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Abstract: Earlier work has discussed the potential for strategic
bidding in deregulated electricity markets, and shown specifically
how generators can take advantage of congestion in their strategy.
We show that it is also possible for even mid-price suppliers to
create congestion problems through gaming in a non-congestive
system. Under auction mechanisms such as in the United Kingdom,
this can be profitable, at the consumer's expense. The optimal
auction prevents profitable gaming, but requires the simultaneous
handling of market clearing and system dispatch, making it harder to
ensure the neutrality of system operations.

Keywords: Auctions, Congestion, Economics, Game theory, Power
transmission.

I. INTRODUCTION

Recent regulatory reforms in the power industry require the
creation of markets for electricity. The monopoly utility had
the necessary information to operate the system at least cost.
The intent of the new structure is to make generation
competitive while transmission system operation remains a
regulated function. The question arises as to whether the
interaction of profit-maximizing suppliers and an independent
system operator will lead to efficient outcomes given the
constraints unique to electrical systems − in particular, the
possibility of transmission congestion and the fact that power
flows are determined by electrical laws. When players behave
strategically, there may be trade-offs between different
measures of efficiency.

Important features of restructured systems are described in
[1], focusing on Argentina and Chile. Game theory is used in
[2] in dealing with transmission losses. In [3], players are
"strategic" in the sense of not being myopic about the risks
related to future price changes. The authors of [4] treat the
transmission provider itself as a potentially strategic player.
A genetic algorithm is used in [5] to allow players' optimal
strategies to evolve. In [6] and [7], players are explicitly
allowed to bid away from their marginal cost. The same is

true in [8], which also mentions the possible role of
congestion constraints but does not provide an analysis.
Similarly, references [9] and [10] focus on congestion
management, but do not consider strategic behavior (gaming)
within that context.

Evidence from the U.K. shows that some auction
participants were able to command significant mark-ups [11].
While the authors of [12] attribute this to the small number of
competitors, the physics of transmission networks can also
play a role. Economists have long been aware that applying
their knowledge from other markets to the electricity market
can be misleading [13]. An important example is in [14],
which combines a Cournot game-theory approach with
players that specifically take advantage of congestion for
strategic advantage. This system has the economically
unusual result that market power can be exercised by selling
more output rather than less.

Reference [14] implicitly handles market clearing and
system dispatch simultaneously, by deriving the solution
through the maximization of an objective function combining
system constraints and the cost of obtaining power. But as
advocated in [10], some systems such as that in the United
Kingdom separate these functions to a degree, in order to
ensure the neutrality of system operation.

In this paper we first consider a market mechanism similar
to the one in the UK, as the grid belongs to one company that
handles market clearing first and then has the authority to
curtail generators when congestion occurs. We then examine
an optimal auction in which the two functions are handled
simultaneously. We model a system that is non-congestive,
and find that even a supplier who is not the cheapest can
profitably create congestion in the initial market outcome by
the same mechanism as in [14], i.e. by selling more power
than in the efficient (least-cost) solution. In this paper, we
also demonstrate that this is only true under "UK" type
systems; the optimal auction prevents this behavior by
removing the separation of the market-clearing and system-
dispatch functions.

II. PROBLEM DEFINITION

Our analysis is performed for 3 generators owned by 2
firms in a N-bus power system. For illustration, we examine a
3-bus system first. The N-bus derivation is given in the
appendix. The terminology is described in the following.

Pi: Generation by unit i, in MW (i=A, B or C)
L: Load, in MW
C1: Capacity of line 1, in MW
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α: Fraction of A's generation flowing on line 1
β: Fraction of B's generation flowing on line 1
Ki Capacity of generator i, in MW
Si Unit cost of generator i, in $/MW
SMAX Maximum price allowed, in $/MW
bi Bid of generator i, in $/MW
XA A's critical generation for congestion, in MW
Pi* Pre-curtailment schedule for generator i, in MW

ξ Excess flow on line 1, in MW
OCk Total operating cost under mechanism k, in $
PCk Total pool cost under mechanism k, in $

Cb
C's lowest bid for profitable gaming, in $/MW

πi Generator i's total profit, in $
There is generation at all 3 buses, and a load of L. For a
lossless system, PA + PB + PC = L, where Pi is power
supplied by generator i, i = A, B, C.

We are concerned with congestion on line 1, connecting
buses 1 and 3, which has a transmission capacity of C1. From
the DC load flow model, we can determine the portions of
each generator’s contribution to the power flow on line 1. For
simplicity, these are notated as α and β for A and B
respectively.

To avoid complications arising with multi-unit auctions,
we assume that each player bids its entire capacity at a single
price. As a consequence, our problem is interesting only if A
cannot supply the entire load.1 There is no such restriction on
B and C: In other words, KA < L, KB ≥ L, KC ≥ L, where Ki is
the capacity of generator i.

For the system to be non-congestive, both A and B must be
unaffected by congestion when running alone, which means
βL < C1 and αKA < C1. As in other research analyzing the
strategic use of congestion, we assume that the strategizing
player has more effect than other players on congestion. (See
appendix.) The implication is that α > β.

We examine a situation in which B is the cheapest
supplier, A is intermediate, and C is the most expensive. We
assume that the marginal cost of generating electricity is
constant, and that, for various reasons2, there is a maximum
price SMAX that can be charged by any of the 3 producers. If
the cost of i’s production is Si per unit, we have SB < SA < SC

< SMAX.

Fig. 1. Three-bus system with one potentially congested line.

                                                       
1 Alternatively, we could eliminate this assumption by allowing A to bid only
a fraction of its capacity.
2 This could be due to the existence of a competitive supply at that price at
bus 3, as in [14], or the enforcement of a maximum price (as in the U.K.
[15]) or even to suppliers’ own choice given the elasticity of demand.

We look first at three different auction mechanisms that
separate market clearing and potential congestion problems:
uniform pricing, “UK” pricing, and discriminatory pricing,
and compare them to the optimal auction, which is similar to
nodal pricing. Under uniform pricing, the pool looks for
congestion “along the way” while considering bids bi. Thus if
a generator’s supply would cause congestion, some or all of
that power is passed over in favor of another supplier who is
more expensive but whose supply does not cause congestion.
Previously accepted bids are not revised, even if that would
lower the pool’s cost. The highest bid accepted becomes the
uniform price at which all power is purchased.3

Under “UK” pricing (so called because it is essentially the
system used in the United Kingdom), the pool first purchases
as much power as it needs to meet demand, and the highest
bid it has accepted becomes the system marginal price
(SMP).  It then examines its purchases to see whether there
are system security problems. If so, some suppliers must be
“curtailed” or “constrained off,” i.e., ordered to supply less
power than the amount to be purchased originally. The
resulting shortfall in supply is made up by “constraining on”
other suppliers, i.e., ordering them to run their generation
facility even though their power was not purchased in the
original settling of bids. All power that is originally
purchased and actually run is bought at the SMP. A supplier
who is curtailed is compensated for possible lost profits by
receiving a compensatory payment on the curtailed power;
the price of this payment is calculated as the difference
between the SMP and the curtailed bid. Any power
constrained on is paid at the supplier’s bid price.

Under discriminatory pricing, each supplier receives its bid
for any power actually supplied. There is no SMP. The pool
curtails suppliers to remove congestion but there are no
compensatory payments for suppliers constrained off.

With both “UK” and discriminatory pricing, the pool must
have some criterion for deciding which suppliers are
curtailed. We consider two possible rules. (i) Under “merit-
order curtailment,” those purchased first (because of their low
bids) are given preference, so that the last purchased are the
first curtailed. (ii)  With “least-curtailment,” the pool tries to
minimize the amount by which it asks suppliers to curtail.

The optimal auction (e.g., [16]) does not necessarily follow
either of these curtailment rules, but instead evaluates the
entire set of feasible schedules and chooses the one with the
lowest cost to the pool. This requires that market clearing and
system dispatch be handled simultaneously, as modeled in
Section III.D, below.

We are interested in the strategic behavior of generators
while bidding to the pool. We assume that the cheapest
supplier, B, will always bid its marginal cost. For instance, B
could represent a number of small producers with similar
marginal costs. We will assume that A and C are two
generators in the same company (Player 1) that can gain
market share from B (Player 2).

Define XA, the critical amount of generation from A such
that if PA = XA and PB = L – XA, line 1 is exactly at its
capacity limit, that is:
                                                       
3 A common alternative is to choose the lowest rejected bid.
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C1 = αXA + β(L – XA).         (1)
The implication of XA is that if PA > XA, then it is

impossible for A and B to supply the load without violating
line 1’s capacity limit.  We will have PA + PB < L, and C will
have to make up the difference.

Suppose now that quantities PA* and PB* have been
scheduled, such that PA* + PB* = L and PA* > XA.  There will
be some amount ξ by which line 1 would exceed its capacity
limit if these amounts were actually run, and this is the
difference between the calculated flow in line 1 and the line’s
capacity, or,
ξ = [α⋅PA* + β⋅PB*] - C1.
Either A or B will have to be curtailed, i.e. ordered to run less
than Pi*, i = A, B.  This same amount must be made up by C.
Each unit of curtailment by A  reduces the flow on line 1 by
1/α, thus the total curtailment (and PC) must be ξ/α. By a
similar argument, if B is curtailed, its total curtailment and PC

must both be ξ/β.
We compare different bidding structures and curtailment

rules on the basis of operating cost (OC), pool cost (PC), and
the ease of strategic behavior. OC is the cost of actually
producing a given amount of power from certain producers,
and thus represents the social cost of that production.  PC is
the cost to the pool of purchasing that power from the
suppliers. Obviously if there is some net profit among the
suppliers, PC is greater than OC. Ease of strategic behavior is
measured by Cb , which is C’s minimum bid to give Player 1

positive profits. The higher Cb  is, the more likely it is to be

above SMAX, making strategic bidding infeasible.

III. RESULTS OF ANALYSIS

A. Benchmark: no strategic behavior

According to standard auction theory [17], the promise of
competitive bidding in a deregulated market is that sellers
will bid their marginal costs.  This means that bi = Si, ∀ i,
where bi is generator i’s bid.

We call this situation our benchmark since it involves no
strategic behavior. Since B is the cheapest, and it has enough
capacity to supply the entire load, it will be the sole supplier.
A and C produce nothing. The system’s operation will be
described by the following equations.
PB = L;
PA = PC = 0;
PCBENCH = OCBENCH = SB⋅L.
(“BENCH” subscripts designate “benchmark.”)
B has revenue and costs of SB⋅L, and thus zero profit.

B. Strategic behavior

We show that under the curtailment rules considered here,
A can bid less than B (i.e., less than its own true cost) and
cause congestion on the transmission line(s), which Player 1
can use to its advantage. This will sometimes entail a loss for
A, in which case C’s profit will have to be high enough to
give A and C together positive profits. Recall that B is non-

strategic; it always bids its marginal cost. That is, bB = SB and
bA < bB = SB < SA.

B.1. Uniform Pricing

The pool would buy all of A’s electricity, because
according to the bids it is the cheapest. Since A cannot supply
the entire load, the pool would then turn to B to meet the
remaining load, giving the schedule PA = KA, PB = L - KA.

As long as KA > XA, this will cause congestion in line 1.
The pool checks for congestion as it purchases electricity.
Since B’s supply causes congestion, it will be scheduled at
less than L – KA, with C making up the difference. As a result,
the actual schedule is PA = KA, PB = (C1 – αKA)/β, PC = L –
KA – (C1 – αKA)/β.

The operating cost OCU (subscript “U” for uniform
pricing) must be more than OCB = SB⋅L, because the total
power produced is still L units, but part of this is produced at
costs SA and SC , both of which are greater than SB.

The cost to the pool will be set by C’s bid.  Indeed, C’s bid
determines the SMP which all suppliers will receive. Under
our assumptions, C has no reason to bid anything less than
SMAX, so we have PCU = SMAX⋅L, which is also greater than
PCBENCH since SMAX ≥ SC >SB.

Notating i’s profits as πi,  we have
πA = (SMAX  – SA)⋅KA > 0,
πB = (SMAX  – SB)⋅(C1 – αKA)/β > 0,
πC = (SMAX  – SC)⋅[(L – KA – (C1 – αKA)/β] > 0.

By bidding under its costs, A was able to generate positive
profits. This result, unique to the electricity market, is due to
two reasons. First, A’s power congested line 1. Because of
the congestion, the pool had to call on a more expensive
supplier. Second, the most expensive supplier determines the
SMP paid to everyone. Because C does not have to offset any
losses from A (πA > 0), SMAX will never limit Player 1’s
strategic behavior.

The analytical results for uniform pricing and other auction
mechanisms are summarized in Table 1.

B.2. “UK” System

The “UK” system avoids some of the problems of uniform
pricing by paying the highest price only to those dispatched
“out of merit” due to congestion.

B.2.1. Merit-Order Curtailment

With merit-order curtailment, the first supplier constrained
off is the last one purchased.  So if bA < bB, B will be
curtailed.  The pool schedules PA* = KA and PB* = L – KA,
establishing SMP = bB (= SB), then curtails B by ξ/β, with C
again making up the difference.  This results in the identical
dispatch as under uniform pricing, meaning that OCM = OCU,
where the subscript “M” denotes merit-order curtailment.

But A is now losing money, because it receives a
price of SMP=bB < SA.  This means that C must bid Cb > SC,



where Cb  is defined by setting C’s profit equal to A’s loss. If

Cb > SMAX, Player 1’s gaming is not profitable.  If Cb ≤ SMAX,

C will bid SMAX, leading to PCM in Table 1.
The total power purchased is still L, but some is now

purchased at less than SMAX, so PCM < PCU.  B’s profit has
been driven to 0, since it only receives the SMP, which is the
same as its cost.  Also, Player 1’s profit has been reduced by:
(SMAX – SB)⋅KA.

So we can conclude that, while it results in the same
inefficient system operation as uniform pricing, “UK” pricing
with merit-order curtailment reduces the pool’s losses. And
while under uniform pricing Player 1 has a profitable strategy
even if bC = SC, with merit-order curtailment, C must bid
above its cost, leaving less room for profitable strategic
bidding.

B.2.2. Least-Curtailment

If the pool’s rule is to curtail the smallest amount of power
possible, it will curtail A because α>β implies that ξ/α<ξ/β.
In order for its strategic bidding to be profitable, A must still
bid bA < SB (otherwise the pool buys L from B). As under
merit-order curtailment, the pool schedules PA*=KA and PB*=
L–KA, establishing SMP = bB (= SB). It then curtails A by ξ/α,
and purchases this same amount from C.

To prove that OCL < OCM = OCU (subscript “L” for least
curtailment), we can show that the power supplied by
relatively expensive A and C is decreased, while that supplied
by inexpensive B is increased and the total is the same.
These results follow from α > β, KA > XA, and (1). But
because we still have some production from A and C, it must
be true that OCL > OCBENCH.

B’s profit is again 0 because SMP = SB. A’s profit is more
complicated, because of the non-zero compensation payment.
It can be shown that ∂πA/∂bA < 0, that is, the lower A’s bid,
the greater its profit.  This makes intuitive sense: as A
reduces its bid, it does not reduce the price for the power it
will ultimately sell, because it will receive the SMP, which
will remain at SB.  But it widens the gap between the SMP
and its bid, which increases its “compensation” for being
curtailed.  So bA = 0.

πA may be either positive or negative; in other words,
Player 1 might make profits directly from A, without
considering C’s contribution.  However, we know that αKA + 
β(L – KA) – C1 > 0.  Therefore, πΑ is more likely to be
positive when KA is much larger than XA (i.e., A can cause
congestion by selling a small fraction of its capacity) or when
A’s costs are very close to B’s costs (so SB/SA is close to 1).
When πA < 0, one can again find 

Cb  by requiring C’s profit to

be equal to A’s loss. If SMAX < 
Cb , strategizing is

unprofitable. When πA > 0, or πA < 0 and SMAX > 
Cb , C will

bid SMAX, and we can calculate PCL, including A’s
compensation payment. Comparing it to PCM and PCU, we
cannot say definitively whether PCL is higher. But the higher

TABLE I
RESULTS

____________________________________________________________
Benchmark:
OCBENCH = SB⋅L
PCBENCH = SB⋅L
Uniform pricing
OCU = SAKA + SB(C1 – αKA)/β + SC{L – KA – (C1 – αKA)/β}
PCU = SMAX⋅L
“UK”, merit-order curtailment
OCM = OCU

PCM = SMAX⋅L  – (SMAX  – SB)⋅{KA + (C1 – αKA)/β}

“UK”, least curtailment
PA = [C1 - β(L – KA)]/α
PB = (L – KA)
PC = KA - {[C1 - β(L – KA)]}/α
PCL = SB⋅L + SMAX [αKA + β(L – KA) – C1]/α

πA = SA⋅{(SB / SA)αKA + β(L – KA) – C1}/α

Discriminatory, merit-order curtailment

Dispatch: same as uniform and “UK”, merit-order curtailment
OCDM = OCM = OCU

PCDM = PCM

Discriminatory, least curtailment
Dispatch: same as “UK”, least curtailment

OCDL = OCL

PCDL = SB ⋅L+ (SMAX – SB)⋅ [αKA + β(L – KA) – C1]/α

SB is, the more likely we are to have PCL > PCM and PCL >
PCU.

The intuition of this is that if B is considerably cheaper
than SMAX, then uniform pricing and merit-order curtailment
are relatively expensive for the pool, forcing it to purchase all
or a large portion of its power at a price much higher than SB.
As SB rises, this penalty shrinks, while the size of A’s
potential compensation payment under least-curtailment
grows.

The size of SB also affects the relative 
Cb . Comparing

least-curtailment and merit-order, the closer SB is to SA, the
more likely 

MCLC bb < , and thus the more likely it is to be

under SMAX, making the strategic bidding possible. Also, the
higher A’s cost, the more likely 

MCLC bb > , i.e., with a high

SA least-curtailment becomes less favorable to strategic
behavior than merit-order.

C. Discriminatory Pricing

Under discriminatory pricing, supplies are again purchased
in the order of increasing bids, but each supplier is paid
exactly its bid. As a result, there is no SMP, and no
compensation payment. Therefore if A bids strategically,
such that bA < bB = SB < SA, its profits (actually losses) will
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be πA = (bA – SA)⋅PA < 0. A clearly minimizes its losses by
setting bA as close to bB as possible. In the limit, bA= bB= SB.
The pool uses curtailment to resolve any congestion
problems.

C.1. Merit-Order Curtailment

With merit-order curtailment  A’s loss can be  rewritten as 
πA = (SB - SA)⋅ KA < 0. This is identical to the situation under
UK pricing with merit-order curtailment, so 

Cb  carries over.

Similarly, nothing changes when considering C’s actual bid
of SMAX,  so PCM will likewise carry over, giving us OCDM =
OCM, PCDM = PCM, where “DM” denotes “discriminatory
pricing, merit-order curtailment.”

C.2. Least-Curtailment

With least-curtailment, we have the same supply as with
“UK” pricing, least-curtailment, so OCDL = OCL, where “DL”
denotes “discriminatory pricing, least curtailment.”  But
without the compensation payment, A’s best strategy is no
longer bA = 0, but again bA = bB = SB.  The resulting 

Cb is

clearly larger than that from the “UK” system, least-
curtailment, having an additional SB term in it.  It can also be
shown that 

MCDLC bb > , so discriminatory pricing, least-

curtailment, pushes 
Cb  to its highest level among the systems

considered here. Turning to the pool’s cost, assuming SMAX

> 
Cb  for all systems, PCDL < PCL and PCDL < PCM.

While it is still above the non-strategic benchmark,
discriminatory pricing with least-curtailment is the least
likely structure to allow strategic bidding and also minimizes
the pool’s costs from strategic behavior when it does occur.
It eliminates A’s possibility of ameliorating its losses or
possibly even profiting from compensation payments; it holds
B to its marginal price instead of receiving SMAX as under
uniform pricing; and it limits the amount of power bought
from expensive C.

D. Optimal Auction

In the optimal auction, the pool solves a minimization
problem that deals with market clearing and system dispatch
simultaneously. If marginal costs were increasing and
demand were price-sensitive, the resulting dispatch would be
nodal pricing.  However, the simplified system considered
here has constant marginal costs and inelastic demand.
Therefore, if a generator is offered less than its bid, it will
supply nothing; if it is offered its bid or more, it is ready to
supply up to its maximum capacity. Consequently, there is no
reason to offer a generator more than its bid. Because B is not
bidding strategically, we replace bB with SB immediately and
get
L = min bA ⋅PA + SB⋅PB + bC ⋅PC

s.t.    PA + PB + PC = L,
αPA + βPB ≤ C1,

PA ≤ KA,
Pi ≥ 0, i = A, B, C.

In most rankings of bids, there will be no
congestion, so either A and C are not dispatched, or only A
is, and it is paid below its costs. Congestion only becomes an
issue when we have bA < SB < bC. Up to a load of KA, it is
cheapest for the pool to buy from A.  For loads between KA

and  KA + (C1 – αKA)/β, the pool buys from B, and there is
still no congestion. For any power between KA+(C1 – αKA)/β
and L, the pool has two options. It can reduce PA and increase
PB, at a cost of µ ≡ (αSB – βbA)/(α – β) per unit, or it can
purchase from C at bC, which it will only do if bC ≤ µ. There
is thus a cap on what C can bid and still be dispatched, and
this cap depends on A’s bid.

Assume C bids exactly this cap, and is dispatched. The
dispatch  then matches our uniform pricing case.  Using bC =
µ, Player 1's profit can then be expressed as a function of bA

alone:
[ ] CABAAA PbSPSb )/()()(1 β−αβ−α+−=π .

To find Player 1's optimal bA we look at
∂π1/∂bA = PA – [β/(α – β)]PC,
but by substituting in the actual values of PA and PC, this
reduces to
∂π1/∂bA = (C1 – βL)/(α – β),
which is bounded below by 0, because C1 ≥ βL.  Player 1's
best choice is therefore bA = SB.  µ then reduces to SB, which
in turn means that both A and C are bidding below their
costs. Therefore Player 1 has no feasible strategic bid.

It appears that the optimal auction eliminates the kind of
strategic bidding we have been examining. There are two
reasons for this. First, it resembles discriminatory pricing in
only paying each generator its bid. Second, compared to
curtailment rules associated with a division between market
clearing and system dispatch, the optimal auction gives the
pool operator the flexibility to consider either a shift of
generation from A to B, or the purchase of “fresh” power
from C. This flexibility in turn puts a cap on what C can bid
and still get dispatched. Because this cap is a decreasing
function of A’s bid, it squeezes Player 1, who can only cut its
losses on A by sacrificing the gain on C.

One drawback should be noted, however. If A is truly the
lowest cost supplier with the lowest bid and is curtailed due
to congestion, A does not receive any compensation.

IV.  SIMULATION RESULTS

We use the IEEE-30 model to simulate our results. We
assume a limit of 21 MW on line 8, connecting buses 5 and 7.
Our generator A is located at bus 13, B at bus 2, and C at bus
5. (The relevant line and buses are labeled in bold-face in Fig.
2.) Our benchmark case corresponds to B running 95 MW,
supplying the load at bus 5, while A and C run 0; flow on line
8 is 19 MW. If A underbids B with a capacity of 60 MW, the
pool would schedule PA* = 60 MW and PB* = 35 MW, but
that would result in a flow of 27 MW on line 8. The actual
dispatches under our different auction mechanisms are given
in Table II, along with operating cost, pool cost, and C’s



TABLE II
IEEE-30 RESULTS

System Dispatch
Cb OC PC

Bench-mark PA = 0, PB = 95,
PC = 0

N/A 95 95

Uniform pricing PA = 60, PB = 18.5,
PC = 16.5

N/A 204.5 760

UK, merit order Same as Uniform 7.64 204.5 210.5
UK, least
curtailment

PA = 48, PB = 35,
PC = 12

7 179 191

Discriminatory,
merit order

Same as Uniform 7.64 204.5 210.5

Discriminatory,
least curtailment

Same as "UK" least 8 179 179

minimum bid. These values are calculated with SA = 2, SB = 1,
SC = 4, and SMAX = 8. (SMAX has been chosen such that it will
not limit C’s necessary bid.)

With the costs assumed here, uniform pricing is very
expensive for the pool, with SMAX so much higher than the
next lowest cost. "UK" least curtailment is somewhat worse
for the pool than discriminatory pricing, least curtailment, but
cheaper than the merit-order mechanisms. At the same time,
A's ability to limit its losses makes strategic behavior slightly
easier than in the merit-order schemes, as measured by C's
minimum bid. Discriminatory pricing, least-curtailment is

the cheapest for the pool, has the lowest operating cost, and
leaves the least room for strategic behavior. The optimal
auction would give the same results as the benchmark, since
it makes strategic behavior unprofitable.

V. CONCLUSION

We have shown that intermediate-cost generators can use
strategic bidding to profitably create congestion problems in
non-congestive systems, when the market system separates
the market-clearing and system-dispatch functions. The
optimal auction prevents this behavior.

The use of constant rather than increasing marginal cost in
the paper is a sacrifice of realism; however, it does allow an
analytical approach rather than an iterative one.  A task for
future research is to test the insight presented here with
increasing marginal cost.

A simple n-bus generalization is given in the appendix, but
it does not address the issue of choosing the supplier to be
constrained on. Future work will also relax the assumption
that B does not behave strategically. As with increasing
marginal costs, this will require a computational rather than
analytical approach.
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VIII. APPENDIX

Denote by Y the mxm diagonal matrix of line susceptances,
A the (n-1)xm reduced node incidence, B an (n-1)x(n-1)
matrix relating the line angles to the bus injections in the DC
load flow relation. Let p be a vector of injections at n-1
buses, then line flows on the system are
f = (YATB-1)⋅p.
Then for line i we have

f D pi ij j
j

n

=
=

−

∑
1

1

.

Separating the 3 buses, A, B and C, on line 1 of an n-bus
system we have

f D P D P D P D pA B C j j
j

n

1 11 12 13 1
4

1

= + + +
=

−

∑ ,

where C is the generator constrained on, D11 = α, D12 = β,
and D13 = γ. Let α* = α – γ and β* = β – γ. In the system
modeled in the paper, C is at the load, so γ = 0 and we are
only concerned with α and β. In general, γ must be small or
the congestion would not be relieved. α* and β* can then
replace α and β throughout the paper and the analysis holds.

If there can be congestion when A and B are supplying the
entire load between them, then it must be possible that
αPA + βPB > C1.
But it is also true that PA + PB = L, thus
(α – β)PA + βL > C1,         (2)
and since βL < C1, (2) can only be true if α > β.
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