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Eigenvalue Decomposition of Time Series
with Application to the Czech Business Cycle

Jaroḿır Beněs∗, David Vávra†

Abstract

We follow a Beveridge-Nelson like time series decomposition method (into trend, business
cycle and irregular components), and examine a stylized model of price inflation determina-
tion using the Czech data. We characterize the estimated components of CPI, IPPI and import
inflations, together with the real production wage and real output, and survey their basic cor-
relation properties; furthermore we compute structural innovations imposing restrictions on
their long-run effects, draw the impulse responses, and test the results by means of bootstrap
simulation. We conclude that major room for further refinement of the research is found in two
areas: First, from an economist’s perspective, in the construction of real marginal cost indica-
tors, and second, from a statistiacian’s perspective, in further investigation of the robustness
of the method.
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Nontechnical Summary

This working paper develops a methodology for time series decompositionà la Beveridge and
Nelson (BN), and applies it to the Czech data. It adds to the existing empirical literature that has
so far, especially as concerns the Czech data, seemed to prefer the unobserved component (UC)
methodology. BN decompositions have the advantage of imposing less economic structure on
the underlying series; the uncovered cycles and trends are therefore more driven by the data
themselves. This methodology then appears a useful complement to the UC techniques based
on an a priori theoretical model. Cross-checking the results from the two types of methods
can lead to a more robust assessment of the cyclical position of the economy to the benefit of
monetary policy making. In addition, as this working paper demonstrates, the application of BN
methodology can give additional insight into the workings of the economy at specific moments
of its history.

The standard BN methodology decomposes a time series (or a set of them) into its trend and
transitory component by identifying permanent and temporary effects of random innovations.
The actual time series is made up of the two and, as a consequence, the trend and temporary
components are (typically) negatively correlated. This stands in contrast to more common meth-
ods of business cycle identification, which identify the innovations themselves, and makes the
empirical comparison of the two methods cumbersome.

In addition, the transitory component contains (apart from the business cycle) also irregular
fluctuations. In order to facilitate the interpretation, we then further decompose the transitory
element of the BN decomposition into its business-cycle and irregular fluctuations by imposing
eigenvalue restrictions corresponding the typical business-cycle frequencies.

However, the business-cycle fluctuations (and the corresponding trend components) extracted
by the eigenvalue decomposition have the property of showing pressures on the variable in the
long run in the opposite directions, hence they must be warily interpreted. In other words,
a cyclical peak is an indicator of an innovation or a cumulation of innovations that cause an
ultimate decline in the respective variable over the long run. This might be in sharp contrast to
the intuition gained from traditional UC models.

We apply the multivariate eigenvalue decomposition to extract the trend, business-cycle and
irregular components from a set of measures of Czech inflation and real economic activity in
order to investigate the workings of the economy typified by stylized Phillips curve mechanics.
To this end, we combine net CPI inflation, industrial PPI inflation, import price inflation, the real
production wage in the business sector, and real gross domestic product. The last two measures
are to capture movements in the real marginal cost of domestic value added. The robustness of
the results is checked by bootstrap estimation.

The analysis yields several important conclusions. Overall, we find evidence favouring the hy-
pothesis of a) faster import price and exchange rate pass-through into domestic producer prices
than directly into those of domestic consumers, b) of the nominal wage being more sticky than
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the nominal price, as real wage changes are induced by movements in the underlying price in-
dices. This is especially illuminating in the period of 2000 and 2001, when import prices were
rapidly changing. The experience from this period hints at substantial technology or labour
supply (intratemporal preference) shocks. Importantly, a Phillips curve type of relationship is
detected, as the behavior of the permanent components fails to exhibit strong signs of superneu-
trality, with disinflation having negative effects on real variables. However, the real marginal
cost concept hypothesized in the Phillips curve in our working paper yields counterintuitive
results, namely an inverse effect of real output on the one hand and the real wage on the other
hand into the CPI and IPPI, and needs to be further refined.

Last, the overall statistical properties of eigenvalue decomposition are subject to further thor-
ough research, as they display a significant skewness.
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1. Introduction

Increasing attention has been paid to extracting the cyclical and trend components from ob-
served time series at central banks in the last decade as many of them have moved towards more
or less explicit inflation targeting regimes. This type of monetary policy raises demands for
a deep understanding of business cycle mechanisms and for robust knowledge of the current
business cycle position of the economy, particularly with regard to cyclical fluctuations and
interactions between inflation and real economic activity. This also explains the recent preoc-
cupation of many central bank researchers with multivariate techniques that explore elementary
economic relationships, while being simultaneously more immune to common problems of
many simple filters, such as those of end-points.

Two strands of multivariate filtering approaches have been developed for these purposes within
the time domain1: first, unobserved-components models (UC), and second, more classical Bev-
eridge and Nelson (1981) (BN) types of decompositions (BN). A typical association has the
former rely on a prior about the structure of the economy, while the latter observe more the
intrinsic features of the data series. However, as noted by Morley, Nelson and Zivot (2003),
both methods are in fact theoretically equivalent. Yet, they usually yield starkly different re-
sults. The authors show this fact can be ascribed to fundamental differences made usually in
the assumptions preceding the empirical analyses. Most UC models compute projections of
components that are orthogonal by assumption, i.e. recover processes driven by uncorrelated
innovations (typically random walk plus stationary autoregression), while BN models in fact
identify the permanent and temporary effects of the same innovation, or a set of them, on the
observed time series, which is in turn consistent with a strong (mainly negative) correlation of
these components.

Recently, various central banks have favoured extensive research in the area of UC models,
see e.g. research at the CNB: Benes, Vavra, Vlcek (2002), Coats, Laxton and Rose (2003)
or Benes and N’Diaye (2004). As a product, a suite of structural multivariate models have
been created to support forecasting and policy analysis systems, particularly in association with
issues regarding the cycle in real output, the real exchange rate, the real interest rate, and the
real marginal cost of producers. On the other hand, the data-driven decompositions of the BN
type have been relatively neglected.

This neglect is also a characteristic of the modeling research of the Czech National Bank, which
otherwise prides itself on being a front-user of UC filtering techniques. Against this backdrop,
this working paper is a first attempt to explore the potential of the BN approach, both in its
theory and in its application to the Czech data. We examine the business-cycle components and
basic properties of consumer price inflation (as the target variable of monetary policy) and its
main medium-term supply-side determinants in a small open economy, i.e. imported inflation
and the marginal cost of domestic production.

1Band-pass filters are then a third strand of research in this area, coming from the frequency domain, see Baxter
and King (1995) or Christiano and Fitzgerald (1999).
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The working paper is organized as follows. In Section 2 we review the classical Beveridge-
Nelson concept and relying upon Casals, Jerez and Sotoca (2002) we introduce the canonical
state-space representation of multivariate time series models as a convenient device for compu-
tation of the BN decomposition into trend and transitory components. We naturally extend this
concept in Section 3 to a general decomposition or extraction based upon the specific required
properties of the underlying (or carrying) eigenvalues. In Section 4 we discuss the structural
identification of time series models in their canonical state-space representation, i.e. compu-
tation of structural orthonormal innovations that meet specific impulse-response restrictions.
Next, we apply the multivariate decomposition method and structural identification scheme to a
set of measures of Czech inflation and real economic activity and examine their cyclical prop-
erties in Sections 5 and 6. Section 7 briefly presents bootstrap-simulation results that test the
estimator for robustness, and Section 8 concludes.

2. Beveridge-Nelson Decomposition and the Canonical State-Space Form

We consider a class of finite-order VAR processes with possibly integrated or cointegrated ele-
ments of maximum order I(1) or CI(1,1), respectively, and with a simple deterministic compo-
nent. We limit the scope of this note by the following vector error-correction (VEC) represen-
tation,

A(L)∆yt = Πyt−1 +d+ εt , (1)

whereyt is a k×1 vector process withεt being its i.i.d. prediction innovations distributed as
WN(0, Ω), andD is a deterministic constant vector. The matrix polynominalA(L) = I−A1L−
·· ·−ApLp of finite orderp is assumed stable in that|A(z)|= 0 for |z|> 1 only. Then the rank
of Π determines the nature of the process in terms of its integration and cointegration: ifΠ is a
full-rank matrix, then all elements ofyt are stationary, ifΠ is zero, then all elements ofyt are
integrated but not cointegrated, and ifΠ has lower-than-full rank,r < k, then anr-dimensional
cointegration space exists, or in other words,yt is driven byk− r separate stochastic trends. In
the latter case, we may writeΠ as a product of twok× r full-rank matrices,α β ′, where the
columns ofβ span the space of cointegration vectors.2

Beveridge and Nelson (1981) define the trend component (Beveridge-Nelson trend, BNT or
yT

t , henceforth), as the limit forecast of the process net of the future projection of its determin-
istic drift.3 To be more specific, we first rewrite (1) into its vector moving-average (VMA)
representation based upon a modification of the Granger representation theorem by e.g. Jo-
hansen (1995),

yt = C̃
t

∑
τ=1

(d+ ετ)+C(L)(d+ εt)+Py0 , (2)

which consists of a random-walk (unit-root) and a stationary component. The matrixC̃ =
β⊥[α ′⊥A(1)β⊥]−1α ′⊥ gives the permanent effect of an innovation onyt , C(L) is a stable matrix

2We exclude seasonal unit roots, i.e. unit eigenvalues with a nonzero imaginary part, or−1 from our considerations
in this working paper.
3Their verbal interpretation of the trend definition is “current observed value [...] plus all forecastable future
changes in the series beyond the mean rate of drift.” Beveridge and Nelson (1981), p. 156.
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polynomial, and the matrixP = β (β ′β )−1 extracts the least possible information for forming
the necessary initial condition. Then the BNT is clearly

yT
t = C̃

t

∑
τ=1

(d+ ετ)+C(1)d+Py0 , (3)

whereas
yC

t = C(L)εt

may be interpreted as a mean-zero transitory (cyclical) component.

We make use of the exact structural decomposition by Casals, Jerez and Sotoca (2002) and
introduce a straightforward convenient representation of the process (1) to deal with this type
of decomposition. First, we expand (1) into its VAR representation,

B(L)yt = d+ εt ,

where the matrix polynomialB(L) = A(L)(I− IL)−ΠL = I−B1L−·· ·−Bp+1Lp+1 may now
possibly contain a number of unit eigenvalues depending on the integration and cointegration
within yt : more specifically, the number of them equalsk− r wherek is the number of elements
of yt following an I(1) whereasr is the dimension of the cointegration space. Second, we write
the equivalent first-order VAR representation by introducing substitutions for laggedyt ’s,

F(L)Yt = D+Eεt , (4)

where

Yt = [yt
′,yt−1

′, . . . ,yt−p
′ ]′,

D = [d ′,0′, . . . ,0′ ]′,
E = [ I ,0′, . . . ,0′ ]′,

andF(L) = I +F1L with

F1 =




B1 B2 . . . Bp Bp+1

I 0 . . . 0 0
...

0 0 . . . I 0


 .

Finally, we compute the real-form Jordan canonical decomposition,

F1 = PT P−1 ,

so that (1) now becomes a state-space model,

yt = Mxt , (5)

xt = Txt−1 +U +Vεt , (6)

whereT is a block-diagonal transition matrix with blocks of maximum size2×2, xt = P−1Yt is
a transformed state vector,M = [ I,0′, . . . ,0′ ]′P is a measurement matrix extracting the current-
dated realization ofyt only, andU = P−1D andV = P−1E. Eqs. (5)–(6) now constitute what
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we refer to as the canonical state-space (CSS) representation of a given process. For the sake
of convenience of future references we furthermore assume that the diagonal elements and
diagonal blocks ofT are ordered by the modulus of their underlying eigenvalues in descending
order, i.e. random walks come first, and introduce the following block decompositions based
upon the number of unit eigenvalues,

xt =
[

x1t

x2t

]
, M =

[
M1 M2

]
, T =

[
T1 0
0 T2

]
, U =

[
U1

U2

]
, V =

[
V1

V2

]
.

The diagonal elements or diagonal2×2 blocks inT correspond to the respective real eigen-
values or pairs of conjugate complex eigenvalues all of which lie inside or on the unit circle by
the above assumptions; hence the individual elements ofxt or pairs of them feature decoupled
dynamics and have a straightforward interpretation based upon the eigenvalues that carry them.
The vector processyt is in this way decomposed into a set of canonical autoregressions and
random walks, and each element ofyt is a linear combination of these. We may thus construct
the BNT simply by projectingyt against those elements ofxt that are carried by unit eigenvalues
and against the unconditional means of the stationary elements,

yT
t = M xT

t ,

wherexT
t is created fromxt by setting the stationary elements ofxt to their unconditional means,

which can be in turn calculated from (6) as

x2 = Ex2t = (I−T2)
−1 U2 .

The appropriate mean-zero complementary transitory component is

yC
t = M2(x2t −x2) . (7)

3. Eigenvalue Decomposition

Making use of the CSS representation we may extend the Beveridge-Nelson concept of time se-
ries decomposition along the lines suggested originally by Casals, Jerez and Sotoca (2002).
Eqs. (5)–(6) easily read that we may compute the contribution of any subset of canonical
processes, selected on the basis of underlying (carrying) eigenvalues, toyt . In general, to com-
pute the contribution of the canonical processes carried by a subsetΛ of eigenvalues{λ1, . . . ,λn}
we only need to projectyt against these processes,

yΛ
t = MΛxΛ

t ,

where matrixMΛ is created by deleting all columns ofM that correspond to eigenvalues not
included inΛ, andxΛ

t is created by similarly deleting these rows. IfΛ is a subset of stable
eigenvalues then it is meaningful to subtract the asymptotic means of the processes carried
by them, likewise in (7), simply to get mean-zero fluctuations. Moreover, if a well-defined



8 Jaroḿır Beneš, David V́avra

autocovariance (or autocorrelation) generating function exists forxΛ
t we may easily transform

it to obtain the ACGF foryΛ
t ,

Γx(k+1) = TΛ Γx(k) , k = 1,2, . . . ,

Γx(0) = TΛ Γx(0)TΛ′+VΛΩVΛ′ ,
Γy(k) = MΛ Γx(k)MΛ′ , k = 0,1,2, . . . ,

whereΓx(k) andΓy(k) arek-th order autocovariance matrices of, respectively,xΛ
t andyΛ

t , TΛ

(VΛ) are submatrices created by deleting all columns and rows (all rows) that correspond to
eigenvalues not included inΛ, andΓx(0) may be solved for by vectorization of the second
equation, see e.g. Lütkepohl (1993).

A straightforward extension to the BN decomposition is then a further decomposition of the
transitory component,yC

t , into its business-cycle and irregular fluctuations. For this we need to
define a business cycle and impose appropriate qualification constraints on the eigenvalues (or
the canonical processes carried by them) to be recognized as the business cycle contribution.
We employ the classical business cycle definition that dates back to Burns and Mitchell (1946)
and refers to fluctuations with a periodicity of 6 to 32 quarters. In line with this definition we
consider two types of business-cycle qualifications for eigenvalues

1. Modulus qualification. We require that at least 5 per cent of an innovation survives after 5
quarters in the response of the canonical process, and at least 90 per cent dies out within
32 quarters. This is consistent with an approximate range of(0.55, 0.91) for the modulus
of the eigenvalues.

2. Phase angle qualification. We require that the phase angle of pairs of conjugate complex
eigenvalues implies a periodicity of 6 or more quarters. This is clearly consistent with a
range of

〈−π
3 , π

3

〉
for the phase angle of complex eigenvalues.

4. Structural Identification

In this section, we use the CSS representation to turn the reduced-form innovations,εt , into their
orthonormal structural counterparts,ut = S−1εt , such that the matrix of the asymptotic effect
of ut on the level ofyt is (lower) triangular, i.e. the long-run effect of these innovations has a
recursive structure. This gives rise to an impulse response function with possibly meaningful
interpretations. Within the VEC representation, a computationally efficient way for this type
of identification scheme relying upon the QR factorization has been worked out by Hoffmann
(2001). Indeed, we closely follow his procedure.

Ignoring the case where all elements ofyt are I(0) we will consider separately two cases:

1. Absence of cointegration vectors. Thenyt is driven byk separate stochastic trends (ran-
dom walks) and we can identify a full number ofk orthonormal structural innovations
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with a generally nonzero asymptotic effect onyt . SubstitutingSut for εt in the state equa-
tion (6) yields a system in which the asymptotic effect ofut into yt is ak×k matrix

Ψ = M1V1S.

To recoverSwe proceed in two stages. First, we compute any type of orthonormal struc-
tural innovations,vt , such that

εt = SFvt , Evtvt
′ = I and henceSFSF

′ = Ω ,

which is easily perfomed by e.g. Cholesky decomposition ofΩ. Second, we find the QR
factorization of the matrix of asymptotic effects of first-stage innovations onyt , i.e.

ΨF = ΨF
′ = (M1V1SF)

′ = R′Q′ ,

such thatQ is unitary,QQ′ = I, andR is upper triangular (orR′ is lower triangular). Now
we may setS= SF Q so thatΨ = ΨF Q and

Ψ = ΨF Q = R′Q′Q = R′

is lower triangular, and
SS′ = SFQQ′SF

′ = SFSF
′ = Ω

holds as required.

2. Presence of cointegration vectors. The existence of0 < r < k cointegration vectors di-
minishes the number of underlying stochastic trends (and therefore the number of unit
eigenvalues) tok− r. Hence, out ofk structural innovations onlyk− r will have a possi-
bly nonzero asymptotic effect onyt , and the rest of them will be of transitory nature only.
This introduces one more stage into the identification ofut , namely orthogonalizing the
permanent and transitory innovations.

As before, we first compute any type of orthonormal structural innovations via a trans-
formation matrixS0, e.g. using again Cholesky decomposition ofΩ. Second, we find the
second-stage innovations,wt = S−1

1 vt = S−1
1 S−1

0 εt , such that onlyk− r of them have an
immediate, and hence also permanent, effect onx1

t , and the rest of them only affectx2
t .

This can be accomplished by the QR decomposition of the transposedk×k upper block
Φ†

0 of the matrix of instantaneous effects of first-stage innovationsvt .

ΦF = VSF =

[
Φ†

F

Φ‡
0

]
,

so that
Φ†

F = R′Q′.

SettingS1 = Q immediately guarantees that thek× k upper blockΦ†
1 of the matrix of

instantaneous effects of second-stage innovationswt ,

ΦS = VSFSS =

[
Φ†

S

Φ‡
S

]
,
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is lower triangular, or that only zeros appear in the lastr columns within the firstk− r
rows. This is what we claim as it implies that there is neither an instantaneous nor a
permanent effect of lastr orthonormal innovationswt on the firstk− r elements ofxt , i.e.
onx1

t .

Third, we set up thek× (k− r) matrix of asymptotic effects of second-stage innovations
onyt ,

ΨS = M1V1SFSS,

and by another QR decomposition of its transpose (which is not square any longer) we
yield the transformation matrix for the third-stage structural innovations, namelyQ from

ΨS = R′Q′ .

SettingS= SFSSQ clearly gives rise to a lower triangular matrix of asymptotic effects of
the firstk− r third-stage orthonormal innovations,ut = S−1εt , onyt .

Note that the asymptotic recursivness of these firstk− r structural innovations is indepen-
dent of the exact ordering of the stationary elements withinx2

t .

5. Application to Czech Inflation and Real Economic Activity

We apply the multivariate eigenvalue decomposition to extract the trend, business-cycle and
irregular components from a set of measures of Czech inflation and real economic activity,
and consecutively to draw elementary conclusions about their cyclical properties. The primary
economic motivation rests in a stylized final-price Phillips curve based upon staggered price-
setting arising due to nominal rigidities. The microeconomic foundations for optimal pricing
behavior under these restrictions give rise to the following log-linearized relationship,

πt = ω πt−1 +(1−ω)πe
t+1 + r̂mct ,

whereπt is the final price inflation, superscripte refers to expectations, and̂rmct is the deviation
of real marginal cost from its flexible-price level; see e.g. Gali and Gertler (2000), or Christiano,
Eichenbaum and Evans (2001) for more background theory.

We combine the following (seasonally adjusted) time series4 in a VAR model: net CPI infla-
tion5, industrial PPI inflation, import price inflation, the real production wage in the business
sector, and real gross domestic product. The last two variables on the list are to capture move-
ments in the real marginal cost of domestic value added6, whereas the effect of import price
inflation is twofold: first, a direct impact on the CPI via directly consumed imports, and sec-
ond, an indirect impact via material imports (and hence the real marginal cost of domestic gross
production) passed through into producer prices and consecutively consumer prices. Next, we
impose restrictions on these series in terms of their integration and cointegration:

4One-quarter inflation rates are always implicitly assumed throughout the rest of this working paper.
5Net CPI stands for the consumer price index net of administered prices.
6Fluctuations in real marginal cost are determined by fluctuations in factor prices and in the level of production,
once the production function features diminishing returns to scale (some factor, typically capital, being fixed over
the short run).
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• All series as they stand above are assumed I(1).

• CPI inflation, PPI inflation, and import price inflation share one common stochastic trend.
This restriction is easily imposed by the following basis of their cointegration space:
[1,−1,0]′ and[0,1,−1]′.

We consider integration of inflation series of order I(1) to be a useful shortcut for reduced-form
within-sample modeling of the disinflation episode of the Czech economy in the 1990s. How-
ever, from the economics perspective it is clearly inconsistent with the existence of a monetary
authority in itself and hence an utterly inappropriate basis for any out-of-sample conclusions.
With these I(1) inflations, the respective price levels themselves follow I(2) but cointegration
of them makes the relative prices I(1) again; in other words, we allow for stochastic trends in
relative prices, which might be thought of as a result of e.g. Balassa-Samuelson type effects (rel-
ative import price) or systematic changes in producers’ markups due to changes in the market
structure (relative CPI vs. PPI price).

Regarding the identification of structural innovations our set of five I(1) variables with a 2-
dimensional cointegration space is underlied by three stochastic trends. Therefore we may
obtain three innovations with permanent effect and two acting only temporarily. Furthermore,
keeping the ordering as earlier in this section (cointegrated inflations come first) the matrix of
asymptotic effects,Ψ, must have its3×4 top-right block filled with zeros (since the permanent
effect of any innovation must be the same for all inflations).

We estimate the model of second order in its VEC representation, (1), using multivariate LS
on a data sample stretching over 1995Q1 through 2003Q1, then we turn it into its CSS, (5)–
(6), and compute the individual components and their elementary properties. This is discussed
in the subsequent section. Nonetheless, as the qualification of eigenvalues (and the respective
canonical processes) is a qualitative choice it is impossible to analytically derive the statistical
properties of this type of estimator of components, and on top of this we may suspect it to be
rather fragile or unrobust given the small sample of our data. We therefore perform a bootstrap
examination of the estimator using 1,000 random draws from estimated innovations, see e.g.
Lutkepohl (2000) for more on bootstrapping in cointegrated models, and comment on results of
this simulation too.

6. Estimation and Bootstrap-Simulation Results

In this section we review the estimation results and accompany them with issues that remain
open or unclear.

As illustrated in Figure 1, four eigenvalues (or the canonical processes carried by them) qualify
as contributors to business-cycle fluctuations. However, when interpreting these business-cycle
fluctuations and the corresponding trend components (plotted in Figures 2 and 3 along with the
irregular high-frequency complements) extracted by eigenvalue decomposition we must always
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read a cyclical peak as an indicator of an innovation or a cumulation of innovations that cause an
ultimate decline in the respective variable over the long-run horizon. In other words, a positive
transitory deviation means that the observed variable will be pushed downwards over the long
run. This might be in sharp contrast to the intuition gained from traditional UC model setups.
Figure 2 also gives a simple eyeballmetric for the inspection of the relative signal-to-noise ratio
in each examined series. Here we can learn that in line with our intuition both of the real
variables (output and wage) together with CPI inflation are much less noisy then import price
inflation or IPPI inflation. This may be viewed as a basis for our selection of robust measures
of the business-cycle position of the economy.

Considering the identification across wider economic evidence, we find an interesting period in
late 2000 and early 2001. A sudden drop in inflation trends was accompanied by a simultaneous
decline in real domestic output and a rise in the real wage. The underlying hypothesis is that
a fall in the relative import price also occurred about this time (since the relative price trends
themselves are considered I(1)) and intratemporal goods substitution took place, cutting the de-
mand for domestic goods. This is confirmed by the bottom-right panel in Figure 3. As IPPI
inflation almost immediately followed the new trend we may furthermore hypothesize a sharper
or faster development in material and intermediate imports rather than those for final consump-
tion; the CPI then reacted fully only in 2002. On the production side, substitution occurred
between domestic value added (mainly labor) and imports, potentially pushing the marginal
product of labor up. The fundamental source for these movements may lie in a shift of house-
holds’ marginal rate of substitution between consumption and leisure, or as an observational
equivalent, in institutional or bargaining changes in the labor market.

The overall business-cycle autocorrelations are reported in Table 1. First, we can check that
there is a faster pass-through of import inflation into IPPI inflation than into the CPI. This may
indicate either a high content of material or intermediate imports in gross domestic production
and a relatively high elasticity of subsitution between these imports and domestic value added,
i.e. real output (which is also indirectly supported by a rather large negative correlation of
real output and current-dated and lagged import prices) or a fundamentally different nature
of price contracts in the wholesale and retail sectors.7 Next, the reported overall correlation
patterns fail to support the sketched Phillips curve in the preceding section as a systematic tie of
inflation and real economic activity. Opposite signs on the correlations between IPPI inflation
and the real wage versus real output over the whole reported range of lags leave room for future
refinements of the current concept of measuring the real marginal cost. Finally, Table 1 gives
strong evidence in favor of countercyclical behavior of real wages, which is congruent with
the traditional Keynesian interpretation of the business cycle conditioned upon nominal wage
stickiness: however we can only discover a higher degree of stickiness in the nominal wage
relative to the CPI from the negative correlations between the real wage and CPI inflation, not
relative to the PPI.

The impulse responses to structural innovations computed as subject to long-run recursiveness

7E.g. significantly shorter average duration of a typical wholesale contract.
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are summarized in Table 2 and Figures 4 and 5. Depending on the sign of the long-run effect
of permanent innovations (the first three out of five) on individual variables, see Table 2, we
may attempt to attach a more or less deep structural interpretation to all of them. The first
permanent innovation turns out to be disinflationary (being the only one permanently passing
through into both rates of inflation), simultaneously affecting also real output (negatively) and
the real production wage (positively). This is a breakdown of monetary superneutrality, simply
because we have not imposed it in the model at all, and arises evidently as a consequence of the
disinflation being run at real costs in the 1990s. The second permanent innovation influences
solely the real variables, namely in the same direction, whereas the third one does the same
with an opposite effect on each variable. They are thus candidates for, respectively, technology
(productivity) and intratemporal preference innovations.

The response profiles are then depicted in the subsequent Figures 4 and 5. As noted in the pre-
ceding paragraph the disinflationary innovation incurs permanent real cost, although primarily
the drop in CPI inflation is led by faster and more pronounced changes in import inflation—
obviously in the nominal exchange rate indeed—and in domestic IPPI inflation, with both of
them jumping below or to the new steady-state level instantaneously. In all the reported shocks
we can again find evidence favoring the hypothesis of the nominal wage being more sticky than
the nominal price, as the real wage changes are markedly induced by movements in the under-
lying price indices. This is especially the case with the second permanent shock (compare the
immediate profile of IPPI inflation and the real wage).

7. Robustness of the Results

It remains to verify our results against the bootstrap simulation. To summarize this exercise, the
point estimates of the business-cycle component are rather indicators for the upper (if positive)
or lower (if negative) bands of the empirical distribution. The simulated distributions are asym-
metric and skewed towards zero (evidently seen particularly with import inflation). Moreover,
we also detect bimodal distributions peaking at zero and near to the point estimate. This is doc-
umented by the 0.10 and 0.90 percentiles attached to the actual estimates of the business-cycle
component, see Figure 6, and by example profiles of empirical distributions plotted at the points
of maximum deviation of the respective variable from zero, see Figure 7. The sources of these
distortions are subject to further research: they may be attributed either to small sample biases,
or to the qualitative (discrete) nature of eigenvalue qualification. In the latter case, some kind
of fuzziness in the categorization of the eigenvalues might improve the robustness and overall
properties of the estimator.

8. Concluding Remarks

In this working paper we follow the Beveridge-Nelson type of multivariate time series decom-
position (as a complement to the more frequently encountered unobserved-components type
models) into their trend, business-cycle and irregular components. We use this concept to ex-
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amine a stylized model of supply-side inflation determination with nominal rigidities and a
particular real marginal cost composite measure for a small open economy using the Czech
data. We characterize the estimated components of CPI, IPPI and import inflations, together
with the real production wage and real output, and survey their basic correlation properties;
furthermore we compute structural innovations imposing restrictions on their long-run effects,
draw the impulse responses, and test the results by means of bootstrap simulation. The conclu-
sions we make on this basis regard the speed of import price and exchange rate pass-through,
the basic pro- or counter-cyclicality with implications for the degree of stickiness in prices and
wages, and the relevance of the real marginal cost measure used in the model.

We conclude that major room for further refinement of our research is found in two areas: First,
from an economic perspective, in the construction and further refinement of the real marginal
cost indicators relevant to producer and consumer inflations, and second, from a statistical per-
spective, in further investigation of the robustness of the method, in particular because of the
evidence for towards-zero skewness of the component estimator.
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Table 1: Estimates of autocorrelations of business-cycle components.

Autocorrelation of order 0

Net CPI inflation 1.00 0.56 -0.21 -0.49 0.43

IPPI inflation 0.56 1.00 0.43 0.25 -0.26

Import inflation -0.21 0.43 1.00 0.65 -0.55

Real wage -0.49 0.25 0.65 1.00 -0.23

Real output 0.43 -0.26 -0.55 -0.23 1.00

Autocorrelation of order 1

Net CPI inflation 0.66 0.57 0.32 -0.10 0.09

IPPI inflation 0.24 0.79 0.74 0.54 -0.32

Import inflation -0.66 0.08 0.83 0.78 -0.63

Real wage -0.51 -0.11 0.37 0.68 -0.04

Real output 0.46 -0.25 -0.36 -0.38 0.78

Autocorrelation of order 2

Net CPI inflation 0.16 0.42 0.62 0.27 -0.23

IPPI inflation -0.18 0.45 0.84 0.72 -0.40

Import inflation -0.78 -0.18 0.45 0.64 -0.48

Real wage -0.45 -0.34 0.07 0.36 0.09

Real output 0.30 -0.22 -0.16 -0.34 0.45

Autocorrelation of order 3

Net CPI inflation -0.27 0.19 0.66 0.48 -0.41

IPPI inflation -0.51 0.11 0.70 0.73 -0.41

Import inflation -0.63 -0.32 0.03 0.36 -0.21

Real wage -0.31 -0.43 -0.18 0.06 0.20

Real output 0.11 -0.19 -0.05 -0.23 0.17

Autocorrelation of order 4

Net CPI inflation -0.51 -0.02 0.48 0.50 -0.41

IPPI inflation -0.63 -0.16 0.40 0.58 -0.31

Import inflation -0.31 -0.32 -0.28 0.04 0.07

Real wage -0.11 -0.39 -0.35 -0.17 0.27

Real output -0.01 -0.15 -0.03 -0.15 0.01
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Table 2: Estimates of asymptotic (long-run) effects of recursive orthonormal innovations.

Permanent Temporary

#1 #2 #3 #1 #2

Net CPI inflation -1.07 0.00 0.00 0.00 0.00

IPPI inflation -1.07 0.00 0.00 0.00 0.00

Import inflation -1.07 0.00 0.00 0.00 0.00

Real wage 0.55 -0.23 -0.98 0.00 0.00

Real output -0.35 -0.87 0.10 0.00 0.00
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Figure 1: Eigenvalues of estimated VAR (circled are business-cycle qualified eigenvalues).
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Figure 2: Estimates of business-cycle components (—) and irregular high-frequency compo-

nents (- -).

Net CPI inflation IPPI inflation

1994 1996 1998 2000 2002 2004
−4

−2

0

2

4

6

1994 1996 1998 2000 2002 2004
−4

−2

0

2

4

Import inflation Real wage

1994 1996 1998 2000 2002 2004
−15

−10

−5

0

5

10

15

1994 1996 1998 2000 2002 2004
−3

−2

−1

0

1

2

3

Real output

1994 1996 1998 2000 2002 2004
−3

−2

−1

0

1

2
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Figure 3: Observed data (—) and estimates of trend components (- -).
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Figure 4: Impulse responses of business-cycle plus trend components (with asymptotes).
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Figure 5: Impulse responses of irregular high-frequency components.
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Figure 6: Estimates of business-cycle components (bootstrapped 0.10 and 0.90 percentiles).
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Figure 7: Empirical bootstrap distributions of business-cycle components.
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