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Abstract 
 

This paper analyzes the growth and inequality tradeoff for a small open economy where agents differ 
in their initial endowments of capital stock and international bond-holdings.   Our analysis focuses on 
the distributional impacts of different structural shocks through their effects on agents’ relative wealth 
and their labor supply decisions.  Supplementing the theoretical analysis with numerical simulations, 
we demonstrate that openness – access to an international capital market – has important consequences 
on the growth-inequality tradeoff.  Specifically, the growth and distributional consequences of 
structural shocks depend crucially on whether the underlying heterogeneity originates with the initial 
endowment of domestic capital or foreign bonds. 
 
 
 
 
Keywords: Endogenous Growth, Income Inequality, Open Economy 

JEL Classifications: O40, O15, F41 

 

 

 

 

 
  * Department of Economics, 206 Condon Hall, Box 353330, University of Washington, Seattle, WA, 98195, 
 U.S.A.; E-mail: yuchin@u.washington.edu and sturn@u.washington.edu.  Turnovsky’s research was supported 
 in part by the Castor Endowment at the University of Washington. 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7362959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1

1. Introduction  

The potential tradeoff between growth and inequality is one of the fundamental questions in 

economics, dating back to the seminal work of Kuznets (1955).  Despite the intensive research 

activity that this issue has generated, the nature of the relationship remains unresolved, with the 

empirical evidence being inconclusive.  Early growth regressions by Alesina and Rodrik (1994), 

Persson and Tabellini (1994), Perotti (1996), and others, yield a negative growth-inequality 

relationship.1  But more recent studies obtain a positive, or at least more ambiguous, relationship; see 

for example,  Li and Zou (1998), Forbes (2000), and Barro (2000).2  From a theoretical perspective, 

this empirical controversy should not be surprising.  Because an economy’s growth rate and its 

income distribution are both endogenous equilibrium outcomes of the economic system, the income 

inequality-growth relationship – whether positive or negative – will reflect the underlying set of 

forces to which both are reacting.  To understand these linkages it is necessary to examine the 

growth-inequality relationship using a structural approach, and we do so by employing a consistently 

specified general equilibrium growth model. 

In a completely general setup, in which the equilibrium growth rate and income distribution 

are mutually dependent, their joint determination and the analysis of their relationship becomes 

intractable; see e.g. Sorger (2000).  In a series of papers, García-Peñalosa and Turnovsky (2006, 

2007, 2008) exploit the fact that if the utility function is homogeneous in its relevant arguments, the 

aggregate economy can be summarized by a representative agent, as a result of which aggregate 

behavior becomes independent of the economy’s distributional characteristics.3  While knowledge of 

this feature dates back to Gorman (1953), it assumes particular importance in the present context, 

since the implied recursive structure enables us to address distributional issues in a tractable way.  

Moreover, the class of utility function for which this aggregation simplifies in this way includes the 
                                                 
1 The various explanations for this include: the political economy consequences of inequality (Alesina and Rodrik, 1994), 
the potential harm inequality may cause for investment in physical or human capital, (Galor and Zeira, 1993; Aghion and 
Bolton, 1997), and the unequal distribution of natural resources (Gylfason and Zoega, 2003). 
2 In particular, Forbes finds a positive relationship when the short-term impact is considered.  Barro finds a negative 
relationship between inequality and growth for poorer countries, but a positive relationship for richer countries.  
Explanations for the positive relationship include: a positive relationship between inequality and higher tax rates to 
finance public education (Saint-Paul and Verdier, 1993), socio-economic stratification (Bénabou, 1996a), and the nature 
of technological progress (Galor and Tsiddon, 1997). 
3 See also Caselli and Ventura (2000). 
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constant elasticity utility function that dominates contemporary growth theory.  

 Virtually the entire literature linking growth and inequality is restricted to a closed economy.  

This is a severe shortcoming, given the increasing openness characterizing most economies, and the 

additional dimensions that international transactions bring to both growth and the distribution of 

income.  Accordingly, this paper addresses the issue of the growth-inequality relationship in the 

context of a small open economy.  The model we employ is an open economy version of the Romer 

(1986) endogenous growth model, as developed by Turnovsky (1999).  One feature of this model is 

that, like the Romer model, the economy always lies on its balanced growth path.  While this rules 

out the dynamics of income distribution, which are clearly important, it has the pedagogic advantage 

of highlighting the growth-inequality tradeoff in a lucid way.4 

 In this model, the heterogeneity that is the source of the underlying inequality stems from 

agents’ initial endowments of assets, which includes both internationally traded bonds as well as 

domestic capital.  The key mechanism generating the endogenous distribution of income is the 

positive equilibrium relationship we derive between agents’ relative wealth and their relative 

allocation of time to leisure.  This relationship has a simple intuition.  Wealthier agents have a lower 

marginal utility of wealth.  They therefore choose to increase consumption of all goods including 

leisure, and reduce their labor supply.  Given their relative capital endowments, this translates to an 

endogenously determined distribution of income.   

Substantial empirical evidence documents the negative relationship between wealth and labor 

supply.  Holtz-Eakin, Joulfaian, and Rosen (1993) find evidence to support the view that large 

inheritances decrease labor participation.  Cheng and French (2000) and Coronado and Perozek 

(2003) use data from the stock market boom of the 1990s to study the effects of wealth on labor 

supply and retirement, finding a substantial negative effect on labor participation.  Algan, Chéron, 

Hairault, and Langot (2003) use French data to analyze the effect of wealth on labor market 

transitions, and find a significant wealth effect on the extensive margin of labor supply.  Overall, 

these studies and others provide compelling evidence in support of the wealth-leisure mechanism 

                                                 
4 For the analysis of distributional dynamics in a closed economy see Caselli and Ventura (2000), Turnovsky and García-
Peñalosa (2008). 
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being emphasized in this paper. 

Using this framework, we analyze the joint determination of the growth rate and inequality 

and consider how they respond to various structural changes, including an increase in productivity, 

an increase in savings (decrease in rate of time preference), and an increase in the foreign interest 

rate.  The structural approach allows us to consider not just wealth and income inequality, but also 

welfare inequality.  In doing so, we show how the impacts of these structural changes on the growth-

inequality tradeoff depend upon the underlying origin of the heterogeneity, i.e. whether it originates 

with the endowment of capital or bonds.  We also demonstrate that the presence of adjustment costs 

to capital accumulation may drive a wedge between an agent’s relative wealth standing and her 

relative income, depending again on the relative endowments of domestic capital and foreign bonds.  

These findings highlight the relevance of international asset markets in understanding the growth-

inequality relationship, and how this tradeoff facing a small open economy may be dramatically 

different from that confronting a closed economy.    

We should note, however, that by adapting the Romer model, we are ignoring other 

important elements relevant to the growth-income inequality relationship, most notably human 

capital and education.  This aspect is emphasized by Galor and Zeira (1993), Bénabou (1996b), and 

Viaene and Zilcha (2003), among others.  By identifying agents’ heterogeneity with their initial 

physical asset endowments, we are embedding distributional issues within a more traditional growth-

theoretic framework.  Indeed, the role of the return to capital, which is essential in that literature, has 

largely been ignored in the recent discussions of income inequality.  The argument that the return to 

capital is essential to understanding distributional differences has, however, been addressed by 

Atkinson (2003), and is supported by recent empirical evidence for the OECD (see Checchi and 

García-Peñalosa (2005). 

The paper is organized as follows.  Sections 2 presents the structure of the model.  Sections 3 

and 4 derive the macroeconomic equilibrium and examine the determinants of the distributions of 

income and welfare.  Section 5 analyzes the relationship between growth and inequality in response 

to specified structural changes.  Section 6 supplements our theoretical analysis with some numerical 

simulations. Section 7 concludes, while technical details are provided in the Appendix.  
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2. Small open economy with heterogeneous agents and endogenous labor supply 

 We begin by setting out the structure of a small open economy.  It is based on an endogenous 

growth model with elastic labor supply, where agents have heterogeneous income stemming from 

initial distributions of endowments of capital and of international bonds.   

2.1 Technology and factor payments 

The economy consists of a fixed number of firms indexed by j.  The representative firm 

produces output using the production function 

( ),j j jY F L K K=        (1a)  

where Kj denotes the individual firm’s capital stock, L j  denotes the individual firm’s employment of 

labor, K  is the average stock of capital in the economy, a proxy for the economy-wide stock of 

knowledge, so that L jK  measures the efficiency units of labor.  Production has the usual 

neoclassical properties of positive, but diminishing, marginal physical products and constant returns 
to scale in jK  and L jK .  This means that the production function has constant returns to scale both 

in the accumulating factors, jK  and K , necessary for endogenous growth, and in the private factors 

jK  and jL , necessary for marginal product factor pricing in a competitive equilibrium. 

As all firms face identical production conditions, they choose the same level of employment 

and capital stock implying that K j = K  and L j = L , for all j, where L  is the average economy-wide 

level of employment.  In equilibrium the economy-wide aggregate (average) production function can 

then be expressed as a linear function of the aggregate capital stock, as in Romer (1986), namely5 

( ), ( )Y F LK K f L K= =  ( ) 0, 0f L f′ ′′> <    (1b)  

Assuming competitive factor markets, the wage rate and the return to capital are determined by their 

respective marginal physical products.  Since the overall labor supply is assumed to be constant but 

the capital stock grows along with output, we see that the equilibrium wage rate increases with the 

                                                 
5 We assume that the production function satisfies the Inada conditions (0) 0, (0) , ( ) 0f f f′ ′= → ∞ ∞ →  
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average stock of capital, while the return to capital does not: 

  
,

'( ) ( )
= =

∂
= ≡ ω

∂
j j

j K K L L

F f L K L K
L

      (2a) 

  
,

( ) '( ) ( )
= =

∂
= − ≡

∂
j j

k
j K K L L

F f L Lf L r L
K

     (2b) 

2.2 Consumers 

The economy is populated by a mass 1 of infinitely-lived consumers, indexed by i.  Agents 

are identical in all respects except for their initial endowments of capital, Ki,0, and net international 

bond holdings, Bi,0.  Since the economy is growing we focus on the relative shares of individual i's 

holding of capital and bonds, ( ) ( ) ( ), ( ) ( ) ( ),i i i ik t K t K t b t B t B t≡ ≡  where ( ), ( )K t B t  denote the 

corresponding economy-wide average quantities.  The initial relative endowments have mean 1 and 
standard deviations ,0 ,0,k bσ σ  across agents. 

Consumers have a unit of time that can be allocated to either leisure, li or labor Li ≡ 1- li .  

Agents maximize lifetime utility, which depends on complementary consumption Ci and leisure in 

the following iso-elastic form:6   

0

1max ( ( ) ( ) ) t
i iC t l t e dt

∞ θ γ −β

γ∫ ,   0, 1, 1, (1 ) 1θ γ γθ γ θ> −∞ < ≤ < + <   (3) 

The parameter γ is related to the agent’s inter-temporal elasticity of substitution, 1 (1 )κ γ= − ; θ 

captures the relative importance of leisure to consumption; and β is the instantaneous subjective 

discount rate.   The last two parameter restrictions in (3) ensure the concavity of the utility function 

with respect to C and l.   

Agents accumulate capital subject to convex adjustment (installation) costs for any given 

change, I, of the capital stock.  Specifically, we assume the adjustment costs to be proportional to the 

rate of investment per unit of installed capital, I/K, specified by the following quadratic function:7  
                                                 
6 The complementarity instead of additive separability of consumption and leisure in the utility function preserves 
homogeneity and consistency with a balanced-growth equilibrium (see Turnovsky, 1999, and Ladron-de-Guevara, 
Ortigueira, and Santos, 1999) 
7 The linear homogeneity of this cost function is necessary to sustain steady-state growth. 
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  ( , ) (1 )
2

Φ = + i
i i i

i

IhI K I
K

       (4) 

We assume that capital does not depreciate, so that agent i accumulates capital at the rate 

   =i iK I .        (5) 

Individuals also accumulate net foreign bonds, Bi, which pay an exogenously given world interest 

rate, r, subject to the accumulation equation: 

  (1 ) (1 )
2

i
i i k i i i i

i

IhB K l r K rB C I
K

= ω − + + − − +     (6) 

2.3 Consumer optimality conditions 

The consumer chooses consumption, leisure, investment, and rates of capital and foreign 

bond accumulation to maximize (3) subject to the accumulation equations, (5) and (6).  The 

corresponding first-order optimality conditions with respect to the first three decisions are: 

  1γ− θγ = λi i iC l          (7a) 

  1 ( )i i iC l L Kγ θγ−θ = λ ω         (7b) 

  1−
=i i

i

I q
K h

         (7c) 

where qi is agent i’s shadow price of capital, normalized by her marginal utility of wealth, λi.   

The optimality conditions with respect to Bi and Ki yield the following arbitrage relationships: 

  i

i
r λ
= β−

λ
         (8a) 

  
2( 1)

2
−

+ + =k i i

i i i

r q q r
q q hq

        (8b) 

Equation (8a) is the standard Keynes-Ramsey consumption rule equating the rate of return on 

consumption to the exogenous rate of return on foreign bonds.  Since both r and β are constant, the 

marginal utility λi grows at a constant rate.  Equation (8b) equates the net rate of return on domestic 
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capital – the sum of the flow return, capital gains, and benefits from reduced installation costs 

associated with the new investment and higher capital stock – to the return of the traded bond.  In 

addition, the following transversality conditions must hold:  

  lim 0−β

→∞
λ =t

i i i
t

q K e         (9a) 

lim 0t
i i

t
B e−β

→∞
λ =         (9b) 

Aggregate labor market clearing condition implies: 

  1
01 (1 )= = − = −∑ ∫j i

j
L L l l di        (10) 

Using this condition, asset returns, which we have expressed in terms of L, can equally well be 

written as functions of (1− l), namely 

 ( ) ( ) (1 )l f L f lω ′ ′≡ ≡ − , ( ) ( ) ( ) (1 ) (1 ) (1 )kr l f L Lf L f l l f l′ ′≡ − ≡ − − − −    

implying (1 ) ( ) ( ) (1 ) ( )kl l r l f l f Lω− + = − ≡ . 

2.4 Macroeconomic equilibrium 

From the optimality conditions, together with the individual’s accumulation equation, and the 

corresponding conditions for the aggregate economy, we can derive the macroeconomic equilibrium, 

showing that the economy is in fact always on its balanced growth path.  Details of these derivations 

are provided in the Appendix A.1, where we show that the macroeconomic equilibrium is 

summarized by the pair of equations  

  ( 1)(1 )
( )
l ql r
l h

β γ −⎡ ⎤= − − −⎢ ⎥Σ ⎣ ⎦
      (11a) 

2( ) ( 1)
2

kr lq qr
q q hq

−
= − −        (11b) 

where    1 (1 ) (1 ) ' 1( ) (1 ) 0
(1 ) 1

l fl
l l f l

γ θ γγ− + − −
Σ ≡ + − + >

− −
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As a consequence of the homogeneity of the utility function, the structure of this equilibrium 

is independent of any distributional characteristics. It comprises an autonomous pair of differential 

equations in the aggregate variables, q, l, and is similar to Turnovsky (1999).  Linearizing these 

equations around steady state we can show that the two eigenvalues are negative.  Thus, in response 

to any structural change, q and l always jump so that the aggregate economy is always in steady state.  

Setting 0l q= =  in (11a) and (11b), the aggregate equilibrium values of , ,q lψ  are determined by 

  1
1
r q

h
βψ
γ

− −
= =

−
        (12a) 

2( ) ( 1)
2

kr l q r
q hq

−
+ =         (12b) 

With ( )l t  being constant at all points of time, it then follows from (A.4) that ( )il t  is also constant 

over time.  In addition, the transversality condition (9a) implies r ψ> .  Using (12a) and combining 

this the requirement that the equilibrium price be non-negative, imposes the constraints8 

   0 1q hr< < +  or equivalently 1 r r
h
γ β γ−
+ > >  

 Equation (12a) implies that the equilibrium growth rate is determined by the difference 

between the world interest rate and the rate of time preference multiplied by the intertemporal 

elasticity of substitution.  Given this growth rate, this equation also determines the price of capital 

that ensures that the domestic capital stock will grow at this equilibrium rate.  Having obtained q  

(12b) then determines the allocation of time to labor such that the rate of return on capital equals the 

given world interest rate.   

3. Distributions of wealth, income, and welfare 

3.1 Distribution of wealth 

We now turn to the distribution of wealth.  With q constant over time and identical across 

                                                 
8 These restrictions hold under plausible conditions.  They certainly hold if 0γ < , i.e. if the intertemporal elasticity of 
substitution is less than one, a condition that virtually all empirical studies confirm; see e.g. Guvenen (2006). 
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agents (as shown in Appendix A.1), we define the wealth of agent i at time t by 

  ( ) ( ) ( )i i iV t B t qK t≡ +        (13) 

so that initial wealth is 

   ,0 ,0(0)i i iV B qK≡ +        (13’) 

This definition shows that given asset endowments, ,0 ,0,i iK B , initial wealth is endogenously 

determined in response to a structural change, through the response of q.  Summing (13) and (13’) 

over all agents, the corresponding aggregate quantities are, respectively 

  ( ) ( ) ( )V t B t qK t≡ +        (14) 

   0 0(0)V B qK≡ +        (14’) 

 Denoting individual i's share of aggregate wealth as: i iv V V≡ , in Appendix A.2 we derive 

two crucial results.  First, ( ) 0iv t ≡ , implying that 

   ,0 ,0

0 0

i ii i B qKB qK
B qK B qK

++
=

+ +
 

so that following a structural change and the associated initial jump in q, there is no further evolution 

of the distribution of wealth.  Second,  

  ( 1)
1i il l l vθ

θ
⎛ ⎞− = − −⎜ ⎟+⎝ ⎠

      (15a) 

where the transversality condition implies 

    
1

l θ
>

+ θ
       (15b) 

 Equations (15) imply a positive relationship between relative wealth and leisure, such that the 

relative wealth position of agents is unchanging over time.  Wealth of all agents grows at the same 

rate implying that at any point in time, the share of agent i, ( )iv t , remains equal to her initial  share, 
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,0iv .  The relationship (15a) is the crucial mechanism whereby the agent’s initial relative wealth 

impacts on the distribution of income.  Wealthier agents have a lower marginal utility of wealth.  

They therefore choose to supply less labor and to “buy” more leisure.  In effect, they compensate for 

their larger capital endowment, and the higher growth rate it would support, by providing less labor, 

thereby having an exactly offsetting effect on the growth rate, which is therefore independent of the 

distribution of capital.   

3.2 Intertemporal viability 

 Each agent also needs to satisfy the transversality condition (9b), which in Appendix A.3 

reduces to 

  
0( ) 1

(0)

i
i

i

ll l K
V

r

⎡ ⎤ω − −⎢ ⎥θ⎣ ⎦=
ψ −

       (16) 

Combining this with (15a), this is equivalent to the aggregate viability condition 

  
0( ) 1

(0)

ll l K
V

r

⎡ ⎤ω − −⎢ ⎥θ⎣ ⎦=
ψ −

       (16’) 

implying that the aggregate economy is viable if and only if each individual is intertemporally viable.  

Combining (15b) and (16’), we see that the transversality condition, together with aggregate 

solvency, implies that the economy has net positive wealth, 0 0 0B qK+ > .  

Rewriting (16’) in the form 

  ( ) 00 ( )( )(1 )(0)
l l Kl l KV

r r
ω θω −

+ =
−ψ −ψ

 

it asserts that initial wealth plus the capitalized value of labor income must equal the capitalized 

value of consumption.  Combining with (14’) we obtain 

0

0

( ) 1ll l
B q
K r

⎛ ⎞ω + −⎜ ⎟θ⎝ ⎠= −
−ψ

       (17) 
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Having determined the equilibrium values of ,l q , (17) determines the combination of the initial 

capital stock, K0 , and the initial stock of foreign bonds, B0 , necessary for the equilibrium to be 

intertemporally viable. 9  If the inherited stocks of these assets violate (17), we assume that the 

government engages in an initial trade, described by dB0 + ˜ q dK0 = 0 , to bring about the correct ratio.   

3.3 Relative wealth and income 

Using (13) and (14), the relative wealth of individual i, i iv V V≡ , can be expressed as a 

weighted average of her relative ownership of capital and bonds, i ik K K≡ and i ib B B≡ , namely  

  1 ( 1) ( 1)i i i
B qKv b k

B qK B qK
− = − + −

+ +
     (18) 

Since individual and aggregate variables all share the same growth rates, we can express (18) in 

terms of the initial endowments: 

  ,0 ,01 ( 1) ( 1)i b i k iv b k− = Γ − +Γ −        (18’) 

where  

0 0

0 0

1b k
B K

B K q
Γ ≡ = −Γ

+
 

Thus, bΓ  measures the relative importance of the initial distribution of bond holdings in determining 

the agent’s relative wealth, and 0 0B K  is determined by the intertemporal viability condition (17).  

If 0 0B > , and the country is a net creditor, 0 1, 0 1b k< Γ < < Γ < . 

 From (18’) we see that a structural change that leads to a change in the equilibrium ratio of 

bonds to capital will in general have an effect on agent i’s relative wealth.  The direction of the effect 

will depend upon the agent’s relative endowment of capital and bonds.  For example, an increase in 

the ratio of bonds to capital, bΓ , will raise iv  if and only if i ib k> ; that is, if the agent holds 

                                                 

9 Note that for a creditor country ( 0 0B > ), (17) implies ( )'( ) '( )( 1) ( 1)f l l f l l qr q q hθ + − > − − , while (2b) and (8b) 

yield 2'( )( 1) ( 1) 2f f l l qr q h− − = − − .  Combining these relationships we find ( ) ( )2( ) '( ) 1 2f l f l l q h< θ + − .  That is, 
production must be less than the sum of consumption and the investment cost.  
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relatively more bonds than capital her relative wealth will rise.  This in turn means that if the agent’s 

wealth is above the average, wealth inequality will rise, while if it is below, it will fall. 

We now consider the relative income of an individual having capital stock, iK , and bond 

holdings, iB .  Her gross income from production and foreign interest is (1 )i k i i iY r K wK l rB= + − + , 

while average economy-wide income is (1 )kY r K wK l rB Y rB= + − + = + .  Using (15a) to substitute 

for the individual’s labor supply, we can write the relative income of agent i, i iy Y Y≡ , as  

( )
( ) 11 1 ( 1) ( 1) ( 1)

(1 ) (1 ) (1 )
i k

i i i i

w l l K
Y r l K rBy k v b
Y f l K rB f l K rB f l K rB

θ
θ

⎛ ⎞−⎜ ⎟+⎝ ⎠− ≡ − = − − − + −
− + − + − +

 (19) 

Using (18’) and the equilibrium growth rate, this can be expressed in terms of the initial endowments 

  ,0 ,01 ( 1) ( 1)i b i k iy b k− = Ω − +Ω −       (19’) 

where the respective contributions to relative income from bonds versus capital endowment are 

0 0

0 0 0 0

1( ) ; ( )
1 1b k K

B K r r r q r
f r B K f r B K

θ θψ ψ
θ θ

⎡ ⎤ ⎡ ⎤Ω ≡ − − Ω ≡ − −⎢ ⎥ ⎢ ⎥+ + + +⎣ ⎦ ⎣ ⎦
 

and kr , ψ , q  are determined from the aggregate equilibrium.  In addition we impose the weak 

condition, 0 0 0fK rB+ > , implying that the country has positive gross income.  For a net creditor 

economy, 0 0B > , and for positive equilibrium growth rate, we can show 0, 0b kΩ > Ω > .  Moreover, 

we can further show that the presence of adjustment costs ( 0h > )  

   
0 0

k k

b b

q
B K

Ω Γ
< =

Ω Γ
       (20) 

while in the absence of such costs ( 0h = ) 

   
0 0

1k k

b bB K
Ω Γ

= =
Ω Γ

       (20’) 

 These relationships have implications for the comparative positions of individuals in the 

relative wealth and income distributions.  With no adjustment costs and a net creditor economy, then 

(18’), (19’) and (20’) imply 
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   1 ( 1)b
i i

b

y vΩ
− = −

Γ
 

so that an agent having above (below) average wealth also has above (below) average income.  And 

this will continue to be the case if the agent has above (below) average endowments of both assets.  
But in the presence of adjustment costs, and if, ,0 ,01, 1i ik b− −  lie in the range  

   ,0

,0

1
0

1
ik k

b i b

b
k

−Γ Ω
− < < − <
Γ − Ω

      (21) 

individual i will have above average wealth, but below average income.  This is because with high 

adjustment costs (h >> 0), return from capital investment kr is driven down by arbitrage, which 

disadvantages wealth owners relative to labor.   

3.4 Wealth and income inequality 

 Given the linearity of (18’), wealth inequality, as measured by the standard deviation of its 
distribution, vσ  can be conveniently related to the distributions of the asset endowments, ,0 ,0,k bσ σ  

across the agents and their covariance, ,0bkσ  by 

   
1/ 22 2 2 2

,0 ,0 ,02v b b b k bk k kσ σ σ σ⎡ ⎤= Γ + Γ Γ +Γ⎣ ⎦     (22) 

Likewise, income inequality is given by an analogous measure 

   
1/ 22 2 2 2

,0 ,0 ,02y b b b k bk k kσ σ σ σ⎡ ⎤= Ω + Ω Ω +Ω⎣ ⎦     (23) 

Expressed in this way we see that bΓ , bΩ  are the contributions to wealth and income inequality 

arising from the initial heterogeneity of endowments in bonds, while the same apply to ,k kΓ Ω  with 

respect to the capital endowment.  In general, these components will respond to structural changes. 

Of particular interest is the case where each agent’s relative holding of bonds coincides with 
her relative holdings of capital ( ,0 ,0i ib k= ), so that the heterogeneity of the asset holdings are uniform 

across agents (i.e. 2 2
,0 ,0 ,0b k bkσ σ σ= = ).  In this case (22) and (23) simplify to 

  ,0 ,0v k bσ σ σ= =        (22’) 
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   ,0 ,0
0 0

'( ) 1
( )(1 )y b k k k

f
f r B K

σ σ σ
θ

⎛ ⎞
= Ω +Ω = −⎜ ⎟+ +⎝ ⎠

   (23’) 

In this case vσ  is independent of any structural changes, while income inequality is less than wealth 

inequality.  Substituting (17) into (23’), we can obtain the following 

 ( ) ( )
( )

2

2

'( )( (1 ) 2 ( )1
1 { '[ (1 ) ] 2 ( ) }

y i

v i

f r l h ry
v f rl l h r

σ θψ θ θ θ ψ ψ
σ θ ψ θ ψ ψ

+ − + − −−
= =

− − − − −
   (24) 

While in general, 0 ( 1) ( 1) 1i iy v< − − < , we cannot rule out ( 1) ( 1) 0i iy v− − < .  From (24) this will 

occur for l  lying in the range 

   *

1
l l θ

θ
> >

+
        (25a) 

where 

   * 2( )' ( ) 0
1 2

r hf l rθψ θ ψ ψ
θ θ
+ ⎛ ⎞− = − >⎜ ⎟+⎝ ⎠

    (25b) 

Thus, inequality (25a) may occur if the adjustment cost term in (25b) is sufficiently large.  In this 

case, we obtain a reversal in ranking for income from wealth, i.e. an individual having above average 

wealth will have below average income.  With the agent having above (below) endowments in both 

assets this can be reconciled with (21) by observing that (25b) implies that the country is a net debtor.  

Finally, if there no adjustment costs, 0h = , and (25b) reduces to the transversality condition (15b). 

3.5 Welfare Inequality 

 The structural approach allows us to compute individual welfare and to analyze its 

distribution.  By definition, an agent’s welfare equals the value of the inter-temporal utility function 

(3) evaluated along the equilibrium growth path.  Substituting (A.1) into (3) and evaluating, the 
optimized utility for an agent starting with asset endowments, ,0 ,0,i iK B  can be expressed as 

(1 )

,0 0
0 0

( ) ( )1 1( ) ( )
( )

t ti i
i i i i

L l K L lX K C l e dt l e dt K
γ γ θ

θ γ β θ β γ
γ

ω ω
γ γ θ γθ β γψ

∞ ∞ +
− −⎛ ⎞= = =⎜ ⎟ −⎝ ⎠∫ ∫   (26) 

The welfare of agent i relative to that of the individual with average wealth and therefore supplying 
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average leisure, l , is 

(1 )

( ) i
i

lx v
l

γ θ+
⎛ ⎞= ⎜ ⎟
⎝ ⎠

       (27) 

Now using (15a), we can express relative welfare in the form 

  
(1 )

1( ) 1 1 ( 1)
1i ix v

l

γ θ
θ ν
θ

+
⎡ ⎤⎛ ⎞= + − −⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦

      (28) 

 Consider now two individuals having relative wealths 2 1v v> .  Individual 2 will have a 

higher mean income.  The transversality condition (15b) implies that if γ > 0, then their relative 

welfares satisfy 2 1( ) ( ) 0x v x v> > , while if γ < 0 , 1 2( ) ( ) 0x v x v> > .  However, in the latter case 

absolute welfare, as expressed by (26) is negative.  Thus in either case, the better endowed agent will 

have the higher absolute level of welfare. 

 We can now compute a measure of welfare inequality.  A natural metric for this is obtained 

by applying the following monotonic transformation of relative lifetime utility, enabling us to 

express the relative utility of individual i as 

  1 (1 )( ) ( ) 1 ( )( 1)i i ix v u v l vγ η ϕ+ = = + −  where  1( ) 1
1

l
l

θϕ
θ

≡ −
+

  (29) 

From (15a), 0 ( ) 1lϕ< < , and is an increasing, concave function in l.  Welfare inequality, expressed 

in terms of equivalent units of wealth, can then be measured by the standard deviation of relative 

utility 

    ( )u vlσ ϕ σ=        (30) 

It is straightforward to show that if growth is positive then v y uσ σ σ> > , so that income inequality 

exceeds welfare inequality.  The reason is the concavity of the utility function so that increases in 

income yield proportionately smaller increases in welfare. 

4. Summary of equilibrium 

 As noted, the economy is always on its balanced growth path, which for convenience we may 
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summarize as follows, highlighting its recursive structure: 

Equilibrium growth rate 

   
1
r βψ

γ
−

=
−

        (31a) 

Equilibrium rates of return 

   2(1 )
2k
hr r hψ ψ= + −        (31b) 

Factor returns 

  ( ) (1 ) (1 ) (1 )kr l f l l f l′= − − − − ; ( ) (1 )w l f l′= −    (31c) 

Intertemporal solvency 

    0

0

1( ) 1 1L l
B q
K r

ω
θ

ψ

⎡ ⎤⎛ ⎞+ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦= −
−

     (31d) 

Wealth inequality     

   
1/ 22 2 2 2

,0 ,0 ,02v b b b k bk k kσ σ σ σ⎡ ⎤= Γ + Γ Γ +Γ⎣ ⎦     (31e) 

where 

  0 0

0 0 0 0

,   1k b k
B Kq

q B K q B K
Γ = Γ = = −Γ

+ +
      

Income inequality  

   
1/ 22 2 2 2

,0 ,0 ,02y b b b k bk k kσ σ σ σ⎡ ⎤= Ω + Ω Ω +Ω⎣ ⎦     (31f) 

where 

 0 0

0 0 0 0

1 ( ) ,   ( )
1 1k k b

B Kr q r r r
f rB K f rB K

θ θψ ψ
θ θ

⎡ ⎤ ⎡ ⎤Ω = − − Ω = − −⎢ ⎥ ⎢ ⎥+ + + +⎣ ⎦ ⎣ ⎦
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Welfare inequality 

   11
1u vl
θσ σ
θ

⎛ ⎞= −⎜ ⎟+⎝ ⎠
       (31g) 

In addition the following restrictions apply: 

1. The transversality condition implies r ψ> , and in turn is equivalent to (15a) and 

0 0 0B qK+ >  (country has positive net wealth). 

2. 0 0 0f rB K+ >  (country has positive net income). 

5. Structural changes and growth-inequality tradeoffs 

In Figs. 1 and 2 we illustrate the growth-inequality tradeoffs in response to three structural 

shocks: (i) an increase in productivity, A; (ii) an increase in savings generated by a reduction in the 

rate of time discount, β ; and (iii) an increase in the world interest rate, r.  We consider two cases: (i) 

no adjustment costs, 0h = , and (ii) positive adjustment costs.  We also restrict ourselves to the case 

of a uniform initial asset endowment, ,0 .0i ib k=  (for each i). 

5.1 No adjustment costs 

 Setting 0h = , involves two modifications to the equilibrium laid out in (31).  First, the rate 

of return to capital, ( )kr l r= , is constant, implying that employment/leisure is determined by this 

equilibrium condition as well.  Second, the absence of adjustment costs implies 1q = . 

 The PP and RR lines in Fig.1 plot (31a) and (31b), respectively, with 0h =  in the latter.  

Their point of intersection, A, determines the initial equilibrium growth rate.  The locus FF relates 

the rate of return to capital to l, in accordance with (31c).  Its concavity is a direct property of the 

production function.  Given Kr r= , the corresponding allocation of time to leisure is denoted by B.  

The lower right quadrant plots income and welfare inequality by WY and WU, respectively, in both 

cases the (fixed) wealth inequality being normalized to 1vσ = .  These represent (31f) [after 

substituting for (31e)] and (31g) respectively and can be easily shown to have the indicated 
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concavity properties. 10   The equilibrium income inequality depicted by D exceeds the welfare 

inequality, C, consistent with the formal properties derived earlier. 

5.1.1 Increase in productivity A 

 A positive productivity shock is represented by an outward rotation in the FF locus to FF’.  

The equilibrium growth rate remains unchanged and the enhanced productivity is enjoyed in the 

form of increased average leisure illustrated by the move from B to B’.  The increase in leisure 

(decrease in labor supply) raises the wage rate, in response to which wealthier people take relatively 

more leisure [see (15a)].  Their relative labor income therefore declines.  However, an increase in 

their relative interest income tends to offset this drop.  As dictated by the intertemporal viability 

condition [see (17) or (31d)], the increase in the wage rate and the average consumption flow it 

generates requires an increase in the relative foreign bond holing.  This is met by selling capital, and 

the resulting interest income tends to increase income inequality.  Overall, this latter effect 

dominates, and income inequality increases from D to D’.  Correspondingly, welfare inequality 

increases from C to C’.  Overall, we see that a rise in productivity results in no growth effect, yet an 

increase in both income and welfare inequality. 

 5.1.2 Decrease in rate of time preference β  

A decline in β  is represented by a leftward shift in the PP curve to P’P’ and a downward 

rotation in the WY curve to WY’.  The equilibrium growth rate increases to A”, while leisure 

remains unchanged at B, leaving welfare inequality also unchanged at C.  The higher growth rate 

raises the capitalized value of the trade balance deficit, which requires an increase in bonds to 

finance [see (31d)], increasing income inequality from D to D”.  Under this scenario, a positive 

growth is accompanied with higher income inequality but no change in the distribution of welfare. 

                                                 
10 WU can be immediately shown to be concave.  WY will be concave if and only if 0r θψ+ ≥ , which will hold 
except in extremes cases of contraction. 



 19

5.1.3 Increase in foreign interest rate, r 

A rise in r shifts the RR curve upward to R’R’, the PP leftward to P’P’, and rotates WY 

downward to WY’.  The shift in equilibrium from A to A”’ implies an increase in both the 

equilibrium return to capital and in the growth rate.  The higher return to capital is the result of an 

increase in labor supply, with the corresponding reduction in leisure from B to B”’ having the 

additional effect of reducing welfare inequality from C to C”’.  The new equilibrium level of income 

inequality is at D”’.  While this is drawn in Fig. 1 as a reduction in inequality, whether D”’ lies 

above or below D depends, in part, upon the elasticity of substitution in production, as we 

demonstrate Section 6.  In short, an exogenous rise in the foreign interest rate enhances growth 

domestically, has an ambiguous effect on income inequality, yet tightens the welfare distribution. 

 5.2  Positive adjustment costs 

 The three examples above demonstrate that the growth-inequality tradeoff – whether  

positive, negative, or unrelated – depends crucially on the sources of the shocks and channels of 

transmission.  Fig. 2 analyzes the same structural changes and illustrates the relevant equilibria under 

positive adjustment costs.  The two main differences from Fig. 1 are that the RR curve now 

describes the quadratic locus (31b), and that the WY curve now commences from a value ( 1) 0iy − < , 

in accordance with (25a).  In order to satisfy the transversality condition, r ψ> , the intersection of 

the PP and RR curves in the NW quadrant must always be to the right of the dashed line.  Thus the 

initial equilibrium growth rate and rate of return on capital is at A.  Given that value of Kr , B yields 

the corresponding equilibrium leisure, with C and D yielding the resulting welfare and income 

inequality.  The three structural changes can be represented by shifts in the various curves as in Fig. 

1, and generally the same qualitative conclusions prevail.  

6. Numerical Results 

To obtain further insights into the growth-income inequality relationship we provide some 

numerical examples.  To do so, we employ the aggregate equilibrium CES production function, 
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1
(1 )Y A L K

ρρα α
−−⎡ ⎤= + −⎣ ⎦  where 1 (1 )ε ρ= +  denotes the elasticity of substitution, and use the 

following, mostly standard, parameter values: 

Parameter Values 
 

Production  0.65;  0.65;A α= =  0.8,1.0,1.2;ε =  0,10h =  
Preferences 0.04;  1.5;  1.5β γ θ= = − =  
Foreign interest rate 0.075r =  

The choice of distributive parameter 0.65α =  is conventional.  It implies that for the Cobb-Douglas 

case 65% of output accrues to labor, consistent with empirical evidence.  The rate of time preference 

of 4% is commonly used in calibrations for the US economy, while the choice of the elasticity on 

leisure, 1.5η = , is standard in the real business cycle literature.  For 0.8,ε =  a value close to recent 

consensus estimates, it implies that around 72% of time is devoted to leisure, generally consitent 

with empirical evidence.  Estimates of the intertemporal elasticity of substitution (IES) are more 

variable throughout the literature.  With few exceptions they lie in the range (0,1) and our choice of 

0.4 is in line with early estimates based on consumption.11  The choice of the scale parameter A = 

0.65, is set to yield a plausible value for the equilibrium capital-output ratio.   

Tables 1 and 2 report the equilibrium growth rates, and measures of wealth and income 

inequality in the case of (i) zero adjustment costs and (ii) 10h = , respectively.  In both cases we 

consider three values of the elasticity of substitution, 0.8,  1,  1.2ε = .  Taking the Cobb-Douglas 

case, 1ε =  as a benchmark, the comparison with 0.8,  =1.2ε ε=  suggests that even small deviations 

from this benchmark, well within typical sampling errors, can yield different implications for the 

growth-inequality tradeoff. 

In each panel, the first line reports the benchmark equilibrium for our base parameters.  In 

addition to reporting the equilibrium growth rate and time allocation to leisure, it all indicates the 

sensitivity of wealth inequality and income inequalilty to the underlying heterogeneity in the 

endowments of capital and bonds.  The following three lines report sequentially (i) an increase in the 

                                                 
11More recent empirical evidence, based on stock market data, suggests that it is substantially higher, perhaps 2/3 or even 
higher; see, for example, the discussion in Guvenen, (2006).  Our qualitative conclusions are insensitive to the chosen 
value of γ . 
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level of technology, A, from 0.65 to 0.75; (ii) a decrease in the rate of time preference from 0.04 to 

0.02; (iii) an increase in the world interest rate from 0.075 to 0.085.   

Examination of the tables suggests the following pattern of numerical effects. 

6.1 Increase in A 

(1a)   An increase in A will decrease (increase) wealth inequality if the endowment of 

capital is more (less) unequal than that of bonds.  The sensitivity declines with the elasticity 

of substitution.  This applies independently of adjustment costs. 

(1b)   An increase in A reduces the impact of capital stock inequality on income inequality, 

but increases the impact of bond inequality on income inequality.  Overall, the latter effect is 
dominant, so that with uniform asset inequality ( ,0 ,0i ib k= ), an increase in A raises income 

inequality.  In all cases, the sensitivity declines with the elasticity of substitution and is 

independent of adjustment costs. 

(1c) Since the growth rate is independent of A, there is no growth-inequality tradeoff. 

6.2 Decrease in β  

(2a)   In the absence of adjustment costs, a decrease in β  will decrease (increase) wealth 

inequality if the endowment of capital is more (less) unequal than that of bonds.  With 

adjustment costs, a decrease in β  will increase (decrease) wealth inequality if the 

endowment of capital is more (less) unequal than that of bonds.  In this case the adjustment 

costs give a reversal.  The sensitivity declines with the elasticity of substitution. 

(2b)   In the absence of adjustment costs, a decrease in β  always increases the impact of 

bond inequality and generally that of capital inequality on income inequality.  In all cases, 

the sensitivity declines with the elasticity of substitution, and indeed for 1.2ε ≥  a decrease in 

β  causes the effect of capital inequality to decline.  In all cases, the effect of bond inequality 

dominates so that with uniform inequality, an increase in A raises income inequality.   

With adjustment costs, a decrease in β  decreases the impact of bond inequality on 
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income inequality for low values of ε , and increases it if ε  is sufficiently large (certainly 

greater than unity).  In all cases it increases the effect of capital inequality on income 

inequality.  In all cases, the bond effect dominates, so that with uniform inequality, a 

decrease in β  reduces income inequality for low values of ε  and increases it asε  increases. 

 (2c)   In most cases the increase in the growth rate resulting from a decrease in β  is 

associated with an increase in income inequality, implying a positive growth-inequality 

tradeoff.  But there are exceptions; for example if there are adjustment costs and the elasticity 

of substitution is low.  

6.3 Increase in r 

(3a)   An increase in r  will increase (decrease) wealth inequality if the endowment of 

capital is more (less) unequal than that of bonds.  The sensitivity declines with the elasticity 

of substitution.  For low values of ε , in the presence of adjustment costs, it causes the 

country to become an international debtor. 

(3b)   An increase in r  increases the impact of capital inequality and decreases that of bond 

inequality on income inequality.  In all cases, the effect of bond inequality dominates so that 

with uniform inequality, an increase in r reduces income inequality.  The sensitivity declines 

with the elasticity of substitution.   

(3c)   To the extent that income inequality is due to heterogeneity of capital (bond) 

endowment, an increase in r generates a positive (negative) growth-income inequality In the 

presence of adjustment costs and tradeoff.  In all cases the bond effect dominates, so that 

with uniform inequality, an increase in r generates a negative growth-inequality tradeoff. 

7. Concluding comments 

Despite intensive research effort, the relationship between growth and inequality remains 

largely unresolved.  Empirical evidence is inconclusive, some studies finding these two variables to 

be negatively related, while others obtain a positive relationship.  Upon reflection, the ambiguity of 
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the empirical findings is not surprising when one considers that both variables are endogenous, so 

that their co-movements are likely to depend upon the underlying structural changes impinging on 

the economy.   

The existing literature analyzes the growth-inequality relationship within a closed economy.  

In this paper we have considered a small open economy which has access to a perfectly competitive 

world financial market.  Output is produced by an AK technology and inequality is driven by agent 

heterogeneity, the particular form of which we consider pertains to the agents’ initial endowments of 

capital and foreign bond holdings.  The key mechanism whereby this initial distribution of capital 

endowments influences the distribution of income is through their differential wealth effects, and 

their impact on labor supply.   

The extension to the small open economy enriches the potential growth-inequality tradeoffs 

from those of the corresponding closed economy.  First, by impacting on the relative price of capital, 

to the extent that the relative endowments of capital differs from that of bonds, structural shocks will 

affect wealth inequality, as well as income inequality.  Overall, whether a structural change is 

associated with a positive or negative growth-inequality tradeoff depends critically upon whether the 

underlying heterogeneity originates primarily with the initial endowment of bonds or with capital.   

In this respect the ambiguity of our results contrasts with that of the analogous closed 

economy model, which tended to support a positive relationship between inequality and growth for 

most structural changes; García-Peñalosa and Turnovsky (2006).  But at the same time it is generally 

more consistent with the ambiguous relationships that characterize the existing empirical evidence. 

Finally, we conclude with a caveat.  While the simple AK model has the advantage of 

providing a tractable framework for highlighting the growth-inequality relationship, it also has the 

limitation that the economy is always on its balanced growth path.  It therefore cannot address issues 

pertaining to the dynamics of wealth and income distribution.  This is particularly important if one 

wishes to study the distributional aspects of foreign aid which clearly evolve gradually over time.  

Building on the dynamic model of Turnovsky and García-Peñalosa (2008), we believe that the 

approach developed in this paper can be adapted to provide a tractable framework for investigating 

this important issue.   



Equilibria
Initial: (A, B, C, D)
Increase in A: (A, B′, C′, D′)
Decrease in β: (A″, B, C, D″)
Increase in r: (A′″, B′″, C′″, D′″)

Figure 1. Equilibria under No Adjustment Costs
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ψ and l are the equilibrium growth rate and time allocation to leisure, respectively;
rk is the rate of return on capital; σy and σu measure income and welfare inequality, 
respectively.  See text for details.



Equilibria
Initial: (A, B, C, D)
Increase in A: (A, B′, C′, D′)
Decrease in β: (A″, B″, C″, D″)
Increase in r: (A″′, B″′, C″′, D″′)

Figure 2: Equilibria under Positive Adjustment Costs
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ψ and l are the equilibrium growth rate and time allocation to leisure, respectively;
rk is the rate of return on capital; σy and σu measure income and welfare inequality, 
respectively.  See text for details.
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Table 1:  0h =  

 
(i) Elasticity of substitution 0.8ε =  

 

 
 

(ii) Elasticity of substitution 1ε =  
 

 
 

(iii) Elasticity of substitution 1.2ε =  
 

 

Wealth inequality Income inequality   
ψ  

 
l  

kΓ  bΓ  k bΓ +Γ kΩ  bΩ  k bΩ +Ω
Benchmark 

0.65, 0.04, 0.075A rβ= = =  
 

0.014 
 

0.726 
 

0.413 
 

0.587 
 
1 

 
0.103 

 
0.146 

 
0.249 

Increase A  to 0.75 0.014 0.766 0.257 0.743 1 0.078 0.226 0.304 
Decrease β  to 0.02 0.022 0.726 0.359 0.641 1 0.108 0.192 0.300 
Increase r  to 0.085 0.018 0.685 0.707 0.293 1 0.136 0.056 0.192 

Wealth inequality Income inequality   
ψ  

 
l  

kΓ  bΓ  k bΓ +Γ kΩ  bΩ  k bΩ +Ω
Benchmark 

0.65, 0.04, 0.075A rβ= = =  
 

0.014 
 

0.819 
 

0.218 
 

0.782 
 
1 

 
0.079 

 
0.285 

 
0.364 

Increase A  to 0.75 0.014 0.854 0.150 0.850 1 0.060 0.340 0.400 
Decrease β  to 0.02 0.022 0.819 0.189 0.811 1 0.081 0.345 0.426 
Increase r  to 0.085 0.018 0.780 0.311 0.689 1 0.104 0.230 0.334 

Wealth inequality Income inequality   
ψ  

 
l  

kΓ  bΓ  k bΓ +Γ kΩ  bΩ  k bΩ +Ω
Benchmark 

0.65, 0.04, 0.075A rβ= = =  
 

0.014 
 

0.888 
 

0.146 
 

0.854 
 
1 

 
0.063 

 
0.368 

 
0.431 

Increase A  to 0.75 0.014 0.893 0.135 0.865 1 0.061 0.388 0.449 
Decrease β  to 0.02 0.022 0.888 0.127 0.873 1 0.063 0.432 0.495 
Increase r  to 0.085 0.018 0.855 0.200 0.800 1 0.083 0.332 0.415 



 
Table 2:  10h =  

 
(i) Elasticity of substitution 0.8ε =  

 

 
 

(ii) Elasticity of substitution 1ε =  
 

 
 

(iii) Elasticity of substitution 1.2ε =  
 

 

Wealth inequality Income inequality   
ψ  

 
l  

kΓ  bΓ  k bΓ +Γ
 

kΩ  bΩ  k bΩ +Ω
 

Benchmark 
0.65, 0.04, 0.075A rβ= = =  

 
0.014 

 
0.687 

 
0.716 

 
0.284 

 
1 

 
0.130 

 
0.053 

 
0.183 

Increase A  to 0.75 0.014 0.733 0.383 0.617 1 0.097 0.160 0.257 
Decrease β  to 0.02 0.022 0.668 0.870 0.130 1 0.157 0.024 0.181 
Increase r  to 0.085 0.018 0.627 2.778 -1.778 1 0.190 -0.126 0.064 

Wealth inequality Income inequality   
ψ  

 
l  

kΓ  bΓ  k bΓ +Γ kΩ  bΩ  k bΩ +Ω
Benchmark 

0.65, 0.04, 0.075A rβ= = =  
 

0.014 
 

0.782 
 

0.318 
 

0.682 
 
1 

 
0.101 

 
0.221 

 
0.322 

Increase A  to 0.75 0.014 0.825 0.207 0.793 1 0.075 0.295 0.370 
Decrease β  to 0.02 0.022 0.764 0.339 0.661 1 0.116 0.238 0.354 
Increase r  to 0.085 0.018 0.723 0.581 0.419 1 0.145 0.108 0.253 

Wealth inequality Income inequality   
ψ  

 
l  

kΓ  bΓ  k bΓ +Γ kΩ  bΩ  k bΩ +Ω
Benchmark 

0.65, 0.04, 0.075A rβ= = =  
 

0.014 
 

0.856 
 

0.206 
 

0.794 
 
1 

 
0.081 

 
0.320 

 
0.401 

Increase A  to 0.75 0.014 0.894 0.139 0.861 1 0.059 0.375 0.434 
Decrease β  to 0.02 0.022 0.840 0.213 0.787 1 0.091 0.355 0.446 
Increase r  to 0.085 0.018 0.802 0.332 0.668 1 0.116 0.242 0.358 



A1 

Appendix 

A.1 Derivation of macroeconomic equilibrium 

We begin by dividing (7b) by (7a) to obtain 

   θCi = ω(l)liK        (A.1) 

and taking the time derivative of this equation yields   

  '( )
( )

ω
− = +

ω
i i

i i

C l l l l K
C l l l K

        (A.2) 

Next, taking the time derivative of equation (7a) and combining it with (8a) we see that all agents 

will choose the same growth rate for their marginal utility regardless of their capital endowment: 

   ( 1) i i i

i i i

C l r
C l

λ
γ − + θγ = = β−

λ
      (A.3) 

Since equations (A.2) and (A.3) hold for all agents i, it then follows that all agents will choose the 

same growth rates for their individual consumption and leisure.  Moreover, aggregating over the 

individuals, it follows that aggregate consumption, C, and leisure, l, will grow at the same rate, i.e. 

   ;    for = =i i

i i

C lC l i
C C l l

       (A.4) 

Aggregating (A.1) over the i agents, the following aggregate consumption-capital ratio is obtained: 

   ( )θ = ω
C l l
K

        (A.1’) 

We next consider the growth rate of the aggregate capital stock.  Combining equation (7c), 

with (5), we can express individual i’s growth rate of private capital as  

  1( ) i i
i

i

K qt
K h

−
ψ ≡ =         (A.5) 

which implies that at time t, agent i’s capital stock has reached the level  



A2 

  0
( )

,0( )
t

i s ds
i iK t K e

ψ∫=         (A.6)  

Combining equations (8a) and (A.3), we can express the transversality condition (9) as 

 0 0
( ) ( )( )

0 ,0 0 ,0lim ( ) lim ( ) 0
t t

i is ds s ds rtr t t
i i i it t

q t e K e e q t K e
ψ ψ −β− −β

→∞ →∞

∫ ∫λ = λ =    (A.6’) 

which means that 0 ( )t

i s ds rtψ <∫ . 

Now consider any two individuals i and j and subtract their respective capital returns 

equation (8b).  This yields the following equation 

  
2 2( 1) ( 1)

( ) ( )
2

− − −
− + = −i j

i j i j
q q

q q r q q
h

     (A.7) 

Letting  x ≡ qi – qj,, we can rewrite (A.7) in the form 

   
( 2)

2
+ −

+ =i jx q q
x rx

h
, 

and using (A.5) we can obtain the following solution for ( )x t : 

  
1
2 0

( ( ) ( ))

0( )
t

i jrt s s ds
x t x e

− ψ +ψ∫= .       (A.8) 

Since we know from above that 0 ( )t
i s ds rtψ <∫  for all i, the only stable solution to (A.8) is ( ) 0x t ≡ , 

implying that qi =qj = q  for all individuals i and j, and therefore the aggregate.  Hence, the growth 

rate of aggregate capital equals the common growth rates of all individual capital stocks, namely 

   1( ) i

i

KK qt
K K h

−
ψ ≡ = =       (A.5’) 

Taking the time derivative of equation (1b), and substituting from eq. (A.5’), we obtain 

  Y K f l
Y K f

′
= −

1 (1 ) '
(1 )

q l f l
h f l
− −

= −
−

     (A.9) 

Next, differentiating the equilibrium consumption-wealth ratio, yields 
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1

C Y l l
C Y l l
− = +

−
       (A.10) 

We can then combine equations (A.10), (A.9), (A.4) and (A.3), to express the evolution of l in terms 

of the current level of q and l: 

  1 (1 ) '( 1)
(1 ) 1

q l f l l l l r
h f l l l l

γ θγ β
⎡ ⎤− −

− − + + + = −⎢ ⎥− −⎣ ⎦
 

Rearranging terms in this equation and substituting qi = q into (8b), the macroeconomic equilibrium 

is summarized by the pair of equations  

  ( 1)(1 )
( )
l ql r
l h

β γ −⎡ ⎤= − − −⎢ ⎥Γ ⎣ ⎦
      (A.11a) 

2( ) ( 1)
2

kr lq qr
q q hq

−
= − −        (A.11b) 

where    1 (1 ) (1 ) ' 1( ) (1 ) 0
(1 ) 1

l fl
l l f l

γ θ γγ− + − −
Γ = + − + >

− −
   

A.2 Distribution of wealth  

With q identical and constant across agents, we define the wealth of agent i, iV  by 

  i i iV B qK≡ +         (A.12) 

the time derivative of which is 

   i i iV B qK≡ +         (A.13) 

Using (7c), and (11), and the symmetry condition for q, we can write the individual budget 

constraint (6) as: 

  
2 1( )[1 ] [ ( )]
2

i
i i k i i

l qB l l K r K rB
h
−

= ω − − + − +
θ

    (A.14) 

Substituting (A.14), (5) and (7c) above, along with equation (8b) into (A.13) yields 
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2 2( 1) 1 ( 1)( ) 1

2 2
i

i i i i
l q q q qV l l K rq K rB

h h h
⎛ ⎞− − −⎛ ⎞= ω − − + − − + +⎜ ⎟⎜ ⎟ ⎜ ⎟θ⎝ ⎠ ⎝ ⎠

  

Enabling us to express the growth rate of agent i’s wealth in the form 

( ) 1i i
i

i i

V l Kr l l
V V

⎛ ⎞= +ω − −⎜ ⎟θ⎝ ⎠
       (A.15) 

Aggregating (A.15) over all individuals, the aggregate wealth V grows at: 

  ( ) 1V l Kr l l
V V

⎛ ⎞= +ω − −⎜ ⎟θ⎝ ⎠
       (A.16) 

Denoting individual i's share of aggregate wealth as: i
i

Vv
V

≡ , equations (A.15) and (A.16) 

imply that its dynamics 

i i

i i

v V V
v V V
≡ −  

can be described by 

  ( ) ( ) 1 1 ( )i
i i i

lK lv t l l l v t
V

ω
θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞= − − − − −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
     (A.17) 

With il , l both constants, this is a simple linear differential equation, the properties of which depend 

upon the coefficient of ( )iv t , and which we can determine from the transversality condition.  Adding 

the transversality conditions (9a) and (9b), we  see: 

lim ( ) lim 0t t
i i it t

qK B e V e−β −β

→∞ →∞
λ + = λ =    

Summing over the individuals leads to the aggregate condition: 

0lim lim 0t rt

t t
Ve Ve−β −

→∞ →∞
λ = λ =   

which implies that V V r< .  It then follows from (A.16), that: 

    
1

l θ
>

+ θ
       (A.18) 
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 Now returning to (A.17) we see from (A.18) that the coefficient of ( )iv t  is positive implying 

that the only solution consistent with long-run stability and the transversality condition is that the 

right hand side of (A.17) be zero, so that ( ) 0iv t =  for all time.  Setting the right hand side of (A.17) 

to zero, implies that agents select their respective leisure, il , in accordance with the “relative labor 

supply” function 

( 1)
1i il l l vθ

θ
⎛ ⎞− = − −⎜ ⎟+⎝ ⎠

       (A.19) 

From 0iv = , we know ,0 ,0

0 0

i ii i B qKB qK
B qK B qK

++
=

+ +
, so that after an initial jump following a structural 

change there is no further evolution of the distribution of wealth. 

A.3 Intertemporal viability 

Solving (A.5) for 0( ) tK t K eψ=  and substituting into equation (A.15), we may rewrite the 

latter as 

0( ) 1 ti
i i i

lV rV l l K eψ⎛ ⎞= +ω − −⎜ ⎟θ⎝ ⎠
     (A.20) 

Starting from the initial condition, (0)iV , the solution to (A.20) is  

0

0

( ) 1( )[1 ]
( ) (0)

ii
ii

rt t
i i

ll l ll l K
V t V e K e

r r
ψ

⎡ ⎤⎡ ⎤ ω − −ω − − ⎢ ⎥⎢ ⎥ θ⎣ ⎦θ= − +⎢ ⎥ψ − ψ −⎢ ⎥
⎣ ⎦

   (A.21) 

In order for the transversality condition, lim ( ) 0rt
it

V t e−

→∞
= , to hold, we require 

  
0( ) 1

(0)

i
i

i

ll l K
V

r

⎡ ⎤ω − −⎢ ⎥θ⎣ ⎦=
ψ −

       (A.22) 

and substituting into (A.21) and aggregating we see 

   ( ) ( )
( ) ( )

i

i

V t V t
V t V t

= = ψ        (A.23) 
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so that wealth grows at the same rate as capital.  It then follows from (12) and (13) that 

    ( ) ( )
( ) ( )

i

i

B t B t
B t B t

= = ψ        (A.24) 

bonds grow at the same constant rate. 

Now consider (A.19) and rewrite it in the form: 

   01 1 (0)i
i i

l ll V l V
θ θ

⎛ ⎞ ⎛ ⎞− − = − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

     (A.25) 

Substituting this expression into (A.22) we may re-express the feasibility condition in the form 

0

( ) 1
(0) 0

ll l
V K

r

⎛ ⎞ω − −⎜ ⎟θ⎝ ⎠+ =
−ψ

      (A.26) 

Rearranging, we see that in order for the economy to be intertemporally viable, the initial ratio of 

bonds to capital must satisfy the relationship 

   0

0

1( ) 1 1l l
B q
K r

⎛ ⎞⎛ ⎞ω + −⎜ ⎟⎜ ⎟θ⎝ ⎠⎝ ⎠= −
−ψ

      (A.27) 

Equation (A.25) implies that the economy is viable in the aggregate if and only if each individual is 

intertemporally viable. 
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