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Abstract

Several recent papers conclude that GDP is trend stationary,
implying that all shocks are transitory. We re-examine the evidence in
light of test size distortion due to data-based lag selection and departures
from the maintained hypothesis of temporal homogeneity, and find both
effects trigger false rejections of the unit root hypothesis when it is true
and signal the presence of permanent shifts in trend that did not occur.
Trend stationarity is not supported by the more homogeneous post-war
data, but if imposed implies cycles of implausible duration and pattern -
1997 output was 8% below trend.
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Several recent papers have brought the literature full circle on the
issue of whether the trend in U.S. real GDP is deterministic or stochastic.
The modeling of aggregate output as transitory fluctuation around a
deterministic trend was routine in empirical work until Nelson and
Plosser (1982) showed that data for 1909-70 were consistent with the
hypothesis that the trend is instead a non-stationary stochastic process
akin to a random walk. Such processes contain a unit root in their
autoregressive representation and require first differencing for
stationarity. The model estimated by Nelson and Plosser implies that the
stochastic trend contributes more to the variation in output than does
the transitory component. They argued that an economic implication of
this finding is that real shocks are much more important than previously
thought, since it is presumably real shocks that impact the trend while
monetary and fiscal shocks have only transitory effects.

Perron (1989) argued that by failing to allow for structural change,
Nelson and Plosser vastly overstated the frequency of permanent shocks.
He found that the same data reject the stochastic trend hypothesis in
favor of the deterministic alternative if a break in the level of the trend is
allowed to occur at 1929. His model implies that there has been one
permanent shock to output during the 1909-70 period, that being a
negative one, and that all other shocks have been transitory. Zivot and
Andrews (1992) showed that this finding still holds after critical values
are adjusted to reflect data-based selection of the break date.

More recently, Ben-David and Papell (1995), Cheung and Chinn
(1997), and Diebold and Senhadji (1996) have conducted tests with
longer time series, extending U.S. output data back to 1870 and forward
to the more recent past. All find that the longer time series strongly reject
the stochastic trend hypothesis in favor of a deterministic trend without
breaks. The implicit argument in these papers is that rejection of the unit
root hypothesis can be attributed to an increase in power derived from a
longer sample.  These papers would thus suggest that as more data has
become available, the evidence has become sharper, pointing now in the
direction of determinism, leaving no role for permanent shocks.

Whether the trend in aggregate output is deterministic or stochastic
has far-reaching implications for modeling the economy and for judging
the success of macro-stabilization policy. The deterministic trend view
implies that it is only because of transitory shocks, presumably primarily
monetary and fiscal in origin, that the economy deviates from a smooth,
constant-growth-rate path. The performance of monetary policy should
then be measured by its success in achieving small departures from that
path. If, on the other hand, shocks to the trend component are an
important source of macro-economic fluctuations, then the modeling and
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identification of real shocks becomes critical for the conduct and
evaluation of monetary policy. The two views of trend also have strikingly
different implications for long run uncertainty: under the deterministic
view, long run uncertainty is limited by the stationarity of the cycle,
while under the stochastic trend view, uncertainty about future output
grows without bound.

This paper examines the robustness of recent findings with respect to
two issues: the finite sample implications of data-based model
specification and the effect on test size of plausible departures from the
maintained hypothesis that the data are generated by a homogeneous
process. Section 2 of the paper reviews standard unit root tests on U.S.
real GDP 1870-1994 and examines the data for homogeneity across sub-
periods. Section 3 presents Monte Carlo experiments designed to study
the two issues of size and robustness to departures from homogeneity.
Section 4 focuses on the evidence from the post-war period which we
regard as more likely to represent a homogeneous sample. Section 5
summarizes our results and presents our conclusions.

2. Trends and Non-homogeneity in U.S. real GDP

The evidence against the stochastic trend view is reflected in the test
statistics shown in Table 1 for the annual U.S. real GDP series, 1870-
1994, assembled by Maddison (1995). Before interpreting these results,
we briefly review the tests and their maintained hypotheses.

Dickey (1976), Fuller (1976), and Dickey and Fuller (1979) developed
a test of the null hypothesis that a unit root in the AR representation,
rather than a deterministic trend, accounts for the non-stationarity of a
trending time series. The Dickey-Fuller test runs the regression

  
y t = ρ y t −  1 +  α +  β t +  φ i 

i = 1 

k 
∑  ∆ y t −  i +  ε t .

Under the unit root null, ρ=1, the first difference is a stationary AR
process and the series is said to be “difference stationary” in the parlance
of Nelson and Plosser. Under the alternative hypothesis ρ<1, the series is
“trend stationary,” a stationary AR process added to a deterministic
linear trend. Dickey and Fuller showed that the t-statistic for testing ρ=1
has a non-standard distribution, and they tabulated Monte Carlo critical
values for various sample sizes for a random walk with i.i.d. Normal
shocks. They show that the limiting distribution remains the same when
k lagged first differences “augment” the model to account for serial
correlation (see also Hamilton, 1994, for further discussion).
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In practice the lag length k, is unknown and is chosen by a data-
dependent procedure. Building on work later published in Hall (1994),
Campbell and Perron (1991) suggested starting with a maximum value of
k chosen a priori, deleting lags until encountering a t-statistic indicating
significance at the .10 level (greater than 1.645 in absolute value). This
general-to-specific (GS) procedure has been followed by Perron (1989),
Zivot and Andrews (1992), and others. Theoretical support for GS, as well
as for various information criteria, was provided by Hall for the pure AR
case and by Ng and Perron (1995) for the ARMA case. They showed that
if the maximum is at least as large as the true lag, then asymptotically
inference is unaffected by the data-based lag selection.

Since we will be interested in departures from the maintained
hypothesis of i.i.d. shocks in Dickey-Fuller, we also include the
heteroskedastic-consistent unit root test of Phillips and Perron (1988).
This test does not rely on a finite order AR representation, but instead
employs a correction for serial correlation based in part on the spectral
representation of the innovation sequence at frequency zero. The
quadratic spectral kernel is used to estimate the spectrum, and Andrews’
(1991) selection procedure is used to determine the number of
autocovariance terms included in forming the estimate of the spectrum.
The Phillips-Perron test has the same limiting distribution as the Dickey-
Fuller test.

Perron (1989) provided a generalization of the Dickey-Fuller test to
allow for the possibility of structural change taking the form of a one-
time break in level, or slope, or both. In the case of a break in level only,
which he considered appropriate for U.S. real GNP, the Perron test adds
step and impulse dummy variables to the Dickey-Fuller regression:

  
y t = ρ y t −  1 +  α +  β t +  φ i 

i = 1 

k 

∑  ∆ y t −  i +  δ S ( b ) t +  γ I ( b ) t +  ε t .

where S is zero through year b and one thereafter, and I is one in year
b+1 only and zero otherwise. Under the unit root hypothesis, the impulse
dummy accounts for a break in level, while under trend stationarity
alternative, the step dummy does. Perron provided critical values under
the maintained hypotheses that the break date is known, the innovations
are i.i.d. Normal, and lag k is known.

The test of Zivot and Andrews (1992) differs from the Perron test in
two regards. First, the null hypothesis is that the series has a unit root
and does not contain a break; accordingly, their test regression does not
include an impulse dummy. Second, Zivot and Andrews recognize that
the break date is unknown a priori and estimate it to be that which
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maximizes the absolute value of the unit root test statistic. The test
regression is

  
y t = ρ y t −  1 +  α +  β t +  φ i 

i = 1 

k 

∑  ∆ y t −  i +  δ S ( € b ) t +  ε t 

where   € b  is the estimated break date. Zivot and Andrews tabulate Monte
Carlo critical values for t(ρ=1) in the case of a random walk with i.i.d.
Normal innovations and where k is assumed known to be zero. They
confirmed Perron’s choice of 1929 as the break date and his rejection of
the unit root hypothesis for the Nelson-Plosser real GNP series. In
practice, k is unknown and Zivot and Andrews did a GS search at each
potential break date.

Leybourne and McCabe (1994) have developed a test of the null
hypothesis that a series is trend stationary, with difference stationarity (a
unit AR root) being the alternative hypothesis. They assume that the
series has an unobserved components representation where the trend is
a random walk, the stationary component is AR(k), and the innovations
are independent across components and are i.i.d. This implies that the
univariate representation of the first differences is ARMA(k,1) and the MA
part will have a unit root if the trend is deterministic (zero variance in the
random walk). Critical values for the Leybourne-McCabe test are
tabulated in Kwiatowski et al. (1992).  As in the Dickey-Fuller test, the
Leybourne-McCabe test necessitates the preliminary step of selecting the
lag length k to account for serial correlation.  However, under the null
hypothesis the series follows a non-invertible ARMA(k,1) process.  The
distribution of the AR terms is thus unknown.  Therefore, in contrast to
the Dickey-Fuller test, there does not exist a set of results which
guarantees that inference based on the Leybourne-McCabe test is
asymptotically unaffected by data-based lag selection.

Results of these tests are reported in Table 1 for the full Maddison
sample and the sub-period 1909-1970 studied by Nelson and Plosser.
The lag length is chosen alternatively by GS and Schwarz' (1978)
information criteria (SIC). Following Perron and Zivot and Andrews, the
maximum lag we consider for annual data is 8. As noted before, if the
true lag is less than or equal to 8, the results of Hall (1994) and Ng and
Perron (1995) state that in the limit, both GS and SIC will choose the
correct lag with probability one. The Zivot-Andrews procedure identifies
1929 as the break date for both time spans. P-values are obtained by
simulation as in the original articles; the DGP under the null hypothesis
is a random walk for the unit root tests and a trend plus random error
for Leybourne-McCabe.
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Several features of the results seem worthy of note:
1. The null hypothesis of a unit root is strongly rejected by all three
tests for the Maddison data. The Dickey-Fuller test for the sub-
period studied by Nelson and Plosser is less favorable to the unit
root hypothesis than they reported using data available prior to the
work of Balke and Gordon.
2. Evidence against a unit root is stronger for the full time period.
3. Rejection of the unit root null is stronger when a break is
allowed if the break date is assumed known.
4. The choice of lag k differs greatly between GS and SIC selection,
the former often choosing the maximum allowed while the latter in
every case chooses only one lag.
5. Lag selection matters for inference. For the Perron and Zivot-
Andrews tests, GS lag selection leads to stronger rejection of the
unit root. For the Leybourne-McCabe test, lag selection determines
the outcome. SIC does not lead to rejection of trend stationarity (as
reported by Cheung and Chinn, 1997), but GS does.
6. The step dummy is highly significant by conventional standards
in every case However, Banerjee, Lumsdaine, and Stock (1992)
demonstrate that the distributions of break-dummy coefficients are
non-standard.

These tests have as maintained hypothesis that the series is
homogeneous, generated by an AR process of known order with constant
parameters and i.i.d. Normal innovations. It is not clear how deviations
from these maintained hypotheses might affect size or power, although
recent contributions to the theoretical literature, discussed below,
suggest that they will. This is a concern in the context of U.S. GDP since
1929, when methods of data collection change, the Great Depression,
and World War II are points at which the GDP data process might be
expected to exhibit changes in both volatility and serial correlation.

For the period to 1929, Maddison used estimates by Balke and
Gordon (1989); an alternative series is by Romer (1989). Both build on
the pioneering methodology of Kuznets (1941,1946) and extensions by
Kendrick (1961) and Gallman (1966). Briefly, the Kuznets methodology
relies on trends extrapolated between benchmark years, then deviations
from trend are based on indicator variables such as commodity output. It
would be surprising if this method did not affect serial correlation and
unit root tests. Indeed, the Dickey-Fuller test applied to the Balke-
Gordon data rejects the unit root at the 10% level.

The period immediately following 1929 was one of banking failures on
an unprecedented scale and repeated failure of the new Federal Reserve
System to stabilize the system (Friedman and Schwartz, 1963). By the
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time the economy had recovered from the Great Depression it was jolted
by World War II. The magnitude of these shocks is apparent in Figures 1
and 2 for levels and growth rates, and in the summary statistics in Table
2 for growth rates and deviations from the least squares trend line. The
largest observations during the Depression-WWII period are three to four
times the sample standard deviation measured over the full period. Fitted
AR(3) models reveal large changes in serial correlation and much higher
residual variance during the 1930-45 sub-period. The extremely small
probability of this occurring in a homogeneous Normal sample is
reflected in the asymptotic Jarque-Bera p-values of zero for the full
sample. The three fold increase in the standard deviation of shocks is
comparable to that for stock returns reported by Schwert (1989b).
Separating pre-1929, 1930-45, and post-war periods, however, one
obtains apparently homogeneous Normal samples.

More formal evidence on non-homogeneity comes from an extension of
the Clark (1987) model in which stochastic trend and cycle components
are augmented by an additive irregular component that switches on and
off according to a Markov process. Details are given in the Appendix and
in Murray (1997). As seen in Figure 3, the irregular component switches
on in 1893, but shows only small fluctuations until 1930 when it reflects
the huge swings in output of the Depression and WWII. Then it switches
off in 1947. This pattern is consistent with larger measurement errors in
the pre-1929 data and the 1930-46 period characterized by a sequence of
additive outliers that do not occur elsewhere. Further, the cyclical
component is no longer significant once this irregular component is
included in the model. Our results are consistent with those of Balke and
Fomby (1991) who also identified additive outliers associated with the
Depression and World War II, but failed to detect permanent breaks in
level.

3. The Sensitivity of Unit Root and Trend Stationarity Tests
to Lag Selection and Additive Outliers

3.1 Design of the Experiments
This section presents a series of experiments designed to investigate

how tests for a unit root or trend stationarity are affected by data-based
lag selection and departure from the i.i.d. Normal assumption in the form
of additive outliers. Our strategy is to specify a data generating process
for 1870-1994 that contains a unit root and replicates the main
statistical features of post-war GDP and use it to study size or power
under GS and SIC lag selection, then introduce various types of additive
outliers to see what effect they have on the tests. Our choice of the post-
war data as a guide to the DGP is based on the results of the Markov-
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switching state-space model discussed above. We do not attempt to
model the measurement errors in the pre-1929 data.

For the post-war Maddison data in first differences of logs, SIC
chooses ARMA(0,0) and AIC chooses ARMA(1,0). We adopt the AR(1)
model to include some dynamics. The estimated model, and our
underlying DGP, is:

  

∆ y t = . 17 ∆ y t −  1 +  . 027 +  ε t 
ε t ~ i . i . d .  N ( 0 ,   0. 025 ) 

This DGP is run for 20 periods before recording a realization
corresponding to 1870-1994. After integrating the first differences to
obtain levels, we add one of a number of types of outliers to see its effect
on the test statistics. The observed data, say y*, is then

  y t 
∗ = y t +  O t 

where the outlier sequence {Ot} varies across experiments. Two panels
give results for sample lengths of 125 and 62 years corresponding to the
full 1870-1994 period and the Nelson-Plosser 1909-1970 sub-period,
respectively, based on 1,000 replications. The upper bound for the
standard error of the rejection frequencies we report is .016 (see
Davidson and MacKinnon (1993)).

In the first experiment, reported in Table 3, we have subtracted a fixed
quantity from the level of simulated log real GDP in 1930 only. The value
of O1930 ranges in successive experiments between 0 and -.4, the latter
representing a one third reduction in output. The dip lasts for only one
year, so the observed series resumes its underlying path in 1931 with no
permanent change in level. In the second experiment, reported in Table
4, we consider outlier events that begin in 1930 and then follow either
fixed or stochastic paths.

Reported in each table are actual frequencies of rejection of the unit
root hypothesis at a nominal .05 significance level based on critical
values reported in Fuller (1976), Zivot and Andrews, and Perron (with
corrections to the Perron critical values by Zivot and Andrews),
respectively. For the Perron and Zivot-Andrews tests the critical values
are asymptotic, but for the Dickey-Fuller test the finite sample critical
values are exact if k is known to be zero and the innovations are
Gaussian. We also report the frequency with which the t-statistic for the
step dummy in the Perron and Zivot-Andrews regressions is significant at
the conventional nominal .05 level.
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In the case of the LM test, the null hypothesis is trend stationarity, so
the frequency of rejection is the power of the test against the alternative
represented by our DGP. Since these frequencies are meaningless unless
the size of the test is correct, we follow Cheung and Chinn in setting
critical values by simulation of the trend stationary AR model suggested
by the historical data.

The number of lagged first differences included in any of these
regressions, denoted k, is selected alternatively by GS and SIC
procedures described above. Note that in searching for the break date in
the Zivot-Andrews test, the selection of k is repeated at every potential
break date.

3.2 The Effect of Data-based Lag Selection on Test Size or Power

In the experiment reported in the first line of each panel of Table 3, no
outlier has been added. In this case the series does in fact have a unit
root with i.i.d. Normal innovations, so the frequency reported for each
unit root test is its actual size, the probability of rejecting the null
hypothesis at a nominal .05 level when it is true. As reported previously
by Hall (1994) for the Dickey-Fuller test, size depends importantly on the
method of lag selection. In the case of the Dickey-Fuller and Perron tests,
SIC produces roughly the correct size, while GS results in a size of about
.10. The Zivot-Andrews test suffers from greater size distortion under
both lag selection strategies, and the distortion is entirely due to
selecting k from the data; when the correct value k=1 is imposed, we find
that the actual size is correct.

While Hall showed that both GS and SIC are valid asymptotically, his
Monte Carlo results demonstrated that there may be substantial size
distortions in finite samples such as we see here. It is clear that lag
selection is not a simply a trade-off between size and power, with
strategies favoring large k offering more correct size but lower power. The
analogy to including extraneous variables in a regression which use up
degrees of freedom but do not create a bias is misleading because the
particular value of k is based on pretesting. If k were set a priori and was
larger than the true value of k in any particular case, then the test would
have correct size but lower power; see Ng and Perron (1995). An
appropriate analogy is to the problem of data-based selection of
instruments in 2 stage least squares, where Hall, Rudebusch, and Wilcox
(1994) have shown that searching for the best instruments severely
distorts the size of tests on structural coefficients.

The Phillips-Perron test relies on the data to select lag length for
truncation of the autocovariance function used in estimation of the
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spectrum at frequency zero, rather than for selecting AR order. It is the
only one of the tests considered here that has too small a size. The size
distortion of this test is evidently dependent on the form of the
autocorrelation function, since Schwert (1989a) found that the size of
this test was too large in the MA(1) case.

As noted above, Banerjee, Lumsdaine, and Stock (1992) demonstrate
that the asymptotic distributions of break dummy coefficients are non-
standard, although they maximized the F-stat of the dummy variable,
rather than the unit root statistic, across break dates. Using the t-
distribution for inference would create the false impression that a break
occurred. As seen here, the sizes of the t-tests for the step dummy are
much too large; about .2 in the Perron regressions and about .95 in the
Zivot-Andrews regressions, sample length seeming to have little
influence. The size of the t-test for the impulse dummy in the Perron
regression is also excessive (but not shown).

In the case of the Leybourne-McCabe test, the frequency of rejection
reflects power against the alternative of the ARIMA(1,1,0) process
generating the data. We note that power is higher under SIC lag
selection. For T=125, the test correctly rejects trend stationarity about
80% of the time using SIC and about 60% for GS. For T=62, the power is
significantly decreased; 44% for SIC and 24% for GS.

3.3 The Effect of Additive Outliers

Successive experiments reported in Table 3 add -.1,-.2,-.3, or -.4 to
the level of simulated log real GDP in 1930 only, after which it returns to
the underlying process. This range of outliers was motivated by the range
of extreme values reported in Table 2 for the 1930-1945 period. The
resulting process still contains a unit root, but it is no longer
homogeneous.

As the magnitude of the outlier increases, rejection rates for all of the
unit root tests rise sharply. Frances and Haldrup (1994) studied the
effect of a stochastic additive outlier that occurs with some probability
each time period in an I(1) process, and showed that even asymptotically
the distribution of the Dickey-Fuller t-statistic (k fixed) is shifted to the
left, increasing the frequency of rejection of the unit root null. A
stochastic outlier introduces an MA(1) component into the process, so no
finite AR representation exists and this is the situation in which Schwert
(1989a) had shown that unit root tests have poor finite sample
properties. Whether the outlier is stochastic or fixed, the maintained
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hypothesis of a finite order AR with i.i.d. Normal errors is violated, and
rejection is triggered.

It is completely general that rejection of a null hypothesis does not
imply that the alternative hypothesis depicted by the test regression is
true. Faced with the choice between the unit root null and the trend
stationary alternative when neither is true, these tests reject the unit
root. If misinterpreted, these tests spuriously signal trend stationarity,
with a level break if allowed, when in fact the series has a unit root and
the outlier event affects only one observation. It is interesting that
frequencies of rejection of the unit root diminish when the sample size is
doubled, seemingly at odds with the idea that the power of a test should
increase with sample size. However, the present case is one where the
null hypothesis also becomes less wrong as sample size grows, since the
departure from homogeneity becomes relatively less severe the longer the
time series.

For the Leybourne-McCabe test, the issue is how power is altered by
introduction of the outlier. For the one period outliers considered in this
section, the power is marginally reduce for T=125, while T=62 results in a
more severe power reduction.

3.4 Additive Outliers That Persist

The experiments reported in Table 4 are designed to explore the
impact of outlier duration and pattern. Starting from the benchmark
case of no outlier, we add  -.2 in 1930 only (as in Table 3), in each of the
ten years 1930-39, and to every year from 1930 on. The last case is
motivated by Perron’s (1989) finding of a permanent break in the level of
output in 1930. Further experiments adds a stochastic additive outlier
sequence generated by an AR(2) modeled on departures from a local
trend connecting 1929 to 1946 or, alternatively, the fixed, actual de-
meaned cumulative changes from 1930 through 1945. This last case is in
the spirit of the experiments reported by Kilian and Ohanian (1996).

Note that persistence in itself reduces the frequency of rejection of the
unit root in the Dickey-Fuller, Phillips-Perron, and Perron tests. When
the outlier is permanent, the size of the Perron test is close to the correct
.05. Indeed, the Perron regression is correctly specified in that case with
inclusion of the impulse dummy at the correct date, allowing for a
permanent change in level. In contrast, the Zivot-Andrews test rejects the
unit root null much more frequently if the level of the series shifts
permanently, and the step dummy is almost always significant. It turns
out that this is not due to the absence of an impulse dummy in the Zivot-
Andrews regression; when it was rerun with the impulse dummy the
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results were essentially the same. Rather, it is having to search for the
break date (which is identified quite poorly) that accounts for excessively
frequent rejection of the unit root. This suggests a high value for
information about the timing of structural change.

In the last two experiments in Table 4, the underlying process is
inundated with a high amplitude wave which distorts the level of the
series for 16 years and then is gone. In both, the unit root and no-step-
dummy null hypotheses are rejected often, except by Phillips-Perron.
Rejection rates differ sharply depending on which lag selection method is
used. GS generally chooses a much larger value of k than does SIC,
reflecting the contrast we saw in Table 1. It also appears that the
particular pattern of real GDP during the period 1930-45 as opposed to
the random outcomes of the AR(2) process do matter; the tendency to
stronger rejection of the unit root in the longer sample being more
apparent for the fixed pattern.

Finally, the Leybourne-McCabe test has substantially lower power in
the last two experiments, failing to reject trend stationarity much more
frequently if the underlying unit root process is overlaid by a transitory
component of large amplitude. This is not surprising, since the stochastic
trend will appear relatively smooth compared to the transitory
component. As pointed out by Cochrane (1991), there is an observational
equivalence between a trend stationary process and one with a stochastic
trend where the variance of the innovations is small enough relative to
the transitory component.

4. Evidence from the Post-war Data

The argument that a longer span of data yields a test statistic with
greater power is valid only if a time series is temporarlly homogeneous.
Thus while more data is usually preferred to less, we find two compelling
reasons to focus on post-war GDP data for testing the unit root
hypothesis. Recall that the Balke-Gordon data used by Maddison up to
1929 are constructed by linear interpolation between benchmark years,
so unit root tests may be biased toward rejection. During the next 16
years the economy was subject to the large shocks associated with the
Great Depression and World War II. The experiments reported above
imply that even if these events were entirely transitory, they could
account for rejection of the unit root hypothesis and be misconstrued as
evidence of trend stationarity with or without structural change. Thus by
focusing on the post-war data, we hope to minimize the chance of
spuriously rejecting the unit root hypothesis due to violation of the
homogeneity assumption.
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To study the post-war period we shift from the annual Maddison data
to the recently available quarterly series of real GDP in chained (1992)
dollars. One advantage of the chained data for our purposes is that it
addresses the concern of Gordon (1993) that a productivity slow-down
would be obscured in a series based on fixed weight price deflators, such
as the real GDP data used by Maddison. Indeed, the existence and
causes of such a structural break have been discussed since the 1970s
and are the subject of a large and continuing literature; see also Baily
and Gordon (1988). Indeed, Perron reported evidence of a break in 1973
in the slope of the trend function for post-war quarterly real GNP,
indicating a slow down in long-term growth, although Zivot and Andrews
were not able to confirm this finding when they searched for the break
date. Results of unit root, trend break, and trend stationarity tests for
chained post-war quarterly real GDP are presented in Table 5. Nominal
p-values are based on tabulated asymptotic distributions, while exact p-
values will depend on the method of lag selection and are obtained by
simulation under the null hypothesis where the data generating process
is either an AR(1) model fitted to first differences of the log of the post-
war data, or an AR(2) around a deterministic time trend, the orders
chosen both by GS and SIC.

4.1 Unit Root Tests and Confidence Intervals for the Largest AR Root.

The Dickey-Fuller tests reported in Table 5 are fully consistent with a
unit root in post-war real GDP. Following Perron and Zivot and Andrews,
we start with a maximum lag of 12 for quarterly data.  For both methods
of lag selection the nominal and exact p-values are greater than 0.50; the
expected value of the test statistic being about -2.2. For completeness,
we include the Phillips-Perron test, although its nominal size is too
small, and it too is fully consistent with a unit root. A common criticism
of Dickey-Fuller tests is that they have low power against local
alternatives, an AR root close to unity. A modified test by Elliot,
Rothenberg, and Stock (1996), which they call DF-GLSτ, employs a local-
to-unity detrending procedure designed to maximize power against local
alternatives. Although lag selection differs sharply between GS and SIC,
the test results do not, both being entirely consistent with a unit root.

Although these results are consistent with a unit root process, they
are also consistent with a range of trend stationary alternatives since it is
not possible to distinguish in a finite sample between the realization of a
unit root process and a trend stationary process with an AR root close
enough to unity. This is the observational equivalence problem identified
by Nelson and Plosser and emphasized by Christiano and Eichenbaum
(1990) among others. As noted above, Cochrane (1991) has identified a
corresponding observational equivalence between a trend stationary
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process and one with a stochastic trend where the variance of the
innovations is small enough, and Engel (1997) shows that an
economically significant random walk component can be missed. Thus,
the range of models that cannot be rejected by any finite data set must
always include both unit root and trend stationary alternatives. We
would like to know how wide that range is in any given case.

To see the range of the largest AR root, ρ, that is consistent the post-
war chained GDP data, we computed two-sided confidence intervals
using the procedure developed by Stock (1991). These are based on
inverting the augmented Dickey-Fuller test statistic to determine the
values of ρ consistent with it. The 95% interval based on GS selection of
12 lags is (0.961, 1.026) and based on SIC selection of 1 lag it is (0.931,
1.022). We note that both include trend stationary as well as explosive
alternatives. The former possibility has received considerable attention in
the recent literature (Rudebusch 1992, 1993). Rudebusch (1993)
demonstrates that the augmented Dickey-Fuller test applied to post-war
quarterly GNP lacks power against a specific non-local alternative. He fits
an AR(2) to deviations from the linear trend and shows that for this
parameterization a unit root statistic greater than or equal to the
observed statistic occurs 22% of the time, suggesting that the
distribution of the statistic is not radically different under the unit root
and this stationary alternative. Applying Rudebusch's technique to the
chained data, we find that the trend stationary representation yields
statistics greater than or equal to the observed unit root statistics 2.47%
and 14.55% of the time for GS and SIC respectively. Thus, the disparity
between the unit root and trend stationary alternative is greater in the
chained data.

4.2 Implications of Trend Stationarity for the Cyclical Behavior of GDP

While Jones (1995) and Diebold and Senhadji (1996) argue for the
efficacy of trend stationarity in forecasting the long run path of output,
little attention has been given to the particular realization of the
transitory component that is implied for the post-war U.S. and whether it
corresponds to an economically meaningful deviation from a long run
growth path. Figure 4 plots the deviation of the log of chained GDP from
the fitted trend line, with NBER reference cycles shaded. While the
deviation from trend does dip in concert with NBER recessions, its
variation is dominated by a very low frequency wave that says that the
economy was well below trend most of the period from 1947 through the
early 1960s, consistently above trend until 1981, finally falling sharply
below trend during the last recession and continuing downward through
1997. Conventional measures of economic performance would suggest a
very different pattern, unemployment having been very high during the
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1974-75 and 1981-82 recessions and very low in 1997. The implied
deviations from trend are also of large amplitude, starting at -7% in
1947, peaking at +10% in 1973, and ending at -8% in 1997. We are not
aware of any estimates that an additional 8% of output was available to
the U.S. economy in 1997. A forecast based on trend stationarity would
imply growth rates about one percentage point above average for the next
several years.

The impression of a long wave in Figure 4 is reflected in the long wave
observed in the correlogram in Figure 5 and the low frequency peak in
sample spectrum plotted in Figure 6. These features are reminiscent of
the spurious periodicity, identified by Nelson and Kang (1981), that
characterizes residuals from the regression of a random walk, and I(1)
processes in general, on time. They show that the spurious cycle typically
has a period equal to about 0.83 of the length of the series, here about
42 years. Indeed, the peak of the sample spectrum occurs at a frequency
of 0.035, which implies a period of 45 years, slightly above that predicted
by Nelson and Kang. These low frequency dynamics, as well as the
economic implausibility of the implied cycle, suggest to us that the trend
component of output is much more flexible than a straight line, probably
accounting for much of the long wave that the trend stationarity would
attribute to the transitory component we see in Figure 4.

4.3 How Big is the Random Walk in GDP?

Cochrane (1988) criticized the use of unit root tests to determine the long
run dynamic properties of a time series. Since unit root tests rely on
parsimonious representations of the short run dynamics, they only use
the first few terms of the autocorrelation function and may fail to capture
the long run behavior of a time series. Cochrane advocated a non-
parametric measure of long run persistence, the ratio of the variance of
the  jth difference to the variance of the first difference, normalized by the
factor 1/j. If a series is trend stationary, the variance ratio approaches
zero as j∅ �. If a series is integrated, it can be decomposed into a random
walk plus a stationary component (Beveridge and Nelson, 1981) and the
variance ratio then approaches the ratio of the variance of the random
walk to the variance of the first difference, so it is unity for a pure
random walk. Thus, the variance ratio provides an estimate of the
contribution of the stochastic trend to the long run dynamics of a time
series. The sample variance ratio using Cochrane's unbiased estimate
(his equation A3) for the post-war chained GDP is plotted in Figure 7
and, unlike the shorter series used by Cochrane, shows no tendency to
decline at longer lags, suggesting that the variation in GDP is dominated
by the variation in the stochastic trend.
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4.4 Is There a Productivity Slow-Down in Chained Real GDP?

We now turn to the issue of a productivity slow-down in the U.S.
economy and any implications it might have for tests of the unit root
hypothesis. It is a fact that growth has been slower since 1973: the
annual growth rate over the period 1947.1-1973.1 was 3.9% while in
1973.2-1997.3 it fell to 2.5%. Whether this difference is statistically
significant and, if so, whether it represents an abrupt structural change
or a gradual evolution toward slower growth is unclear. Model B of
Perron allows for a break in the growth rate under the trend stationary
alternative, though not under the null. It differs from Model A in
replacing the step and impulse dummies with a “ramp” dummy that is
zero through the break date then increasing arithmetically, so the trend
function is allowed to bend but not shift. Perron applied this test to post-
war quarterly real GNP, 1947-86, setting the break date at 1973:1, and
rejected the null hypothesis. Zivot and Andrews estimated the break date
at 1972:2 but did not reject the unit root. Both used GS, choosing k = 10
quarters.

For the post-war chained data, both GS and SIC provide no evidence
against the unit root hypothesis. As seen in Table 5, 1972.2 is chosen as
the break date as in Zivot and Andrews, and the nominal p-values are
0.54 and 0.14 respectively.  This corroborates the finding of Zivot and
Andrews that post-war GDP is not well characterized as stationary
fluctuations around a kinked time trend. Exact p-values reflect the finite
sample size distortion induced by lag selection.

4.5 The Leybourne-McCabe Test for Trend Stationarity

Finally, Table 5 also reports the results of the Leybourne-McCabe
(1994) test for trend stationary applied to the post-war chained data. As
noted by Cheung and Chinn (1997), the asymptotic p-values provided by
Kwiatowski et. al. (1992) are not useful guides for inference when the
sample is finite. Indeed, the Leybourne-McCabe statistics based on GS
and SIC lead to rejection of the trend stationary null at any significance
level. We also computed exact p-values for the observed statistics based
on the trend stationary AR(2) parameterization discussed above. The
likelihood of observing the Leybourne-McCabe statistics under GS and
SIC is 9.3% and 2.1% respectively, offering little evidence in favor of pure
trend stationarity for the post-war data.

5. Summary and Conclusions

Recent research has demonstrated that standard tests reject the null
hypothesis of a unit root in U.S. real GDP over the period 1870-1994 in
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favor of the alternative of stationarity around a log-linear trend. If valid,
these findings would imply that all shocks are temporary and that the
long run path of the economy is deterministic. This paper calls that
inference into question on two grounds.

First, the size of these tests is distorted in finite samples by the
necessary preliminary step of selecting the number of lagged first
differences to be included in the regression. We show that, for
parameterizations suggested by the data, the actual probability of
rejecting the unit root hypothesis when it is true is substantially greater
under data-based lag selection than is indicated by the nominal
significance levels upon which rejections of the unit root have been based
in the recent empirical literature.

Second, the long historical time series used in the literature violate
the maintained hypothesis that the data generating process is temporally
homogeneous. The period 1930-45 was one of unusually large
disturbances that may have been largely temporary in their effect on the
level of output. However, we find that outliers added to the level of a unit
root process for only one period are sufficient to trigger rejections of the
unit root hypothesis with high probability. Given the choice between two
wrong models, the unit root tests lean towards trend stationarity
although it is false.

To reduce the possibility of spurious rejection of the unit root null due
to heterogeneity in the data, we focus on post-war chained GDP. The unit
root statistics in all cases not only fail to reject, but lie in the upper half
of the distribution under the null hypothesis.  While we also cannot
reject a range of trend stationarity alternatives, we find that the implied
cycle component contains a low frequency peak in the sample spectrum
with a period of 45 years, much longer than the 6.5 year average peak-
to-peak length in the NBER chronology.  This is reminiscent of the
spurious periodicity phenomenon analyzed by Nelson and Kang (1981)
for a detrended unit root process. Furthermore, the cycle implied by
detrending post-war GDP contradicts employment based measures of
economic activity; it implies below-trend performance during the 1960s,
above-trend performance in the 1970s, and then a decline that puts real
GDP 8% below trend in 1997. These results cast serious doubt on the
trend stationary model as an economically credible representation of real
GDP.

In our view, a constructive direction for modeling aggregate output
will be one that moves beyond the unit root issue and the use of dummy
variables to represent shifts in level or growth rate. Determinism is not
an hypothesis that is supported either in economic theory or in history.
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Dummy variables restrict the frequency of permanent shocks, and give
no guidance as to the likelihood or size of future shocks. A statistical
model implies a conditional distribution of future observations given the
data, not simply an accounting of past events.
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Table 1
Tests for a Unit Root or Trend Stationarity

in U.S. Real GDP
Annual data; Maddison (1995)

AR Test Nominal Step Dummy
Test: GS/SIC Lag (4) Statistic p-value (5) t-statistic
1870-1994:
Unit root:
Dickey-Fuller 6 -3.74 0.03 -

1 -4.14 < .01 -
Phillips-Perron - -3.52 0.04 -
Perron (1) 8 -5.58 < .01 -3.74
(break in level) 1 -4.72 < .01 -2.31
Zivot&Andrews (2) 8 -6.10 < .01 -4.33

1 -5.10 0.02 -2.82
Trend stationary:
Leybourne 5 0.42 <.01 -
 & McCabe (3) 2 0.05 0.40 -

1909-1970:
Unit root:
Dickey-Fuller 1 & 1 -3.43 0.06 -
Phillips-Perron - -2.63 0.27 -
Perron (1) 8 -4.89 < 0.01 -3.87
(break in level) 1 -4.26 0.02 -2.40
Zivot&Andrews (2) 8 -5.61 < 0.01 -4.63

1 -4.72 0.07 -3.03
Trend stationary:
Leybourne 4 0.47 < 0.01 -
 & McCabe (3) 2 0.10 > .85 -
(1) Break in level assumed at 1929 as in Perron (1989).
(2) Break date maximizes unit root t-statistic;
choose 1929 under GS & SIC.
(3) Null hypothesis is trend stationarity.
(4) GS starts with 8 lags, reducing lags until t>1.645,
SIC maximizes criterion of Schwarz (1978) over lags 0 to 8.
(5) Nominal p-values obtained by simulation under the null,
following the original papers where these tests are described.
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Table 2
Summary Statistics for U.S. Real GDP

Growth
Rates

Mean Std
Dev

Range AR Coefficient
Estimates

S E J-B p

1870-1994 0.033 0.056 .18/-.23 0.27 * 0.00 -0.12 0.06 0.00

1870-1929 0.037 0.048 .13/-.08 -0.28 * -0.20 -0.04 0.05 0.91

1930-1946 0.026 0.118 .18/-.23 0.90 * -0.16 -0.49 0.08 0.93

1947-1994 0.031 0.026 .09/-.02 0.20 -0.11 -0.19 0.03 0.71

Detrended
Mean Std

Dev
Range AR Coefficient

Estimates
S E J-B p

1870-1994 0.000 0.11 .31/-.37 1.13 * -0.24 -0.10 0.05 0.00

1870-1929 0.029 0.082 .18/-.14 0.64 * 0.05 0.13 0.05 0.66

1930-1945 -0.100 0.222 .31/-.37 1.48 * -0.57 -0.23 0.07 0.60

1946-1994 -0.003 0.048 .08/-.10 1.09 * -0.24 -0.05 0.02 0.35

Notes: * denotes asymptotic t-statistic significant at .05 level.
J-B p denotes significance level of Jarque-Bera test for Normality.
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Table 3
Monte Carlo Study of Unit Root Tests; DGP is ARIMA(1,1,0) with Additive Outlier at 1930

Frequencies of Rejection of Null and Step Dummy Significant at Nominal .05 Level
Lag k Selection Alternatively General-to-Specific and SIC

Series Length: T=125

Dickey-FullerPhillips- Perron; 1929 Break Date Zivot-Andrews; Search for DateLeybourne & McCabe

1930 GS SIC Perron GS SIC GS SIC GS SIC

OutlierUnit Root UR UR Step UR Step UR Step UR Step Trend Stationary
0 0.084 0.052 0.036 0.092 0.189 0.063 0.171 0.108 0.965 0.073 0.961 0.57 0.81

-0.1 0.076 0.045 0.054 0.147 0.256 0.115 0.239 0.115 0.959 0.066 0.961 0.55 0.79

-0.2 0.125 0.135 0.139 0.301 0.321 0.316 0.312 0.180 0.961 0.187 0.965 0.5 0.76

-0.3 0.142 0.215 0.270 0.374 0.393 0.414 0.379 0.261 0.959 0.378 0.964 0.48 0.74

-0.4 0.198 0.222 0.491 0.453 0.458 0.513 0.445 0.277 0.959 0.450 0.969 0.49 0.71

Series Length; T=62

Dickey-FullerPhillips- Perron; 1929 Break Date Zivot-Andrews; Search for DateLeybourne & McCabe

1930 GS SIC Perron GS SIC GS SIC GS SIC

OutlierUnit Root UR UR Step UR Step UR Step UR Step Trend Stationary
0 0.097 0.058 0.031 0.100 0.246 0.081 0.212 0.155 0.930 0.128 0.947 0.24 0.44

-0.1 0.083 0.061 0.079 0.260 0.309 0.216 0.276 0.171 0.940 0.102 0.918 0.22 0.41

-0.2 0.228 0.286 0.299 0.448 0.425 0.508 0.402 0.364 0.923 0.366 0.931 0.18 0.35

-0.3 0.377 0.542 0.616 0.529 0.471 0.620 0.470 0.692 0.919 0.725 0.932 0.13 0.24

-0.4 0.488 0.711 0.837 0.634 0.506 0.731 0.518 0.864 0.928 0.912 0.943 0.07 0.16
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Table 4

Monte Carlo Study of Unit Root Tests; DGP is ARIMA(1,1,0) Additive Outlier Process Starting at 1930

Frequencies of Rejection of Null and Step Dummy Significant at Nominal .05 Level

Lag k Selection Alternatively General-to-Specific and SIC

Series Length: T=125

Dickey-Fuller Phillips- Perron; 1929 Break Date Zivot-Andrews; Search for DateLeybourne-McCabe

GS SIC Perron GS SIC GS SIC GS SIC

Outlier Unit Root UR UR Step UR Step UR Step UR Step Trend Stationary

None 0.084 0.052 0.036 0.092 0.189 0.063 0.171 0.108 0.965 0.073 0.961 0.57 0.81

(-.2) @ 1930 0.125 0.135 0.139 0.301 0.321 0.316 0.312 0.180 0.961 0.187 0.965 0.549 0.762

(-.2) '30-'39 0.112 0.042 0.042 0.169 0.160 0.056 0.134 0.233 0.974 0.128 0.966 0.470 0.705

(-.2) 1930 on 0.050 0.033 0.033 0.056 0.272 0.040 0.256 0.227 0.975 0.187 0.974 0.577 0.813

AR(2) '30-'45 0.416 0.764 0.599 0.498 0.275 0.772 0.276 0.628 0.955 0.817 0.970 0.298 0.286

Fixed pattern 0.499 0.673 0.083 0.506 0.256 0.642 0.143 0.643 0.979 0.651 0.988 0.170 0.278

Series Length; T=62

Dickey-Fuller Phillips- Perron; 1929 Break Date Zivot-Andrews; Search for DateLeybourne-McCabe

GS SIC Perron GS SIC GS SIC GS SIC

Outlier Unit Root UR UR Step UR Step UR Step UR Step Trend Stationary

None 0.097 0.058 0.031 0.100 0.246 0.081 0.212 0.155 0.930 0.128 0.947 0.238 0.439

(-.2) @ 1930 0.228 0.286 0.299 0.448 0.425 0.508 0.402 0.364 0.923 0.366 0.931 0.182 0.346

(-.2) '30-'39 0.048 0.007 0.016 0.157 0.278 0.018 0.212 0.503 0.978 0.235 0.989 0.172 0.374

(-.2) 1930 on 0.060 0.018 0.033 0.084 0.412 0.053 0.347 0.483 0.953 0.411 0.963 0.319 0.501

AR(2) '30-'45 0.641 0.740 0.163 0.730 0.317 0.823 0.278 0.798 0.898 0.789 0.920 0.042 0.045

Fixed pattern 0.185 0.233 0.000 0.553 0.518 0.332 0.216 0.855 0.999 0.597 0.996 0.005 0.068
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Table 5
Tests for a Unit Root or Trend Stationarity in Post-war U.S. Real GDP

Quarterly Chained Real GDP; 1947.1 - 1997.3

Test Nominal Exact
Test: GS/SIC AR Lag (4) Statistic p-value (5)p-value (6)
Unit root
Dickey-Fuller 12 -1.52 0.82 0.816

1 -2.05 0.58 0.552

Phillips-Perron n/a -1.81 0.69 0.560

Elliott, Rothenberg, 12 -0.84 0.90 0.621
& Stock 1 -1.50 0.59 0.660

Perron (1) 12 -3.3 0.19 0.269

(break in slope) 1 -3.96 0.05 0.056

Zivot-Andrews (2) 12 -3.31 0.54 0.628

1 -3.99 0.14 0.173

Trend stationarity
Leybourne 3 2.25 0.00 0.103
 & McCabe (3) 1 3.17 0.00 0.021

Notes:
(1) Break  in  s lope  a s sumed  to  occur  a t  1973 :1  a s  in  Pe r ron  (1989).
(2) Break  da te  maximizes  un i t  roo t  t - s ta t i s t i c ;  choose1972:2  under  GS & SIC.
(3) Nu l l  hypothes i s  i s  t rend  s ta t ionar i ty .  
(4)  GS s tar ts  wi th  12 lags ,  reducing lag  unt i l  t>1.645 in  absolute  va lue ,
SIC maximizes  cr i ter ion of  Schwarz (1978) over lags 0 to 12.
(5) Nom ina l  p -va lues  ob ta ined  by  s imu la t ion  under  nu l l  hypo thes i s ,
as  in  the  or ig ina l  a r t i c l es  in  which  these  tes t s  a re  descr ibed .
(6) Exact  p -va lues  obta ined by  s imula t ion  wi th  lag  se lec t ion ,
under  un i t  roo t  nu l l  fo r  un i t  roo t  t e s t s ,  under  t r end  s t a t ionar i t y  for L-M,
DGP i s  the  AR process  se lec ted  by  SIC for  the  ac tua l  da ta  under  the  nu l l .  
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Figure  1  -  L o g  o f  R e a l  G D P ; Maddison 
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Figure  2  -  G ro w th Rate  o f  U . S .  R e a l  G D P
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Figure 3 - Irregular Component, U.S. real GDP
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Figure 4 – Deviations from Trend Line
Post-war chained GDP
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Figure 5 - ACF of Deviations from Trend Line
Post-war Chained GDP
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Fig. 6-Spectrum of Deviations from Trend Line
 Post-war Chained GDP (lag window150)
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Figure 7
Variance Ratios for Log of Post-war Quarterly Chained GDP

Based on Cochrane's (1988) Bias Corrected Estimate
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