
Feedback Approximation of the Stochastic
Growth Model by Genetic Neural Networks∗

Sibel Sirakayaa Stephen Turnovskyb,† M. Nedim Alemdarc

aDepartments of Economics and Statistics, and CSSS,

University of Washington, Seattle, WA 98195
bDepartment of Economics, University of Washington, Seattle, WA 98195

cDepartment of Economics, Bilkent University, 06800 Bilkent, Ankara, Turkey

Abstract
A direct numerical optimization method is developed to approx-

imate the one-sector stochastic growth model. The feedback invest-
ment policy is parameterized as a neural network and trained by a
genetic algorithm to maximize the utility functional over the space
of time-invariant investment policies. To eliminate the dependence
of training on the initial conditions, at any generation, the same sta-
tionary investment policy (the same network) is used to repeatedly
solve the problem from differing initial conditions. The fitness of a
given policy rule is then computed as the sum of payoffs over all ini-
tial conditions. The algorithm performs quite well under a wide set
of parameters. Given the general purpose nature of the method, the
flexibility of neural network parametrization and the global nature
of the genetic algorithm search, it can be easily extended to tackle
problems with higher dimensional nonlinearities, state spaces and/or
discontinuities.

Key Words: Stochastic growth model, Genetic algorithms, Neural
networks

∗We gratefully acknowledge the constructive comments of two anonymous referees.
†Corresponding author. Department of Economics, University of Washington, Seattle

98195, WA. E-mail: sturn@u.washington.edu.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7362929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The Ramsey growth model continues to be one of the main analytical tools

of modern growth theory. Despite the insights provided by the endogenous

growth model, pioneered by Romer (1986), adaptations of the Ramsey model

have generally been superior in reconciling the theory with empirical evi-

dence; see e.g. Jones (1995). Much of the focus of recent growth theory

has been on the formulation and extension to stochastic economies. This

is particularly so in the real business cycle literature, where the emphasis

has been on characterizing the nature of the short-run stochastic properties,

such as the variance and covariances among key economic variables; see e.g.

Cooley (1995). But the effect of uncertainty on the long-run evolution of the

economy is also important and has a long tradition, dating back to the early

seminal work of Mirrlees (1965), Brock and Mirman (1972), and others.

One of the problems with the nonlinear stochastic growth model is that

closed form solutions can be obtained only in very special cases.1 Accord-

ingly, the solution procedures have inevitably relied on approximation and

numerical methods. Early work by King, Plosser, and Rebelo (1988) employ

linear approximations. While these may be adequate for understanding cer-

tain aspects of the equilibrium, they are generally not well suited for handling

questions pertaining to welfare comparisons for which second order approx-

imations become necessary; see e.g. Judd (1998), Schmitt-Grohé and Uribe

1One case where closed form solutions can be conveniently obtained is if the technology
is of the “AK” form associated with the endogenous growth model; see Eaton (1981) for
an early example and Turnovsky (2000) for a wider range of examples that allow for richer
underlying economic structures.

2

(2004), and Kim and Kim (2005).

Perturbation methods in general are easy to implement and do quite well

locally when no binding constraints are present. However, since the technique

depends on a Taylor series expansion around the steady state, it may perform

poorly away from the equilibrium. Further, for high dimensional nonlinear

problems accurate derivatives (analytical or numerical) may not be readily

available making the method less dependable.

Another indirect numerical approach to solving the stochastic growth

problem is to use the methods of functional approximation to obtain a policy

(value) function that best fits the Euler (Bellman) equation in some average

sense. Weighted residual methods use a linear combination of known basis

functions, which are usually polynomials, to approximate the policy (value)

function over the collocation nodes. That is, a root finding routine recov-

ers the coefficients on each basis function that globally best fits the Euler

(Bellman) equation; see e.g. Judd (1998) and Miranda and Fackler (2002).

Weighted residual methods perform well within the domain of approxima-

tion and require modest computational effort. To increase the numerical

accuracy one may increase the order of the polynomial and/or the domain of

approximation with the attendant computational costs. As the state space

gets large, however, the cost may become prohibitive.

We propose a new direct method that can efficiently provide highly ac-

curate approximations to the solution of the stochastic growth model. In

contrast to the existing numerical methods, which rely upon either Euler or

Bellman equations to approximate the solution, we adopt a direct numerical

3

optimization approach that requires neither. Specifically, we first parameter-

ize the policy function by a feedforward neural network which is then trained

by a genetic algorithm to search over all time-invariant strategies so as to

maximize the objective functional subject to the resource and non-negativity

constraints. This is an on-line, general purpose algorithm which only requires

the user to supply the objective functional and the constraints so that the

computational effort on the part of the user is minimal.

The neural network specification offers several important advantages over

the traditional numerical techniques, such as spline functions or radial basis

functions. First, feedforward neural networks have proved to be universal

function approximators. Under general regularity conditions, a sufficiently

complex single hidden layer feedforward neural network can approximate any

member of a class of function to any degree of accuracy.2 Second, nonlinearly

parameterized nature of feedforward neural networks allow them to use fewer

parameters to achieve the same degree of approximation accuracy as opposed

to linearly parameterized techniques which require an exponential increase in

the number of parameters. Third, neural networks with a sigmoid activation

function at the output layer naturally deliver control bounds, while such

bounds constitute a major problem for linearly parameterized techniques.

Fourth, neural networks can easily be applied to problems that admit bang-

bang solutions, while this constitutes a major difficulty for other conventional

numerical solution methods.

There are several good reasons for our choice of genetic algorithms (GA)

2See for example, Funahashi (1988) and Hornik, Stinchcombe and White (1989).

4

to train the neural networks as well. First, in contrast to the gradient-descent

methods, genetic implementations do not use the gradient information. Thus,

they do not require the continuity and the existence of derivatives of the ob-

jective functionals and state transition functions. The only restrictions are

that they be bounded, a natural consequence of which is that our method

can be applied to a larger class of problems. Second, GAs are global search

algorithms that start completely blind and learn gradually. Regardless of the

initial parameter values, they ensure converge to an approximate global opti-

mum by exploiting the domain space and relatively better solutions through

genetic operators. Gradient-descent methods, on the other hand, need gra-

dient information and may get stuck in a local optimum or fail to converge

at all, depending on the initial parameter values.

GAs are not without difficulty either. First, the so-called competing

conventions problems may arise since structurally different networks can be

functionally equivalent. Genetic algorithms operate on genotypes which rep-

resent a network structure. Consequently, structurally different networks

are represented by different genotypes. If some structures are functionally

equivalent, then the crossover operator may degenerate the search by cre-

ating inferior offsprings. Specifically, the farther apart are the weights of a

node and nodes of different layers located on a chromosome, the more likely

it is for the standard one-point crossover operator to disrupt them. Thus,

placing all incoming weights of a node and all nodes side by side may help

resolve this problem. Also, a more assiduous use of the crossover operator,

together with more aggressive rank selection and mutation, are also shown

5

to be useful (Branke, 1995). Finally, GAs may be computationally more

time consuming as compared with the conventional gradient-descent tech-

niques. But despite these potential difficulties, we wish to emphasize the

contribution of our method in that it can solve problems that may otherwise

be analytically and computationally intractable.

In executing the algorithm, we first parameterize the policy function by

the weights of a suitable neural network, thereby transforming the search

space from a set of rules to a set of neural net weights. Next, an artificially

intelligent trainer, a GA, is assigned to breed fitter weights for the network.

In any given generation, the algorithm starts from multiple sets of initial

states. Since, we are searching for the stationary policy rules, the same set

of neural net weights are used to compute the payoffs. The raw fitness of

a policy rule in the GA population is calculated as the sum of all payoffs

across all initial states. Our rationale for summing over a set of initial states

is two-fold: to avoid the dependence of the weight training on the initial

conditions and also to speed up GA learning.

When our algorithm is applied to the standard stochastic growth problem,

it performs quite well under many measures of accuracy. For instance, when

exact solutions are available, our solution method provides approximations

that are highly accurate under various error measures. When analytic solu-

tions are not known, our approximation method, in general, produce modest

Euler residual errors. Compared with weighted residual methods that iterate

on Euler equation to recover the optimal policy, such as collocation, these

errors may seem larger. However, the magnitudes must be judged in the light

6

of the fact that the state space the genetically evolved neural networks search

is many times larger than the domain of approximation for the collocation

methods. Hence, the proposed search strategy is more robust. In contrast

with the numerical methods reported in Taylor and Uhlig (1990) and Duffy

and McNelis (2001), only our genetically evolved neural networks produce so-

lutions that pass tests of the martingale difference property of both the Euler

equation residuals and the productivity shocks, and are also consistent with

the random walk behavior of consumption. Given that our method is a “di-

rect” approach with minimal off-line computing effort, these results suggest

that our method can complement the existing methods of approximation

resulting in substantial computational gains in problems where the search

terrain is highly erratic or unknown due to discontinuities, nonlinearities or

large state spaces.

The balance of the paper is as follows. In section 2, we briefly discuss

the stochastic growth model. Section 3 first presents a short overview of the

neural networks and genetic algorithms, and then proceeds to show how ge-

netic neural networks can approximate the solution to the stochastic growth

model. Section 4 discusses the results of simulations for two versions of the

model, one in which an analytical solution for the model is available and

another version in which there is no closed-form solution. Conclusions and

possible extensions follow.

7

2 The Model

Consider the following one-sector stochastic growth model in which agents

are assumed to be infinitely lived and to solve the following problem:

max
{it}∞t=0

J = E0

∞∑
t=0

βtU(ct) = E0

∞∑
t=0

βt c1−τ
t

1− τ
, 0 < β < 1, τ > 0, (1)

subject to

ct + it = yt,

yt = θtk
α
t ,

it = kt+1 − (1− δ)kt, kt+1, ct > 0 ∀t and k0 given,

where ct, it, yt and kt respectively, are consumption, investment, production

and capital stock at time t.3 The constant time discount factor is β, and δ

denotes the constant rate of capital depreciation. The stochastic technology

shock is denoted by θt and is assumed to evolve according to

ln(θt) = ρ ln(θt−1) + εt,

3Note that our problem formulation is a bit nonstandard as we are looking for the
maximum over investment policies rather than consumption. We wish to remain consistent
in our notation since we later parameterize investment policy as a neural network.

8

with |ρ| < 1, and the error process εt ∼ N(0, σ). Stationary optimal invest-

ment policies obey the following Euler equation

(θtk
α
t − it)

−τ = Et[β(θt+1k
α
t+1,−it+1)

−τ (αθt+1k
α−1
t+1 + 1− δ)], (2)

as well as the model constraints. That is, the solution is a time invariant

investment policy,

it = h(θt, kt),

and a law of motion for the stock of capital,

kt+1 = g(θt, kt) = h(θt, kt) + (1− δ)kt.

Problem (1) has a closed-form analytical solution only when τ = δ = 1,

i.e., preferences are logarithmic and the capital stock fully depreciates every

period. This special case is studied in detail in Brock and Mirman (1972). In

this case, the optimal investment policy and the corresponding path of the

optimal capital stock are given by (see, e.g., Sargent, 1987, p. 122):

it = kt+1 = αβθtk
α
t .

For all other cases, numerical approximation methods are needed to solve

for the optimal investment policy and the capital accumulation path. The

first approach uses the stochastic version of the Bellman equation to iterate

9

on the value function to recover the optimal ivestment policy. Towards that,

the continuous shocks and the states in the original problem are discretized

to evaluate the expectation numerically and to solve the resulting discrete

problem over a grid of points. By refining the grid, an arbitrary level of

approximation accuracy can be achieved (see for example Christiano, 1990;

Tauchen, 1990).

A large number of the existing methods focus on the Euler equation,

Eq.(2), together with model constraints for numerical computation of the

stochastic growth model. These methods differ with regard to how they

handle the nonlinear expectation in (2). One approach replaces the expecta-

tion in (2) by realized future values. This is equivalent to an assumption of

perfect foresight. The extended path method of Fair and Taylor (1983), im-

plemented for the stochastic growth model by Gagnon (1990), is an example

of this method.

An alternate approach is to approximate the original problem by a sim-

pler version for which a closed form solution is readily available. The log-

linearization of the model and the method of parameterized expectations of

den Haan and Marcet (1990) are examples of this procedure. The method

of parameterized expectations explicitly approximates the nonlinear expec-

tation in the Euler equation by a known functional form, the parameters

of which can be estimated from realizations of the model. Den Haan and

Marcet (1990,1994) use non-linear least squares, while Christiano and Fisher

(1997) use ordinary least squares to estimate the parameters. Duffy and Mc-

Nelis (2001), on the other hand, parameterize the expectation function by

10

neural networks and use genetic algorithms to initialize gradient searches for

the network weights.

Another commonly used strand of the numerical approach is the so-called

weighted residual methods. First, the policy (value) function is represented

as a linear combination of known basis functions, which are typically poly-

nomials. The coefficients on each basis function are obtained by requiring

the approximant to satisfy the functional equation, not at all possible points

of the domain, but rather at a number of prescribed points. Collocation,

least-squares and Galerkin methods are the most commonly used weighted

residual methods. A thorough treatment of these techniques can be found in

Fletcher (1984), Judd (1998), McGrattan (1999) and Miranda and Fackler

(2002). Galerkin and collocation projection methods have been shown to

be very successful in the approximation of the standard stochastic growth

model; see Judd (1992, 1998). In particular, Chebyshev polynomials have

been shown to provide very accurate approximations of the policy function

in many examples; see e.g. Judd (1998) or Heer and Maussner (2005).

Weighted residual methods are, however, not free from difficulties. First,

even if they are less prone to the curse of dimensionality, they do eventually

suffer from it. Second, polynomial and spline approximants may perform

poorly outside the domain of approximation. Furthermore, given the sto-

chastic nature of the problem, it is possible for the solution algorithm to

run into states outside the bounds early on thereby creating convergence

problems. Moreover, if nondifferentiabilities exist, this will undermine the

rootfinding algorithm used to compute the optimum action at each state

11

node (Miranda and Fackler, 2002).

We depart from the existing indirect methods which rely either on the

Bellman or the Euler equation. In order to exploit the efficiency of direct nu-

merical optimization and also take advantage of robust global search, we pro-

pose to parameterize the investment policy by a feedforward neural network,

and then use genetic algorithms to search over all time-invariant strategies

so as to optimize the objective functional subject to the constraints. The

next section describes the details of our algorithm.

3 A Brief Note on Neural Networks and Ge-

netic Algorithms

3.1 Neural Networks

Neural networks are information-processing paradigms that mimic highly

interconnected, parallely structured biological neurons. They are trained to

learn and generalize from a given set of examples by adjusting the synaptic

weights between the neurons.4

Consider an L layer (or L− 1 hidden layer) feedforward neural network,

with the input vector z0 ∈ Rr0 and the output vector φ(z0) = zL ∈ RrL .

As in Narenda and Parthasarthy (1990), we refer to this class of networks as

4For the sake of compactness, the notation in this section closely follows that of Narenda
and Parthasarthy (1990). A well documented theory of neural networks can be found in
Hecht-Nielsen (1990) and Hertz, Krogh and Palmer (1991).

12

N L
r0,r1,...,rL

. The recursive input-output relationship is given by

yj = wjzj−1 + vj, (3)

zj = ψ̂j(y
j) = (ψj(y

j
1) ψj(y

j
2) . . . ψj(y

j
rj

))′, (4)

where wj ∈ Rrj×rj−1 and vj ∈ Rrj for j = 1, 2, . . . , L are the connec-

tion and the bias weights respectively. The dimension of yj and zj is de-

noted by rj. The scalar activation functions, ψj(.) are usually sigmoids, e.g.

ψj(.) =tanh(.) or ψj(.) = 1/(1 + exp(−(.)) in the hidden layers. At the

output layer, the activation functions, ψL(.), can be linear, e.g. ψL(.) = (.),

if the outputs have no natural bounds. If, however, they are bounded by

γmin ≤ zL ≤ γmax, then one may choose:

ψL(.) = γmin +
γmax − γmin

1 + exp(−(.))
. (5)

Letting ω = (w1 v1 . . . wL vL), the approximating function has the

general representation:

φ(z0, ω) = ψ̂L(wLψ̂L−1(w
L−1ψ̂L−2(. . . (w

2ψ̂1(w
1z0+v1)+v2)+v3)+. . .+vL−1)+vL).

(6)

13

3.2 Genetic Algorithms

The neural network parameterizing the policy function in our algorithm is

trained by a genetic algorithm. That is, the interconnection weights between

the neurons are incrementally adjusted by a GA to optimize the objective

functional subject to the constraints. A basic GA consists of iterative pro-

cedures, called generations. In each generation, say s, a GA maintains a

constant size population, Pop(s), of candidate solution vectors to the prob-

lem at hand. Each individual in Pop(s) is coded as a finite-length string,

usually over the binary alphabet ({0, 1}). The initial population, Pop(0), is

generally random.

At any generation, each individual in a population is assigned a ‘fitness

score’ depending on how good a solution it is relative to the population.

During a single reproduction phase, relatively fit individuals are selected

from a pool of candidates some of which are recombined to generate a new

generation. Better solutions breed faster while bad solutions vanish. Basic

recombination operators are mutation and crossover.

Crossover randomly chooses two members (‘parents’) from the popula-

tion, then creates two similar off-springs by swapping the corresponding

segments of the parents. Crossover can be considered as a way of further

exploration by exchanging information between two potential solutions. Mu-

tation randomly alters single bits of the bit strings encoding individuals with

a probability equal to the mutation rate pmut. It can be interpreted as

experimenting to breed fitter solutions.

14

GAs are highly parallel mathematical structures. While they operate on

individuals in a population, they collect and process vast amounts of infor-

mation by exploiting the similarities in classes of individuals, which Holland

calls schemata. These similarities in classes of individuals are defined by

the lengths of common segments of bit strings. By operating on n individ-

uals in one generation, a GA collects information approximately about n3

individuals (Holland, 1975).

Parallelism can be explicit as well in the sense that more than one GA can

generate and collect data independently and that genetic operators may be

implemented in parallel (See Mühlenbein, 1992). Parallel genetic algorithms

are inspired by the biological evolution of species in isolated locales. To

mimic this evolutionary process, a population is divided into subpopulations

and a processor is assigned to each to separately apply genetic operators

while allowing for periodic communication between them. Subpopulations,

specialize on one portion of the problem and communicate among themselves

to learn about the remainder. This idea is exploited in a number of studies

to approximate the equilibria in deterministic dynamic games and can be

easily extended to stochastic environments.5

5Alemdar and Özyıldırım (1998) use parallel GAs to approximate open-loop Nash equi-
librium in differential games. Sirakaya and Alemdar (2003) employ parallel GAs to ap-
proximate feedback Nash equilibria in deterministic dynamic games.

15

3.3 Approximation of the Policy Function with Ge-

netic Neural Networks

We first parameterize the policy rule by a neural network as

h(kt, θt) = φ(z0
t , ω). (7)

where ω is the vector of connection and bias weights of the network approx-

imating the policy function and z0
t is the time t input vector. The time t

input vector to the network is an r0-dimensional vector of the state variables

at time t, such as z0
t = (kt θt)

′ or z0
t = (kt kt, θt)

′. The time t + 1 input

to the network, z0
t+1, is generated as follows. First, given θ0, we generate a

single draw of a series for θt of length T . This series is drawn only once and

repeatedly used in finding a solution. Next, to get kt+1, we use

kt+1 = φ(z0
t , ω) + (1− δ)kt , k0 given.

Note that given the initial states, the search space is now transformed

from a set of rules to a set of neural net weights. The ability of the trained

network to generalize, however, will be limited as the training depends upon

the initial conditions of the problem.

Thus, our next task is to devise a method so that the trained network

can generalize over a wider set of initial conditions. Towards that, we note

that if a stationary policy rule maximizes the representative agent’s expected

16

lifetime utility for any given initial states, then it must also maximize the

sum of his expected lifetime utilities over a set of initial states. Denoting

a set of initial states as Π, for any given set of weights and initial states

(k0, θ0) ∈ Π, we can generate the sample paths for the states (thus the input

vectors at any time t) and the policies as described above. Thus, the sum of

utilities over all initial states becomes

J̃(ω) =
∑

(k0, θ0)∈Π

T∑
t=0

βt (yt − φ(z0
t , ω))1−τ

1− τ
. (8)

Hence, if the neural nets approximating the stationary feedback policies

are trained to maximize this sum, then they will have a better generalizing

capacity.

In passing, we note that many neural networks can parameterize the

feedback rule h(kt, θt). There exists no hard-and-fast rule of choosing a net-

work architecture other than a systematic trial and error approach. While

a network architecture with too many layers and neurons may be very time

consuming and may not offer significant improvement over an architecture

with fewer layers and neurons, too few layers and neurons may result in poor

approximations. As a general rule, simpler architectures are more preferable

because they learn faster.

To approximate the policy rule, we use a GA to train the neural network

as represented in Eq. (7). At any generation s ∈ S, a GA operates on a

constant size population, N , of neural net weights:

Pop(s) = {ω1(s), ω2(s), . . . , ωb(s), . . . , ωN(s)}.

17

where ωb(s) ∈ Pop(s) represents a vector of potential weights approximating

optimal policy rule.6

GA evaluates each individual b ∈ Pop(s) by computing its raw fitness7,

J̃(ωb(s)) =
∑

(k0, θ0)∈Π

T∑
t=0

βt (yt − φ(z0
t , ωb(s)))

1−τ

1− τ
.

The search is initialized from a random population, Pop(0). Given a

random d ∈ Pop(0), GA finds the best performing individual, b, such that

J̃(ωb(0)) ≥ J̃(ωg(0)),

for g = 1, 2, . . . , b − 1, b + 1, . . . , N . Next, using the evolutionary operators,

a new generation of population is formed from the relatively fit individuals

and their fitness scores are recalculated.

The above procedures is repeated for a number of generations. That is,

at any generation s, GA proceeds with the search if there exists a b such

that:

J̃(ωb(s)) ≥ J̃(ωg(s)),

for g = 1, 2, . . . , b− 1, b + 1, . . . , N .

As the search evolves, fitter individuals proliferate, thanks to the repro-

duction and crossover operators, until s′ ≤ S whence for any s ≥ s′ there

exists no individuals b ∈ Pop(s) such that

6We place all incoming weights of a node and all nodes side by side on the chromosomes.
7When a string representing the weights of a network results in a rate of disinvestment

that is greater than the existing capital stock, it is punished by a high penalty; namely
-1000000.

18

Ĵ(ωb(s)) > J̃(ωF),

where ωF are the weights that best approximates the equilibrium policy rule.

The following pseudo code outlines the steps involved in our GA search

The general outline of a GA is:

procedure GA;

begin

initialize population Pop(0);

evaluate Pop(0);

s=1;

repeat

select Pop(s) from Pop(s-1);

recombine Pop(s);

evaluate Pop(s);

until (termination condition);

At this point, a word of caution is in order about the selection opera-

tor. The search terrain for the neural network generally is highly nonlinear.

Thus, it becomes imperative that a selection procedure be adopted that will

sustain the evolutionary pressure. An elitist selection strategy alone will fail

on this account. In our simulations, we use fitness rank selection together

with elitism in selection procedures. With fitness rank selection, individuals

are first sorted according to their raw fitness, and then using a linear scale re-

productive fitness scores assigned according to their ranking. Rank selection

prevents premature convergence since the raw fitness values have no direct

19

impact on the number of offspring. The individual with the highest fitness

may be much superior to the rest of the population or it may be just above

the average; in any case, it will expect the same number of offspring. Thus,

superior individuals are prevented from taking over the population too early

causing a false convergence.

4 Simulation Results

After a round of experimentations, we adopt the following disconnected feed-

forward network from N 2
2,2,1 to parameterize the policy rule h(kt, θt):

φ(z0
t , ω) = γmin + (γmax − γmin)z2

t ,

z2
t = ψ̂2(y

2
t) =

1

1 + exp(−(y2
t))

,

y2
t = w2

1z
1
t1 + w2

2z
1
t2 + v2,

z1
t = (z1

t1, z
1
t2) = ψ̂1(y

1
t) = (ψ1(y

1
t1), ψ2(y

1
t2)),

=

(
1

1 + exp(−(y1
t1))

,
1

1 + exp(−(y1
t2))

)
,

y1
t1 = w1

1z
0
t1 + v1

1,

y1
t2 = w1

2z
0
t2 + v1

2,

z0
t = (z0

t1, z
0
t2) = (kt, θt).

In experiments, we let GAs search not only the network weights, but also

20

γmin and γmax rather than fixing them ahead. Each experiment starts with

a random population, Pop(0). In all simulations, network weights, γmin and

γmax are first searched in the interval [−30, 30]. If they hit either the lower

or the upper bound in half of the runs, then we adjust the search inter-

vals accordingly. No interval adjustments are necessary with one exception.

When τ = 0.5 and δ = 0, the GA search for γmin takes place in the interval

[−250, 5].

The parameter values used in the simulations are:

T = 2000, α = 0.33, δ = {0, 1}, ρ = 0.95.

When the exact solution is known, δ = τ = 1, we adopt β ∈ {0.95, 0.98}
and σ ∈ {0.01, 0.05}. For β = 0.95, the policy network is trained over the

following pairs of (k0, θ0):

Π = {(0.1, 1.49), (0.15, 1.22), (0.25, 1), (0.30, 0.82), (0.34, 0.67)}.
For β = 0.98, on the other hand, the following pairs of (k0, θ0) are used for

training:

Π = {(0.008, 7.39), (0.5, 4.48), (1, 2.72), (1.5, 1), (2, 0.61), (2.5, 0.22), (3, 0.37),

(3.7, 0.14)}.
When the exact solution is not known, δ = 0 and τ ∈ {0.5, 1.5, 3.0},

we again use β ∈ {0.95, 0.98} but, only σ = 0.02. For β = 0.95, the policy

network is trained over the pairs of (k0, θ0) ∈ Π = K0 ×Θ0 where

K0 = {10.8, 11.4, 12, 12.6, 13, 13.8, 14, 14.4, 14.8, 15, 15.4, 15.5, 16, 16.2, 16.8,

17, 17.4, 18, 18.6, 20.2},
Θ0 = {0.82, 1.0, 1.22}.
For β = 0.98, on the other hand, we train the policy network over the

21

pairs of (k0, θ0) ∈ Π = K0 ×Θ0 where

K0 = {56, 57, 58, 59, 60, 61, 62, 62.5, 63, 63.5, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73},
Θ0 = {0.82, 1.0, 1.22}.
These parameter value choices allow us to make direct comparisons with

the results reported in Taylor and Uhlig (1990) and Duffy and McNelis

(2001).

The genetic operators were done using the public domain Genesis 5.0

package (Grefenstette, 1990). We compile Genesis 5.0 on a IBM RS/6000

running AIX 5.2. We run the algorithm 10 times and report the best policy

functions over all runs. Each run lasts 10000 generations with a popula-

tion size of 50, a crossover rate of 0.60, and a mutation rate of 0.001. The

average time for a specific experiment (10 runs) for one parameter configura-

tion is about 30 minutes. Compared with the existing collocation methods,

the computing time may look excessive. However, time efficiency should be

judged in the light of the fact that in each run, the GA computes T instanta-

neous utilities for |Π| times for each of the N individuals in each generation.

Consequently, the search is relatively slow which is compensated the gain in

robustness. Moreover, GAs can be implemented in parallel in order to speed

up training.

When the analytical solution is available, we measure the performance of

our approximation by the following statistic suggested by Duffy and McNelis

22

(2001):

e(h) =
1

NθNk

∑

θ

∑

k

(
ĥ(k, θ)− h(k, θ)

h(k, θ)

)2

,

where h(k, θ) is the true policy function, h(k, θ) = αβθkα, and ĥ(k, θ) is the

approximate policy function, a neural network trained by GA. This accuracy

statistic, e(h), is calculated by evaluating each function over a grid of Nk and

Nθ values for k and θ.

In particular, 80 equally spaced points between the interval [−2σ, 2σ] are

generated for εt. These grid points were then converted into grid points for

ln(θ) using the long-run relation, ln(θ) = [1/(1 − ρ)]ε, and for θ by simply

taking the exponent of ln(θ). To generate grid points for k, the grid points

for θ and the long-run relation between k and θ are used, k = (αβθ)1/(1−α).

With 80 grid points for k and θ, the error measure, e(h), is thus calculated

over 6400 different combinations of k and θ.

The log10 average relative squared error, e(h), provides an easily inter-

pretable measure of accuracy, expressing the approximation error as a frac-

tion of consumption. A log10 squared error of −2 represents an accuracy rate

of 1 in 100, implying that the approximation error costs $1 for every $100 in

consumption expenditures; a log10 squared error of -3 represents an accuracy

rate of 1 in 1000.

When an analytical solution exists, we also compute the correlation co-

efficient of the approximate consumption series with the exact consumption

series. This statistic is labelled ‘corr with exact’ in Table 1.

23

When τ 6= 1, δ = 0, so that no closed-form solution exists, the following

four summary statistics are used to evaluate the accuracy of our results: (1)

the Den Haan-Marcet statistic, (2) the TR2 statistic, (3) the R2 statistic

and (4) Euler equation errors as described in Judd (1992). Statistics (1)-(3)

are described and were reported in Taylor and Uhlig (1990) for a variety of

different solution methods, hence will be only briefly reviewed here.

The Den Haan-Marcet (1994) accuracy statistic, ‘DM-stat’, in the tables,

is computed in the following way:

ηt = βc−τ
t (αθtk

α−1
t−1 + 1− δ)− c−τ

t−1,

â = (x′x)−1x′η,

DM-Stat = â′(x′x)(x′xη2)−1(x′x)â,

where x is a matrix of instrumental variables, which in our case consists of a

constant and lagged values of consumption and the productivity shock. The

‘DM-stat’ statistic has an asymptotic Chi-square distribution with degrees

of freedom equal to number of instruments used, under the null hypothesis

of an accurate approximation to the optimal path.

In calculating this statistic, we use five lags of consumption, c, five lags of

the productivity shock, θ, and a constant term as instruments for each sample

size of 2000 observations. We use the same set instruments as in Taylor and

Uhlig (1990) so that our results can be directly compared with the results

reported there. Under the null hypothesis of an accurate approximation,

24

the DM-stat has an asymptotic χ2(11) distribution with critical values [3.81,

21.92] at the 5% level, and critical values [3.05, 24.72] at the 1% level of

significance.

The TR2 statistic (‘tr2stat’ in the tables) is computed from a regression of

the productivity shock, ε, on five lags of consumption, capital, and θ (15 lags

total), again as in Taylor and Uhlig (1990). This test statistic is used to assess

the martingale difference property of the productivity shocks, Et−1εt = 0, and

thus provides another measure of the accuracy of the approximated solution.

The following system describes the calculation of the TR2 statistic.

ε̂t = xtb̂,

b̂ = (x′txt)
−1x′tεt,

tr2stat = T
[
∑

(εt − ε̄t)(ε̂t − ¯̂εt)]
2

∑
(εt − ε̄t)2

∑
(ε̂t − ¯̂εt)2

,

where T again denotes the number of observations in the regression sample,

taken to be 2000, and xt represents the 15 × 1 vector of lagged values for

consumption, capital and θ. Under the null hypothesis that the productivity

shock possesses the martingale property, this test statistic has an asymptotic

χ2(15) distribution. The critical bounds at the 5% significance level are

[6.26, 27.49].

The R2 statistic (‘rsqstat’ in the tables) is obtained from a regression of

the first difference of consumption on lagged consumption and capital, again

using a sample of 2000 observations. This test statistic serves as a simple

25

test of the random walk hypothesis for consumption in the simulated data.

An R2 close to zero is taken as support for the random walk hypothesis.

Judd (1992) proposes the following normalized Euler equation error func-

tion as a measure of accuracy:

EE(kt, θt) = 1− [βEt(θt+1k
α
t+1,−it+1)

−τ (αθt+1k
α−1
t+1 + 1− δ)]

−1
τ

(θtkα
t − it)

.

Given the current states kt and θt, use of an approximate policy will lead

to a suboptimal consumption. The deviation from the truly optimal policy

is then measured as the Euler equation error as a fraction of optimal con-

sumption. In other words, this error can be interpreted as the loss in terms

of consumption a agents would suffer from by using the approximate solu-

tion rather than the true solution. For instance, if EE(kt, θt) = 0.01, then

the agent incurs a loss of $1 for every $100 in consumption expenditures.8

In order to ease interpretation, we plot the absolute errors in base 10 loga-

rithms. The plots are drawn for values of capital ranging within the interval

[(1−∆k)k
∗; (1 + ∆k)k

∗] were k∗ is the deterministic steady state and ∆k =

0.2, and value of the technology shock that insures that roughly 95% of the

distribution of ln(θt) is covered. The integral involved by the expectation is

evaluated using a 20 nodes Gauss-Hermite quadrature.

In addition, for all cases, we present the volatility of the consumption

series (denoted as ‘con-vol’ in the tables), which is simply the standard devi-

ation of the Hodrick-Prescott (HP) filtered series, and the ratio of the vari-

8Note that e(h) error metric above is similar to this one.

26

ance of investment to the variance of the change in consumption (denoted as

‘i/c ratio’ in the tables).

4.1 When the closed form solution is known

Table 1 reports the best network weights. Table 2 presents the various test

statistics for β = {0.95, 0.98} and σ = {0.01, 0.05}. Also summarized in Ta-

ble 2 are the values of the same statistics computed using the exact solution.

Table 1: Best network weights when τ = δ = 1
β β

0.95 0.98
σ σ

0.01 0.05 0.01 0.05

v1
1 -1.34897 -0.80156 -1.66178 -0.25415

w1
1 -8.73900 -5.10264 -5.33724 -1.03617

v1
2 2.79570 1.11437 -1.62268 0.01955

w1
2 -2.83480 -1.19257 1.66178 -1.23167

v2 -0.29326 -0.05865 -2.01369 -0.29326

w2
1 4.51613 -2.32649 -5.41544 -2.63930

w2
2 1.66178 -3.77322 2.60020 -6.90127

γmax -0.05865 2.36559 0.87977 3.85142

γmin 0.68426 -0.05865 -0.05865 -0.01955

The average relative squared error, e(h), reported in Table 2 shows that

our method provides highly accurate approximations. This accuracy, how-

ever, falls as σ increases. Furthermore, compared with Duffy and McNelis

(2001), our algorithm substantially improves approximation accuracy. Note

also from Table 2 that the volatility of consumption (‘con vol’) is almost

the same for approximate and exact paths. Moreover, there is a very high

correlation between the approximate and the exact consumption paths as

27

evident from the correlation coefficient reported as ‘corr w exact’. The in-

vestment/consumption volatility ratio (i/c ratio) is slightly overestimated

when σ is low and substantially so when σ increases.9

Table 2: Accuracy/diagnostic statistics when τ = δ = 1∗

A. Benchmark Values for Exact Solution

β = 0.95 β = 0.98
σ σ

0.01 0.05 0.01 0.05
i/c ratio 0.456638 0.456641 i/c ratio 0.477951 0.477954
con vol 0.006848 0.035386 con vol 0.006853 0.035414

B. Values for Network Approximation

β = 0.95 β = 0.98
σ σ

0.01 0.05 0.01 0.05
e(h) -3.98 -1.37 e(h) -3.95 -1.22
Duffy-McNelis-NN e(h) -1.36 -0.26 Duffy-McNelis-NN e(h) -1.52 -0.24
Duffy-McNelis-PA e(h) -0.44 -0.38 Duffy-McNelis-PA e(h) -0.48 -0.39
i/c ratio 0.497581 0.730451 i/c ratio 0.510734 0.793434
con vol 0.006839 0.034683 con vol 0.006834 0.035731
corr w exact 0.999966 0.998840 corr w exact 0.999979 0.997269

∗Duffy and McNelis use the parameterized expectations approach. They use both neural
network and polynomial parameterizations, which are respectively denoted as ‘Duffy-
McNelis-NN’ and ‘Duffy-McNelis-PA’ in the table.

4.2 Taylor-Uhlig (1990) Model

In the Taylor-Uhlig version of the model, it is assumed that δ = 0 and τ 6= 1

so that a closed-form solution can not be obtained. Under these parameter

9Though not reported in the table, i/c ratio, is overestimated at a higher rate in
Duffy and McNelis (2001). Furthermore, the volatility of consumption (con vol) is also
overestimated by Duffy and McNelis (2001).

28

restrictions, the best network weights are displayed in Table 3. Table 4

reports the accuracy and diagnostic test statistics under alternative values

of τ . Figure 1 plots the base 10 logarithm of absolute Euler residuals.

Observe from Table 4 that both DM-statistics and ‘tr2stat’ always lie

within the Chi-square accuracy bounds at the 1% significance level for all

cases we study. Moreover, the ‘rsqstat’ values are quite low. Also, the in-

vestment/consumption volatility ratios as well as the direct measures of con-

sumption volatility itself are quite similar across cases. Finally, as depicted

in Figure 1, our approximation accuracy is reasonably good. Moreover, the

experimental results should be judged in the light of the fact that our ap-

proach does not make any use of gradient information, is independent of the

initial conditions and requires minimal off-line computational effort. Hence,

it can complement weighted residual methods especially if the search terrain

is highly erratic.

Table 3: Best network weights when δ = 0
β β

0.95 0.98
τ τ

0.5 1.5 3.0 0.5 1.5 3.0

v1
1 23.74976 28.06061 28.06061 -13.41642 -0.91789 0.18377

w1
1 -1.56891 -1.89150 -1.77419 0.27859 0.07331 0.07331

v1
2 4.22776 17.86413 17.96188 5.88954 -11.99902 -12.73216

w1
2 -4.66764 -16.54448 -16.64223 -5.49853 15.22483 16.30010

v2 7.74682 11.51026 11.85239 19.62366 -2.22385 -0.80645

w2
1 1.05083 3.08407 2.70283 -11.91105 20.49365 20.87488

w2
2 -4.32551 -15.32258 -15.71359 -3.93451 -17.22874 -18.15738

γmax 0.36657 0.12219 0.12219 0.61095 -0.41544 -0.46432

γmin -224.00782 -0.21017 -0.23460 -165.10264 1.51026 4.75073

29

Table 4: Accuracy/diagnostic statistics when δ = 0
β = 0.95 β = 0.98

τ τ
0.5 1.5 3.0 0.5 1.5 3.0

DM-stat 18.503452 20.198500 20.413396 22.595824 15.910241 16.368731

rsqstat 0.038942 0.012267 0.017506 0.004214 0.025213 0.035841

tr2stat 26.017295 14.506097 14.357957 19.595485 12.666643 12.385571

i/c ratio 2.604381 2.033353 2.016889 3.888067 2.477865 2.697584

con vol 0.036475 0.035060 0.035415 0.033837 0.042774 0.041537

Table 5 summarizes the accuracy and diagnostic test statistics from our

approximation (Genetic NNs), and compare these statistics with those ob-

tained from a subset of the other solution methods presented in Taylor and

Uhlig (1990) and Duffy and McNelis (2001). In particular, we compare our

solution method with the log-linear quadratic (log-LQ) and linear quadratic

LQ solution methods of Christiano (1990) and McGrattan (1990), the back-

solving methods of Ingram (1990) and Sims (1990), the parameterized ex-

pectations approach of Den Haan and Marcet (1990), the parameterized ex-

pectation approach using neural network and polynomial approximations

(Duffy/McNelis-NN and Duffy/McNelis-PA) of Duffy and Mcnelis (2001)

and the quadrature method of Tauchen (1990). Inspection of Table 5 indi-

cates that our approach compares favorably on many dimensions with these

alternative and more commonly used methods. In particular, our solutions

are the only ones that are consistent with the random walk behavior of con-

sumption, produce reasonable consumption-investment volatility ratios and

also pass tests of the martingale difference property of both the residuals of

the Euler equation and the productivity shocks in all cases we consider.

30

T
ab

le
5:

C
om

p
ar

is
on

w
it

h
al

te
rn

at
iv

e
m

et
h
o
d
s

w
it

h
δ

=
0

β
=

0
.9

5
,

τ
=

0
.5

β
=

0
.9

5
,

τ
=

1
.5

β
=

0
.9

5
,

τ
=

3
.0

D
M

-s
ta

t
T

R
2

st
a
t

R
2

i/
c

ra
ti

o
D

M
-s

ta
t

T
R

2
st

a
t

R
2

i/
c

ra
ti

o
D

M
-s

ta
t

T
R

2
st

a
t

R
2

i/
c

ra
ti

o
G

en
et

ic
N

N
s

1
8
.5

0
2
6
.0

2
0
.0

4
2
.6

0
2
0
.2

0
1
4
.5

1
0
.0

1
2
.0

3
2
0
.4

1
1
4
.3

6
0
.0

2
2
.0

2
D

u
ff
y
/
M

cN
el

is
-N

N
3
5
.4

6
1
3
.6

9
0
.0

2
9
.7

5
7
.9

8
1
1
.8

9
0
.0

3
9
.9

2
2
.3

4
1
1
.4

6
0
.0

5
1
3
.2

8
D

u
ff
y
/
M

cN
el

is
-P

A
3
4
.3

8
1
2
.6

3
0
.0

7
5
.7

7
3
6
.1

2
1
4
.0

9
0
.0

7
3
.2

4
2
5
.9

6
1
5
.4

2
0
.0

4
1
.9

4
C

h
ri

st
ia

n
o
-L

o
q

L
Q

1
7
.0

0
1
0
.0

0
0
.4

3
2
9
.0

0
1
0
.0

0
1
0
.0

0
0
.0

5
1
1
.0

0
1
8
.0

0
1
9
.0

0
0
.0

2
8
.0

0
In

g
ra

m
1
0
.0

0
1
7
.0

0
0
.4

4
3
0
.0

0
1
1
.0

0
1
6
5
.0

0
0
.0

6
1
2
.0

0
1
2
.0

0
3
9
4
.0

0
0
.0

3
2
0
.0

0
D

en
H

a
a
n
/
M

a
rc

et
1
8
.0

0
1
5
.0

0
0
.4

2
3
0
.0

0
1
8
.0

0
1
4
.0

0
0
.0

6
1
3
.0

0
1
2
.0

0
1
3
.0

0
0
.0

3
1
0
.0

0
M

cG
ra

tt
en

9
6
.0

0
1
9
.0

0
0
.3

4
2
4
.0

0
2
2
.0

0
1
9
.0

0
0
.0

4
9
.0

0
1
7
.0

0
1
9
.0

0
0
.0

2
7
.0

0
S
im

s
1
2
.0

0
2
4
.0

0
0
.4

4
3
1
.0

0
1
2
.0

0
2
4
.0

0
0
.0

7
1
3
.0

0
1
2
.0

0
2
2
.0

0
0
.0

4
1
1
.0

0
T
a
u
ch

en
7
0
4
.0

0
1
1
.0

0
0
.5

0
3
.0

0
5
5
8
.0

0
9
.0

0
0
.3

8
2
.0

0
5
0
2
.0

0
1
4
.0

0
0
.3

3
2
.0

0

β
=

0
.9

8
,

τ
=

0
.5

β
=

0
.9

8
,

τ
=

1
.5

β
=

0
.9

8
,

τ
=

3
.0

D
M

-s
ta

t
T

R
2

st
a
t

R
2

i/
c

ra
ti

o
D

M
-s

ta
t

T
R

2
st

a
t

R
2

i/
c

ra
ti

o
D

M
-s

ta
t

T
R

2
st

a
t

R
2

i/
c

ra
ti

o
G

en
et

ic
N

N
s

2
2
.6

0
1
9
.6

0
0
.0

0
3
.8

9
1
5
.9

1
1
2
.6

7
0
.0

3
2
.4

8
1
6
.3

7
1
2
.3

9
0
.0

4
2
.7

0
D

u
ff
y
/
M

cN
el

is
-N

N
2
2
.4

4
1
2
.1

6
0
.0

1
6
.5

3
1
3
.6

6
8
.3

4
0
.0

2
8
.6

8
8
.9

3
1
4
.0

8
0
.0

2
8
.5

6
D

u
ff
y
/
M

cN
el

is
-P

A
3
0
.7

6
9
.7

7
0
.3

5
5
.7

4
2
1
.2

3
1
1
.9

6
0
.3

3
4
6
.5

5
3
1
.0

0
1
4
.2

7
0
.0

4
3
.3

6
C

h
ri

st
ia

n
o
-L

o
q

L
Q

2
8
.0

0
2
0
.0

0
0
.2

4
1
3
2
.0

0
1
6
.0

0
2
5
.0

0
0
.0

3
5
9
.0

0
1
2
.0

0
1
6
.0

0
0
.0

1
4
5
.0

0
In

g
ra

m
8
.0

0
1
5
.0

0
0
.3

3
1
6
2
.0

0
1
1
.0

0
2
0
3
.0

0
0
.0

4
6
6
.0

0
1
2
.0

0
3
8
1
.0

0
0
.0

2
9
8
.0

0
D

en
H

a
a
n
/
M

a
rc

et
3
0
.0

0
1
5
.0

0
0
.3

5
1
7
8
.0

0
7
.0

0
1
4
.0

0
0
.0

4
7
8
.0

0
9
.0

0
1
4
.0

0
0
.0

2
7
4
.0

0
M

cG
ra

tt
en

6
2
.0

0
1
9
.0

0
0
.2

1
1
1
2
.0

0
2
6
.0

0
1
7
.0

0
0
.0

2
4
4
.0

0
2
1
.0

0
1
6
.0

0
0
.0

1
3
8
.0

0
S
im

s
1
1
.0

0
1
9
.0

0
0
.3

6
1
7
1
.0

0
1
2
.0

0
1
6
.0

0
0
.0

4
6
6
.0

0
1
0
.0

0
1
4
.0

0
0
.0

2
5
9
.0

0
T
a
u
ch

en
3
2
2
.0

0
1
6
.0

0
0
.3

4
2
.0

0
2
3
4
.0

0
1
3
.0

0
0
.2

7
2
.0

0
2
1
5
.0

0
1
0
.0

0
0
.2

7
2
.0

0

31

a) β=0.95 b) β=0.98

−0.2
−0.1

0
0.1

0.2

1213141516171819

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

lnθk

τ = 0.5

−0.2
−0.1

0
0.1

0.2

50
55

60
65

70
75

80
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

lnθk

τ = 0.5

−0.2
−0.1

0
0.1

0.2

12
13

14
15

16
17

18
19

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

lnθk

τ = 1.5

−0.2
−0.1

0
0.1

0.2

50556065707580
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

lnθk

τ = 1.5

−0.2
−0.1

0
0.1

0.2

1213141516171819
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

lnθk

τ = 3.0

−0.2
−0.1

0
0.1

0.2

50556065707580
−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

lnθk

τ = 3.0

Figure 1: Log10|Euler Residuals|

5 Conclusion

This paper has shown that a direct numerical optimization approach wherein

investment policy is parameterized by a neural network and trained by a ge-

netic algorithm can be a useful alternative to existing numerical solution

32

methods to the stochastic growth model. For the special case of the one-

sector stochastic growth model where an exact solution is available, our

solution method provides highly accurate approximations. When analytic

solutions are not available, our approximation accuracy as measured by the

Euler equation error is reasonably good. Furthermore, in contrast with the

numerical methods reported in Taylor and Uhlig (1990) and Duffy and Mc-

Nelis (2001), only our genetically evolved neural networks produce solutions

with reasonable consumption-investment volatility ratios that pass tests of

the martingale difference property of both the Euler equation residuals and

the productivity shocks, and are also consistent with the random walk be-

havior of consumption.

The algorithm is on-line and general purpose. It can easily be extended to

models with higher degrees of non-linearity, larger state spaces and possible

discontinuities. Both neural networks and genetic algorithms are parallel

paradigms for multiple search with modest memory requirements. Therefore,

a search with genetic neural networks is robust but, a bit time consuming.

This, however, can be ameliorated by running the genetic neural networks

on multiple processors synchronously, thanks to their amenability to explicit

parallelism.

33

References

[1] Alemdar, N.M. and S. Özyıldırım, A genetic game of trade, growth and

externalities. Journal of Economic Dynamics and Control 22, 811-32 (1998).

[2] Alemdar, N.M. and S. Özyıldırım, Learning the Optimum as a Nash

Equilibrium. Journal of Economic Dynamics and Control 24, 483-499

(2000).

[3] Branke, J., Evolutionary Algorithms for Neural Network Design and

Training. Technical Report, No. 322, University of Karlsruhe, Institute

AIFB (1995).

[4] Brock, W.A. and L. Mirman, Optimal economic growth and uncertainty:

the discounted case. Journal of Economic Theory 4, 479-513 (1972).

[5] Christiano, L.J., Solving the Stochastic Growth Model by Linear

quadratic Approximation and by Value Function Iteration. Journal of

Business and Economic Statistics 8, 99-113 (1990).

[6] Christiano, L.J. and J.D.M Fisher, Algorithms for solving dynamic mod-

els with occasionally binding constraints. Journal of Economic Dynamics

and Control 24(8), 1179-1232 (2000).

[7] Cooley, T.F. (ed.), Frontiers of Business Cycle Research. Princeton

University Press, Princeton NJ (1995).

34

[8] den Hann, W.J. and A. Marcet, Solving the stochastic growth model by

parameterizing expectations. Journal of Business and Economic Statistics

8, 31-34 (1990).

[9] den Haan,W.J. and A. Marcet, Accuracy in simulations.Review of

Economic Studies 61, 3-17 (1994).

[10] Duffy, J. and P.D. McNelis, Approximating and simulating the sto-

chastic growth model: Parameterized expectations, neural networks, and

the genetic algorithm. Journal of Economic Dynamics and Control 25,

1273-1303 (2001).

[11] Eaton, J., Fiscal Policy, Inflation, and the Accumulation of Risky

Capital. Review of Economic Studies 48, 435-445 (1981).

[12] Fair, R. C. and J. B. Taylor, Solution and maximum likelihood estima-

tion of dynamic nonlinear rational expectations models. Econometrica 51,

1169-1186 (1993).

[13] Fletcher, C.A.J., Computational Galerkin Techniques. New York:

Springer-Verlag (1984).

[14] Gagnon, J.E., Solving the stochastic growth model by deterministic

extended path. Journal of Business and Economic Statistics 8, 3536 (1990).

[15] Grefenstette, J.J., A User’s Guide to GENESIS Version 5.0. Manuscript

(1990).

35

[16] Hecht-Nielsen, R., Neurocomputing. Massachusetts, Addison-Wesley

Publishing Company (1990).

[17] Heer, B., and A. Maussner, Dynamic General Equilibrium Models:

Computation and Applications. Springer (2005).

[18] Hertz, J., Krogh, A., A. G. Palmer, Introduction to the Theory of Neural

Computation. Massachusetts, Addison-Wesley Publishing Company (1991).

[19] Holland, J.H., Adaptation in Natural and Artificial Systems. The

University of Michigan Press, Ann Arbor, MI (1975).

[20] Hornik, K., Stinchcombe, M. and H. White, Multilayer Feedforward

Networks are Universal Approximators. Neural Networks, Vol. 2, 359-366.

(1989)

[21] Ingram, B.F., Solving the Stochastic Growth Model by Backsolving with

an Expanded Shock Space. Journal of Business and Economic Statistics 8,

37-38 (1990).

[22] Jones, C.I., Time Series Tests of Endogenous Growth Models. Quarterly

Journal of Economics 110, 395-527 (1995).

[23] Judd, K.L., Projection methods for aggregate growth models. Journal

of Economic Theory, 58, 410-452 (1992).

[24] Judd, K.L., Numerical Methods in Economics. MIT Press, Cambridge

MA (1998).

36

[25] Kim, J. and S.H. Kim, Spurious Welfare Reversals in International

Business Cycle Models. Journal of International Economics 60, 471-500

(2003).

[26] King, R.G., C.L. Plosser, and S.T. Rebelo, Production, Growth, and

Business Cycles I: The Basic Neoclassical Model. Journal of Monetary

Economics 21, 191-232 (1988).

[27] McGrattan, E.R., Solving the Stochastic Growth Model by Linear-

Quadratic Approximation. Journal of Business and Economic Statistics 8,

41-44 (1990).

[28] McGrattan, E.R., Application of Weighted Residual Methods to

Dynamic Economic Models. In Marimon, R., and A. Scott (Eds.), Compu-

tational Methods for the Study of Dynamic Economies, 114-142 (1999).

[29] Miranda, J.M. and P.L. Fackler, Applied Computational Economics and

Finance. MIT Press, Cambridge MA (2002).

[30] Mirrlees, J.A., Optimum Accumulation under Uncertainty. unpublished

manuscript, (1965).

[31] Mühlenbein, H., Darwin’s continent cycle theory and its simulation by

the prisoner’s dilemma. In Verela, F.J., and P. Bourgine (Eds.), Toward

a Practice of Autonomous Systems: Proceedings of the First European

Conference on Artificial Life, 236-244 (1992).

37

[32] Narenda, K. S. and K. Parthasarthy, Identification and Control of

Dynamical Systems Using Neural Networks. IEEE Transaction on Neural

Networks Vol.1, No.1, 4-27 (1990).

[33] Romer, P. M., Increasing Returns and Long-run Growth. Journal of

Political Economy 94, 1002-1037 (1986).

[34] Sargent, T.J., Dynamic Macroeconomic Theory. Harvard University

Press, Cambridge MA, USA (1987).

[35] Schmitt-Grohé, S. and M. Uribe, Solving Dynamic General Equilibrium

Models using a Second-order Approximation to the Policy function. Journal

of Economic Dynamics and Control 28, 755-775 (2004).

[36] Sims, C. A., Solving the Stochastic Growth Model by Backsolving with

a Particular Nonlinear Form for the Decision Rule. Journal of Business and

Economic Statistics 8, 45-47 (1990).

[37] Sirakaya, S. and N. M. Alemdar, Genetic Neural Networks to Ap-

proximate Feedback Nash Equilibria in Dynamic Games. Computers and

Mathematics with Applications Vol 46/10-11, 1493-1509 (2003).

[38] Taylor, J.B., H. Uhlig, Solving nonlinear stochastic growth models:

a comparison of alternative solution methods. Journal of Business and

Economic Statistics 8, 1-17 (1990).

38

[39] Tauchen, G., Solving the stochastic growth model by using quadrature

methods and value-function iterations. Journal of Business and Economic

Statistics 8, 4951 (1990).

[40] Turnovsky, S.J., Methods of Macroeconomic Dynamics. MIT Press,

Cambridge MA (2000).

39

