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Abstract

Bayesian model averaging (BMA) has become widely accepted as a way of accounting for model
uncertainty, notably in regression models for identifying the determinants of economic growth. To
implement BMA the user must specify a prior distribution in two parts: a prior for the regression
parameters and a prior over the model space. Here we address the issue of which default prior to
use for BMA in linear regression. We compare 12 candidate parameter priors: the Unit Information
Prior (UIP) corresponding to the BIC or Schwarz approximation to the integrated likelihood, a proper
data-dependent prior, and 10 priors considered by Fernandez et al. (2001b). We also compare the
uniform model prior to others that favor smaller models. We compare them on the basis of cross-
validated predictive performance on a well-known growth dataset and on two simulated examples from
the literature. We found that the UIP with uniform model prior generally outperformed the other priors
considered. It also identified the largest set of growth determinants.
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1 Introduction

Bayesian model averaging (BMA) is now widely accepted as a principled way of accounting for

model uncertainty.1 Model uncertainty has played a particularly big role in economic growth

research since the early 1990s when a surge of new growth theories gave rise to a large literature

that sought to evaluate the new growth determinants (see Durlauf, Johnson and Temple, 2005 for a

survey). Linear regression models dominate in growth research, and here we consider BMA for this

class of models. The implementation of BMA involves solving the common challenge in Bayesian

statistics of specifying the prior. For BMA, the prior has two parts: a prior for the parameters of

each model, and the prior probability of each model.2 The implementation of BMA is, however,

subject to the challenge that it requires prior distributions over all parameters in all models, and

the prior probability of each model must also be specified.

If substantial prior information is available and can readily be expressed as a probability distrib-

ution, this should be used. Often, however, the prior information is small relative to the information

in the data, and then it makes sense to use a default prior. Here we address the issue of which

default prior to use.

We compare 12 candidate default parameter priors and two model priors that have been advo-

cated in the literature. We do this on the basis of cross-validated predictive performance using a

well-known growth dataset and two simulated examples from the literature. Predictive performance

is a natural and neutral basis for such comparisons. We evaluate the predictive mean using the

Mean Squared Error, and the entire predictive distribution, using two different scoring rules.

We found substantial support for one of the priors evaluated: the Unit Information Prior

(UIP) that corresponds to the BIC (or Schwarz) approximation for the integrated (or marginal)

likelihood, combined with a uniform prior over the model space. This also turned out to favor the

largest number of growth determinants.

We are not the first to compare priors for BMA in growth regressions. FLS (2001a) applied a

“benchmark prior” (FLS 2001b) to the growth context, but did not include the UIP, or alternative

model priors. Sala-i-Martin Doppelhofer and Miller (2004, hereafter SDM) compared model prior

1The economics literature has long recognized model uncertainty as a central problem in regression analyses
in general and in growth applications in particular. The initial approach to model selection was to use stepwise
regression (Efroymson, 1960). Leamer (1978) suggested extreme bounds analysis to account not only for within-
model uncertainty, but also for between-model uncertainty, which is associated with model selection (see, Levine
and Renelt, 1992, for an application to growth). The BMA methodology was developed by Leamer (1978), Raftery
(1988), Madigan and Raftery (1991, 1994) who coined the name, Raftery (1993), George and McCulloch (1993) and
others; for a survey of its early development see Hoeting, Madigan, Raftery and Volinsky (1999).

2See e.g., Brock and Durlauf (2001), Fernández, Ley and Steel (2001a), Sala-i-Martin, Doppelhofer and Miller
(2004), and Ley and Steel (2007a,b)
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distributions but did not compare different parameter priors. Ley and Steel (2007b, hereafter LS),

following Brown, Vannucci and Fearn (1998; 2002), introduced a hierarchical prior on the model

size and integrated out the prior model size in the model averaging. They used two parameter

priors that we include in our set of 12 priors below, in combination with fixed and random model

priors. However, LS did not include the UIP.3

The paper is organized as follows. Section 2 reviews BMA with a focus on prior specification.

Section 3 describes how we use predictive performance to compare prior settings and gives results

for the growth data. Section 4 gives the results of a simulation experiment, and Section 5 concludes.

2 Bayesian Model Averaging

2.1 Basic Ideas

We now briefly summarize the main ideas of BMA for linear regression.4 Given a dependent variable,

Y , a number of observations, n, and a set of candidate regressors, X1, . . . , Xp, the variable selection

problem is to find the most effective subset of regressors. We denote by M1, . . . , Mk the models

considered, where each one represents a subset of the candidate regressors. When all possible subsets

are considered, K = 2p. Model Mk has the form Y = α+
pkP
j=1

β
(k)
j X

(k)
j + ε, where X(k)

1 , . . . , X
(k)
pk is

a subset of X1, . . . , Xp, β(k) = (β
(k)
1 , . . . , β

(k)
pk ) is a vector of regression coefficients to be estimated,

and ε ∼ N(0, σ2) is the error term. We denote by θk = (α, β(k), σ) the vector of parameters in

Mk.

The likelihood function of model Mk, pr(D|θk, Mk), summarizes all the information about θk

that is provided by the data, D. The integrated likelihood (also known as the marginal likelihood)

is the probability density of the data, conditional on the model Mk, which equals the likelihood

times the prior density, pr(θk|Mk), integrated over the parameter space, so that

pr(D|Mk) =

Z
pr(D|θk, Mk)pr(θk|Mk)dθk. (1)

Equation (1) follows from the law of total probability.

The integrated likelihood is the crucial ingredient in deriving the model weight for model av-

eraging. We denote by pr(Mk) the prior probability that Mk is the correct model, given that one

of the models considered is. Then, by Bayes’s theorem, the posterior model probability of Mk,

3 In addition, Durlauf, Kourtellos and Tan (2006; 2008), and Brock, Durlauf and West (2003) evaluated different
sets of parameter and model priors; their approaches are discussed below.

4Comprehensive surveys of BMA include Raftery, Madigan and Hoeting (1997), Hoeting et al. (1999), Clyde and
George (2004), and Doppelhofer (2008)
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pr(Mk|D), is equal to the model’s share of the total posterior mass,

pr(Mk|D) =
pr(D|Mk)pr(Mk)PK
c=1 pr(D|Mc)pr(Mc)

. (2)

BMA obtains the posterior inclusion probability of a candidate regressor, pr(βj 6= 0|D), by

summing the posterior model probabilities across those models that include the regressor. Posterior

inclusion probabilities provide a probability statement regarding the importance of a regressor that

directly addresses what is often the researcher’s prime concern: “what is the probability that the

regressor has an effect on the dependent variable?”5

BMA involves averaging over all the models considered. This can be a very large number; for

example, the growth dataset we consider below features 41 candidate regressors (and so K = 241,

or about two trillion models). Such a vast model space involves a major computational challenge

as direct evaluation is typically not feasible. In this paper we use the leaps-and-bounds method

developed by Raftery (1995) for BMA, based on the all-subsets regression algorithm of Furnival and

Wilson (1974). This is implemented in the BMA R package, available at http://cran.r-project.org/

(Raftery et al. 2005, 2009).

Other approaches to dealing with the large model space are the coinflip importance sampling

algorithm used by SDM, and the Markov Chain Monte Carlo (MCMC) sampler used by FLS.

We have experimented with all three algorithms using the FLS data and found that the results

from the branch-and-bound and MCMC methods were very similar, while the coinflip method took

substantially more computational time, and produced less precise results. In particular, the coinflip

algorithm failed to explore large parts of the model space, notably excluding the models with the

highest posterior probabilities.

2.2 Prior Distributions of Parameters

The implementation of BMA in linear regression is subject to the challenge that prior distributions

must be specified over all parameters in all models. Prior probabilities of all models must also be

specified. If the researcher has information about the parameters, ideally this should be reflected

in the priors, and informative priors should be used, as was done, for example, by Jackman and

Western (1994).

5The posterior inclusion probability will provide an answer to this question only if the regression parameters can
be interpreted causally. This will not be the case if, for example, there are common causes of growth and the regressor
not included in the model, or if growth affects the regressor rather than the other way round. This issue is the general
one of endogeneity and causal interpretation of regression parameters, and is not specific to BMA. We do not consider
it further in this paper.
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However, often the amount of prior information is small and the effort needed to specify it in

terms of a probability distribution is large. Thus there have been many efforts to specify default

priors that could reasonably be used for all such analyses. These are sometimes called “noninfor-

mative” or “reference” priors, but there is debate about the extent to which a prior can be totally

noninformative, and so we use the term “default prior” here. Priors on parameters may affect

results since they may influence the integrated likelihood (1), which is a key component of the

posterior model weights (2). The integrated likelihood of a model is approximately proportional to

the prior density of the model parameter evaluated at the posterior mode (Kass and Raftery, 1995).

Thus the prior density should be spread out enough so that it is reasonably flat over the region of

the parameter space where the likelihood is substantial. However, the prior density should also be

no more spread out than necessary, since increasing the spread of the prior tends to decrease the

prior ordinate at the posterior mode, which decreases the integrated likelihood and may unneces-

sarily penalize larger models (Raftery, 1996). The priors we discuss below make this trade-off in

different ways.

We focus on a set of 12 candidate default priors that have been advocated in the literature (Table

1): a prior which contains about the same amount of information as a typical single observation

(Kass and Wasserman 1995; Raftery, 1995); the data-dependent prior of Raftery, Madigan and

Hoeting (1997), which was designed to be relatively flat over the region of the parameter space

supported by the data but no more spread out than necessary; and third, the ten automatic priors

used by FLS (2001b), which do not rely on input from the researcher or information in the data,

but only on the sample size and the number of regressors.

The first prior that we consider is defined implicitly, by the form of the approximate integrated

likelihood that is used, namely,

log pr(D|Mk) ≈ c− 1
2
BICk, (3)

where

BICk = n log(1−R2k) + pk log(n). (4)

In (4), R2k and pk are the coefficient of determination and the number of regressors, respectively,

for model Mk, and c is a constant that does not vary across models and so cancels in the model

averaging. BICk is the Bayesian Information Criterion for Mk, which is equivalent to the approx-
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imation derived by Schwarz (1978) for the regression model, as shown by Raftery (1995).6 The

approximate integrated likelihood in (3) was the basis of the model averaging method of Raftery

(1995) for linear regression, and was also used by SDM.

Raftery (1995, Section 4) showed that (3) gives an approximation to the integrated likelihood

with an error that is O
¡
n−1/2

¢
when the prior for the regression parameters is multivariate normal

centered at the maximum likelihood estimate with variance matrix equal to the n times the inverse

of the observed Fisher information matrix.7 This prior is much more spread out than the likelihood,

and typically is relatively flat where the likelihood is substantial (Raftery, 1999). It contains the

same amount of information as would be contained on average in a single observation and so,

following Kass and Wasserman (1995), we call it the Unit Information Prior (UIP). Because of

its simplicity and intuitive appeal, we use the UIP as a baseline, and we compare other proposed

default priors to it.8

Next, we consider ten automatic priors considered by FLS (2001b) of the following form:

p(α|Mk) ∝ 1, (5)

p(σ|Mk) ∝ 1/σ, (6)

β(k)|σ, Mk ∼ N

µ
0, σ2

³
gkZ

(k)0Z(k)
´−1¶

, (7)

where Z(k) is the n×pk matrix consisting of the pk regressors included inMk, each one centered by

subtracting its mean. The prior (7) for β(k) is based on Zellner’s (1986) g-prior, but the overall prior

(5)—(7) was proposed by FLS (2001b), who showed that it leads to analytical integrated likelihoods.

The value of g scales the reciprocal of the variance of the parameter prior. Values of g that are

closer to zero imply priors that are less informative, and g = 1 implies that prior information

and data information are weighted equally in the posterior distribution. Different automatic priors

result from different choices of gk, as listed in Table 1.

6Klein and Brown (1984) discuss an alternative derivation of BIC model weights by minimizing the Shannon
information in the prior distribution.

7 It follows further from the results of Kass and Wasserman (1995) that for any pairwise model comparison, the
ratio of posterior model probabilities resulting from the use of (3) closely approximates the ratio of posterior model
probabilities with a prior that is the same except that its mean is equal to zero instead of the MLE, again with error

of order O n−1/2 .
8 It could be argued that this prior depends on the data and so is not a valid prior for Bayesian analysis. However,

we use it here as an approximation to the prior information of an analyst who knows something, but not a great deal
about the problem at hand. For estimating a population mean, its use implies roughly that the analyst knows at
least that the mean is within the range of the data, and it seems likely that anyone analyzing data about the problem
would know at least that much (Raftery 1999). Wasserman (2000) showed that data-dependent priors can actually
improve predictive performance. FLS (2001b) point out a common criticism of data-dependent priors, namely that
the posterior distribution can no longer be interpreted as a conditional distribution given the observables.

5



The choice g = 1/n (Prior 12 in Table 1) has the same variance as the UIP, but its mean

is at zero instead of the MLE. Alternatives are Prior 4, g =
p
1/n, which attributes a smaller

asymptotic penalty than BIC, and Prior 2, gk = pk/n, where prior information increases with the

number of regressors in the model. Other priors suggested by FLS (2001b) correspond to previous

proposals: Priors 6 and 7 in Table 1 are versions of the Hannan and Quinn criterion (Hannan and

Quinn, 1979), and Prior 9, gk = 1/p2, corresponds to the Risk Inflation Criterion (RIC) of Foster

and George (1994), designed to take account of the number of candidate regressors. Prior 10 is

the preferred prior of FLS (2001b), developed on the basis of their experiments with their priors.

It is composed of either the RIC-based prior (Prior 9) or Prior 12, depending on the number of

observations and regressors in the particular dataset. For the datasets considered in this paper,

Prior 10 is identical to Prior 9.

An alternative class of data-dependent priors can be viewed as approximating the subjective

prior of an experienced researcher. Clearly, if such knowledge can be readily elicited in the form of

a probability distribution, it should be introduced into the analysis, Raftery, Madigan and Hoeting

(1997) specified conjugate data-dependent priors that are as concentrated as possible, subject to

being reasonably flat over the region of parameter space where the likelihood is not negligible.

Their prior (Table 1, Prior 11) is specified by four hyperparameters that are explained in Table 1.

Another such data-dependent prior is based on Laud and Ibrahim (1996) (Table 1, Prior 8) who

specified g = δγ1/pj
± ¡
1− δγ1/pj

¢
. Given FLS’s suggestions for γ and δ, they mention that model

comparisons based on the resulting log integrated likelihood can roughly be compared to those

based on the Akaike Information Criterion (AIC) (Akaike, 1974).

2.3 Model Priors

The most common model prior in the literature is the uniform distribution that assigns equal prior

probability all models, so that pr(Mk) = 1/K for each k. This was suggested first by Raftery

(1988) and, for linear regression models, by George and McCulloch (1993). Hoeting et al. (1999)

cite the extensive evidence that supports the good performance of the UIP, since the integrated

likelihood on the model space is often concentrated enough for the results to be insensitive to

moderate deviations from the uniform prior.

We also consider the more general model prior proposed by Mitchell and Beauchamp (1988),

namely

pr(Mk) =

pY
j=1

π
δkj
j (1− πj)

1−δkj , (8)
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where δkj = 1 if Xj is included in Mk and 0 otherwise. In (8), πj is the prior probability that Xj

is included in the model, and it is usually assumed that πj = π for j = 1, . . . , p. When π = 0.5,

(8) reduces to the uniform prior. The general prior in (8) has been widely used, for example by

George and McCulloch (1993), Madigan and Raftery (1994) and SDM. SDM assumed π = 7/p in

growth applications, yielding a prior expected model size of πp = 7. Following Brown, Vannucci,

and Fearn (1998; 2002), Ley and Steel (2007b, hereafter LS) suggested that π itself be a random

variable drawn from a Beta(1,1−ππ ) distribution. They evaluated parameter Priors 9 and 12 with

fixed and random π. We adopt (8) and examine growth determinants as well as their predictive

performance for a range of fixed model priors. We also compare our results with those in LS with

fixed and random π.9

There is a tradeoff between the prior inverse variance parameter g and the prior inclusion

probabilities, πj in (8), pointed out by Taplin and Raftery (1994, Section 5.2) in a slightly different

context, and also revealed by computations in Ley and Steel (2007b). We now give a theoretical

explanation for this, taking πj = π for j = 1, . . . , p for easier exposition.

Comparing the posterior probabilities for a given model in (2) for different priors, Kass and

Raftery (1995) showed that an increase in the prior standard deviation by a factor c, is approxi-

mately equivalent to a reduction in the prior odds for an increase in the model size by an additional

variable, by the same factor of c.

Using the approximation of Kass and Raftery (1995, equation 14), it can be shown that for two

priors, A and B, with associated prior scale factors, gA, gB, and prior inclusion probabilities, πA,

πB, the posterior odds for one regression model against an alternative regression model with one

additional regressor are approximately equal when the priors satisfy

gA
gB

=

∙
πB
πA

(1− πA)

(1− πB)

¸2
. (9)

This shows the nature of the tradeoff between the prior scale factor and the prior inclusion prob-

ability: a change in π has approximately the same effect as the change in g given by equation

(9).

9Like most workers in this area, we use independent the independent model priors specified by (8). However,
non-independent default priors have been proposed as well. George (1999; 2001) and Durlauf, Kourtellos and Tang
(2008) introduced dependent model priors that account for the correlation structure of the regressors. Brock, Durlauf
and West (2003) proposed tree-structured priors that are based on substantive knowledge of context.
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3 Determining Growth Determinants

Since economic growth is the fundamental driver of living standards, it is of great interest to

economists and policymakers alike to identify which of the numerous theories proposed receive

support from the data and which determinants have a significant effect on growth. Attempts to

identify robust growth determinants date back to Levine and Renelt (1992) who used extreme

bounds analysis. Formal BMA analysis was conducted by Brock and Durlauf (2001), FLS (2001a)

and SDM (2004). The dataset used across studies always contains a core of at least 41 candidate

regressors, motivated by Sala-i-Martin (1997) and FLS (2001a). We base our growth analysis on

the same dataset that FLS kindly shared with us.

3.1 Effects of Parameter Priors on Growth Determinants

For datasets with small numbers of observations such as our growth dataset with 72 observations,

priors can play an important role. As can be seen in Figure 1, the precisions of the parameter

priors vary widely; for example the information contained in Prior 7 is three orders of magnitude

greater than that in the FLS-preferred prior. It thus seems possible that the BMA results would

vary considerably between priors.

Table 2 reports the BMA posterior inclusion probabilities for all 12 prior distributions applied

to the growth dataset. Posterior inclusion probabilities and the number of regressors that exhibit

evidence of an effect on growth vary substantially across priors. The number of regressors whose

inclusion probability exceeds 50% ranges from a low of 7 regressors (Priors 5, 7, and 11) to a high

of 22 regressors (Prior 1). Recall that, apart from the UIP, the prior distributions are all centered

at zero and that Priors 5, and 7 have small prior variance that emphasizes the zero expected

mean, while the variance of Prior 11 has the largest variance in the sample, which to emphasize

uncertainty (see Figure 1). Priors 5, 7, and 11 contain strong information against a large effect,

and the information contained in the data is too weak to overwhelm that prior. As the priors over

the parameter space become spread out enough to include those regions where the likelihood is

large, the number of regressors that exhibit an effect increases. Figure 1 shows that both more

diffuse and more precise priors (Priors 11, 7 and 5) lead to a decline in the integrated likelihood,

thus reducing the number of regressors showing an effect.

Figure 2 shows scatterplots of posterior inclusion probabilities generated by the various priors

against Prior 1. Since Prior 1 was the most optimistic, with 22 candidate regressors showing an

effect in Table 2, it is no surprise that most of the points in the scatterplots lie above the 45 degree
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line, indicating higher posterior inclusion probabilities under Prior 1 than under other priors. The

scatterplots also show how the differences between Prior 1 and alternative priors increase as the

implied g-prior diverges. Priors 1, 6, and 12 yielded similar results, but most other priors showed

differing effects implied by the priors.

3.2 Combined Effects of Parameter and Model Priors on Growth Determinants

SDM advocated using a Mitchell-Beauchamp prior (8) with π = 7/p, equivalent to a prior expected

model size of 7 regressors. We combined this model prior with the 12 parameter priors considered,

and the results are shown in Table 3. As expected, this leads to smaller models than the uniform

model prior, ranging from 3 to 10 effective regressors with posterior inclusion probabilities above

50%.10 Again the priors with intermediate variance have a slightly larger number of regressors

(Priors 3, 4, and 12), and as before the number of regressors that exhibit an effect declines as the

prior variance become large (Priors 6 and 9). The Mitchell-Beauchamp model prior has the least

impact on Prior 11; for this prior, the Rule of Law variable loses significance but otherwise the

results are identical to Table 2.

The image plots in Figure 3, produced by the BMA R package, highlight how different the

models are over which the various priors average. The figure shows models used in the averaging

process on the horizontal axis. Each model’s posterior probability is indicated by its horizontal

width. Red and blue indicate the inclusion of a regressor with a positive and negative posterior

mean, respectively. Comparing Figures 3a and 3c, we see that the model prior with prior expected

model size 7 favors growth models with fewer variables. In addition, the image plots highlight that,

while the procedure averages over the same number of models, many more models receive negligible

weight if the model size is presumed to be small. On the other hand, we note the similarity between

Figures 3b and 3c, that feature two very different model and parameter priors. This similarity was

first observed for these specific priors by Masanjala and Papageorgiou (2005). LS describe the

similarity between the FLS uniform prior and Prior 1 with prior model size 7 as arising “mostly by

accident” and discuss specific parameter constellations that generate similar posterior probabilities.

We showed in Section 2.3 that in fact this similarity has a theoretical explanation.

For the FLS dataset with n = 72 and p = 41, the FLS benchmark parameter prior implies

gA = 1/p
2, combined with the uniform model prior, πA = 1

2 , in the notation of (9). When gB = 1/n

10When the posterior inclusion probability is above 50%, the Bayesian analysis favors inclusion because the coeffi-
cient is more likely than not to be in the model, given the data. There is also some theoretical support for emphasizing
predictor variables whose posterior inclusion probability is above 50%, namely that the so-called “median probability
model” that includes precisely those variables is often the optimal predictive model (Barbieri and Berger 2004).
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as in the case of Prior 1, used by SDM, equation (9) holds when the prior inclusion probability is

πA = 7.03/p, so that the prior expected model size is 7.03. It is therefore not surprising that for

the SDM suggested prior expected model size of 7, the priors recommended by SDM and FLS yield

similar results for the growth dataset, although they are based on very different parameter and

model priors. Note that this similarity depends crucially on the number of candidate regressors in

the dataset, p. Subjective priors that favor small models thus achieve their aim by punishing larger

models (Figure 3c) or by increasing the prior variance on each individual parameter (Figure 3b).

In summary, candidate default priors differed considerably in dispersion, and led to the choice

of different sets of variables. As few as 3 and as many as 22 regressors were found to be related to

growth, depending on the specific prior used.

3.3 Assessment of Prior Distributions using Predictive Performance

We now compare the competing default priors on the basis of predictive performance on hold-out

samples, a neutral criterion that allows the comparison of different methods on the same footing.

We compare the performance of the full predictive distributions produced by the methods, as well

as that of point predictions.

We divide the dataset randomly into a training set, DT , which is used to estimate the BMA

predictive distribution, and a hold-out set, DH , which is used to assess the quality of the resulting

predictive distributions. We use three different criteria, or scoring rules: the mean squared error

(MSE) of prediction, the log predictive score (LPS; Good 1952), and the continuous ranked prob-

ability score (CRPS; Matheson and Winkler, 1976). All our scoring rules are negatively oriented,

that is, lower is better.

The MSE of prediction is conventionally used to assess the quality of point predictions. The

BMA point prediction for an observation in the hold-out dataset, ynew, with predictors xnew, is

ŷnew,BMA =
KX
k=1

E[ynew|xnew,DT ,Mk] pr(Mk|DT ).

The MSE of prediction is then

1

nH

X
ynew∈DH

(ynew − ŷnew,BMA)
2 ,

where nH is the number of observations in DH .

The other two scoring rules measure the quality of the predictive distribution as a whole. The
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BMA predictive distribution is

prBMA(ynew) =
KX
k=1

pr(ynew|xnew,DT ,Mk)pr(Mk|DT ).

The LPS is then defined as

LPS = −
X

ynew∈DH

log prBMA(ynew).

Let FBMA(ynew) be the cumulative distribution function corresponding to the BMA predictive

density prBMA(ynew). Then the CRPS for the single observation ynew is

CRPS(ynew) =

Z ∞

−∞
(FBMA(y)− 1{ynew < y})2 dy,

where 1{ynew > y} = 1 if ynew > y and 0 otherwise. The CRPS for the hold-out dataset as a whole

is then

CRPS =
1

nH

X
ynew∈DH

CRPS(ynew).

The CRPS measures the area between a step function at the observed value and the predictive

cumulative distribution function. Unlike the LPS, it is defined when the prediction is deterministic;

in that case it reduces to the mean absolute error (Hersbach 2002).

The LPS and the CRPS assess both the sharpness of a predictive distribution and its calibration,

namely the consistency between the distributional forecasts and the observations. However, the

LPS assigns particularly harsh penalties to poor probabilistic forecasts, and so can be very sensitive

to outliers and extreme events (Weigend and Shi, 2000; Gneiting and Raftery, 2007). The CRPS is

more robust to outliers (Carney, Cunningham and Byrne, 2006; Gneiting and Raftery, 2007), and

hence it is our preferred measure of the performance of the predictive distribution as a whole. We

also report the LPS for comparability with previous work, notably that of FLS (2001b) and LS.

We divided the dataset randomly into a training set that contains 80% of the data and thus

leaves 20% of the data to be predicted, and we repeated the analysis for 400 different random splits,

reporting the average over all splits. Table 4a shows the predictive performance of the 12 parameter

priors in conjunction with uniform model priors as evaluated by the MSE, LPS and CRPS.

The MSE and the CRPS agree that our baseline Prior 1 decisively outperformed all the other

priors. The LPS suggests, however, that Priors 2, 4, 6 and 8 outperform Prior 1. Since this result

runs counter to the results from the two other scoring rules, it seems possible that the difference is

due to influential observations in the dataset or outliers in a particular subsample. Several of the

regressors have extreme outlying values. When such cases are in the test set, they can have a large

11



effect on the LPS, while the CRPS is more robust to individual cases. Given the known outlier

sensitivity of the LPS, we discount the results it gives for this dataset, and conclude that Prior 1

performs best in this case.

Table 4b compares our results to those of LS (Table 5) who did not consider the UIP, but who

did include random model priors for parameter priors 9 and 12, in which a prior distribution was

put on the prior inclusion probability π. To achieve an exact comparison with the LS results, Table

4b is based on a 85/15 subsample split and we divide our LPS values by the number of held out

observations (following LS’s LPS formula). In addition, we report absolute log predicitve scores

(LPS) in Table 4b (not values relative to the UIP LPS scores as we do in all of our other tables).

Table 4b shows that Prior 1 outperformed Priors 9 and 12, whether the model priors are fixed or

random.

Recall from Table 7a that Prior 1 had better (lower) LPS values than either Prior 9 or Prior 12

with uniform model priors. LS then show that uniform or random model priors generate similar

means for Priors 9 and 12. Hence it is no surprise that UIP also has lower LPS values than Priors

9 or 12 with random model priors.

Overall, the unit information prior (Prior 1) with a uniform model prior performed best of the

candidate default priors that we have evaluated in terms of cross-validated predictive performance

on the growth dataset. Also, the prior expectation of a model size of about 7 regressors is not

supported by the predictive performance results, as shown in Table 5. Indeed in the growth context

predictive performance does not support researchers’ priors for small growth models. Table 5 shows

that parameter Prior 1 together with uniform model priors dominate all other priors for prior model

size smaller than 13.

4 Simulated Data

We now examine the effects of the set of priors using simulated datasets from two models that have

been prominent in the BMA literature: Model 1 that is based on Raftery, Madigan and Hoeting

(1997) and was used by FLS, and Model 2 that is based on George and McCulloch (1993) was also

used by FLS.

For Model 1 we generate an n× p (p = 15) matrix R = (r1, ..., r15) of regressors, where the first

ten columns are drawn from independent standard normal distributions, and the next five columns

are constructed according to (r11, ..., r15) = (r1, ..., r5) (0.3 0.5 0.7 0.9 1.1)
0 (1, 1, 1, 1, 1)+E, where

E is an n× 5 matrix of independent standard normal deviates. Model 1 implies small to moderate
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correlations between the first and last five regressors r1, ..., r5 and r11, ..., r15. The correlations

increase from 0.153 to 0.561 for r1, ..., r5 and are somewhat larger between the last five regressors,

reaching 0.740. Each regressor is centered by subtracting its mean, which results in a matrix

Z = (z1, ..., z15). A vector of n observations is then generated according to

Model 1: 1 : y = 4in + 2z1 − z5 + 1.5z7 + z11 + 0.5z13 + σε, (10)

where the n elements of ε are independent standard normal and σ = 2.5. In Model 1 a third of

all the regressors intervene, which we view as fairly typical of some real world situations, and we

examine datasets with 50 and 100 observations to stay close to the structure of our growth example.

The structure of Model 2 is closer to the growth dataset in terms of numbers of observations

and numbers of regressors. It is generated using p regressors, ri = r∗i + e, i = 1, ..., p, where r∗i

and e are n-dimensional vectors of independent standard normal deviates. This induces a pairwise

correlation of 0.5 between all regressors. Let Z again denote the n×p matrix of centered regressors,

and generate the n observations according to

Model 2: y = in +

p/2X
h=1

z(p/2+h) + σε, (11)

where the n elements of the error are again independent standard normal and σ = 2. In this

simulation model, the second half of the regressors intervene, namely (z21, ..., z40).

For Model 1, the differences in the prior variances shown in Figures 4a,b,c are similar to the

magnitudes observed for the growth dataset in Figure 1. Again about three orders of magnitude

separate the most concentrated and most diffuse priors, although the level of concentration is

a bit lower in the simulated datasets. Tables 6a,b show, however, that with well-behaved data

all priors basically agree upon which regressors have an effect, even in a dataset that contains

only 50 observations. For the larger simulated dataset in Model 2, with about three times the

number of candidate regressors as in Model 1, we again find diversity in the number of regressors

identified as having an effect on the dependent variable. Table 6c shows that several priors are

clearly too concentrated, with Priors 2, 5, and 7 identifying only between 3 and 7 of the 20 relevant

regressors that in fact had an effect on the dependent variable. As the prior variance increases

enough to cover the more substantive part of the likelihood, the priors are able to pick up more

of the relevant regressors, getting closer to the correct number of regressors. Priors 3, 9, and 11

pick up 16 candidate regressors although only Prior 1 shows appropriately high posterior inclusion

probabilities.
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In summary, our simulation experiment shows that priors can matter, especially when there are

many candidate regressors. The UIP is the only one that was robust across simulations, coming

closest to identifying the right regressors in all cases.

Table 7 shows the UIP’s generally superior predictive performance. The MSE was consistently

better for the UIP than for all other priors. The LPS was too, except for prior 3 in Model 2. The

CRPS preferred the UIP to all other priors for Model 2, but for Model 1 it preferred Priors 3, 4, 6

and 8 to Prior 1.

5 Conclusion

Model uncertainty is intrinsic in economic analysis and the economic growth literature has been

a showcase for model uncertainty over the past decade. Over 140 growth determinants have been

motivated by the empirical literature, and the number of competing theories has grown dramatically

since the advent of the New Growth Theory. Bayesian Model Averaging (BMA) provides a solid

theoretical foundation for addressing model uncertainty as part of the empirical strategy.

However, BMA faces an important challenge. In this paper we showed that for a well-known

growth dataset the results of BMA were sensitive to the prior specification. To identify the best

prior for our growth dataset, we examined the predictive performance of 12 candidate default

parameter priors that have been proposed in the statistics and economics literatures, as well as

several model priors that have been advocated. We argue that predictive performance is a natural

and neutral criterion for comparing different priors, and suggest the CRPS as a preferred measure.

In addition, we examined these priors’ success in identifying the right determinants in simulated

datasets.

The UIP performed better than the other 11 priors in the growth data, and in simulated data,

and as measured by our preferred CRPS scoring rule. The UIP together with the uniform model

prior also performed better than the Mitchell-Beauchamp model prior with expected model size

7, which had previously been recommended by Sala-i-Martin, Doppelhofer and Miller (2004). We

view the UIP with the uniform model prior as a reasonable default prior and starting place, but

our results also highlight that researchers should also assess other possibilities that may be more

appropriate for their data and applications.

We have focused here on priors where π and g are fixed. A Bayesian alternative is to put

prior distributions on π and g themselves and integrate them out. Ley and Steel (2007) advocated

putting a prior distribution on π but their results did not show that this led to improved predictive
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performance, as we have seen. Liang et al. (2008) reviewed a range of parameter priors that put

a prior on g and integrate it out (they called them mixtures of g-priors). They assessed predictive

performance in one example using only the highest probability model under each prior rather than

BMA, and reported only the MSE of prediction, and not any measure of the performance of the full

predictive distribution. They concluded that the differences in MSE were not enough to suggest

that the mixtures of g-priors performed better than the fixed g methods. It would be interesting

to see a more complete assessment of these methods in terms of predictive performance.

In terms of economic impact, the UIP with uniform model prior identified more growth determi-

nants than Fernández, Ley and Steel (2001b) who used the same dataset. The additional regressors

include Primary and Secondary Education, Size of Labor Force, Ethnolinguistic Fragmentation,

Minging, Latin America, Colonies (British, French, Spanish), Civil Liberties, Non Equipment In-

vestment, Black Market Premium, Outward Orientation and Fraction Speaking English and Hindu.
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Source: FLS (2001b), Raftery et al (1997), Kass and Raftery (1995)

Table 1: Parameter Prior Structures 
 

Prior Specification of g-prior Comment Source 

1  Unit Information Prior  
 

The prior contains information approximately equal to 
that contained in a single typical observation. The 
resulting posterior model probabilities are closely 
approximated by the Schwarz Criterion, BIC. 

Kass and Wasserman (1995), 
Raftery (1995) 

2 npg kk /=  Prior information increases with the number of 
regressors in the model. 

FLS(2001b) 

3 npg kp
k

/1=  Prior information decreases with the number of 
regressors in the model. 

FLS(2001b) 

4  ng 1=  
This is an intermediate case of prior 1 suggested by 
FLS where a smaller asymptotic penalty is chosen for 
larger models.  

FLS(2001b) 

5 npg kk /=  
This is an intermediate case of prior 2, suggested by 
FLS, where prior information increases with the 
number of regressors in the model. 

FLS(2001b) 

6 ( )3ln/1 ng =  
The Hannan-Quinn criterion. CHQ=3 as n becomes 
large. 

Hannan-Quinn (1979) 

7 ( ) ( )npg kk ln1ln +=  
Prior information decreases even slower with sample 
size and there is asymptotic convergence to the 
Hannan-Quinn criterion with CHQ = 1. 

Hannan-Quinn (1979) 

8 ( ) ( )( )kk pp
kg /1/1 1 δγδγ −=   

A natural conjugate prior structure, subjectively 
elicited through predictive implications. γ < 1 (so that 
g increases with kj) and delta such that g/(1+g) Є 
[0.10, 0.15] (the weight of the “prior prediction error” 
in the Bayes factors); for kj ranging from 1 to 15.  FLS 
suggest covering this interval with the values of γ = 
0.65 and δ = 0.15. 

Laud and Ibrahim (1996) 

9 2/1 pg =  This prior is suggested by the risk inflation criterion 
(RIC). 

Foster and George (1994) 

10 [ ]( )2,max/1 png =  The preferred prior of Fernandez Ley and Steel (2001), 
a mix of Prior 9 and Prior 1.  

FLS (2001b) 

11 

( )
( )

22

122

2

~/
'/1

,~

χσλ

φσ

σμβ

v
XnXV

VN
−=  

Data dependent prior. φ  = 2.85, ν  = 2.58, λ  = 0.28 
if the R2 of the full model is less than 0.9, and φ  = 
9.2, ν  = 0.2, λ  = 0.1684 if the R2 of the full model is 
greater than 0.9. 

Raftery, Madigan and 
Hoeting (1997) 

12 1−= ng  Similar to the Unit Information Prior, but with mean 
zero instead of MLE. 

FLS(2001b) 

 



Table 2
Posterior Inclusion Probabilities Across Parameter Priors

Model Prior = Uniform
(Growth Dataset)

Prior 11 9 (FLS) Prior 6 Prior 1 Prior 12 Prior 3 Prior 4 Prior 8 Prior 2 Prior 5 Prior 7
Confucius 99.5 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.2 98.5
GDPsh560 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.5 98.5
Life 96.5 96.4 99.9 100.0 100.0 99.9 99.8 98.6 96.4 93.1 90.9
RuleofLaw 47.2 64.0 99.6 100.0 99.6 99.6 98.3 93.0 69.3 57.3 56.6
SubSahara 74.8 83.8 99.9 100.0 100.0 100.0 99.7 97.5 86.3 80.2 79.6
EquipInv 99.0 96.8 98.3 99.9 98.4 98.3 95.6 88.8 94.4 95.3 95.2
Hindu 3.2 10.3 96.6 99.9 97.0 96.8 88.7 42.8 16.7 15.0 18.5
HighEnroll 0.3 0.7 93.4 99.8 94.0 93.5 78.1 2.8 2.1 3.9 7.2
LabForce 0.4 1.3 94.5 99.8 95.0 94.6 81.6 11.6 3.9 5.6 9.2
EthnoLFrac 0.5 1.3 90.8 99.3 91.4 90.8 74.6 7.2 3.3 4.8 8.0
Mining 28.0 38.5 96.4 99.2 96.5 96.4 93.3 74.7 49.1 43.4 44.1
LatAmerica 9.2 13.4 79.5 97.2 80.3 79.4 61.0 30.2 17.7 17.5 19.1
SpanishCol 0.0 0.1 67.6 94.6 68.7 67.3 42.3 2.0 0.5 1.1 2.4
FrenchCol 0.3 0.2 65.4 93.9 66.5 65.1 39.4 0.0 0.3 1.0 2.2
BritCol 0.0 0.0 64.7 93.6 65.8 64.4 38.7 0.7 0.2 0.6 1.8
PrSc 19.3 12.0 72.2 90.7 72.8 72.2 58.0 8.1 14.1 16.1 17.5
CivlLib 5.2 3.3 66.8 85.7 67.5 66.7 51.2 3.7 4.4 5.4 7.1
NEquipInv 28.8 49.3 71.3 85.6 71.7 71.3 66.6 82.1 52.4 41.1 40.3
English. 0.5 1.1 58.0 84.5 58.9 57.7 36.7 2.7 2.2 2.4 3.5
OutwarOr 0.0 0.0 51.2 82.8 52.2 51.0 31.4 0.7 0.2 0.6 1.7
BlMktPm 5.1 12.2 63.8 72.5 63.9 64.1 67.6 45.4 19.6 17.4 19.9
Muslim 66.9 68.3 44.3 60.9 44.4 44.4 49.4 54.9 66.5 60.3 56.1
Buddha 4.1 10.2 19.5 36.5 19.7 19.7 21.5 31.1 13.4 10.6 11.4
EcoOrg 34.2 56.6 39.5 35.6 39.2 39.7 50.1 88.7 61.0 47.3 45.2
X.PublEdu 0.0 0.2 17.9 13.3 17.8 18.1 19.4 1.5 0.6 1.1 2.0
PolRights 2.0 2.7 16.4 12.4 16.5 16.5 14.6 10.1 4.5 4.4 4.8
Protestants 35.5 51.5 25.7 11.7 25.2 26.0 41.7 81.3 56.8 47.7 46.4
WarDummy 1.1 0.9 6.2 11.7 6.4 6.3 3.9 0.8 1.2 1.8 2.0
Age 0.4 0.7 14.6 11.4 14.7 14.7 12.2 3.3 1.3 1.7 2.3
RFEXDist 1.8 2.0 4.6 9.6 4.7 4.7 4.0 0.6 2.6 3.3 3.4
Catholic 4.1 8.7 3.5 7.5 3.5 3.6 7.1 20.3 11.0 8.3 8.2
Popg 0.2 0.3 2.2 3.6 2.2 2.3 2.2 0.2 0.5 0.5 0.5
PrExports 2.2 2.5 1.2 2.8 1.2 1.2 2.1 5.9 3.7 3.0 2.8
Foreign. 0.5 0.3 0.7 2.0 0.7 0.7 0.4 0.0 0.2 0.6 0.7
Jewish 0.0 0.0 0.8 1.3 0.8 0.8 0.7 0.0 0.0 0.0 0.1
std.BMP. 0.0 0.0 0.6 1.3 0.6 0.6 0.4 0.0 0.0 0.0 0.0
Area 0.0 0.0 0.8 1.1 0.9 0.9 1.1 0.0 0.1 0.1 0.2
Work.Pop 0.4 0.2 0.3 1.1 0.3 0.3 0.2 0.0 0.2 0.6 0.8
AbsLat 0.6 0.5 1.2 1.0 1.2 1.2 1.8 0.3 0.7 0.9 1.0
YrsOpen 57.8 40.9 1.2 1.0 1.1 1.2 3.4 15.3 37.3 44.2 42.4
Rev.Coup 0.1 0.2 0.4 0.7 0.4 0.4 0.7 1.1 0.5 0.4 0.4
# of relevant 
regressors

7 9 21 22 21 21 17 11 10 7 7

1) Posterior inclusion probabilities that exceed 50% are in bold font (Jeffreys, 1961)
2) Priors 9 and 10 are identical in the growth context

Priors Arranged By Effective g-Value (increasing left to right)



 

Prior 1       
Model Prior: 

Uniform Prior 11 Prior 9 Prior 6 Prior 1 Prior 12 Prior 3 Prior 4 Prior 8 Prior 2 Prior 5 Prior 7
Confucius 100.0 92.0 95.8 99.7 99.9 99.7 99.7 98.7 97.2 96.5 87.1 84.8
GDPsh560 100.0 91.6 91.7 99.8 100.0 99.8 99.8 99.0 97.3 96.8 71.8 50.1
Life 100.0 79.5 77.4 94.8 97.8 94.9 94.8 90.2 84.9 82.0 48.8 30.8
RuleofLaw 100.0 16.5 16.9 49.4 68.6 50.2 50.4 37.0 29.2 21.5 12.3 8.2
SubSahara 100.0 61.8 60.4 76.5 86.3 76.9 77.0 70.1 66.1 62.9 48.5 35.1
EquipInv 99.9 99.5 99.4 98.2 99.2 98.1 98.0 98.5 98.7 99.0 98.5 97.9
Hindu 99.9 0.0 0.0 4.8 9.6 5.0 5.1 2.3 1.1 0.1 0.0 0.0
HighEnroll 99.8 0.1 0.1 0.1 1.0 0.1 0.1 0.1 0.1 0.1 0.8 1.2
LabForce 99.8 0.0 0.0 0.3 1.5 0.3 0.3 0.1 0.0 0.0 0.0 0.0
EthnoLFrac 99.3 0.2 0.2 0.4 0.9 0.5 0.5 0.4 0.4 0.4 0.5 0.3
Mining 99.2 4.1 6.9 31.2 33.7 31.8 32.2 25.8 19.6 12.0 3.8 1.7
LatAmerica 97.2 4.7 6.0 11.2 11.1 11.4 11.6 11.6 10.9 9.3 6.1 3.9
SpanishCol 94.6 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FrenchCol 93.9 0.3 0.3 0.3 0.0 0.3 0.3 0.6 0.7 0.7 0.3 0.1
BritCol 93.6 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PrSc 90.7 6.6 7.8 13.3 8.0 13.3 13.5 14.6 13.6 11.5 6.5 4.8
CivlLib 85.7 1.0 1.2 3.2 2.2 3.2 3.3 3.3 2.9 2.1 0.6 0.4
NEquipInv 85.6 3.2 5.6 34.7 56.2 35.4 35.5 23.0 16.6 9.8 5.2 4.1
English. 84.5 0.0 0.0 0.8 0.1 0.8 0.9 0.7 0.4 0.1 0.1 0.3
OutwarOr 82.8 0.0 0.0 0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.3
BlMktPm 72.5 0.1 0.3 6.8 10.0 7.1 7.3 4.6 2.7 0.8 0.1 0.0
Muslim 60.9 21.5 29.2 65.6 69.1 65.9 65.8 56.5 46.9 37.2 13.0 7.2
Buddha 36.5 2.3 2.6 5.9 11.8 6.1 6.2 3.8 3.1 2.0 9.6 13.8
EcoOrg 35.6 4.7 7.6 40.7 61.9 41.6 41.7 27.4 19.7 11.9 6.2 5.0
X.PublEdu 13.3 0.0 0.0 0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PolRights 12.4 0.3 0.5 1.9 0.8 1.9 2.0 2.0 1.7 1.2 0.4 0.5
Protestants 11.7 16.8 21.3 40.7 51.8 41.3 41.5 32.6 27.4 21.4 24.9 25.6
WarDummy 11.7 0.8 0.9 1.2 0.0 1.2 1.2 1.9 2.1 1.9 1.3 0.7
Age 11.4 0.4 0.6 0.6 0.1 0.6 0.7 0.9 1.1 1.0 1.8 2.0
RFEXDist 9.6 1.2 1.6 2.5 0.0 2.5 2.6 3.3 3.3 2.6 3.8 4.8
Catholic 7.5 0.6 1.1 5.3 9.0 5.5 5.5 3.3 2.3 1.4 1.9 1.6
Popg 3.6 0.0 0.0 0.2 0.0 0.2 0.3 0.2 0.1 0.0 0.1 0.2
PrExports 2.8 0.1 0.1 1.8 1.3 1.9 1.9 1.4 0.9 0.3 0.5 0.5
Foreign. 2.0 0.6 0.9 0.6 0.0 0.6 0.6 1.1 1.3 1.5 1.0 0.7
Jewish 1.3 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2
std.BMP. 1.3 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.8
Area 1.1 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3
Work.Pop 1.1 1.1 1.2 0.5 0.1 0.4 0.5 1.0 1.5 1.7 2.2 2.2
AbsLat 1.0 0.2 0.3 0.6 0.0 0.6 0.6 0.8 0.8 0.7 0.2 1.0
YrsOpen 1.0 59.8 63.0 52.4 38.0 51.8 51.7 59.2 61.0 63.5 49.1 38.2
Rev.Coup 0.7 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0
relevant regressors 22 6 6 7 10 8 8 7 6 6 3 3

2) Priors 9 and 10 are identical in the growth context
3) Priors arranged by effective g-value (see Figure 1)

1) Posterior inclusion probabilities that exceed 50% are in bold font (Jeffreys, 1961)

Priors Arranged By Effective g-Value (increasing left to right)

Table 3
Posterior Inclusion Probabilities Across Parameter and Model Priors

 Uniform Model Prior Column 1, All Other Columns: Prior Model Size =7 (as in Sala-i-Martin et al., 2004)
(Growth Dataset)



Parameter Priors And Predictive Performance

Prior Meana Mediana %b

model prior 
autors EPR

11 0.073 0.014 69*** parameter prior 1 9 12 9 12
9 0.075 0.012 69*** min 0.16 1.11 0.86 1.20 1.11
6 0.039 0.002 55** mean 0.97 1.63 1.65 1.63 1.61
12 0.085 0.006 71*** max 2.32 2.85 2.76 2.47 2.64
3 0.083 0.005 69*** stdev 0.47 0.37 0.42 0.25 0.34
4 0.059 0.003 57*** 100 random split trials (subsamples) and 15% hold out sample
8 0.051 0.003 58*** LS: Ley and Steel (2007b)
2 0.022 0.003 58*** EPR: Eicher, Papageorgiou, Raftery
5 0.008 0.003 55**
7 0.013 0.004 56***

11 0.854 0.030 69***
9 0.944 0.029 69***
6 0.233 0.005 57***
12 0.675 0.009 65***
3 0.533 0.007 65***
4 0.000 0.002 53
8 0.058 0.003 55**
2 0.193 0.008 58***
5 0.708 0.012 60***
7 1.085 0.018 64***

11 0.711 0.711 61***
9 1.078 1.437 63***
6 -1.617 -0.715 41***

12 1.719 1.668 77***
3 1.337 1.348 73***
4 -1.557 -0.780 38***
8 -1.647 -0.846 39***
2 -1.181 -0.435 44***
5 -0.755 0.178 51
7 -0.250 0.731 56***

1) Priors 9 and 10 are identical in the growth context
2) Priors arranged by effective g-value (see Figure 1)

CRPS

Performance Scores Relative  to Parameter Prior 1
(Growth Dataset, Model Prior: Uniform)

Log Predictive Score: to conform to the Ley and Steel's LPS definition we divide here by 
the number of held out regressors

LS LS

Priors And Predictive Performance: Comparison to Ley and Steel (2007b)

Subsamples: 400

Table 4a

MSE

Table 4b

Absolute Performance Scores, Log Predictive Score 
(Growth Dataset, Model Prior: Uniform)

Subsamples: 100

fixed, uniform random

a Refers to the improvement in the score attained by the UIP compared 
to a given alternative prior

***, **, * are 99%, 95%, 90% one-sided significance levels based on 
binomial p values, P(X > or = z), for the given number of trials and 
successes; where success is defined as a better score for prior 1 (the 
alternative) as compared to the alternative prior (UIP) if the percentage 
is above (below) 50%

b Indicates percent of trials where "success" is a better predictive score 
by the UIP than by the alternative prior.

LPS



Prior Mediana %c Mediana %c Mediana %c Mediana %c Mediana %c Mediana %c Mediana %c Mediana %c Mediana %c Mediana %c

 
11 0.16 71*** 0.13 72*** 0.14 77*** 0.13 71*** 0.12 71*** 0.16 79*** 0.17 81*** 0.11 71*** 0.10 71*** 0.10 72***
9 0.15 71*** 0.12 71*** 0.14 78*** 0.12 71*** 0.12 71*** 0.16 81*** 0.16 80*** 0.11 73*** 0.11 74*** 0.10 73***
6 0.09 70*** 0.08 71*** 0.13 75*** 0.09 73*** 0.09 72*** 0.15 79*** 0.12 77*** 0.08 80*** 0.08 81*** 0.07 79***
1 0.03 67*** 0.02 67*** 0.02 67*** 0.02 69*** 0.02 68*** 0.04 58*** 0.02 69*** 0.01 68*** 0.01 69*** 0.01 70***
12 0.10 70*** 0.09 71*** 0.13 75*** 0.09 72*** 0.09 73*** 0.15 80*** 0.12 78*** 0.08 82*** 0.08 81*** 0.07 81***
3 0.09 70*** 0.08 71*** 0.13 75*** 0.09 73*** 0.09 72*** 0.15 79*** 0.12 77*** 0.08 80*** 0.08 81*** 0.07 79***
4 0.08 68*** 0.06 67*** 0.09 70*** 0.05 65*** 0.05 65*** 0.13 78*** 0.11 76*** 0.06 69*** 0.06 73*** 0.05 73***
8 0.09 67*** 0.08 65*** 0.09 68*** 0.05 65*** 0.05 65*** 0.13 74*** 0.12 76*** 0.05 66*** 0.05 71*** 0.05 71***
2 0.09 67*** 0.07 68*** 0.10 70*** 0.07 68*** 0.06 67*** 0.12 74*** 0.14 76*** 0.05 63*** 0.06 65*** 0.05 65***
5 0.15 70*** 0.13 69*** 0.15 76*** 0.11 67*** 0.11 67*** 0.17 73*** 0.17 77*** 0.09 65*** 0.09 64*** 0.08 65***
7 0.19 75*** 0.17 73*** 0.18 80*** 0.16 73*** 0.15 72*** 0.20 75*** 0.20 80*** 0.13 69*** 0.12 69*** 0.10 68***
 

11 0.04 83*** 0.04 80*** 0.03 78*** 0.03 79*** 0.02 77*** 0.03 72*** 0.05 78*** 0.01 77*** 0.01 72*** 0.01 71***
9 0.04 85*** 0.03 77*** 0.02 79*** 0.02 79*** 0.02 75*** 0.02 71*** 0.04 75*** 0.01 73*** 0.01 74*** 0.01 71***
6 0.01 69*** 0.01 66*** 0.01 69*** 0.01 66*** 0.01 67*** 0.01 62*** 0.01 63*** 0.00 71*** 0.00 62*** 0.00 63***
1 0.00 61*** 0.00 59** 0.00 62*** 0.00 61*** 0.00 61*** 0.01 53 0.00 59** 0.00 57** 0.00 57** 0.00 55**
12 0.02 73*** 0.01 68*** 0.01 71*** 0.01 71*** 0.01 69*** 0.01 62*** 0.01 63*** 0.00 68*** 0.00 65*** 0.00 68***
3 0.01 69*** 0.01 66*** 0.01 69*** 0.01 66*** 0.01 67*** 0.01 62*** 0.01 63*** 0.00 71*** 0.00 62*** 0.00 63***
4 0.01 67*** 0.00 56* 0.00 59** 0.00 56* 0.00 53 0.01 59** 0.00 53 0.00 59** 0.00 57** 0.00 57**
8 0.01 65*** 0.00 57** 0.00 59** 0.00 56* 0.00 56* 0.00 55*** 0.00 56** 0.00 53 0.00 55 0.00 56*
2 0.01 72*** 0.01 66*** 0.01 66*** 0.00 58** 0.00 57** 0.01 61*** 0.01 65*** 0.00 53 0.00 54 0.00 52 
5 0.01 65*** 0.01 65*** 0.00 63*** 0.00 61*** 0.00 61*** 0.01 59** 0.01 57*** 0.00 55 0.00 51 0.00 51 
7 0.01 63*** 0.01 58** 0.00 60*** 0.00 59** 0.00 62*** 0.01 60*** 0.01 57*** 0.00 55* 0.00 52 0.00 51 
 

11 1.50 62*** 1.17 59** 1.89 64*** 1.23 58** 1.15 57** 3.58 82*** 4.18 78*** 0.82 55* 0.89 57** 0.99 57**
9 1.53 62*** 1.31 60*** 1.96 64*** 1.30 59** 1.16 59** 3.51 82*** 4.28 78*** 1.10 56* 1.21 59** 1.24 61***
6 0.40 54 0.66 54 1.72 59** 0.68 55*** 0.89 56 2.79 82*** 3.23 75*** 1.26 65*** 1.41 70*** 1.60 72***
1 0.86 62*** 0.57 61*** 0.43 61*** 0.34 60*** 0.42 59** 1.63 60*** 0.32 61*** 0.22 61*** 0.18 62*** 0.10 63***
12 0.66 56* 0.76 54 1.99 59** 0.87 57** 1.13 57** 2.89 83*** 3.34 76*** 1.46 67*** 1.58 72*** 1.94 73***
3 0.40 54 0.66 54 1.72 59** 0.68 55 0.89 56** 2.79 82*** 3.23 75*** 1.26 65*** 1.41 70*** 1.60 72***
4 0.18 52 -0.28 47 0.92 57** -0.44 47 -0.44 47 2.36 77*** 3.01 72*** -0.54 44*** -0.48 45* -0.53 43**
8 0.45 53 -0.05 48 0.58 57** -0.43 47 -0.40 47 2.37 77*** 3.11 73*** -0.62 42*** -0.61 43*** -0.82 44**
2 0.46 53 0.10 51 0.99 58** -0.17 48 -0.28 48 2.65 78*** 3.29 75*** -0.39 48 -0.40 46 -0.54 45*
5 1.45 59** 1.11 58** 1.68 61*** 0.81 56* 0.69 55* 3.43 88*** 4.05 79*** 0.20 52 0.02 50 -0.02 50 
7 1.86 62*** 1.69 61*** 2.06 64*** 1.45 58** 1.30 58** 4.22 91*** 4.61 81*** 0.83 55* 0.69 54 0.57 53 

1) Priors 9 and 10 are identical in the growth context
2) Priors arranged by effective g-value (see Figure 1)

LPS LPS

a Refers to the improvement in the score attained by the UIP compared to a given alternative prior
b Indicates percent of trials where "success" is a better predictive score by the UIP than by the alternative prior. ***, **, * are 99%, 95%, 90% significance levels based on binomial p values, P(X > or = z), for the given number of trials and successes; where success is defined as a better score for prior 1 
(the alternative) as compared to the alternative prior (UIP) if the percentage is above (below) 50%

LPS LPS LPS LPS LPS LPS LPS LPS

Prior Model Size=8 Prior Model Size=9 Prior Model Size=11 Prior Model Size=13

MSE MSE

CRPS CRPSCRPS CRPS CRPS CRPSCRPS

Prior Model Size=3 Prior Model Size=5 Prior Model Size=6 Prior Model Size=7

CRPS

MSE

CRPS CRPS

Prior Model Size=15 Prior Model Size=17

Table 5
Parameter Priors, Model Priors, and Predictive Performance (Growth Dataset)

Performance Scores Relative  to Prior 1 with Uniform Model Prior
Subsamples = 190

MSE MSEMSEMSEMSE MSEMSE



Table 6a
Posterior Inclusion Probabilities Across Parameter Priors

Simulated Data, Model1, k=15, n=50

Priors Arranged By Effective g-Value (increasing left to right)

Regressor 11 9 6 1 12 3 4 2 8 5 7
z1 100 100 100 100 100 100 100 100 100 99.9 99.5
z7 100 100 99.3 100 100 100 99.8 99.2 99.6 94.4 90.9
z11 99.6 99.6 96.9 99.9 99.7 99.7 98.6 95.6 97.9 84.3 79
z5 70 67 65.5 73.7 70.5 71.2 67.8 46.2 65.1 36.9 34.5
z2 18.5 23.6 37.3 34.9 32.2 34.9 37 20.9 35.7 22.6 22.3
z4 19.9 23.1 36.7 32.9 30.7 33.2 35.8 22.1 34.9 26 26.3
z14 18.8 13.8 32.5 27.4 23.4 26.8 31.1 11.2 29.2 14.7 15.9
z9 10.6 8.7 31.3 20 16.7 20.1 28.2 8.8 26.3 11.4 12.5
z3 9 9.3 29.2 21.7 18.1 21.5 27.3 8.4 25.4 11.4 12.5
z13 10.7 7.5 22.1 14.1 12.5 14.4 19.6 7.7 18.6 11 12.4
z12 10.2 8.9 20.2 15 13.6 15.2 18.6 8.2 17.7 10.5 11.3
z8 6.7 5.3 18.1 9.5 8.7 10.1 15.2 7.2 14.7 11.2 12.6
z15 6.4 6.1 15.3 9.7 9.1 10.3 13.5 6.3 13.1 7.8 8.4
z6 5.1 4.2 7.3 4.9 5.1 5.4 6.4 5.2 6.5 6.8 7.2
z10 5.2 4.4 7.1 4.9 5.2 5.4 6.3 5.3 6.4 7.1 7.5

# effects 4 4 4 4 4 4 4 3 4 3 3

Table 6b
Posterior Inclusion Probabilities Across Parameter Priors

Simulated Data, Model 1, k=15, n=100

Priors Arranged By Effective g-Value (increasing left to right)
Regressor 11 9 1 12 6 3 2 4 8 5 7

z1 100 100 100 100 100 100 100 100 100 100 100
z7 100 100 100 100 100 100 100 100 100 99.6 97.9
z11 99.4 99.4 99.7 99.5 99.5 99.5 97.6 99.1 98.1 86.5 75.6
z5 92.9 92.9 95.6 94.5 94.5 94.9 83.8 93.9 90.5 57.6 43.6
z15 79.9 81.1 87.8 85 85.1 86.2 63.2 85.1 78.8 35.8 28.3
z6 15.6 15.4 22.1 21.2 21.3 23.7 14.9 39 38 13 12.3
z12 13.7 13.2 19.2 18.3 18.4 20.5 12.4 33.2 32.2 10.9 10.4
z4 14.3 15.8 17.3 17.9 18 19.1 23 27.5 29.7 33.6 34.2
z13 7.7 6.9 9.9 9.7 9.7 10.9 7.1 16.7 16.6 7.9 8.8
z10 4.8 5.1 7.9 7.6 7.6 8.7 5.2 17.7 17.8 5.3 5.4
z3 4 6.1 7.4 7.6 7.6 8.3 7.7 12.3 13.1 9.1 8.7
z2 3.2 5 7 6.9 6.9 7.8 5.4 13.2 13.4 5.9 5.9
z8 6 5.6 7 7 7.1 7.7 6.4 11 11.3 7.4 7.7
z9 4.9 4.6 6.8 6.6 6.7 7.6 4.9 14.3 14.4 5.2 5.2
z14 4.6 4.3 6 5.9 6 6.7 4.6 10.9 11.1 5 5.3

# effects 5 5 5 5 5 5 5 5 5 4 3

Table 6c
Posterior Inclusion Probabilities Across Parameter Priors

Simulated Data, Model 2, k=40, n=100

Priors Arranged By Effective g-Value (increasing left to right)
Regressor 11 9 1 12 6 3 4 8 2 5 7

z1 1.5 1.8 2.8 2.4 2 2.7 0.8 1.3 0.8 2.1 2
z2 0.9 1.2 8.6 1.7 1.5 2 0.2 0.1 0 0 0
z3 4.1 4.8 13.9 4.9 4.5 5.6 0.4 0.2 0 0.4 0.9
z4 0.6 0.6 1.6 1.1 1.3 1.2 0.1 0 0 1 2.1
z5 0.3 0.4 1.9 0.8 0.5 0.9 0.2 0.6 0.7 0.2 0.1
z6 0.4 0.5 3.9 1 0.5 1.1 0.1 0 0 0 0
z7 0.3 0.3 1.5 0.8 0.1 0.9 0.2 0.5 0.9 0.5 0.3
z8 0.4 0.6 4.5 1 0.1 1.1 0.1 0.1 0.1 1 1.1
z9 0.3 0.4 2.5 0.8 0.5 0.9 0.1 0 0 0 0
z10 0.4 0.4 1.6 0.9 0.6 0.9 0.1 0 0.1 1.3 1.9
z11 6.1 6.7 14.3 6.1 6.2 6.8 0.5 0.2 1.2 6.3 7
z12 10.7 14.2 33.2 11.7 10.7 13.2 1.8 0.7 0 0 0
z13 0.3 0.4 3 0.9 0.6 1 0.1 0 0 0 0.2
z14 12.7 12.6 6.8 15.7 14.7 16 12 7.8 0.5 0.4 0.2
z15 0.4 0.5 3.9 0.9 0.1 1.1 0.1 0 0 0 0.1
z16 1.5 1.8 4.9 2.1 2.3 2.4 0.2 0.1 0 0.6 1.2
z17 0.5 0.6 2.5 1 1 1.1 0.2 0.4 0.4 2.6 3.4
z18 10.4 10.6 7.1 8.8 9.6 9.3 14.7 22.4 29.9 23.7 17.8
z19 0.8 1 6.1 1.4 1.3 1.7 1.4 3.6 9.3 10.6 9
z20 0.6 0.7 2.7 1.2 1.4 1.3 1.7 1.5 1.9 1.2 1.2
z21 4.4 7 57.1 4.2 4 5.3 0.4 0.9 2.1 1 0.6
z30 35.3 41.9 94 26.5 26.5 30 3.8 1.5 0 0.4 1.1
z38 44.6 50.9 95.9 38.4 38.4 41.2 20.1 11.9 1.3 0.6 0.3
z33 98.7 99 100 93.3 93.2 93.7 38.2 19.8 0.5 3.8 5.3
z22 72.2 75.4 98.6 50.9 49.7 54.8 7.4 9.1 21.8 40.4 45.2
z25 99.7 99.8 100 96.8 96.6 97.1 29.1 14.7 1.1 1.1 0.8
z27 100 100 100 99.3 99.4 99.3 64.5 39.4 0.9 0.3 0.3
z32 99 99.3 100 94.2 93.8 94.7 50.8 30.9 1.3 1 1.4
z35 100 100 100 100 100 100 72.5 45.7 2.6 2.7 2.9
z23 100 100 100 100 100 100 81.9 56.9 3.1 2 2.3
z37 100 100 100 100 100 100 83.1 57.8 4.6 1.6 1.1
z39 100 100 100 100 100 100 97.3 86.7 31 13.4 10.4
z31 100 100 100 99.4 99.5 99.4 77.4 79 67.6 45.7 35.2
z29 100 100 100 100 100 100 99.9 98.7 78.3 37.3 24.6
z24 100 100 100 100 100 100 99.4 95 55.7 26.6 19.9
z36 100 100 100 100 100 100 80.7 61.4 28.4 19.6 14
z28 100 100 100 100 100 100 99.9 99.2 90.2 64.5 50.5
z26 99 99.2 100 92.7 93.5 93.3 55.8 66.7 82.2 85.6 86.1
z40 100 100 100 99.5 99.4 99.5 85.1 89.3 100 95.3 86.8

# effects 16 17 19 16 15 16 13 10 6 3 3
1) Black shaded variables should have an effect
2) Posterior inclusion probabilities that exceed 50% are in bold font (Jeffreys, 1961)
3) Priors 9 and 10 are identical in the simulated datasets
4) Uniform model priors throughout
2) Priors arranged by effective g-value 



Prior Meana Mediana %b Prior Meana Mediana %b Prior Meana Mediana %b

 
11 0.004 0.003 55** 11 0.114 0.120 70*** 11 0.010 0.007 90***
9 0.003 0.002 56** 9 0.127 0.127 71*** 9 0.007 0.006 90***
6 0.029 0.026 67*** 6 1.689 2.041 85*** 6 0.027 0.026 75***

12 0.000 0.001 55** 12 0.019 0.057 61*** 12 0.003 0.003 79***
3 0.000 0.000 52 3 -0.015 0.043 56** 3 0.002 0.001 64***
8 0.010 0.008 59*** 8 1.025 1.303 77*** 8 0.018 0.017 71***
4 0.009 0.007 59*** 4 0.467 0.697 69*** 4 0.008 0.007 62***
2 0.015 0.010 60*** 2 0.398 0.668 70*** 2 0.026 0.022 84***
5 0.064 0.054 75*** 5 2.541 2.802 90*** 5 0.063 0.059 88***
7 0.097 0.088 79*** 7 4.116 4.440 94*** 7 0.105 0.097 93***
 

11 0.021 0.007 72*** 11 0.015 0.007 80*** 11 -0.011 -0.002 47
9 0.010 0.004 69*** 9 0.016 0.008 82*** 9 -0.012 0.000 50 
6 -0.002 -0.001 42*** 6 -0.012 -0.005 27*** 6 0.031 0.014 76***

12 0.000 0.000 47 12 -0.001 0.000 46* 12 0.001 0.001 54*
3 -0.001 -0.001 42*** 3 -0.005 -0.003 26*** 3 0.006 0.002 57***
8 -0.002 -0.001 42*** 8 -0.012 -0.005 25*** 8 0.028 0.013 73***
4 -0.002 -0.002 41*** 4 -0.012 -0.006 23*** 4 0.028 0.012 71***
2 0.001 0.001 54* 2 -0.002 0.000 48 2 0.001 0.004 58**
5 0.001 0.001 54* 5 -0.010 -0.003 33*** 5 0.022 0.013 71***
7 0.002 0.002 57*** 7 -0.009 -0.003 38*** 7 0.027 0.016 74***

11 0.022 0.057 56** 11 0.114 0.120 70*** 11 0.443 0.463 81***
9 0.044 0.053 55** 9 0.127 0.127 71*** 9 0.279 0.331 79***
6 1.076 1.542 76*** 6 1.689 2.041 85*** 6 3.885 2.734 77***

12 -0.091 0.030 52 12 0.019 0.057 61*** 12 -0.418 0.016 51 
3 -0.114 0.049 56** 3 -0.015 0.043 56** 3 -0.543 -0.092 45**
8 0.414 0.817 71*** 8 1.025 1.303 77*** 8 2.955 1.872 73***
4 0.374 0.768 71*** 4 0.467 0.697 69*** 4 1.784 0.954 67***
2 0.428 0.849 70*** 2 0.398 0.668 70*** 2 2.824 1.475 76***
5 1.823 2.330 84*** 5 2.541 2.802 90*** 5 5.782 4.274 87***
7 2.453 2.962 87*** 7 4.116 4.440 94*** 7 7.684 6.124 92***

1) Priors 9 and 10 are identical in the simulated dataset
 

b Indicates percent of trials where "success" is a better predictive score by the UIP than by the alternative prior. 
***, **, * are 99%, 95%, 90% significance levels based on binomial p values, P(X > or = z), for the given number 
of trials and successes; where success is defined as a better score for prior 1 (the alternative) as compared to the 
alternative prior (UIP) if the percentage is above (below) 50%

b) Model 1, k=15 n=100 c) Model 2, k=40 n=100

a Refers to the improvement in the score attained by the UIP 

MSE MSE

CRPS

MSE

CRPS CRPS

LPS LPS LPS

Table 7
Predictive Performance Relative to Parameter Prior 1 For The Three Simulated Datasets

Uniform Model Prior, 400 Subsamples

a) Model 1, k=15 n=50



 

2) Priors 9 and 10 are identical in the growth context

1) When priors depend on the exact model size, p k , Figure 1 approximates the prior using the 
expected model size. Priors 11 and 1 are not exact g priors, so the g value is also an 
approximation

Figure 1
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1) Priors 9 and 10 are identical in the growth context

Figure 2
Correlation of Posterior Inclusion Probabilities Across Parameter Priors

(Growth Dataset)



Figure 3
Regressors Included in Best Models 

a) Prior 1 (uniform model prior) b) Prior 9 (uniform model prior)

 

c) Prior 1 (prior model size = 7)

Notes: Posterior means are indicated as positive or negative (darker shading)
Horizontal distances indicate posterior model weights
Priors 9 and 10 are identical in the growth context.
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1) Priors 9 and 10 are identical in the simulated datasets
2) Priors 1 and 12 have the same g-value 
3) Priors arranged by effective g-value (increasing left to right)

Figure 4b
Effective g-Value (Inversely Related to Prior Variance)
And Number of Effective Regressors (Posterior > 50%)

Simulated Data, Model 1, k=15, n=100

4) When priors depend on the exact model size, p k , Figures 5a-c approximate the prior using the 
expected model size. Priors 11 and 1 are not exact g priors, so the g value is also an approximation

Figure 4c
Effective g-Value (Inversely Related to Prior Variance)
And Number of Effective Regressors (Posterior > 50%)

Simulated Data, Model 2, k=40, n=100

Figure 4a
Effective g-Value (Inversely Related to Prior Variance)
And Number of Effective Regressors (Posterior > 50%)

Simulated Data, Model, 1 k=15, n=50
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