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Abstract

Projection-based methods of inference on subsets of parameters are useful for ob-
taining tests that do not over-reject the true parameter values. However, they are
also often criticized for being conservative. We show that the usual method of pro-
jection can be modified to obtain tests that are as powerful as the conventional tests
for subsets of parameters. Like the usual projection-based methods, one can always
put an upper bound to the rate at which the new method over-rejects the true value
of the parameters of interest. The new method is described in the context of GMM
with possibly weakly identified parameters.
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1 Introduction

In this paper we are concerned with the problem of inference on subsets of parameters in a
model where the identifiability of some or all of the parameters is in question. We focus on
the framework of generalized method of moments (GMM) with possibly weakly identified
parameters and our research can be seen as an extension of the work by Stock and Wright
(2000), Dufour and Taamouti (2005), Kleibergen (2005) and Kleibergen and Mavroeidis
(2008a).

Stock and Wright (2000) showed that the GMM estimators of the weakly identified
parameters in a model are not consistent. While the GMM estimators of the (strongly)
identified parameters are consistent, they are, in general, not asymptotically normal if there
exists any weakly identified parameters in a model. Subsequently, the usual Wald, likeli-
hood ratio and score statistics are not asymptotically pivotal even when evaluated at the
true value of the parameters, and hence cannot be used for inference. However, they showed
that the efficient continuous updating GMM (CU-GMM) objective function evaluated at
the true value of the parameters is asymptotically pivotal, and proposed the S statistic
based on the CU-GMM objective function to jointly test for all the parameters in a model.
Kleibergen (2005) proposed a score-type statistic, which he called the K statistic, based
on the gradient of the CU-GMM objective function and designed a method to jointly test
for all the parameters in a model. This test, which came to be known as the K test, is
generally more powerful than the S test based on the S statistic.

For inference on subsets of parameters regardless of the identifiability of the nuisance
parameters, one can always use the usual projection technique based on the S and the K
statistics to test and obtain confidence regions with (at least) correct asymptotic coverage
probability. However, such inferences can be quite conservative. When the nuisance param-
eters are identified, use of projection is not required and the conservativeness of inference
can be avoided by plugging in the CU-GMM estimator of the parameters, restricted by the
null hypothesis, to the S and the K statistics. Stock and Wright (2000) and Kleibergen
(2005) respectively showed that the resulting S and the K statistics are asymptotically
pivotal and can be used to test for subsets of parameters simply by adjusting the critical
values of the respective tests. We refer to these tests as the subset-S and the subset-K tests.

Recently Kleibergen and Mavroeidis (2008a) proved that the plug in principle does
not over-size the subset-K test (and the generally less powerful subset-S test) even when
the nuisance parameters are weakly identified. This is a major development in the weak
identification literature. Hence in models with possibly weakly identified parameters, the
subset-K test should serve as a benchmark to gauge the performance of any new method
of inference in the GMM framework.

The purpose of this paper is to show how the usual methods of projection-based infer-
ence in the GMM framework can be modified to eliminate the conservativeness generally
associated with them. In the process we also describe how and when this modified projec-
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tion principle can be made asymptotically equivalent to the widely used plug in principle
in the context of Kleibergen’s subset-K test.

To fix ideas, let us denote the parameters of interest by θ1 and the nuisance parameters
by θ2. We assume that the parameters are vectors of finite dimensions ν1 and ν2 respec-
tively. Following the weak identification framework of Stock and Wright (2000), we consider
four different cases of weak (partial) identification – WI-Case I with both θ1 and θ2 weakly
identified, WI-Case II with θ1 weakly identified but θ2 (strongly) identified, WI-Case III
with θ1 identified but θ2 weakly identified, and WI-Case IV with both θ1 and θ2 identified
(i.e. the standard case).

We propose a projection-based method to test null hypotheses of the form H1 : θ1 = θ∗1
such that the test – (i) does not result in an uncontrolled over-rejection of the true value
of θ1 under any of the four cases of weak (partial) identification and (ii) is asymptotically
(locally) equivalent to the subset-K test whenever the nuisance parameters θ2 are identified,
i.e. in WI-Cases II and IV.

Our method uses an efficient score equivalent of Kleibergen’s K statistic. We call this
the efficient K statistic for θ1 and denote it by Kn1(θ1, θ2) where the subscript n denotes
the sample size.1 We also note that, under the null hypothesis H1 : θ1 = θ∗1, a confidence
region for the nuisance parameters θ2 can be obtained by inverting any weak identification
robust test; e.g. the S test, the K test or the GMM-MLR test [see Kleibergen (2005)]. We
denote such a confidence region generically by C2(1− ζ, θ∗1) where (1− ζ) (bounded away
from 0 and 1) gives its (intended) asymptotic coverage probability under the null hypothesis.

Our method rejects the null hypothesis H1 : θ1 = θ∗1

(i) if C2(1− ζ, θ∗1) = ∅, i.e. if the confidence region is empty,

(ii) or if infθ2∈C2(1−ζ,θ∗1) Kn1(θ∗1, θ2) > χ2
ν1

(1 − ε) where χ2
ν1

(1 − ε) is the (1 − ε) quantile
of a central chi-square distribution with ν1 degrees of freedom.

While the use of an empty confidence region C2(1− ζ, θ∗1) may seem counterintuitive, it is
possible to obtain a null set when the confidence region is obtained by inverting the S test.
This occurs when the over-identification restrictions are rejected under the null hypothesis
H1 : θ1 = θ∗1. In Section 3 we will see that such confidence regions can occur with distinctly
positive probability.

This new method can be seen as a two-step procedure. In the first step we construct a
confidence region for the nuisance parameters such that the region has (at least) the correct

1In the context of maximum likelihood, one can define the efficient score for θ1 as the part of the score
for θ1 that is orthogonal to the score for θ2 [see van der Vaart (1998)]. The efficient score statistic for θ1

is a quadratic form of the efficient score for θ1 (ideally, with respect to its asymptotic variance). Based
on this idea and using the fact that the K statistic is a score-type statistic based on the gradient of the
CU-GMM objective function, we define an efficient score equivalent of the K statistic [see Section 2].
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asymptotic coverage probability (1 − ζ) under the null hypothesis H1 : θ1 = θ∗1. And in
the second step we reject the null hypothesis if the infimum (with respect to θ2 inside the
confidence region) of the statistic Kn1(θ∗1, θ2) is larger than the χ2

ν1
(1 − ε) critical value.

This method is primarily motivated from Robins (2004). Similar techniques of hypothesis
testing in the presence of nuisance parameters were also suggested by Dufour (1990), Berger
and Boos (1994) and Silvapulle (1996).

Our proposed method is based on projection. However, unlike the usual technique of
projection found in the weak identification literature [see, among others, Dufour (1997),
Dufour and Jasiak (2001), Dufour and Taamouti (2005, 2007)], we project from a subset
of the parameter space of the nuisance parameters θ2, restricted by the null hypothesis
H1 : θ1 = θ∗1. Such restrictions prove to be crucial in reducing the conservativeness of the
methods of inference based on projection, especially in finite samples. Additionally, the
use of the efficient K statistic (an analog of the efficient score statistic) in the second step
of the test makes it comparable to the subset-K test in WI-Cases II and IV. To highlight
these two important facets of the test – the use of (i) the restricted projection and (ii) the
efficient K statistic, we will, henceforth, refer to it as the efficient projection-based K test.

The new method describes a class of projection-based tests indexed by the choice of
the first step confidence region and the choice of ζ and ε (for fixed ζ + ε). In Section 2 we
discuss the relative merits of such choices.

The main properties of the efficient projection-based K test established in this paper
are described below based on the following observations:

(i) Under the null hypothesis H1 : θ1 = θ∗1, the region C2(1 − ζ, θ∗1) (obtained by
inverting the S test, the K test or the GMM-MLR test) contains the true value of θ2

with asymptotic probability 1− ζ.

(ii) Kn1(θ1, θ2), evaluated at the true value of the parameters, asymptotically converges
to a χ2

ν1
distribution.

(iii) For
√

n-local alternatives, when the nuisance parameters are identified, i.e. in WI-
Cases II and IV, any point inside C2(1 − ζ, θ∗1) (provided it is nonempty) is a

√
n-

consistent estimator of the true value of θ2.
2

(iv) For
√

n-local alternatives, when the nuisance parameters are identified, i.e. in WI-
Cases II and IV, infθ2∈C2(1−ζ,θ∗1) Kn1(θ∗1, θ2) (provided C2(1 − ζ, θ∗1) is nonempty) is
asymptotically equivalent to the subset-K statistic.

Hence using (i) and (ii), it follows from Bonferroni’s inequality that the asymptotic size
of the efficient projection-based K test cannot exceed ζ + ε. Furthermore, from (iii) and
(iv) and conditional on C2(1 − ζ, θ∗1) 6= ∅, it follows that the efficient projection-based K
test is asymptotically equivalent to the level-ε subset-K test against

√
n-local alternatives.

2Section 2 provides a formal result for confidence regions based on the S test and the K test. [also see
Kleibergen (2005)]
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If we allow for C2(1 − ζ, θ∗1) to be empty, then it can be shown that a suitable choice of
C2(1− ζ, θ∗1) (based on Kleibergen’s J-statistic) extends the asymptotic equivalence to the
level-(ζ+ε) subset-K-J test [see Kleibergen (2005)]. These latter properties are particularly
remarkable. In view of the recent developments in the weak identification literature, the
asymptotic equivalence with the subset-K(-J) test is an important property that vindicates
the effectiveness of the new method of projection-based inference proposed in this paper.

While the usefulness of the (usual) projection technique in designing tests that are
not over-sized has already been well established in a series of papers by Dufour and his
co-authors [see, among others, Dufour (1990), Dufour (1997), Dufour and Jasiak (2001),
Dufour and Taamouti (2005, 2007)], often the projection-based tests are found to be overly
conservative. The new method of projection used in the efficient projection-based K test
helps to avoid this problem of conservativeness asymptotically. We provide simulations in
a linear instrumental variables (IV) regression to show that the asymptotic gains do not go
away in finite samples. Further simulations are also presented in Chaudhuri et al. (2008)
and Zivot and Chaudhuri (2008).

The rest of the paper is organized as follows. Section 2 describes the efficient projection-
based K test in the context of GMM estimation, Section 3 is a Monte Carlo study in a
linear instrumental variables models and shows that the asymptotic results of Section 2 pro-
vide a good approximation to the behavior of the efficient projection-based K test in finite
samples, and Section 4 gives our conclusions. Proofs of all results are given in the Appendix.

We use the following notations in the rest of the paper. If A = [A1, . . . , Abc] is an a× bc
matrix then vecA = [A′

1, . . . , A
′
bc]
′, deveccA

′ =
[
(A1, . . . , Ac)

′, . . . , (A(b−1)c+1, . . . , Abc)
′] and

‖A‖ =
√

trace(A′A). If A is full column rank then P (A) = A(A′A)−1A′ and N(A) =
Ia − P (A) where Ia is the a× a identity matrix. The notation N (µ, σ2) is used to denote
a normal distribution with mean µ and variance σ2. If A is a symmetric positive semi-

definite matrix then A
1
2 is the lower-triangular Cholesky factor of A such that A = A

1
2 A

1
2

′
.

If A = ((Aij))i,j=1,2 is such that the diagonal blocks A11 and A22 are non-singular then
Aii.j = Aii − AijA

−1
jj Aji denotes the Schur complement of Ajj for i 6= j = 1, 2. For any

random variable X such that E‖X‖ ≤ ∞, let X = X−EX where E stands for expectation.
Since all the matrices considered here are of finite dimensions, we tend to be less scrupulous
with mixing the notations like X = op(1) and ‖X‖ = op(1); both implying that every

element of X converges in probability to zero. Lastly, we use
P−→,

d−→ to denote convergence

in probability and distribution respectively,
A∼ to denote “asymptotically follows”and the

acronym w.p.a.1 for “with probability approaching one”.

2 The efficient projection-based K test in GMM

We first describe the assumptions in the GMM framework before introducing the efficient
projection-based K test. The moment restrictions defined below can (but need not) be
viewed as obtained from the first order conditions of some optimization problem. Let
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g : S × Θ 7→ Rk be a measurable and twice-continuously differentiable function such that
for the sample of observations {wt : t = 1, . . . , n} we have

Eg(wt, θ) = 0 if θ = θ0,

6= 0 if θ 6= θ0.
(2.1)

Equation (2.1) gives k ≥ ν moment restrictions for inference on ν unknown elements of
θ and is often referred to as the global identification condition. We assume that ν and k
are fixed and finite numbers. In the following we suppress the explicit dependence of the
functionals on the observations; for example, gt(θ) should be read as g(wt, θ).

Define Oθgt(θ) = ∂gt(θ)/∂θ′ and Oθθgt(θ) = ∂vecOθgt(θ)/∂θ′. For simplicity, let θ0 =
(θ′01, θ

′
02)

′ be such that θ0i ∈ interior(Θi) where Θi is a compact (νi-dimensional) subset
of Rνi for i = 1, 2. The parameter space Θ = Θ1 × Θ2 is a compact subset of Rν where
ν = ν1 + ν2.

2.1 Assumptions on the moment vector and weak identification

We make the following assumptions similar to Stock and Wright (2000), Guggenberger and
Smith (2005) and Kleibergen (2005). Chaudhuri (2008) contains more discussion on these
assumptions.

High level assumptions on the moment restrictions and their first derivatives are sum-
marized under Assumption D.

Assumption D:

D1. There exists an open neighborhood T ⊂ Θ containing θ0 such that

(i) n−1
∑n

t=1 gt(θ) is continuously differentiable almost surely, and

(ii) supθ∈T ‖n−1
∑n

t=1 Oθgt(θ)‖ is integrable.

D2. supθ∈Θ n−1
∑n

t=1 gt(θ) = op(1),n−1
∑n

t=1 Oθgt(θ) = op(1), n−1
∑n

t=1 Oθθgt(θ) = op(1).
En−1

∑n
t=1 Oθθgt(θ) converges to a continuous and bounded function L(θ) for θ ∈ Θ.

D3. n−1/2
∑n

t=1

[
gt(θ0)

vecOθgt(θ0)

]
d−→

[
Ψg

ΨO

]
∼ N (0, V (θ0)) and the asymptotic variance-

covariance matrix V (θ) = ((Vab(θ)))a,b=g,O is bounded, continuous, symmetric and
positive semi-definite. Vgg(θ) is symmetric, positive definite and differentiable with
respect to θ ∈ Θ.

D4. There exist V̂Og(θ) and a symmetric positive definite matrix V̂gg(θ) such that

V̂Og(θ) − VOg(θ) = op(1) and ∂vecV̂gg(θ)/∂θ′ − ∂vecVgg(θ)/∂θ′ = op(1) for θ ∈ Θ and

supθ∈Θ

(
V̂gg(θ)− Vgg(θ)

)
= op(1).
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The characterization of weak identification due to Stock and Wright (2000) is summarized
under Assumption W.

Assumption W:

En−1
∑n

t=1 gt(θ1, θ2) =
∑2

i=1

[
1[δi=1]mi(θi) + 1[δi=

1
2
]n
−1/2m̃ni(θ1, θ2)

]
where for i = 1, 2,

1. mi(θ0i) = 0,mi(θi) 6= 0 for θi 6= θ0i, Mi(θi) = ∂mi(θi)/∂θ′i is continuous and Mi(θ0i)
has full column rank.

2. supθ∈Θ(m̃ni(θ)− m̃i(θ)) = o(1), m̃i(θ0) = 0 and m̃i(θ) is continuous in θ and bounded
on Θ. For i, j = 1, 2, M̃n(i,j)(θ) = ∂m̃ni(θ)/∂θ′j converges to some function M̃(i,j)(θ).

The non-random indicator functions involving the δ’s in Assumption W distinguish between
the four cases of weak (partial) identification mentioned in the introduction and summarized
in Table 1.3

Table 1: Four Cases of Weak (Partial) Identification.

δ2 = 1
2

δ2 = 1

WI-Case I WI-Case II
δ1 = 1

2
θ1 : weakly identified θ1 : weakly identified
θ2 : weakly identified θ2 : (strongly) identified

WI-Case III WI-Case IV
δ1 = 1 θ1 : (strongly) identified θ1 : (strongly) identified

θ2 : weakly identified θ2 : (strongly) identified

Assumptions D1, D2 and W imply that for θ ∈ T and for i = 1, 2,

Gni(θ) = E
1

nδi
Oi

n∑
t=1

gt(θ) =
∂

∂θ′i
E

1

nδi

n∑
t=1

gt(θ)

= 1[δi=1]Mi(θi) +
2∑

j=1

1[δj=
1
2
]

nδj

nδi
M̃n(j,i)(θ) (2.2)

where O1gt(θ) and O2gt(θ) are, respectively, the first ν1 columns and last ν2 columns of
Oθgt(θ). Assumption W further implies that for i, j = 1, 2 (and i 6= j), Gni(θ) is continuous

3The δi’s are assigned the values 1
2 and 1 because, as it can be seen from (2.2), nδi will often be used

as a suitable scaling factor.
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in θ and

Gni(θ)
P−→ Gi(θ) = 1[δi=1]Mi(θi) + 1[δi=

1
2
]

[
M̃(i,i)(θ) + 1[δj=

1
2
]M̃(j,i)(θ)

]
,

which has full column rank for θ ∈ θ0i × Θj when θi is identified. When both θ1 and
θ2 are identified, this implies the so-called local identification condition; i.e., the expected
Jacobian is full column rank at θ = θ0 [see Kleibergen (2005)].

It is possible to relax some of our assumptions. For example, since we are only concerned
with the asymptotic behavior of the tests against

√
n-local alternatives, it is sufficient

if all the assumptions specified for θ ∈ Θ hold in T1 × Θ2 where T1 ⊂ Θ1 is an open
neighborhood containing θ01.

4 Nevertheless, we made these simplifying assumptions to
avoid the secondary details in the exposition which can obscure the basic idea behind the
efficient projection-based K test. Assumption D is stated in a somewhat unconventional
form so that it can be directly applied to prove our results. However, these assumptions
are not different in nature from those in Stock and Wright (2000), Guggenberger and
Smith (2005) and Kleibergen (2005). For example, Assumption B in Stock and Wright
(2000) states that 1√

n

∑n
t=1 gt(θ) ⇒ ξ(θ) for θ ∈ Θ where ξ(θ) is a mean-zero Gaussian

stochastic process. By definition of weak convergence (denoted by “⇒ ”), this implies that

supθ∈Θ ‖ 1√
n

∑n
t=1 gt(θ)‖ d−→ supθ∈Θ ‖ξ(θ)‖ and thus implies that supθ∈Θ n−1

∑n
t=1 gt(θ) =

op(1) [see Andrews (1994)]. Under this assumption, in order to show the consistency of
the CU-GMM estimator of a strongly identified θ2, restricted by a hypothesized

√
n-local

θ1, it is also required to assume that supθ∈T1×Θ2
‖ξ(θ)‖ = Op(1). Instead, we directly

assume that supθ∈Θ n−1
∑n

t=1 gt(θ) = op(1) (in Assumption D2) and that Vgg(θ) is bounded

in Θ (in Assumption D3). Similarly, instead of specifying the form of V̂gg(θ) and making
assumptions such as Assumption M(ii) in Guggenberger and Smith (2005) to ensure its

non-singularity for θ ∈ T1 × Θ2, we directly assume that there exists a matrix V̂gg(θ)
which is positive definite along with its convergence result (in Assumption D4). Finally,
unlike Assumptions Mθ (iii) and (vii) in Guggenberger and Smith (2005), our distributional
assumption (in Assumption D3) is local in nature [similar to Kleibergen (2005)] and hence
we need to specify assumptions (in Assumption D2) on the second derivative of the moment
vector for studying the properties of the tests against

√
n-local alternatives. Assumption

D1, which allows us to interchange the order of differentiation and integration, is made for
simplicity.

2.2 The subset-K test and the efficient projection-based K test

Kleibergen (2005) pointed out that the failure of the usual score test (based on the efficient
two-step GMM) in the presence of weakly identified parameters is due to the (asymptotic)
non-zero correlation between the estimator of the expected Jacobian and the moment vector

4In fact, to prove that the asymptotic size of the efficient projection-based K test is bounded from above
and to show that under WI-Cases II and IV the test is asymptotically equivalent to the infeasible efficient
K test (described after Lemma 2.2 and before Theorem 2.3) against

√
n-local alternatives, it is sufficient if

the above assumptions hold in T ⊂ Θ, an open neighborhood containing θ0.
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(both under suitable scaling). He noted that the CU-GMM offers a natural way of con-
structing the estimator of the expected Jacobian such that even under weak identification,
the (scaled) estimator of the expected Jacobian and the moment vector are asymptotically
uncorrelated (and under Assumption D3, asymptotically independent). Kleibergen’s K
statistic is a quadratic form in the gradient of the CU-GMM objective function.

Using Assumptions D3 and D4, one can define the CU-GMM objective function (with
an efficient weighting matrix) as

Qn(θ) =
1

2n

[
n∑

t=1

gt(θ)

]′
V̂ −1

gg (θ)

[
n∑

t=1

gt(θ)

]
.

The gradient of the CU-GMM objective function with respect to θ is given by

OθQn(θ) =
∂Qn(θ)

∂θ′
=

1

n
g′T (θ)V̂ −1

gg (θ)D̂T (θ), (2.3)

where gT (θ) =
∑n

t=1 gt(θ), D̂T (θ) =
∑n

t=1 D̂t(θ) and D̂t (θ) = deveck

[
vecOθgt(θ)− V̂Og(θ)

V̂ −1
gg (θ)gt(θ)

]′
. The CUE (CU-GMM estimator) θ̂n of θ ∈ Θ satisfies the first-order condi-

tion

OθQn(θ̂n) =
[
O1Qn(θ̂n),O2Qn(θ̂n)

]
=

1

n
g′T (θ̂n)V̂ −1

gg (θ̂n)D̂T (θ̂n) = 0,

w.p.a.1. Similarly, under the restriction that θ1 = θ∗1, the CUE θ̃n2(θ∗1) of θ2 minimizes
Qn(θ∗1, θ2) with respect to θ2 ∈ Θ2 and hence, w.p.a.1, θ̃∗ = (θ′∗1, θ̃

′
n2(θ∗1))

′ satisfies the
first-order condition

O2Qn(θ̃∗) =
1

n
g′T (θ̃∗)V̂ −1

gg (θ̃∗)D̂T2(θ̃∗) = 0, (2.4)

where D̂T i(θ) =
∑n

t=1 D̂ti(θ) and D̂ti(θ) = deveck

[
vecOigt(θ)− V̂ig(θ)V̂

−1
gg (θ)gt(θ)

]′
for

i = 1, 2. The above expression uses the partition D̂T (θ) =
[
D̂T1(θ), D̂T2(θ)

]
and V̂Og(θ) =

[
V̂ ′

1g(θ), V̂
′
2g(θ)

]′
with respect to θ1 and θ2.

Lemma 2.1 Let θ∗1 = θ01 +d1/
√

n ∈ Θ1 where d1 ∈ Rν1. Then under Assumptions D and
W,

√
n(θ̃n2(θ∗1)− θ02) = Op(1) in WI-Cases II and IV.

Lemma 2.1 follows directly from Lemma A1 in Stock and Wright (2000) which shows the√
n-consistency of the unconstrained estimator of θ2 in WI-Case II. A formal proof is also

given in the Appendix.

Kleibergen’s subset-K test rejects the null hypothesis H1 : θ1 = θ∗1 at level ε if Kn(θ̃∗) >
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χ2
ν1

(1− ε) where the K statistic is defined by Kleibergen (2005) as

Kn(θ) = n (OθQn(θ))
[
D̂′

T (θ)V̂ −1
gg (θ)D̂T (θ)

]−1

(OθQn(θ))′

=
1

n
g′T (θ)V̂

− 1
2

gg (θ)P

(
V̂
− 1

2

′

gg (θ)D̂T (θ)

)
V̂
− 1

2

′

gg (θ)gT (θ).
(2.5)

In WI-Cases II and IV and under Assumptions D and W, Kn(θ01, θ̃n2(θ01))
A∼ χ2

ν1
. See

Theorem 2 in Kleibergen (2005) for the proof under presumably weaker conditions. The
limiting χ2

ν1
distribution of the K statistic Kn(θ01, θ̃n2(θ01)) in Kleibergen’s proof, however,

crucially depends on the
√

n-consistency of θ̃n2(θ01).

In WI-Cases I and III, θ̃n2(θ01) is inconsistent and deducing the properties of the K
statistic (and hence the subset-K test) is still an area of ongoing research. It is in these two
cases where the literature typically recommends the use of projection techniques. However,
as discussed in the introduction, Kleibergen and Mavroeidis (2008a) recently showed that
even in WI-Cases I and III, where the nuisance parameters θ2 are weakly identified, the
subset-K test does not over-reject the true values of the parameters of interest.

The above argument in favor of the subset-K test essentially marginalizes the need for
projection-based inference in the context of GMM with weakly identified parameters. At
the same time, this also provides an excellent benchmark to establish the usefulness of the
new method of projection by comparing the efficient projection-based K test against the
subset-K test. In the rest of the paper we will show that the efficient projection-based K
test performs as good as the subset-K test in terms of size and power.

Now we discuss the construction of the efficient K statistic, which is crucial for the
local asymptotic equivalence between the subset-K test and the efficient projection-based
K test. The efficient K statistic is the analog of the efficient score statistic in the CU-
GMM framework. Because the efficient score statistic is not often explicitly used in the
econometrics literature, we first provide a very simple example to fix the idea [also see Bera
and Bilias (2001)].

Example of an efficient score statistic

Consider n observations wt = (yt, X1t, X2t) such that yt
indep∼ (X1tθ01 + X2tθ02, 1) for t =

1, . . . , n. Denote y = (y1, . . . , yn)′ and Xi = (Xi1, . . . , Xin)′ for i = 1, 2. Assume that
X = [X1, X2] is non-stochastic and let

1

n
X ′X =

1

n

(
X ′

1X1 X ′
1X2

X ′
2X1 X ′

2X2

)
→

(
Ω11 Ω12

Ω21 Ω22

)
= Ω (be positive definite).

The positive definiteness assumption rules out problems with identification and allows us to
focus just on the idea behind the efficient score statistic. Defining the moment restrictions
as Egt(θ0) = 0 (and 6= 0 otherwise) where gt(θ) = (X1t, X2t)

′(yt−X1tθ1−X2tθ2), it follows
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from (2.3) and the Lindberg-Feller CLT that the scaled score (gradient)5

[
1√
n

OθQn(θ0)

]′
=

[
1√
n
(O1Qn(θ0))

′
1√
n
(O2Qn(θ0))

′

]
=

[
− 1√

n
X ′

1(y −X1θ01 −X2θ02)

− 1√
n
X ′

2(y −X1θ01 −X2θ02)

]

A∼ N (0, Ω = Vgg(θ)).

The sum of the n observations of the population version of the efficient score (gradient) for
θ1 is O1.2Q

pop
n (θ) = O1Qn(θ) − O2Qn(θ)Ω−1

22 Ω21. A sample version replaces the unknown
Ωij terms by n−1X ′

iXj and is defined as O1.2Qn(θ) = O1Qn(θ) − O2Qn(θ)(X ′
2X2)

−1X ′
2X1.

It follows that
[

1√
n
(O1.2Qn(θ))′

1√
n
(O2Qn(θ))′

]
=

[
− 1√

n
X ′

1N(X2)(y −X1θ1 −X2θ2)

− 1√
n
X ′

2(y −X1θ1 −X2θ2)

]

A∼ N
([ −Ω11.2(θ01 − θ1)

−Ω21(θ01 − θ1)− Ω22(θ02 − θ2)

]
,

[
Ω11.2 0

0 Ω22

])
,

i.e. the (scaled) efficient score for θ1 is asymptotically independent of the (scaled) score
for θ2 for any value of the nuisance parameters. An efficient score statistic for testing
H1 : θ1 = θ∗1 can be constructed as

LMeff
n (θ∗1) =

1

n
(O1.2Qn(θ∗1, θ2))Ω̂

−1
11.2(O1.2Qn(θ∗1, θ2))

′ (2.6)

= (y −X1θ∗1 −X2θ2)
′P (N(X2)X1)(y −X1θ∗1 −X2θ2).

For θ∗1 as defined in Lemma 2.1, i.e. for
√

n local alternatives, LMeff
n (θ∗1)

A∼ χ2
1 with non-

centrality parameter equal to d′1Ω11.2d1. Since N(X2)X2 = 0, the efficient score statistic for
θ1 does not depend on θ2 at all. While this nice property does not completely carry through
in a general nonlinear model, we show in Lemma 2.2 that the asymptotic distribution of the
efficient score (K) statistic for θ1 is the same for all θ2 in the

√
n-neighborhood of the true

value θ02, and that proves sufficient to establish the asymptotic properties of the efficient
projection-based K test.

The efficient K statistic

In the general context of CU-GMM based on (2.1), we can use the principle illustrated in
the example above and define the estimated efficient score (gradient) for θ1 as

5In this linear regression setup, k = ν and −n−1D̂T (θ) = n−1X ′X → Ω = Vgg(θ). This simplifies
the expressions considerably compared to those to be introduced in the general setup. For example, the
objective function and its gradient with respect to θ now simplify to

Qn(θ) =
1
2n

g′T (θ)V̂gg(θ)gT (θ) =
1
2
(y −Xθ)′P (X)(y −Xθ) and

OθQn(θ) =
1
n

g′T (θ)V̂gg(θ)D̂T (θ) = −(y −Xθ)′X.

11



O1.2Qn(θ) =
1

n
g′T (θ)V̂

− 1
2

gg (θ)N

(
V̂
− 1

2

′

gg (θ)D̂T2(θ)

)
V̂
− 1

2

′

gg (θ)D̂T1(θ).

Finally, using the same idea as in (2.6), we define the efficient score version of the K statistic,
i.e. the efficient K statistic, as

Kn1(θ) = n (O1.2Qn(θ))

(
D̂′

T1(θ)V̂
− 1

2
gg (θ)N

(
V̂
− 1

2

′

gg (θ)D̂T2(θ)

)
V̂
− 1

2

′

gg (θ)D̂T1(θ)

)−1

(O1.2Qn(θ))′

=
1

n
g′T (θ)V̂

− 1
2

gg (θ)P

(
N

(
V̂
− 1

2

′

gg (θ)D̂T2(θ)

)
V̂
− 1

2

′

gg (θ)D̂T1(θ)

)
V̂
− 1

2

′

gg (θ)gT (θ). (2.7)

If the restricted CUE θ̃∗ is such that O2Qn(θ̃∗) = 0 (and not just w.p.a.1 as in (2.4)),
then it follows that Kn(θ̃∗) = Kn1(θ̃∗) once we note that the top-left ν1 × ν1 block of[
D̂′

T (θ)V̂ −1
gg (θ)D̂T (θ)

]−1

is

[
D̂′

T1(θ)V̂
− 1

2
gg (θ)N

(
V̂
− 1

2

′

gg (θ)D̂T2(θ)

)
V̂
− 1

2

′

gg (θ)D̂T1(θ)

]−1

. Hence

Kleibergen’s (subset-)K statistic can also be seen as a (normalized) quadratic form of the
estimated efficient score for θ1 evaluated at the restricted CUE θ̃∗.

The following lemma gives the asymptotic properties of the efficient K statistic and
some related statistics under

√
n-local alternatives.

Lemma 2.2 Let θni = θ0i +di/
√

n ∈ Θi where di ∈ Rνi for i = 1, 2; and let θn = (θ′n1, θ
′
n2)

′

and dθ = (d′1, d
′
2)
′. Define ΨO.g = ΨO−VOg(θ0)V

−1
gg (θ0)Ψg. Let ΨO.g and L(θ) be partitioned

with respect to θ1 and θ2 such that ΨO.g =
[
Ψ′

1.g, Ψ
′
2.g

]′
and L(θ) = [L′1(θ), L

′
2(θ)]

′. Then
under Assumptions D and W,

(i) Kn1(θn)
d−→ B′P (N (A2)A1)B

(ii) K̃n2(θn) = n (O2Qn(θn))
(
D̂′

T2(θn)V̂ −1
gg (θn)D̂T2(θn)

)−1

(O2Qn(θn))′
d−→ B′P (A2)B

(iii) Sn(θn) = 2Qn(θn)
d−→ B′B

where Ai = V
− 1

2

′

gg (θ0)
[
Gi(θ0) + (1− 1[δi=1])deveck [Ψi.g + Li(θ0)dθ]

′] for i = 1, 2 and B =

V
− 1

2

′

gg (θ0)
[
Ψg +

∑2
i=1 1[δi=1]Mi(θ0i)di

]
.

Lemma 2.2 is proved in the Appendix. We make the following remarks:

(i) Kn1(θ0)
A∼ χ2

ν1
in WI-Cases I-IV. Further, using Lemma 2.1 it follows that Kn(θn1, θ̃n2(θn1)) =

Kn1(θn) + op(1) = Kn1(θn1, θ02) + op(1) in WI-Cases II and IV.

(ii) K̃n2(θ∗1, θ∗2) is the K statistic for testing H2 : θ2 = θ∗2 when θ1 is assumed to
be equal to θ∗1 (and hence no longer considered an unknown parameter). Because

K̃n2(θ0)
A∼ χ2

ν2
, when the true value of θ1 is known a priori then the test that rejects
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H2 : θ2 = θ∗2 if K̃n2(θ01, θ∗2) > χ2
ν2

(1− ζ) has asymptotic size ζ. In WI-Cases II and

IV, K̃n2(θn) converges to a non-central χ2
ν2

distribution with non-centrality parameter

[
2∑

i=1

1[δi=1]Mi(θ0i)di

]′
V
− 1

2
gg (θ0)P

(
V
− 1

2

′

gg (θ0)M2(θ02)

)
V
− 1

2

′

gg (θ0)

[
2∑

i=1

1[δi=1]Mi(θ0i)di

]

which, under (2.1), can be finite only in the
√

n-neighborhood of θ02.

(iii) Sn(θn) is the S statistic proposed by Stock and Wright (2000). In WI-Cases II and
IV, Sn(θn) converges to a non-central χ2

k distribution with non-centrality parameter

[
2∑

i=1

1[δi=1]Mi(θ0i)di

]′
V −1

gg (θ0)

[
2∑

i=1

1[δi=1]Mi(θ0i)di

]

which, under (2.1), can be finite only in the
√

n-neighborhood of θ02. When θ01 is
known a priori, then the test that rejects H2 : θ2 = θ∗2 if Sn(θ01, θ∗2) > χ2

k(1− ζ) has
asymptotic size ζ.

The efficient projection-based K test

The results of Lemma 2.2 show that in WI-Cases II and IV (when θ2 is identified), and
against

√
n-local alternatives, the level-ε subset-K test for H1 : θ1 = θ∗1 is asymptotically

equivalent to the infeasible efficient K test that rejects H1 : θ1 = θ∗1 at level ε when
Kn1(θ∗1, θ02) > χ2

ν1
(1 − ε). The latter test uses the unknown true value of the nuisance

parameters θ2 and hence is infeasible. Based on these observations, we define and describe
the efficient projection-based K test for the null hypothesis H1 : θ1 = θ∗1 in Theorem 2.3.

Theorem 2.3 Let θ∗1 = θ01 + d1/
√

n ∈ Θ1 where d1 ∈ Rν1. For any θ1 ∈ Θ1, define
C2(1 − ζ, θ1) = {θ2 ∈ Θ2 : Sn(θ1, θ2) ≤ χ2

k(1− ζ)}. Define the rejection rule for the null
hypothesis H1 : θ1 = θ∗1 using the efficient projection-based K test by the random variable
φn(θ∗1) ≡ φn (θ∗1; w1, . . . , wn) such that

φn(θ∗1) =

{
1 if C2(1− ζ, θ∗1) = ∅ or if infθ∗2∈C2(1−ζ,θ∗1) Kn1(θ∗1, θ∗2) > χ2

n1
(1− ε)

0 otherwise.

Under Assumptions D and W,

(i) lim
n→∞

Eθ01φn(θ01) ≤ ζ + ε;

(ii) additionally if C2(1− ζ, θ∗1) 6= ∅, then in WI-Cases II and IV,

lim
n→∞

[
Eθ01φn(θ∗1)− Prθ01

[
Kn1(θ∗1, θ02) > χ2

ν1
(1− ε)

]]
= 0.

Theorem 2.3 is the main result of the paper. Part(i) shows that the asymptotic size of this
test is bounded from above by ζ + ε. In WI-Cases I and III (when θ1 is weakly identified),

13



ζ and ε can be chosen such that the desired level of the test is not exceeded. Part(ii) shows
that in WI-Cases II and IV, the choice of ζ becomes asymptotically irrelevant if the first
step confidence region for θ2 is nonempty. In such cases the efficient projection-based K
test is asymptotically equivalent to the infeasible efficient K test that rejects H1 : θ1 = θ∗1
at level ε if Kn1(θ∗1, θ02) > χ2

ν1
(1− ε).

A conservative (1− ζ − ε)× 100% asymptotic confidence region for θ1 can be obtained
by inverting the efficient projection-based K test as

{θ1 ∈ Θ1 : φn(θ1) = 0}
=

{
θ1 ∈ Θ1 : C2(1− ζ, θ1) 6= ∅, inf

θ2∈C2(1−ζ,θ1)
Kn1(θ1, θ2) ≤ χ2

ν1
(1− ε)

}
.

In WI-Cases II and IV, the region’s coverage (and length) is asymptotically equivalent to the
asymptotic coverage (and length) of the infeasible region

{
θ1 ∈ Θ1 : Kn1(θ1, θ02) ≤ χ2

ν1
(1− ε)

}
if C2(1− ζ, θ1) 6= ∅ for all θ1 ∈ Θ.

The asymptotic equivalence under WI-Cases II and IV naturally extends to the subset-
K test (see the discussion preceding Theorem 2.3). On the other hand, if C2(1 − ζ, θ∗1) is
empty with positive probability, the asymptotic equivalence in WI-Cases II and IV may
not hold – the efficient projection-based K test can be more powerful than the infeasible
efficient K test and the subset-K test at the cost of its asymptotic size exceeding ε and
belonging to the interval (ε, ζ + ε).

The definition of the confidence region C2(1 − ζ, θ∗1) in the statement of Theorem 2.3
has a major advantage. The underlying S test concurrently tests the model-specification
(i.e. Egt(θ∗1, θ2) = 0) and thus, under equation (2.1), rules out the spurious decline of
power at all local-minima and saddle points (unless present in the

√
n-neighborhood of

θ0) of the objective function which is typical to tests based on the K statistic. Kleibergen
proposed a two-step method, the subset-K-J test, to avoid the spurious decline in power.
The subset-K-J test rejects the null hypothesis H1 : θ1 = θ∗1 at level ζ + ε

(i) if Kn(θ∗1, θ̃n2(θ∗1)) > χ2
ν1

(1− ε)

(ii) or if Jn(θ∗1, θ̃n2(θ∗1)) = Sn(θ∗1, θ̃n2(θ∗1))−Kn(θ∗1, θ̃n2(θ∗1)) > χ2
k−ν(1− ζ)

[see Kleibergen (2005) and Kleibergen and Mavroeidis (2008a)]. Our choice of C2(1 −
ζ, θ∗1) achieves the same goal. Simulation results in Zivot and Chaudhuri (2008), based
on the setting of Kleibergen and Mavroeidis (2008b), suggest that the two methods are
practically indistinguishable when the nuisance parameters are identified.6 Given that
the usual projection-based tests for subsets of parameters are often criticized for being
needlessly conservative, these observations certainly justify the new method of projection-

6Another choice, although not recommended, for the first step confidence region C2(1 − ζ, θ∗1) is the
region CK

2 (1 − ζ, θ∗1) =
{

θ∗2 ∈ Θ2 : K̃n2(θ∗1, θ∗2) ≤ χ2
ν2

(1− ζ)
}

[see Lemma 2.2(ii)]. By definition of

θ̃n2(θ∗1), the statistic K̃n2(θ∗1, θ̃n2(θ∗1)) = 0 w.p.a.1 and hence, such a first step confidence region for θ2
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based inference proposed in this paper.

Comparison with the usual method of projection

The basic requirements for using the new method of projection are – (i) a confidence region
C2(1 − ζ, θ1) for the nuisance parameters θ2 with asymptotic coverage probability (1 − ζ)
when θ1 = θ01, and (ii) a statistic Rn(θ1, θ2) that is asymptotically pivotal when θ1 = θ01

and θ2 = θ02. The usual method of projection does not have the first requirement because
it involves a projection from the entire parameter space Θ2 of θ2. The usual method of
projection-based tests would reject the null hypothesis H1 : θ1 = θ∗1 if infθ∗2∈Θ2 Rn(θ∗1, θ∗2)
is greater than the same critical value (used in the new method). It is clear from this
observation that the usual method is going to be more conservative than the new method.
However, the comparison is probably not fair because the usual method only allows for
an asymptotic size of (at most) ε, where as this is (at most) (ζ + ε) for the new method.
The difference in the asymptotic size is the price for the reduction in conservativeness by
restricting the unknown nuisance parameters θ2 in Rn(θ1, θ2) to vary only in a small neigh-
borhood C2(1− ζ, θ1) possibly containing the true value θ02.

This is where the choice of Rn(θ1, θ2) = Kn1(θ1, θ2), the efficient K statistic, becomes
important – it ensures that the price in terms of the increased asymptotic size ζ disappears
asymptotically whenever the nuisance parameters are identified. In such cases, one can al-
ways obtain a nonempty confidence region in the first step and thus restrict the asymptotic
size of the new projection-based test not to exceed ε without any loss of asymptotic power
(as compared to the infeasible efficient K test or the subset-K test). In particular, when
the nuisance parameters are identified, the efficient K statistic makes the new method of
projection-based test (locally) asymptotically equivalent to the level-ε infeasible efficient K
test, which under standard conditions (i.e. WI-Case IV) is asymptotically equivalent to
the usual (level-ε) Wald, likelihood ratio and score tests, and thus attains local asymptotic
optimality among level-ε tests for the null hypothesis H1 : θ1 = θ∗1 that treat the nuisance
parameters θ2 as unknown.

We are not aware of any other form of the second step test statistic that would ensure
that the asymptotic size of the new (restricted) projection-based test does not exceed ε
when the nuisance parameters are identified and subsequently allow for a comparison with
other tests (including the usual projection-based) tests that are designed to have size less
than equal to ε.

Given the superior performance of the GMM-MLR test [see Kleibergen (2005) and
Kleibergen and Mavroeidis (2008b)], it is natural to consider an extension of the new

is nonempty w.p.a.1. This further implies that

Kn(θ∗1, θ̃n2(θ∗1)) ≥ inf
θ∗2∈CK

2 (1−ζ,θ∗1)
Kn1(θ∗)

and hence the power (size) of the subset K-test for H1 : θ1 = θ∗1 dominates the power (size) of the efficient
projection-based K test when this region is used in the first step.
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method of projection to the (quasi) likelihood ratio type tests. However, because the use
of the efficient K statistic is crucial for proving the desirable properties of the new test, it
is not obvious how such an extension can be made possible.

Finally it should be noted that, if it is possible to obtain a
√

n-consistent point estimator
for a subset of the nuisance parameters, the computational cost of the efficient projection-
based K test can be reduced substantially by using this estimator and restricting the search
for the infimum of the efficient K statistic to the remaining nuisance parameters only.

3 Simulation study in a linear IV regression

In this section we present a Monte Carlo study in a linear instrumental variables model
and show that the asymptotic results from Section 2 provide a good approximation to the
behavior of the efficient projection-based K test in finite samples. The framework is similar
to that of Kleibergen (2004) and Zivot et al. (2006).

Model

Consider the following model:

y = X1θ01 + X2θ02 + u (3.1)

X1 = ZΠ1 + η1 (3.2)

X2 = ZΠ2 + η2 (3.3)

where y, X1 and X2 are respectively the n× 1, n× ν1 and n× ν2 matrices of endogenous
variables; u, η1 and η2 are respectively the n×1, n×ν1 and n×ν2 matrices of the unobserved
correlated structural errors. Z is the non-stochastic and full-column rank n× k matrix of
instruments, and the order condition k ≥ ν = ν1 +ν2 is assumed to be satisfied. We assume
that the structural errors are i.i.d., i.e. the t-th row of u, η1 and η2 is described by

(ut, η1t, η2t)
i.i.d.∼


0, Σ =




σuu σu1 σu2

σ1u σ11 σ12

σ2u σ21 σ22





 for t = 1, . . . , n.

The parameters of interest are θ1. Under the above assumptions, the parameters Π1 and
Π2 can be consistently estimated as long as limn→∞ n−1Z ′Z is positive definite, and the
parameters Σ can be consistently estimated if, in addition, θ01 and θ02 (or their consistent
estimators) are known. Hence we can partial out the parameters Π1, Π2 and Σ, and
treat only θ2 as the nuisance parameters for which a first step confidence region needs to
be constructed in the efficient projection-based K test. This reduces the computational
cost considerably. The model described in (3.1) – (3.3) is a special case of the general
GMM framework and all the results from Section 2 apply in this setup [see, for example,
Chaudhuri (2008)]. In the rest of this section we will see that the finite sample rejection
rates of the null hypothesis H1 : θ1 = θ∗1 are very similar for the subset-K test and the
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efficient projection-based K test, especially when the nuisance parameters are identified.

Monte Carlo specifications

The true values of the structural coefficients are taken as θ01 = 1 and θ02 = 10. The
structural errors [u, η1, η2] are generated by drawing n = 100 independent random samples
from N (0, Σ) where

Σ =




1 ρu1 ρu2

ρu1 1 0
ρu2 0 1


 . (3.4)

If η1 and η2 are correlated, the level of endogeneity of the regressor X1 depends on the cor-
relations between [η1 and u], [η1 and η2] and [η2 and u]. Our choice of Σ in (3.4) simplifies
the setup by ensuring that the level of endogeneity of X1 depends only on ρu1 and similarly
the level of endogeneity of X2 depends only on ρu2. We make three different choices for the
pair (ρu1, ρu2): (ρu1, ρu2) = (0.5, 0.5), (0.1, 0.99), (0.99, 0.1). X1 and X2 are moderately (and
equally) endogenous in the first case, X1 is highly endogenous and X2 is mildly endogenous
in the second case, X1 is mildly endogenous and X2 is highly endogenous in the third case.
We refer to the corresponding covariance matrices of the structural errors as Σ1, Σ2 and Σ3

respectively.

The instruments Z are generated by drawing n independent random samples from
N (0, Ik−1) independently of the structural errors and appending the matrix with an n× 1
column vector (1, . . . , 1)′. We consider three different choices of the number of instru-
ments: k = 2, 4, 20. The first choice gives a just-identified model and the latter two give
over-identified models. The large value k = 20 is taken because when the nuisance param-
eters are unidentified, the limiting null distribution of the subset-K statistic converges to
a χ2

ν1
distribution from below as k → ∞ and n → ∞ such that k/n → 0, and hence the

power of the subset-K test is likely to be the largest for this choice [see Kleibergen (2007)].

To our knowledge, there is no universally accepted measure of instrumental relevance
for individual structural coefficients in a linear IV model with more than one endogenous
regressor. However, for a model with a single endogenous regressor, the instruments are
considered weak for the structural coefficient if the concentration parameter is less than 10
[see Staiger and Stock (1997)]. We follow Zivot et al. (2006) and choose the parameters
Π1 and Π2 such that the concentration matrix µ, as defined by Stock and Yogo (2005), is
diagonal where for i = 1, 2, the i-th diagonal element µi corresponds to the concentration
parameter for θi. The weak instrument setup for the experiment is summarized in Table 2.

Results

The results reported are based on 10,000 Monte Carlo trials. The instrument matrix Z
is kept fixed over the trials. We compute the empirical rejection rates of the efficient
projection-based K test, the subset-K test and the projection-based S test for a grid of
θ∗1 values around the true value θ01. For the efficient projection-based K test we consider

17



Table 2: Four Cases of Weak Instruments.
µ2 = 1 µ2 = 10

WI-Case I WI-Case II
µ1 = 1 θ1 : weak instrument θ1 : weak instrument

θ2 : weak instrument θ2 : strong instrument

WI-Case III WI-Case IV
µ1 = 10 θ1 : strong instrument θ1 : strong instrument

θ2 : weak instrument θ2 : strong instrument

ζ = 0.01 and ζ = 0.05 in the construction of the first step confidence region C2(1− ζ, θ∗1),
and use ε = 0.05 for the test in the second step. In the figures we refer to the resulting tests
with these values as “New Test (1% + 5%)” and “New Test (5% + 5%)”, respectively. For
the subset-K and projection-based S tests we use a nominal size ε = 0.05. In our linear IV
setup, the S test is the Anderson-Rubin (AR) test and we compute the projection-based
AR test using the results of Dufour and Taamouti (2005). For brevity, we only present a
subset of the results in Table 3 and Figures 1 – 3 to illustrate our main points. The full
set of results are available in the supplement appendix.

[Insert Figures 1 – 3 and Table - 3 around here.]

In general across the four WI cases, the empirical rejection rates of the subset-K test
and the efficient projection based K tests are very close and the projection-based AR test
is the most conservative.

In the cases when the nuisance parameter θ2 is (strongly) identified (see WI-Case II
and WI-Case IV in the right panel of the figures), Theorem 2.3 states that the efficient
projection-based K tests and the subset-K test are asymptotically equivalent provided
C2(1 − ζ, θ∗1) 6= ∅. This result is borne out in our simulations as illustrated in Figure
1. The difference in behavior between the efficient projection-based K tests for the two
choices of ζ arises solely from the difference in the frequency of C2(1− ζ, θ∗1) = ∅, which is
summarized in Table 3. To see this result in the figures, consider the point where the null
hypothesis is true (i.e., θ∗1 − θ01 = 0). In Figures 2 and 3 the empirical rejection rates of
the efficient projection-based K tests exceed the nominal size ε = 0.05. From Table 3 it can
be seen that the amount by which they exceed the nominal size ε is (roughly) the same as
the frequencies (probabilities) of C2(1− ζ, θ∗1) = ∅. This result also explains the difference
between the rejection rate of the level-ε subset-K test and the efficient projection-based K
tests. Empty confidence regions occur when the over-identification restrictions are rejected
under the null hypothesis H1 : θ1 = θ∗1 by the AR test in the first step. Table 3 shows
that the probability of such occurrences increases with the order of over-identification of
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the restricted (by H1 : θ1 = θ∗1) model. The occurrence of empty confidence regions for
θ2 in the first step increases the rate at which the efficient projection-based K tests reject
the null hypothesis H1 : θ1 = θ∗1. As can be seen from Figures 2 and 3, the benefit of
such an increased rejection rate in terms of increase in power (relative to the subset-K test)
probably outweighs its cost from increase in size (above ε = 0.05).

When the nuisance parameter θ2 is weakly identified (see WI-Case I and WI-Case II in
the left panel of the figures), Theorem 2.3 states that the asymptotic size of the efficient
projection-based K test is bounded from above by (ζ + ε). The simulations show that,
even with the relatively large choice ζ = 0.05, the efficient projection-based K test does
not tend to over-reject provided the number of instruments is not too large relative to the
sample size and/or the level of endogeneity of the regressor X2 associated with the nuisance
parameter θ2 is not extremely high.

Overall, the simulations corroborate the asymptotic properties of the efficient projection-
based K test summarized in Theorem 2.3. In a comment to Kleibergen and Mavroeidis
(2008b), Zivot and Chaudhuri (2008) presented Monte Carlo evidence that showed the ef-
ficient projection-based K test performed similarly to the level-ε subset-GMM-MLR test
and the level-(ζ + ε) subset-K-J test in a simulation design calibrated to mimic data used
to estimate a typical new Keynesian Phillips curve.

4 Conclusion

In this paper we questioned the common perception that the projection-based tests are
conservative, and subsequently showed that proper use of projection techniques could lead
to tests that are comparable to the tests based on the plug in principle.

We proposed a new projection-based test for subsets of parameters in the context of
GMM with possibly weakly identified parameters. We showed that two simple modifica-
tions to the usual projection-based tests can considerably reduce their conservativeness.
The modifications – (i) a restricted projection and (ii) the use of an efficient score equiv-
alent of Kleibergen’s K statistic, allowed us to design a test that can be asymptotically
equivalent to Kleibergen’s subset-K test whenever the nuisance parameters are (strongly)
identified and at the same time would not ever result in an uncontrolled over-rejection of
the true value of the parameters of interest.

While we introduced the new method of projection in the context of GMM estimation,
the method is more generally applicable to any estimation technique that admits a score
type statistic whose distribution is asymptotically pivotal when evaluated at the true val-
ues of the parameters. For example, Chaudhuri et al. (2008) applied the new method of
projection to inference on subsets of parameters in a split-sample two-stage-least-squares
context and Chaudhuri (2008) described the method in the general extremum estimation
context. Further applications of the new method are the subject of our future research.
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A Appendix

Proof of Lemma 2.1: The following proof follows from Stock and Wright (2000) with
minor modifications. Note that in WI-Cases II and IV,

(a) En−1gT (θ) = 1[δ1=1]m1(θ1) + 1[δ1= 1
2
]

1√
n
m̃n1(θ) + m2(θ2) where m1(θ1) → m1(θ01) for

θ1 → θ01 and m̃n1(θ) → m̃1(θ) uniformly in θ ∈ Θ, and

(b) V̂ −1
gg (θ)

P−→ V −1
gg (θ) uniformly where V −1

gg (θ) is positive definite, continuous and bounded
in θ ∈ Θ.

Therefore, it follows from Assumption W that in WI-Cases II and IV,

1

n
Qn(θ∗1, θ2)

P−→ m′
2(θ2)V

−1
gg (θ01, θ2)m2(θ2)

uniformly in θ2 ∈ Θ2. The right-hand side is zero if and only if θ2 = θ02 and hence continuity
of the argmin operator gives

θ̃n2(θ∗1)
P−→ θ02. (A.1)

Let θ̃∗ = (θ′∗1, θ̃
′
n2(θ∗1))

′ and θ∗0 = (θ′∗1, θ
′
02)

′. By definition of CUE θ̃n2(θ∗1),

0 ≥ Qn(θ̃∗)−Qn(θ∗0) =
[
n−1/2OθgT (θ̄)(θ̃∗ − θ0)

]′
V̂ −1

gg (θ̃∗)
[
n−1/2OθgT (θ̄)(θ̃∗ − θ0)

]

+∆1n + 2
[
n−1/2OθgT (θ̄)(θ̃∗ − θ0)

]′
V̂ −1

gg (θ̃∗)n−1/2gT (θ0) (A.2)

where the mean-value θ̄ ∈ Θ is such that ‖θ̄ − θ0‖ ≤ ‖θ̃∗ − θ0‖ = op(1) and

∆1n = n−1/2g′T (θ0)V̂
−1
gg (θ̃∗)n−1/2gT (θ0)− n−1/2g′T (θ∗0)V̂ −1

gg (θ∗0)n−1/2gT (θ∗0).

For notational convenience define M ≡ M(θ̃∗, θ̄, θ0) =
[
n−1/2OθgT (θ̄)(θ̃∗ − θ0)

]
. For any

square matrix A let mineval(A) denote its minimum eigen-value. Note that,

(a) M′V̂ −1
gg (θ̃∗)M≥ ‖M‖2mineval

(
V̂ −1

gg (θ̃∗)
)

and

(b) M′V̂ −1
gg (θ̃∗)gT (θ0)/

√
n ≥ −‖M‖

∥∥∥V̂ −1
gg (θ̃∗)gT (θ0)/

√
n
∥∥∥ ,

the latter following from the Cauchy-Schwartz inequality.

Now define ∆2n =

∥∥∥V̂ −1
gg (θ̃∗)gT (θ0)/

√
n
∥∥∥

mineval
(
V̂ −1

gg (θ̃∗)
) and ∆3n =

∆1n

mineval
(
V̂ −1

gg (θ̃∗)
) . Therefore, divid-

ing (A.2) by mineval
(
V̂ −1

gg (θ̃∗)
)
, we get,

‖M‖2 − 2‖M‖∆2n + ∆3n ≤ 0
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which implies that ∆2n −
√

∆2
2n −∆3n ≤ ‖M‖ ≤ ∆2n +

√
∆2

2n −∆3n.

Noting that ‖θ̄ − θ0‖ = o(1), Assumptions D1 and W give n−1OigT (θ̄) → 1[δi=1]Mi(θ0i) for

i = 1, 2. Since ‖d1‖ = O(1), it is clear that
√

n
(
θ̃n2(θ∗1)− θ02

)
= Op(1) if ∆2n and ∆3n

are Op(1).

Now we verify that ∆2n and ∆3n are Op(1). First note that under Assumption D,

∆2n ≤
supθ

∥∥∥V̂ −1
gg (θ)gT (θ0)/

√
n
∥∥∥

infθ mineval
(
V̂ −1

gg (θ)
) d−→ supθ

∥∥V −1
gg (θ)Ψg

∥∥
infθ mineval

(
V −1

gg (θ)
) = Op(1). (A.3)

Again, noting that, for some θ̄10 = (θ̄′1, θ
′
02)

′ such that ‖θ̄10 − θ0‖ ≤ ‖θ∗0 − θ0‖ = O(1/
√

n),
i.e. for some θ̄1 = θ01 + d̄1/

√
n where ‖d̄1‖ ≤ ‖d1‖ = O(1),

|∆1n|

=

∣∣∣∣∣
g′T (θ0)√

n
V̂ −1

gg (θ̃∗)
gT (θ0)√

n
−

[
gT (θ0)√

n
+

O1gT (θ̄10)

n
d̄1

]′
V̂ −1

gg (θ∗0)
[
gT (θ0)√

n
+

O1gT (θ̄10)

n
d̄1

]∣∣∣∣∣

≤
∣∣∣∣
g′T (θ0)√

n

[
V̂ −1

gg (θ̃∗)− V̂ −1
gg (θ∗0)

] gT (θ0)√
n

∣∣∣∣ + 2

∣∣∣∣
g′T (θ0)√

n
V̂ −1

gg (θ̃∗)
O1gT (θ̄10)

n
d̄1

∣∣∣∣

+

∣∣∣∣d̄′1
O1g

′
T (θ̄10)

n
V̂ −1

gg (θ̃∗)
O1gT (θ̄10)

n
d̄1

∣∣∣∣
d−→ 2× 1[δ1=1]

[∣∣ΨgV
−1
gg (θ0)M1(θ01)d̄1

∣∣ +
∣∣d̄′1M ′

1(θ01)V
−1
gg (θ0)M1(θ01)d̄1

∣∣] = Op(1)

follows from Assumptions D and W. Since V −1
gg (θ) is positive definite, similar arguments as

in (A.3) give |∆3n| = Op(1). Hence
√

n‖θ̃n2(θ∗1)− θ02‖ = Op(1).

Lemmas A.1 are A.2 will be helpful in getting the rest of the results.

Lemma A.1 Let ân(.) and a(.) be pa × p and b̂n(.) and b(.) be p × pb finite-dimensional
matrices. Let θ0 ∈interior(Θ) where Θ is compact. Then following results hold as n →∞:

(i) Let ân(θ)− an(θ) = op(1) and an(θ)− a(θ) = o(1) for θ ∈ Θ. Then ân(θn)− a(θ0) =
op(1) if a(θ) is continuous at θ0 and if θn − θ0 = op(1).

(ii) In addition, let b̂n(θ)− bn(θ) = op(1) and bn(θ)− b(θ) = o(1) for θ ∈ Θ. If a(θ) and

b(θ) are bounded on Θ, then ân(θn)̂bn(θn) − a(θ0)b(θ0) = op(1) if a(θ) and b(θ) are
continuous at θ0 and if θn − θ0 = op(1).

Sketch of Proof: (i) Using the Triangle inequality, the result follows once we note that
for n large enough θn ∈ Θ w.p.a.1 and ‖ân(θn)−a(θ0)‖ ≤ ‖ân(θ)−an(θ)‖+‖an(θ)−a(θ)‖+
‖a(θ)− a(θ0)‖ = op(1).
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(ii) For x = a, b, let us define the index Ix = {(i, j) : i = 1, . . . , px and j = 1, . . . , p} and let
supθ∈Θ max(i,j)∈Ix x(i,j)(θ) ≤ Rx = O(1). Then the result follows using the same technique
as in (i) once we note that the Triangle inequality and the Cauchy-Schwartz inequality give

‖ân(θ)̂bn(θ)−a(θ)b(θ)‖ ≤ ‖ân(θ)−a(θ)‖‖b̂n(θ)− b(θ)‖+
√

pap|Ra|‖b̂n(θ)− b(θ)‖+‖ân(θ)−
a(θ)‖√ppb|Rb| = op(1).

Lemma A.2 Let θni = θ0i+di/
√

n ∈ Θi where di ∈ Rνi for i = 1, 2; and let θn = (θ′n1, θ
′
n2)

′

and dθ = (d′1, d
′
2)
′. Define ΨO.g = ΨO−VOg(θ0)V

−1
gg (θ0)Ψg. Let ΨO.g and L(θ) be partitioned

with respect to θ1 and θ2 such that ΨO.g =
[
Ψ′

1.g, Ψ
′
2.g

]′
and L(θ) = [L′1(θ), L

′
2(θ)]

′. Define

ĥTi(θ) =
∑n

t=1 ĥti(θ) where ĥti(θ) =
[
vecOigt(θ)− V̂ig(θ)V̂

−1
gg (θ)gt(θ)

]
for i = 1, 2. Under

Assumptions D and W,




n−1/2gT (θn)

n−δ1ĥT1(θn)

n−δ2ĥT2(θn)


 d−→




Ψg +
∑2

i=1 1[δi=1]Mi(θ0i)di

vecG1(θ0) + (1− 1[δ1=1]) [Ψ1.g + L1(θ0)dθ]
vecG2(θ0) + (1− 1[δ2=1]) [Ψ2.g + L2(θ0)dθ]


 .

Proof: Define VOO.g(θ) = VOO(θ) − VOg(θ)V
−1
gg (θ)VgO(θ). Following the obvious partition

with respect to θ1 and θ2, let VOg = [V ′
1g, V

′
2g]

′, VO.g = [V ′
1.g, V

′
2.g]

′ and for i = 1, 2, let

hTi(θ) =
∑n

t=1 hti(θ) where hti(θ) =
[
vecOigt(θ)− Vig(θ0)V

−1
gg (θ0)gt(θ)

]
. Letting hT (θ) =

[h′T1(θ), h
′
T2(θ)]

′, Assumptions D and W give

1√
n

[
gT (θ0)

hT (θ0)

]
d−→

[
Ψg

ΨO.g

]
∼ N

(
0,

[
Vgg(θ0) 0

0 VOO.g(θ0)

])
and hence

1√
n

gT (θ0)
d−→ Ψg and for i = 1, 2

1

nδi
hTi(θ0)

d−→ vecGi(θ0) + (1− 1[δi=1])Ψi.g. (A.4)

A mean-value expansion of gives 1√
n
gT (θn) = 1√

n
gT (θ0) + 1

n
OθgT (θ̄)dθ for some θ̄ such that

‖θ̄ − θ0‖ ≤ ‖θn − θ0‖ = O(1/
√

n). Hence, using (A.4) and Assumption W, we get

1√
n

gT (θn) = Ψg +
2∑

i=1

1[δi=1]Mi(θ0i)di + op(1).

Using Lemma A.1 and the fact that continuity is preserved by matrix inversion, for i = 1, 2,

1

nδi
ĥTi(θn) =

1

nδi

[
vecOigT (θn)− V̂ig(θn)V̂ −1

gg (θn)gT (θn)
]

=
1

nδi

[
vecOigT (θn)− Vig(θ0)V

−1
gg (θ0)gT (θn)

]
+ op(1)

=
1

nδ
hTi(θn) + op(1)

=
1

nδi
hTi(θ0) +

1

nδi+
1
2

OθhTi(θ̄)dθ + op(1)
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for some θ̄ such that ‖θ̄−θ0‖ ≤ ‖θn−θ0‖ = O(1/
√

n) following from a mean-value expansion
of hT i(θn) . Hence Assumption D2, Lemma A.1 and (A.4) give for i = 1, 2,

1

nδi
ĥTi(θn) =

1

nδi
hTi(θ0)+(1−1[δi=1])Li(θ0)dθ+op(1)

d−→ vecGi(θ0)+(1−1[δi=1]) [Ψi.g + Li(θ0)dθ] .

Proof of Lemma 2.2: Define Ani = V̂
− 1

2

′

gg (θT )D̂Ti(θn) for i = 1, 2. It follows from Lemma

A.2 that 1
nδi

Ani
d−→ V

− 1
2

′

gg (θ0)
[
Gi(θ0) + (1− 1[δi=1])deveck [Ψi.g + Li(θ0)dθ]

′] and

(A′
n1N(An2)An1)

− 1
2

′
A′

n1N(An2)V̂
− 1

2

′

gg (θn)
gT (θn)√

n

d−→ (A′1N(A2)A1)
− 1

2

′
A′1N(A2)B, (A.5)

(A′
n2An2)

− 1
2

′
A′

n2V̂
− 1

2

′

gg (θn)
gT (θn)√

n

d−→ (A′2A2)
− 1

2

′
A′2B, and (A.6)

V̂
− 1

2

′

gg (θn)
gT (θn)√

n

d−→ B (A.7)

Lemma 2.2 follows directly from (A.5), (A.6) and (A.7).

Proof of Theorem 2.3: In the following, whenever we refer to infθ∗2∈C2(1−ζ,θ1) Kn1(θ1, θ∗2),
it is implied that C2(1− ζ, θ1) is nonempty.

(i) From Lemma 2.2(iii), it is clear that C2(1− ζ, θ01) contains θ02 with probability (1− ζ).
Therefore, using Lemma 2.2(i), it follows that the asymptotic size of the efficient projection-
based K test is

lim
n→∞

Eθ01φn(θ01)

= lim
n→∞

Prθ01

[
{C2(1− ζ, θ01) = ∅} ∪ { inf

θ∗2∈C2(1−ζ,θ01)
Kn1(θ01, θ∗2) > χ2

ν1
(1− ε)}

]

≤ 1− lim
n→∞

Prθ01

[
{θ02 ∈ C2(1− ζ, θ01)} ∩ { inf

θ∗2∈C2(1−ζ,θ01)
Kn1(θ01, θ∗2) ≤ χ2

ν1
(1− ε)}

]

= 1− lim
n→∞

Prθ01

[
inf

θ∗2∈C2(1−ζ,θ01)
Kn1(θ01, θ∗2) ≤ χ2

ν1
(1− ε) | θ02 ∈ C2(1− ζ, θ01)

]

× lim
n→∞

Prθ01 [ θ02 ∈ C2(1− ζ, θ01)]

≤ 1− lim
n→∞

Prθ01

[
Kn1(θ01, θ02) ≤ χ2

ν1
(1− ε)

]
lim

n→∞
Prθ01 [ θ02 ∈ C2(1− ζ, θ01)]

≤ 1− (1− ε)(1− ζ)

≤ ζ + ε.

(ii) Lemma 2.2(iii) also implies that in WI-Cases II and IV, C2(1 − ε, θ∗1) is contained in
the

√
n-neighborhood of θ02 w.p.a.1 under the conditions of the Theorem. Hence θinf

2 (θ∗1),
where the infimum infθ∗2∈C2(1−ζ,θ∗1) Kn1(θ∗1, θ∗2) is attained, is also in the

√
n-neighborhood

of θ02. Hence Lemma 2.2(i) directly applies and gives the local asymptotic equivalence of
the tests.
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B Tables and Figures

n k Σ WI-Case I WI-Case II WI-Case III WI-Case IV
ζ = 1% ζ = 5% ζ = 1% ζ = 5% ζ = 1% ζ = 5% ζ = 1% ζ = 5%

102 2 Σ1 0 0.09 0.28 1.27 0.01 0.18 0.23 1.28
102 2 Σ2 0.27 1.43 0.35 1.48 0.27 1.51 0.30 1.58
102 2 Σ3 0 0.12 0.27 1.22 0.01 0.11 0.21 1.11
102 4 Σ1 0.01 0.46 0.47 2.40 0.03 0.45 0.56 2.70
102 4 Σ2 0.56 2.75 0.61 2.72 0.62 2.91 0.66 3.04
102 4 Σ3 0.01 0.27 0.44 2.26 0.03 0.39 0.53 2.58
102 20 Σ1 0.78 3.44 1.58 5.91 0.87 3.76 1.88 6.05
102 20 Σ2 1.84 6.35 1.63 6.05 1.98 6.22 1.92 6.30
102 20 Σ3 0.42 2.80 1.55 5.80 0.57 3.03 1.86 5.89
103 2 Σ1 0.03 0.26 0.18 1.27 0.02 0.26 0.18 1.22
103 2 Σ2 0.19 1.33 0.27 1.40 0.31 1.63 0.22 1.41
103 2 Σ3 0.01 0.21 0.15 1.19 0.02 0.26 0.16 1.13
103 4 Σ1 0.01 0.50 0.42 2.33 0.03 0.56 0.22 2.10
103 4 Σ2 0.35 2.46 0.49 2.44 0.44 2.16 0.32 2.25
103 4 Σ3 0.03 0.41 0.41 2.24 0.01 0.34 0.25 2.00
103 20 Σ1 0.27 2.45 0.65 3.69 0.32 2.24 0.80 3.77
103 20 Σ2 0.72 3.82 0.68 3.92 0.76 3.58 0.86 3.91
103 20 Σ3 0.19 1.94 0.65 3.63 0.21 1.69 0.80 3.78
104 2 Σ1 0 0.17 0.19 1.27 0.01 0.18 0.15 1.31
104 2 Σ2 0.27 1.49 0.22 1.50 0.29 1.45 0.23 1.52
104 2 Σ3 0 0.14 0.18 1.28 0 0.09 0.14 1.28
104 4 Σ1 0.04 0.35 0.32 2.08 0.02 0.50 0.22 2.01
104 4 Σ2 0.41 2.15 0.36 2.41 0.28 2.29 0.25 2.18
104 4 Σ3 0.03 0.31 0.31 2.05 0.03 0.46 0.22 1.88
104 20 Σ1 0.27 2.11 0.59 3.41 0.22 2.11 0.58 3.74
104 20 Σ2 0.69 3.54 0.65 3.56 0.65 3.40 0.63 3.83
104 20 Σ3 0.17 1.68 0.59 3.36 0.19 1.71 0.56 3.69

Table 3: % of times C2(100− ζ, θ01) is Empty!
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Figure 1: Sample Size = 100, Number of Instruments = 2, ρu1 = 0.5, ρu2 = 0.5 and ρ12 = 0.
Weak instrument characterized by µ = 1 and strong instrument by µ = 10.
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Figure 2: Sample Size = 100, Number of Instruments = 4, ρu1 = 0.99, ρu2 = 0.1 and
ρ12 = 0. Weak instrument characterized by µ = 1 and strong instrument by µ = 10.
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Figure 3: Sample Size = 100, Number of Instruments = 20, ρu1 = 0.1, ρu2 = 0.99 and
ρ12 = 0. Weak instrument characterized by µ = 1 and strong instrument by µ = 10.
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