For more detailed discussion, refer
to Kass and Raftery (1995).
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® 10 = 2, ­ 0 = 9, and ­ 1 = 9 [Case 3]. The three alternative sets of prior speci¯cations

for the univariate tests are: i) ® 00 = 4, ® 01 = 1, ® 11 = 4, ® 10 = 1, ­ 0 = 2, and ­ 1 = 2

[Case 1]; ii) ® 00 = 9, ® 01 = 1, ® 11 = 29, ® 10 = 1, ­ 0 = 2, and ­ 1 = 2 [Case 2]; ii)

® 00 = 9, ® 01 = 1, ® 11 = 29, ® 10 = 1, ­ 0 = 9, and ­ 1 = 9 [Case 3]. In Case 2, we have

more informative priors for the transition probabilities than in Case 1. In Case 3, we have

looser priors for the shift parameters than in Case 2.

The choice of the pseudo priors for ¹1
0 and ¹1

1 conditional on ¿ = 0 is important for

the convergence of the Gibbs sampler. Values for these parameters, if generated from

reasonable pseudo prior distributions, would be consistent with the data. Following the

recommendation of Carlin and Chib (1995), we ¯rst get preliminary estimates of marginal

posterior distributions of these parameters for models with Markov-switching (Pr(¿ =

1) = 1). Tables 1 through 3 summarize the results for univariate Markov-switching model

with di®erent sets of priors. Tables 4 through 6 summarize the results for the dynamic

factor models with Markov-switching. We use ¯rst-order (Normal) approximations to the

marginal posterior distributions for ¹1
0 and ¹1

1 in Tables 1 through 6 as our pseudo prior

distributions for each case: 6

Pseudo Priors

¹1
0 j ¿ = 0 » N(¹ ¤0; V¹ ;0)1[¹0<0]; (28)

¹1
1 j ¿ = 0 » N(¹ ¤1; V¹ ;1)1[¹1>0]; (29)

where, for example, we employ ¹¤0 = ¡ 0:617, V¹ ;0 = 0:5252, ¹¤1 = 0:232, and V¹ ;1 = 0:2002

(from Table 1) for Case 1 in the univariate framework.

5.3. Empirical Results 7

We ¯rst examine the sensitivities of the inferences on the regime probabilities to three

alternative sets of priors employed for the Markov-switching models with Pr(¿ = 1) = 1.

6 As Carlin and Chib (1995) note, we are not using the data to select the prior, but
only the pseudo prior.

7 All the inferences in this section are based on 9,000 Gibbs simulations, after discarding
the ¯rst 1,000 out of 10,000 Gibbs simulations.
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The univariate results in Figure 1 suggest that with tighter priors for the transition proba-

bilities in Case 2 than in Case 1, inferences on the regime probabilities get much sharper. 8

A comparison of the results for Cases 2 and 3 in Figure 1 also suggests that, given the same

tight priors for the transition probabilities, di®erent priors for the shift parameters a®ect

the inferences on regime probabilities very little. The multivariate results in Figure 2 lead

us to similar conclusion. In the multivariate framework, however, inferences on regime

probabilities are signi¯cantly less sensitive to the priors for the transition probabilities.

The posterior probability of Markov-switching (Pr(¿ = 1j¢ ~zT ), where ¢ ~zT is data)

is obtained by the proportion of the posterior simulations in which ¿ = 1. Tables 7 and 8

summarize the sensitivities of the posterior probabilities of Markov-switching to di®erent

prior probabilities for the univariate tests and the multivariate tests, respectively. Figures

3 and 4 visually summarize the same results. For the univariate tests, the posterior

probability of Markov-switching is quite sensitive to the prior probabilities. As we change

the prior probability from 0.1 to 0.9, the posterior probability ranges between 0.072 and

0.724 in Case 1. However, the implied Bayes factor, which summarizes the e®ect of the

data in modifying the prior odds to obtain posterior odds, is consistently lower than

1, ranging between 0.163 and 0.724. With a prior probability of 0.5, for example, the

posterior probability is 0.300 and the implied Bayes factor is 0.429. These results may be

interpreted as sample evidence being against Markov-switching, even though the posterior

probability is quite sensitive to the prior probability. Di®erent cases (Case 2 and Case 3)

considered with di®erent priors for ~¹ and ~p do not seem to a®ect the results signi¯cantly.

For the multivariate tests, we get somewhat qualitatively di®erent results. The pos-

terior probability of Markov-switching are not very sensitive to the prior probability as

depicted in Figure 4. In case 1, as we change the prior probability from 0.1 to 0.9, the pos-

terior probability ranges from 0.522 to 0.591. The posterior probabilities are consistently

higher, but only slightly higher, than 0.5. For the prior probability of 0.5, the posterior

probability is 0.560 and the implied Bayes factor is 1.273. These considerations might sug-

gest that the data slightly favors Diebold and Rudebusch's (1996) dynamic factor model

8 The shaded areas represent the periods of National Bureau of Economic Research
(NBER) recessions.
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with Markov-switching over Stock and Watson's (1991) linear dynamic factor model. The

results are not sensitive to alternative priors employed for ~¹1 and ~p (Case 2 and Case

3). However, unlike the univariate test results, the Bayes factor is quite sensitive to the

prior probability and ranges from 9.828 to 0.161. This suggests that the multivariate test

results leave more room for subjective interpretations than the univariate test results.

While the univariate and multivariate test results leave plenty of room for subjective

interpretations when examined separately, a comparison of the two results allows us to

draw a conclusion which is objective enough: Evidence of Markov-switching, if exists, is

much more compelling in the multivariate tests.

6. Summary and Discussion: Is the Business Cycle Asymmetric?

In this paper, we present Bayesian tests of Markov-switching within both univariate

and multivariate frameworks. In the univariate framework, we design a procedure for

testing for Markov-switching in an observed time series. With no Markov-switching,

Hamilton's (1989) model collapses to a linear autoregressive model. In the multivariate

framework, we deal with testing for Markov-switching in an unobserved factor component

which is common to multiple observed time series. With no Markov switching, Diebold

and Rudebusch's (1996) model collapses to Stock and Watson's (1991) linear dynamic

factor model. The tests are based on the sensitivity of the posterior probability to the

prior probability of the model indicator parameter which is employed to represent both a

linear model and a Markov-switching model within a uni¯ed framework.

We apply the proposed testing procedure to the quarterly real GDP series and four

monthly coincident economic indicators in order to investigate Markov-switching in the

business cycle. For the univariate tests which are based on quarterly real GDP growth, the

data in general seem to be against Markov-switching. However, we do not interpret the

univariate test results as rejecting the business cycle asymmetry. For example, in a test

of structural break in the shift parameters of a Markov-switching model for the real GDP

growth, Kim and Nelson (1998c) ¯nd strong sample evidence in favor of a narrowing gap

between the growth rates during booms and recessions. They report signi¯cantly sharper
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regime probabilities than those in Figure 1, after a structural break is taken into account

with an unknown changepoint. While we investigate Markov-switching in the growth rate

of the GDP series in this paper, Kim and Nelson (1998d) raise a possibility of Markov-

switching in the cyclical component of the real GDP series, as implied by Friedman's

(1964, 1993) `plucking' model. The threshold autoregressive model of Tong (1983) and

Potter (1995) is another type of asymmetry not considered here. It is possible that a

linear model may be less favored against these alternatives.

Besides, of the two de¯ning characteristics of the business cycle by Burns and Mitchell

(1946), namely `comovement' and `asymmetry', the univariate tests of Markov-switching

(or asymmetry) fail to take into account the `comovement' feature of the business cycle.

The multivariate tests, which explicitly take into account comovement among economic

variables through the business cycle, seem to provide sample evidence that slightly favors

a Markov-switching model over a linear model. Even though the multivariate test results

are open to more subjective interpretations than the univariate test results, a comparison

of the two results allows us to draw a conclusion which is objective enough: Evidence of

Markov-switching or asymmetry in the business cycle, if exists, is much more compelling

in the multivariate tests.
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Table 1. Posterior Distribution of the Parameters of the Markov-Switching Model

(Pr(¿ = 1) = 1): Case 1

¹1
0 » N(0; 2)I[¹ 1

0<0]; ¹1
1 » N(0; 2)I[¹1

1>0]

p00 » beta(4; 1); p11 » beta(4; 1);

Mean SD Median 95% Bands

p00 0.725 0.156 0.741 (0.437, 0.955)
p11 0.864 0.126 0.910 (0.589, 0.983)

¹1
0 -0.671 0.525 -0.540 (-1.663, -0.050)
¹1

1 0.232 0.200 0.191 (0.021, 0.569)

Á1 0.253 0.095 0.253 (0.096, 0.405)
Á2 0.068 0.085 0.070 (-0.079, 0.212)
Á3 -0.014 0.085 -0.014 (-0.153, 0.131)
Á4 -0.068 0.083 -0.069 (-0.208, 0.072)

¾2 0.818 0.121 0.815 (0.625, 1.017)

1. Non-informative (°at) priors are used for all parameters except ¹1
0, ¹1

1, p00, and p11.

2. Out of 10,000 Gibbs simulations, the ¯rst 1,000 are discarded and inferences are based

on the remaining 90,000 Gibbs simulations.

3. SD and MD refer to standard deviation and median, respectively.

4. 95% Bands refers to 95% posterior probability bands.
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Table 2. Posterior Distribution of the Parameters of the Markov-Switching Model

(Pr(¿ = 1) = 1): Case 1

¹1
0 » N(0; 2)I[¹ 1

0<0]; ¹1
1 » N(0; 2)I[¹1

1>0]

p00 » beta(8; 2); p11 » beta(18; 2);

Mean SD Median 95% Bands

p00 0.742 0.113 0.748 (0.543, 0.912)
p11 0.916 0.049 0.927 (0.823, 0.978)

¹1
0 -0.813 0.480 -0.779 (-1.618, -0.105)
¹1

1 0.220 0.138 0.206 (0.026, 0.456)

Á1 0.233 0.095 0.234 (0.073, 0.386)
Á2 0.059 0.089 0.058 (-0.087, 0.206)
Á3 -0.016 0.086 -0.016 (-0.157, 0.127)
Á4 -0.058 0.086 -0.058 (-0.200, 0.083)

1. Non-informative (°at) priors are used for all parameters except ¹1
0, ¹1

1, p00, and p11.

2. Out of 10,000 Gibbs simulations, the ¯rst 1,000 are discarded and inferences are based

on the remaining 90,000 Gibbs simulations.

3. SD and MD refer to standard deviation and median, respectively.

4. 95% Bands refers to 95% posterior probability bands.
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Table 3. Posterior Distribution of the Parameters of the Markov-Switching Model

(Pr(¿ = 1) = 1): Case 1

¹1
0 » N(0; 9)I[¹ 1

0<0]; ¹1
1 » N(0; 9)I[¹1

1>0]

p00 » beta(8; 2); p11 » beta(18; 2);

Mean SD Median 95% Bands

p00 0.740 0.115 0.750 (0.533, 0.916)
p11 0.920 0.049 0.931 (0.828, 0.978)

¹1
0 -0.896 0.556 -0.856 (-1.802, -0.112)
¹1

1 0.213 0.138 0.196 (0.028, 0.461)

Á1 0.235 0.093 0.237 (0.073, 0.387)
Á2 0.058 0.090 0.056 (-0.086, 0.205)
Á3 -0.012 0.088 -0.012 (-0.154, 0.133)
Á4 -0.062 0.085 -0.061 (-0.201, 0.083)

1. Non-informative (°at) priors are used for all parameters except ¹1
0, ¹1

1, p00, and p11.

2. Out of 10,000 Gibbs simulations, the ¯rst 1,000 are discarded and inferences are based

on the remaining 90,000 Gibbs simulations.

3. SD and MD refer to standard deviation and median, respectively.

4. 95% Bands refers to 95% posterior probability bands.
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Table 4. Bayesian Inference of Diebold and Rudebusch's (1996) Dynamic Factor Model

with Markov-switching (Pr(¿ = 1) = 1): Case 1

¹1
0 » N(0; 2)I[¹ 1

0<0]; ¹1
1 » N(0; 2)I[¹1

1>0]

p00 » beta(4; 1); p11 » beta(4; 1);

Mean SD MD 95%Bands

p00 0.861 0.061 0.870 (0.750, 0.945)
p11 0.957 0.072 0.972 (0.866, 0.987)
¹1

0 -1.692 0.553 -1.784 (-2.354, -0.185)
¢ ct ¹1

1 0.338 0.128 0.345 (0.127, 0.518)
Á1 0.337 0.093 0.330 (0.199, 0.502)
Á2 0.011 0.066 0.011 (-0.100, 0.122)

°1 0.562 0.041 0.560 (0.496, 0.632)
IP Ã 11 -0.020 0.068 -0.020 (-0.130, 0.093)

Ã 12 -0.022 0.066 -0.021 (-0.130, 0.084)
¾2

1 0.224 0.033 0.223 (0.171, 0.280)

°2 0.211 0.023 0.210 (0.174, 0.249)
GMYZPQ Ã 21 -0.307 0.051 -0.307 (-0.390, -0.221)

Ã 22 -0.069 0.051 -0.069 (-0.152, 0.016)
¾2

2 0.320 0.024 0.319 (0.282, 0.359)

°3 0.435 0.037 0.434 (0.377, 0.499)
MTQ Ã 31 -0.360 0.054 -0.359 (-0.449, -0.268)

Ã 32 -0.160 0.053 -0.160 (-0.246, -0.074)
¾2

3 0.662 0.052 0.658 (0.583, 0.753)

°4 0.116 0.010 0.116 (0.100, 0.132)
Ã 41 -0.021 0.059 -0.021 (-0.119, 0.075)

LPNAG Ã 42 0.277 0.061 0.280 (0.174, 0.373)
¾2

4 0.022 0.002 0.022 (0.018, 0.025)
°41 0.007 0.009 0.007 (-0.008, 0.023)
°42 0.021 0.009 0.021 (0.007, 0.036)
°43 0.030 0.008 0.030 (0.017, 0.043)

1. Non-informative (°at) priors are used for all parameters except ¹1
0, ¹1

1, p00, and p11.

2. Out of 10,000 Gibbs simulations, the ¯rst 1,000 are discarded and inferences are based

on the remaining 90,000 Gibbs simulations.

3. SD and MD refer to standard deviation and median, respectively.

4. 95% Bands refers to 95% posterior probability bands.
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Table 5. Bayesian Inference of Diebold and Rudebusch's (1996) Dynamic Factor Model

with Markov-switching (Pr(¿ = 1) = 1): Case 2

¹1
0 » N(0; 2)I[¹ 1

0<0]; ¹1
1 » N(0; 2)I[¹1

1>0]

p00 » beta(9; 1); p11 » beta(29; 1);

Mean SD MD 95%Bands

p00 0.866 0.052 0.872 (0.770, 0.937)
p11 0.975 0.010 0.976 (0.957, 0.989)

¢ ct ¹1
0 -1.799 0.342 -1.803 (-2.339, -1.225)
¹1

1 0.341 0.107 0.345 (0.157, 0.509)
Á1 0.319 0.079 0.319 (0.192, 0.452)
Á2 0.008 0.067 0.007 (-0.104, 0.118)

°1 0.561 0.038 0.559 (0.501, 0.625)
IP Ã 11 -0.015 0.069 -0.015 (-0.127, 0.094)

Ã 12 -0.020 0.066 -0.019 (-0.129, 0.087)
¾2

1 0.223 0.033 0.223 (0.170, 0.278)

°2 0.211 0.022 0.210 (0.176, 0.247)
GMYZPQ Ã 21 -0.303 0.051 -0.304 (-0.389, -0.220)

Ã 22 -0.067 0.051 -0.066 (-0.152, 0.017)
¾2

2 0.319 0.023 0.317 (0.283, 0.361)

°3 0.435 0.035 0.433 (0.380, 0.496)
MTQ Ã 31 -0.358 0.056 -0.357 (-0.447, -0.270)

Ã 32 -0.161 0.054 -0.160 (-0.248, -0.073)
¾2

3 0.661 0.051 0.660 (0.581, 0.751)

°41 0.115 0.010 0.115 (0.099, 0.131)
Ã 41 -0.022 0.058 -0.021 (-0.120, 0.072)
Ã 42 0.277 0.060 0.278 (0.176, 0.374)

LPNAG ¾2
4 0.022 0.002 0.022 (0.018, 0.025)
°41 0.008 0.009 0.008 (-0.007, 0.023)
°42 0.021 0.009 0.021 (0.007, 0.036)
°43 0.030 0.008 0.030 (0.017, 0.043)

1. Non-informative (°at) priors are used for all parameters except ¹1
0 and ¹1

1.

2. Out of 10,000 Gibbs simulations, the ¯rst 1,000 are discarded and inferences are based

on the remaining 9,000 Gibbs simulations.

3. SD and MD refer to standard deviation and median, respectively.

4. 95% Bands refers to 95% posterior probability bands.
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Table 6. Bayesian Inference of Diebold and Rudebusch's (1996) Dynamic Factor Model

with Markov-switching (Pr(¿ = 1) = 1): Case 3

¹1
0 » N(0; 9)I[¹ 1

0<0]; ¹1
1 » N(0; 9)I[¹1

1>0]

p00 » beta(9; 1); p11 » beta(29; 1);

Mean SD MD 95%Bands

p00 0.862 0.054 0.868 (0.763, 0.934)
p11 0.975 0.010 0.976 (0.957, 0.989)

¢ ct ¹1
0 -1.893 0.372 -1.884 (-2.476, -1.310)
¹1

1 0.337 0.111 0.338 (0.154, 0.512)
Á1 0.323 0.079 0.322 (0.199, 0.457)
Á2 0.009 0.069 0.010 (-0.104, 0.124)

°1 0.554 0.037 0.554 (0.493, 0.616)
IP Ã 11 -0.015 0.068 -0.015 (-0.128, 0.096)

Ã 12 -0.018 0.066 -0.018 (-0.127, 0.088)
¾2

1 0.226 0.033 0.225 (0.173, 0.281)

°2 0.208 0.021 0.208 (0.174, 0.244)
GMYZPQ Ã 21 -0.306 0.052 -0.305 (-0.390, -0.221)

Ã 22 -0.064 0.051 -0.064 (-0.150, 0.017)
¾2

2 0.320 0.024 0.318 (0.283, 0.360)

°3 0.429 0.035 0.429 (0.374, 0.488)
MTQ Ã 31 -0.358 0.055 -0.357 (-0.446, -0.268)

Ã 32 -0.161 0.054 -0.161 (-0.245, -0.073)
¾2

3 0.663 0.053 0.660 (0.580, 0.752)

°41 0.114 0.009 0.114 (0.099, 0.130)
Ã 41 -0.025 0.060 -0.024 (-0.123, 0.075)
Ã 42 0.273 0.060 0.274 (0.172, 0.370)

LPNAG ¾2
4 0.022 0.002 0.022 (0.018, 0.025)
°41 0.008 0.009 0.008 (-0.008, 0.023)
°42 0.021 0.009 0.021 (0.007, 0.035)
°43 0.030 0.008 0.030 (0.017, 0.043)

1. Non-informative (°at) priors are used for all parameters except ¹1
0 and ¹1

1.

2. Out of 10,000 Gibbs simulations, the ¯rst 1,000 are discarded and inferences are based

on the remaining 9,000 Gibbs simulations.

3. SD and MD refer to standard deviation and median, respectively.

4. 95% Bands refers to 95% posterior probability bands.
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Table 7. Bayesian Model Selection Based on Sensitivity of the Posterior Probability of

Markov-Switching Model to Prior Probability: Univariate Tests

Prior Probabilities (¼1 = Pr(¿ = 1))

0.1 0.3 0.5 0.7 0.9

Posterior Probabilities (¹¼1 = Pr(¿ = 1j¢ ~cT ))

Case 1 0.072 0.183 0.300 0.487 0.724
(Bayes Factor) (0.701) (0.524) (0.429) (0.407) (0.292)

Case 2 0.074 0.194 0.325 0.511 0.756
(Bayes Factor) (0.724) (0.561) (0.482) (0.447) (0.343)

Case 3 0.037 0.114 0.207 0.319 0.594
(Bayes Factor) (0.348) (0.302) (0.261) (0.201) (0.163)

Out of 10,000 Gibbs simulations, the ¯rst 1,000 are discarded and inferences are based on

the remaining 9,000 Gibbs simulations.
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Table 8. Bayesian Model Selection Based on Sensitivity of the Posterior Probability of

Markov-Switching to Prior Probability: Multivariate Tests.

Prior Probabilities (¼1 = Pr(¿ = 1))

0.100 0.300 0.500 0.700 0.900

Posterior Probabilities (¹¼1 = Pr(¿ = 1j¢ ~yT ))

Case 1 0.522 0.544 0.560 0.574 0.591
(Bayes Factor) (9.828) (2.784) (1.273) (0.577) (0.161)

Case 2 0.544 0.572 0.580 0.602 0.632
(Bayes Factor) (10.737) (3.118) (1.380) (0.648) (0.191)

Case 3 0.502 0.534 0.564 0.577 0.618
(Bayes Factor) (9.072) (2.674) (1.294) (0.585) (0.180)

1. Out of 10,000 Gibbs simulations, the ¯rst 1,000 are discarded and inferences are based

on the remaining 9,000 Gibbs simulations.
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Figure 1.  Probability of a Recession: Univariate Model with Markov-Switching
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Figure 2. Probabilities of a Recession: Dynamic Factor Model with Markov-Switching
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