
 

BOĞAZİÇİ ÜNİVERSİTESİ 

 

 

 

ISS/EC-2001-05 

Private Provision of a Public Good in a  

General Equilibrium Model 

Antonio Villanacci 

Unal Zenginobuz 

 

 

ARAŞTIRMA RAPORU 

RESEARCH PAPERS 

 

 

 

Boğaziçi University Department of Economics Research Papers are of preliminary nature, circulated 
to promote scientific discussion. They are not to be quoted without written permission of the 

author(s). 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7362381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Private Provision of a Public Good in a
General Equilibrium Model¤

Antonio Villanacciy and Ünal Zenginobuzz

April 27th, 2001

Abstract

We analyze a general equilibrium model of a completely decen-
tralized pure public good economy. Competitive …rms using private
goods as inputs produce the public good, which is privately provided
by households. Previous studies on private provision of public goods
typically use one private good, one public good models in which the
public good is produced through a constant returns to scale technol-
ogy. Two distinguishing features of our model are the presence of
several private goods and non-linear, in fact strictly concave, produc-
tion technology for the public good.

In this more general framework we revisit the question of ”neu-
trality” - or non-e¤ectiveness - of government interventions on private
provision equilibrium outcomes. We con…rm the well-known neutral-
ity results when all households are contributing to the provision of
the public goods and the non-neutrality results when there are some
non-contributing households. We also show that relative price e¤ects,
which are absent with a single private good and under constant re-
turns to scale technology for public good production, come to play an
important role and generate new non-neutrality results. Speci…cally,
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zDepartment of Economics,Bo¼gaziçi University, 80815 Bebek, Istanbul, Turkey; e-mail:
zenginob@boun.edu.tr.
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if the number of private goods is greater than one, typically there ex-
ists a redistribution of endowments of the private good among non-
contributors which increases the total supply of public good. More
importantly, if a condition involving the number of households and
private goods holds, typically there exists a choice of taxes on …rms
that Pareto improves upon the equilibrium outcome. Therefore, a
general non-neutrality result (in terms of utilities) holds even if all
households are contributors.
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1 Introduction
In this paper, we analyze a general equilibrium model of a completely decen-
tralized pure public good economy. Competitive …rms using private goods as
inputs produce the public good, which is ”…nanced”, or ”privately provided”,
or ”voluntarily contributed”, by households. Previous studies on private pro-
vision of public goods typically use one private good, one public good models
in which the public good is produced through a constant returns to scale tech-
nology. Two distinguishing features of our model are the presence of several
private goods and non-linear, in fact strictly concave, production technology
for the public good. In this more general framework we revisit the question
of ”neutrality” of government interventions on private provision equilibrium
outcomes. We show that relative price e¤ects, which are absent with a single
private good and under constant returns to scale technology for public good
production, come to play an important role in our more general framework.
Relative price e¤ects provide a powerful channel through which government
interventions can bring about redistributive wealth e¤ects, which, in turn,
will change equilibrium outcomes.

The interest in a general equilibrium model with private provision of
public goods lies in the fact that it serves as a benchmark extension of an
analysis of completely decentralized private good economies to public good
economies. Moreover, there are some relevant situations in which public
goods are in fact privately provided: e.g., private donations to charity at
a national and international level, campaign funds for political parties or
special interests groups, and certain economic activities inside a family.

Warr (1983) provides the …rst statement of the fact that in a private
provision model of voluntary public good supply, small income redistributions
among contributors to a public good are ”neutralized” by changes in amounts
contributed in equilibrium. Consumption of the private good and the total
supply of the public good remain exactly the same as before redistribution.
Warr (1982) also observes that small government contributions to a public
good, paid for by lump sum taxes on contributors, will be o¤set completely
by reductions in private contributions. Warr’s results are derived in a partial
equilibrium framework. Bernheim (1986) and Andreoni (1988) extend Warr’s
result to show that distortionary taxes and subsidies may also be neutralized
by changes in private contributions.

Bergstrom, Blume and Varian (1986) - from now on quoted as BBV -
discuss Warr’s results in a simple general equilibrium model with one private
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and one public good and constant returns to scale in the production of the
public good. They allow non-in…nitesimal redistributions and possibility of
zero contribution by some of the households.1 They show that redistribution
is not, in general, neutral if the amount of income distributed away from any
household is more than his private contribution to the public good in the
original equilibrium. Andreoni and Bergstrom (1996) argue that the neutral-
ity results obtained in previous models all involve redistribution schemes in
which only ”small” changes in incomes, namely changes that do not exceed
anyone’s original equilibrium private contribution, are allowed. We show in
this paper that it is not the ”smallness” of redistributions allowed but the
absence of relative price e¤ects, through which further income e¤ects arise,
that leads to the neutrality results.2

With only one private good, assuming constant returns to scale, and
therefore linearity of the production function, implies that there is no loss
of generality in normalizing prices of both the private and the public good
to one. These assumptions also allow taking pro…ts of …rms equal to zero,
with the implication that the presence of …rms basically plays no role in
the model. With non-constant returns to scale in production allowed, such
normalization of prices is not possible in our framework, even in the case
of only one private good. For that reason, taxes and subsidies will have
di¤erent e¤ects in our framework than that of BBV’s. In BBV’s model,
taxes on a subset of individuals change the distribution of wealth among
those individuals, but not among individuals outside that subset. In our
model, taxing any subset of households leads to changes in relative prices and
therefore may a¤ect the wealth of any household. This simple observation
explains why some of our results will be di¤erent from those of BBV. Relative
price e¤ects, which are absent in BBV’s setup, play a redistributive role in
our framework.

With more than one private good and non-constant returns to scale, mod-
eling of how the public good is produced becomes an issue. If a pro…t-
maximizing (private) …rm is assumed to produce the public good, then how
the (non-zero) pro…ts of the …rm are apportioned among its shareholders will
have an impact on equilibrium outcomes. Alternatively, one can consider the
production of the public good as being carried out by a non-pro…t (public)

1See also the related papers Bergstrom, Blume and Varian (1992) and Fraser (1992).
2In a more recent contribution on the e¤ects of taxation in an economy with private

provision of public goods, Brunner and Falkinger (1999) consider a model with two private
goods and public good, but the prices of the goods are taken as given in their model.
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…rm subject to a balanced budget constraint. In that case the contributions
in monetary amounts collected from households would …nance the cost of pro-
ducing the public good. The amount of public good to be produced by the
non-pro…t …rm can be taken as the maximum amount that can be produced
with the amount collected. Such a model assumes the presence of either the
government itself or a non-pro…t …rm in the production of the public good,
which raises a host of issues related to what the objective functions of such
entities should be.3

In the present paper, we study the alternative that we believe is the
one most consistent with a decentralized framework, namely that pro…t-
maximizing …rms produce the public good in a competitive market.4 Thus,
the government is not involved in the production of the public good and
only has the role of enforcing taxes and subsidies, if there are any, on house-
holds and …rms. In analyzing crowding-out e¤ects of government provision
of public goods, it will be assumed that government makes purchases from
the …rms at market prices. We take this set of assumptions as describing
a completely free market oriented policy benchmark applicable in principle
to provision of any type of public good. The model can also be seen as a
descriptive one covering cases in which a public institution purchases from
private producers goods that will be consumed by households involved as
public goods. Examples include ‡uoride purchased by a public agency to ‡u-
oridate a public water supply, pesticides purchased by government, packages
of medicine bought by an international charitable organization for use in an
underdeveloped country to control an epidemic disease, and so on.

As for the behavior of households, each household starts with endow-
ments in private good only. Households also hold shares in the …rms that
produce the public good. There is no public good initially. Taking as given
the prices of private goods, the price of the public good, the pro…ts of the
…rms they hold shares in, as well as the amount of public good provided by
others, each household determines their private good consumption bundle
and the amount of public good they will privately provide. Private provision
can take the form of each household actually purchasing the good in the
amount they desire directly from a producer, or donating to a public or a
voluntary organization a monetary amount with which the same amount can

3We analyze such a model in a forthcoming paper.
4The presence of more than one public good can be incorporated into our model, leaving

the basic results unchanged - see Section 6.1.
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be purchased by this agency at the equilibrium price for the public good.
Note that in making their decisions on how much to contribute to the public
good, the households will take into consideration relative prices. If the prices
of medicines, doctor services, lab tests doubles, an household may choose to
contribute more to fund raising for an hospital. When there are taxes or
subsidies imposed by the government, households take these as given in their
budget constraints. We assume that households fully understand and take
into account the government’s budget constraint.

Observe that household behavior described above amounts to assuming
that the prices of private goods as well as the public good are taken as given
by households in their maximization problem, while there is strategic inter-
action among them regarding the quantities chosen as private contribution to
the public good. This type of behavior is plausible when the set of prospec-
tive consumers of the public good are ’small’ with respect to the economy in
which they are embedded. Thus the households’ choices of the public good
a¤ects neither the prices of inputs that goes into production of the public
good nor the price of the public good produced for the economy at large,
while it does have an impact on others’ choices locally involved in the con-
sumption of the good. For example, consider donations to a large agency
that is involved in projects to eradicate poverty in Africa. Eradication of
poverty in Africa is the public good for those who care about it in this case,
and their cash or in kind contributions to the agency are not going to a¤ect
the prices of goods that go into the activities of the agency.5

Since the modeling of production technology for the public good is a key
feature that distinguishes our model from that of BBV’s, we further discuss
it below.

With many inputs linearity of a production function implies constant
returns to scale, but the converse will not hold (except for the single input
case). Therefore, BBV’s results extend to the case of many inputs only if the
production function is linear.

When the production function is linear, and …rms produce a strictly pos-
itive quantity of output, prices are completely determined by the production
coe¢cients. Therefore, equilibrium prices are ”…xed by the technology”, i.e.,
they change only if technology changes, and they are not a¤ected by changes

5The above discussion points out that goods may be (locally) public or private according
to their use and not on the basis of their physical characteristics. Analysis of such a ’local’
public good model that explicitly takes into account the possibility that goods can be
private or public according to their use is going to be the subject of another paper.

6



in endowments or preferences. Outside the case of linear production func-
tion, equilibrium prices are only partially …xed by the technology if returns
to scale are constant, or they are not …xed at all by the technology if the
production function is strictly concave.6 Since price e¤ects are the crucial
factor in our analysis, we conjecture that our results apply to all situations in
which prices are not …xed by the technology. That is, not only does it apply,
to the case of strictly concave technology, as we show here, but it should also
apply to the case of concave production functions with and without constant
returns to scale.7 Therefore, we can claim that, within the space of convex
production technologies, our framework covers all but the rather extreme
linear case.

Below are some of the results for the one good, linear technology case
that are relevant to our analysis. All of the results except the last one, which
is due to Cornes and Sandler (2000), are due to BBV. In all results, the
distinction between contributors, i.e. the households that provide a strictly
positive amount of public good, and non-contributors plays a crucial role.
The tax schemes referred to involve small perturbations of the initial endow-
ment distribution; hence named local tax schemes:

1. An equilibrium exists (BBV, Theorem 2, page 33) and is unique under
a demand normality condition for the public good.

All the following results refer to an equilibrium situation.
2.a. Any local tax scheme applied to contributors only has no e¤ect on

the total supply of the public good (BBV, Theorem 1, page 29).
2.b. Any local tax scheme that redistributes wealth from non-contributors

to contributors increases the total supply of the public good (BBV, Theorem
4.ii, page 36).

3. Suppose that the government supplies some amount of the public good,
which it pays for through a local tax scheme among households. Then,

3a. If local positive taxes are imposed on contributors, the total supply of
public good does not change: there is complete crowding-out (BBV, Theorem
6.i, page 42).

3b. If local positive taxes are imposed on non-contributors, then the total
supply of public good increases (BBV, Theorem 6.ii, page 42).

6See, for example, the discussion on properties of equilibria with constant returns to
scale in production by Mas-Colell et al. (1995), Section 17.F, pages 606-616.

7The investigation of this conjecture is in fact the content of a forthcoming paper of
ours.
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4. Cornes and Sandler (2000) investigate the possibility for a government
to increase all households’ welfare via an increase in the total supply of the
public good. They observe that the possibility of such Pareto improvements
is positively related to the number of non-contributors, marginal evaluation
of the public good by noncontributors, and the change in the private provision
of public good resulting from an increase in contributors’ total wealth.

Our approach is based on di¤erential techniques, which amount to com-
puting the derivative of the ”goal function” - the total amount of provided
public good or household welfare levels - with respect to some policy tools -
taxes and/or government’s direct provision of the public good - on the equilib-
rium manifold. Therefore, all our arguments are ”local” in their nature. We
also note that, since price e¤ects may in principle go in any direction, all our
non-neutrality results hold only typically in the relevant space of economies.
First we observe that

1*. An equilibrium exists.
Existence of equilibrium, together with some regularity properties of equi-

libria that we use in the present paper, are proved in another paper by Vil-
lanacci and Zenginobuz (2001). Note that while BBV present their analysis
in the case of unique equilibria, we allow for multiple equilibria.

The results of the present paper can be summarized as follows:
2a*. A neutrality result of the type described in 2a. holds and, in fact,

it can be slightly generalized.
2b*. Local redistribution of wealth from non-contributors to contributors

has the same e¤ect as in the linear case.
2c*. If the number of private goods is greater than one, typically in

the subset of economies for which there exist at least two non-contributors,
there exists a redistribution of endowments of the private good among non-
contributors which increases the total supply of public good.

3*. Results about crowding-out hold also in our case; more precisely, in
our framework, results 3a. of BBV holds typically.

4*. If the number of households is smaller than the number of private
goods, typically in the set of economies, there exists a choice of taxes on …rms’
inputs and outputs that Pareto improves or impairs upon the equilibrium
outcome. Therefore, a general non neutrality result (in terms of utlities)
holds even if all households are contributors.

In relation to our result 4*, observe that other types of Pareto improving
interventions could be studied applying the same general technique used in
the paper.
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An interesting feature of the model analyzed in the paper is that it allows
an (partial) answer to a more general problem. Several ”imperfections” can
be considered in a standard general equilibrium model. Is government inter-
vention more or less e¤ective when more than one imperfection is present?
Does including one more imperfection in the presence of an initial one make
government intervention more or less e¤ective? Results 2a and 3a in BBV
apply to general equilibrium models with incomplete markets or restricted
participation besides public goods. Government intervention would have no
e¤ect in those cases if the economy also involves public goods that are pri-
vately provided. It is well known that, under certain assumptions a well
chosen local redistribution among all households in a model with incom-
plete markets leads to a Pareto superior equilibrium (see Geanakoplos and
Polemarchakis (1986) and Citanna et al. (1998)). The above observations
suggest that a government intervention that would be e¤ective against a sin-
gle imperfection may turn out to be ine¤ective when the existence of other
imperfections is taken into account. On the other hand, the analysis of
Pareto improvement possibilities described above strongly supports the fol-
lowing result: In the case of the presence of two imperfections, there exists
a well-chosen intervention which can reach the same goals as in the case of
one imperfection.

The plan of our paper is as follows. In section 2, we present the set up of
the model and the existence and regularity results proved in Villanacci and
Zenginobuz (2001).

In sections 3, 4 and 5, following a strategy described, for example, in
Citanna, Kajii and Villanacci (1998), we prove our main results on the pos-
sibility of a government intervention to in‡uence the total amount of public
good and household welfare.8

2 Setup of the Model

We consider a general equilibrium exchange model with private provision of
a public good.

There are C, C ¸ 1, private commodities, labelled by c = 1; 2; :::; C.
There are H households, H > 1, labelled by h = 1; 2; :::; H. Let H =
f1; :::; Hg denote the set of households. Let xch denote consumption of private

8A more detailed version of the paper, containing even elementary proofs is available
from the authors.
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commodity c by household h; ech embodies similar notation for the endowment
in private goods.

The following standard notation is also used:

² xh ´ (xch)
C
c=1, x ´ (xh)

H
h=1 2 RCH

++ .

² eh ´ (ech)
C
c=1, e ´ (eh)

H
h=1 2 RCH

++ .

² pc is the price of private good c, with p ´ (pc)Cc=1; and pg is the price
of the public good. Let bp ´ (p; pg) :

² gh 2 R+ is the amount of public good that consumer h provides: Let
g ´ (gh)

H
h=1, G ´ PH

h=1 gh, and Gnh ´ G¡ gh:

Household h’s preferences over the private goods and the public good are
represented by a utility function uh : RC

++£R1
++ ! R. Note that households’

preferences are de…ned over the total amount of the public good, i.e. we have
uh : (xh; G) 7! uh (xh; G).

Assumption 1 uh(xh; G) is a smooth, di¤erentiably strictly increasing (i.e.,
for every (xh; G) 2 RC+1++ , Duh(xh; G) À 0)9; di¤erentiably strictly con-
cave function (i.e., for every (xh; G) 2 RC+1++ , D2uh(xh; G) is negative
de…nite), and the closure (in the topology of RC+1) of the indi¤erence
surfaces is contained in RC+1++ .

There are F …rms, indexed by subscript f; that use a production tech-
nology represented here by a transformation function tf : RC+1 ! R, where
tf :

¡
yf ; y

g
f

¢
7! tf

¡
yf ; y

g
f

¢
.

Assumption 2 tf
¡
yf ; y

g
f

¢
is a C2, di¤erentiably strictly decreasing (i.e.,

Df
¡
yf ; y

g
f

¢
¿ 0), and di¤erentiably strictly concave (i.e., D2f

¡
yf ; y

g
f

¢

is negative de…nite) function, with f (0) = 0.

De…ne byf ´
¡
yf ; y

g
f

¢
and by ´ (byf )Ff=1. Using the convention that input

components of the vector
¡
yf ; y

g
f

¢
are negative and output components are

9For vectors y; z, y ¸ z (resp. y À z) means every element of y is not smaller (resp.
strictly larger) than the correponding element of z; y > z means that y ¸ z but y 6= z.
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positive, the pro…t maximization problem for …rm f is: For given p 2 RC
++,

pg 2 R++;
Max

(yf ;yg)2RC+1
pyf + p

gygf

s.t. tf
¡
yf ; y

g
f

¢
¸ 0 (®f)

; (1)

where the term in parenthesis next to the constraint is the associated Kuhn-
Tucker multiplier.10

Remark 1 From Assumption 2, it follows that if the above problem (1) has
a solution, it is a unique one characterized by the Kuhn-Tucker (in fact,
Lagrange) conditions.

Let sh be the share of the …rm pro…ts owned by household h, and de…ne

s ´ (sh)
H
h=1 2 SH¡1 ´

(
s0 ´ (s0h)

H
h=1 2 RH

+ :
HX

h=1

s0h = 1

)
;

the (H ¡ 1) dimensional simplex.
Household’s maximization problem is then the following: For given p 2

RC
++; p

g 2 R++; sh 2 [0; 1] ; eh 2 RC
++; Gnh 2 R+; (by) 2 RC+1;

Max
(xh;gh)2RC+1++

uh
¡
xh; gh +Gnh

¢

s.t. ¡p (xh ¡ eh)¡ pggh + bpPF
f=1 byf ¸ 0 (¸h)

gh ¸ 0 (¹h)

(2)

Remark 2 From Assumption 1, it follows that the above problem (2) has a
unique solution characterized by Kuhn-Tucker conditions.

Remark 3 By de…nition of uh, observe that we must have
P

h gh > 0 and,
therefore,

1. since gh ¸ 0 for all h, there exists h0 such that gh0 > 0; and
2.

PF
f=1 y

g
f > 0.

10We will follow this convention of writing the Kuhn-Tucker multipliers next to the
associated constraints throughout the paper.
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Market clearing conditions are:

¡PH
h=1 xh +

PH
h=1 eh +

PF
f=1 yf = 0

¡PH
h=1 gh +

PF
f=1 y

g
f = 0:

The set of all utility functions of household h that satisfy Assumption
1 is denoted by Uh; the set of all transformation functions of …rm f that
satisfy Assumption 2 is denoted by Tf . Moreover de…ne U 0 ´ £H

h=1Uh and
T ´ £F

f=1Tf .

Assumption 3 U 0 and T are endowed with the subspace topology of the
C2 uniform convergence topology on compact sets11.

De…nition 1 An economy is a vector ¼ ´ (e; s; u; t) 2 ¦0, where ¦0 ´
RCH
++ £ SH¡1 £ U 0£T .

Summing up consumers’ budget constraints, and observing that
PH

h=1 sh =
1, we get

¡p
Ã

HX

h=1

xh ¡
HX

h=1

eh + y

!
¡ pg

Ã
HX

h=1

gh + y
g

!
= 0;

i.e., the Walras law. Therefore, the market clearing condition for good C,
for example, is redundant. Moreover, we can normalize the price of private
good C without a¤ecting the budget constraints of any household. With
little abuse of notation, we denote the normalized private and public good
prices with p ´

¡
pn; 1

¢
and pg, respectively.

Using Remarks 1-3, we can give the following de…nition:

De…nition 2 A vector (x; g; pn; pg; by) is an equilibrium for an economy ¼ 2
¦0 i¤:

1. the …rm maximizes, i.e., (by) solves problem (1) at p 2 RC
++; p

g 2 R++;

2. households maximize, i.e., for h = 1; :::; H; (xh; gh) solves problem (2)
at pn 2 RC¡1

++ ; p
g 2 R++; eh 2 RC

++; Gnh 2 R+; sh 2 (0; 1) ; (by) 2
RC+1; and

11A sequence of functions fn with domain an open set A of Rm converges to f if and
only if fn, Dfnand D2fn uniformly converge to f , Df and D2f , respectively, on any
compact subset of A.
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3. markets clear , i.e., (x; g; by) solves

¡PH
h=1 xh +

PH
h=1 eh +

PF
f=1 yf = 0

¡PH
h=1 gh +

PF
f=1 y

g
f = 0:

(3)

The system of First Order Conditions characterizing the solutions to prob-
lems (1) and (2), and conditions (3) is displayed below - see Remarks 1 and
2.

bp + ®fDtf (byf ) = 0
tf (byf) = 0
:::
Dxhuh

¡
xh; gh +Gnh

¢
¡ ¸hp = 0

Dghuhuh
¡
xh; gh +Gnh

¢
¡ ¸hpg + ¹h = 0

min fgh; ¹hg = 0

¡p (xh ¡ eh)¡ pggh +
PF

f=1 sfhbpbyf = 0
:::

¡PH
h=1 x

n
h +

PH
h=1 e

n
h +

PF
f=1 y

n
f = 0

¡PH
h=1 gh +

PF
f=1 y

g
f = 0

(4)

Observe that the number of equations is equal to the number of endogenous
variables. De…ne

» ´
¡
by; ®; x; g; ¹; ¸; pn; pg

¢
2 ¥

where ¥ ´ R(C+1)F £
¡
¡RF

++

¢
£RCH

++ £ RH £ RH £ RH
++ £ RC¡1

++ £ R++, and

F : ¥£ ¦! Rdim¥; F : (»; ¼) 7! Left Hand Side of (4).

Observe that
¡
by; x; g; pn; pg

¢
is an equilibrium associated with an economy

¼ i¤ there exists (®; ¹; ¸) such that bbF
¡
by; ®; x; g; ¹; ¸; pn; pg; ¼

¢
= 0: With

innocuous abuse of terminology, we will call » ´
¡
by;®; x; g; ¹; ¸; pn; pg

¢
an

equilibrium.
Using a homotopy argument applied to system (4), Villanacci and Zengi-

nobuz (2001) prove the existence of equilibria.

Theorem 3 For every economy (e; s; u; f ) 2 ¦0, an equilibrium exists.

After restricting the set of utility functions to a ”large and reasonable”
subset U of U 0 - see Assumption 4 below - Villanacci and Zenginobuz (2001)
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also show that there exists an open and dense subset ¦¤ of ¦ ´ RCH
++ £

SH¡1 £ U £ T such that

8 ¼¤ 2 ¦¤; 8»¤ 2 F¡1¼¤ (0) ; rank D»F¼¤ (»
¤) is full.

The assumption on U 0 needed for this regularity result is the following:

Assumption 4 For all h; xh 2 RC
++ and G 2 R++; it is the case that

det

�
Dxhxhuh (xh; G) [Dxhuh (xh; G)]

T

DGxhuh (xh;G) DGuh (xh; G)

¸
6= 0: (5)

The economic meaning of Assumption 4 is given in the following Lemma.

Lemma 4 1. At the solution of the consumer problem, if ¹h = 0; Assumption
4 is equivalent to

det

�
Dxhxhuh (xh; G) ¡pT
DGxhuh (xh; G) ¡pg

¸
6= 0:

2. If w 2 R++ is the consumer’s wealth, Assumption 3 is equivalent to
Dwgh (p; p

g; w) 6= 0; where gh (p; pg; w) is the demand function of household’s
h for the public good when gh > 0 and therefore ¹h = 0:

Lemma 4 follows directly from the First Order Conditions of the house-
hold’s problem and from an application of the Implicit Function Theorem to
those conditions.

Call U the subset of U 0 whose elements satisfy Assumption 4. Observe
that U is an open subset of U 0. The main regularity results proven in
Villanacci and Zenginobuz (2001) are now given.

Proposition 5 1. 8 (s; u; f) ; 9 a full measure subset E¤¤(s;u;f ) of RCH
++ ; such

that 8e 2 E¤¤(s;u;f); 8»¤¤ 2 F¡1(e;s;u;f) (0) ;

for h = 1; :::; H; either gh > 0 or ¹h > 0:

2. There exists an open and dense subset ¦¤¤ of ¦ such that 8¼¤¤ 2
¦¤¤; 8»¤ 2 F¡1¼¤¤ (0) ;

for h = 1; :::; H; either gh > 0 or ¹h > 0:
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Proposition 6 1. 8 (s; u; f) ; 9 a full measure subset E¤(s;u;f ) of RCH
++ ; such

that 8e 2 E¤(s;u;f); 8»¤ 2 F¡1(e;s;u;f ) (0) ;

rank D»F¼¤ (»
¤) = dim¥:

2. There exists and open and dense subset ¦¤ contained in ¦¤¤ such that
for all ¼¤ 2 ¦¤; and for all »¤ 2 F¡1¼¤ (0), we have that

rank D»F¼¤ (»
¤) = dim¥:

The following result is needed in the next Sections.

Lemma 7 In a an open and dense subset S¤¤ of the endowment space, in
equilibrium, …rms are active.

Proof. It is a simple consequence of Proposition 6 and of the Parametric
Transversality Theorem.

3 Redistribution of Wealth and Quantity of
Public Good

In this Section, we show the following results.
1. For all economies, ”local redistributions”12 of endowments of a private

good among contributors do not change the set of equilibria.
2. For a generic subset of the economies for which there exists at least

one non-contributor, there exists a redistribution of endowments of a private
good between contributors and non-contributors which increases the level of
provided public good;

3. For a generic subset of economies for which there exist at least two non
contributors, there exists a redistribution of endowments of a private good
among non-contributors which increases the level of provided public good.

The proof of statement 1. above is due to BBV. To prove statements 2, 3
as well as the main Theorems in the next Sections, we use a general method-
ology described, for example, in Citanna, Kajii and Villanacci (1998). We
summarize this methodology, which is presented in the Appendix (”Di¤eren-
tial Analysis on the Equilibrium Manifold”), below:

12By ”local redistribution” we mean redistribution in a small enough neighborhood of
a given endowment.
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a. We de…ne an ”equilibrium” function F1 taking into account the e¤ects
of the planner’s intervention on agents’ behaviors via some policy tools ½.

b. We introduce a function F2 describing the constraints on planner’s
behavior and we consider a function eF ´ (F1; F2) whose zeros are equilibria
with planner’s intervention.

c. We observe that there are values of ½ at which equilibria with and
without planner’s intervention coincide.

d. We de…ne a goal function G:
e. We study the local e¤ect of a change in (a subvector of) ½ on G when

endogenous variables move along the equilibrium manifold.

3.1 Redistributions among Contributors

The following Theorem is due to BBV.

Theorem 8 Consider an equilibrium associated with an arbitrary economy
and a redistribution of the private numeraire good among contributing house-
holds such that no household loses more wealth than her original contribu-
tion. All the equilibria after the redistribution are such that the consumption
of private goods and the total amount of consumed public good are the same
as before the redistribution.

As a simple Corollary to Theorem 8, we get the following:

Proposition 9 The set of equilibria after a local redistribution from an arbi-
trary set of non-contributors to one contributor is equal to the set of equilibria
after a local redistribution from that same arbitrary set of non-contributors
to an arbitrary set of contributors.

The above result also explains why in all of the di¤erent types of planner
interventions considered, we tax only one contributor.13

Remark 4 Theorem 8 applies to all equilibrium models in which the con-
straint set for each household’s problem is convex and utility functions are
strictly quasi concave and continuous. Therefore, it holds true also for the

13As we will see, for example in Lemma 12, showing non-neutrality amounts to showing
that a well chosen Jacobian matrix has full rank. In fact, taxing more than one contributor
would imply that matrix has two linearly dependent columns.
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cases of exchange economies with a public good and incomplete markets or
restricted participation14, and a …rm producing the public good, whatever ob-
jective functions it may have.

The case of more than one public good is analyzed in BBV and it could
easily be analyzed in our framework as well. All of our non-neutrality results
will hold a fortiori in their case as well.

3.2 Redistributions between Contributors and Non-
Contributors

We consider the case in which the planner redistributes endowments of one
private good between two households, say h = 1; 2.

Before proceeding in the analysis, we …rst show that the set of economies
for which there exists at least one ”strict” non-contributor15 is open (non-
emptiness follows from a Cobb-Douglas utility function exercise).

De…ne as¦op as the set economies with at least one strict non-contributors,
i.e.,

¦op ´ f ¼ 2 ¦ : there exists » 2 F¡1¼ (0) for which
gh = 0 and ¹h > 0 for h 2 H0; and
gh > 0 and ¹h = 0 for h 2 HnH0;
with H0 µ H and #H0 ¸ 1 g

:

Then consider

B ´ f (»; ¼) 2 F¡1 (0) :
gh ¸ 0 and ¹h = 0 for h 2 H0; and
gh = 0 and ¹h ¸ 0 for h 2 HnH0

with H0 µ H and #H0 ¸ 1 g
:

De…ne
© : F¡1 (0) ! ¦; © : (»; ¼) 7! ¼:

The set B µ F¡1 (0) is closed, and ¦op = ¦n©(B) : Since © is proper, ¦op

is open16.

14For the de…nition of a general equilibrium model with restricted participation on
…nancial markets, see Balasko, Cass and Siconol… (1990).

15Household h is a ”strict” non-contributor if gh = 0 and ¹h > 0:
16Analogous results holds true for the set of economies with at least two strict non-

contributors, which is studied in next section.
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The equilibrium system taking into consideration the planner intervention
is the following:

C + 1 byf bp+ ®fDtf (byf ) = 0
1 ®f tf (byf ) = 0

:::
C xh Dxhuh

¡
xh; gh +Gnh

¢
¡ ¸hp = 0

1 gh Dghuhuh
¡
xh; gh +Gnh

¢
¡ ¸hpg + ¹h = 0

1 ¹h min fgh; ¹hg = 0

1 ¸h ¡p (xh ¡ eh + ½h)¡ pggh +
PF

f=1 sfhbpbyf = 0
:::

C ¡ 1 pn ¡PH
h=1 x

n
h +

PH
h=1 e

n
h +

PF
f=1 y

n
f = 0

1 pg ¡PH
h=1 gh +

PF
f=1 y

g
f = 0

; (6)

where
½h ´ 0 i¤ h 6= 1; 2:

In the above system, the …rst column indicates the number equations in the
corresponding rows and the second column indicates the vectors of endoge-
nous variables with the same number of components as the corresponding
equations. Consider (½1; ½h) ´ ½ 2 R2 and

F1 : ¥£ R2 £ ¦! Rdim¥; F1 : (»; ½; ¼) 7! (Left Hand Side of 6),

F2 : ¥£ R2 £ ¦! R; F2 : (»; ½; ¼) 7! ½1 + ½h0;

eF : ¥£ R2 £ ¦ ! Rdim¥+1; eF : (»; ½; ¼) 7! (F1 (»; ½; ¼) ; F2 (»; ½; ¼))

Ga : ¥£ R2 £ ¦! R; Ga : (»; ½; ¼) 7!
HX

h=1

gh:

Since we are going to de…ne di¤erent goal functions "G", we are going
to distinguish among them using a subscript i = a; b; c: In sections 7 and 8,
we are going to introduce the functions Gb and Gc: For ease of notation and
with little abuse of notation, we do not add the subscript i to the functions
F1; F2 and eF .

Observe that » is an equilibrium i¤ eF (»; ½ = 0; ¼) = 0:
We now show an important preliminary result.
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Lemma 10 There exists an open and dense subset ¦a µ ¦ such that for
every ¼0 2 ¦a and for every »0 such that eF (»0; ½ = 0; ¼0) = 0;

D(»;½2)
eF (»0; 0; ¼0) has full row rank (equal to dim¥ + 1):

Proof. D(»;½2)
eF (»0; 0; ¼0; u) is

�
D»F1 ¤
0 1

¸

and the desired result follows from the fact that in equilibrium D»F1 =
D»Fand from Proposition 6.

>From the above result and the Implicit Function Theorem, it follows
that there exist an open set V µ R containing ½1 = 0 and a unique smooth
function h : V ! Rdim¥+1 such that h is C1; h (0) = (»0; ½2 = 0) ; and

for every ¿ 1 2 V; eF (h (½1) ; ½1; ¼0) = 0 ; i.e.; (h (½1) ; ½1) 2 eF¡1¼0 (0) :

In words, the function h describes the e¤ects of local changes of ½1 around 0
on the equilibrium values of » and ½2.

For every economy ¼; and every »0 2 F¡1¼ (0) ; we can then

bga : V ! R; bga : ½1 7! G (h (½1) ; ½1; ¼) (7)

such that h (0) = (»0; ½2 = 0) :
17

We are now ready to state the main result of this section.

Theorem 11 For an open and dense subset S¤a of the set of the economies
for which there exists at least one non-contributor, at any equilibrium »0; the
function bga is locally onto around 0: That is, there exists a redistribution
of the endowments of private good C between one contributor and one non-
contributor which increases (or decreases) the level of provided public good.

Remark 5 Observe that we have imposed no restrictions on the number of
private goods. Therefore, our analysis applies also to the case of only one pri-
vate good, as analyzed by Bergstrom, Blume and Varian (1986) and (1992).

17Observe that a heavier and more rigorous notation would have required that we write
bgaj¼:
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Remark 6 Because of Lemma 4, the local changes in the endowments men-
tioned in the statement of Theorem 11 can be made small enough to leave
unchanged the set of households for which gh > 0, i.e., the set of contributors.

As explained for example in the Appendix, to prove Theorem 11 it su¢ces
to show the following:

Lemma 12 There exists an open and dense subset S¤a µ ¦ such that for
every ¼0 2 S¤a and for every »0 2 eF¡1¼0 (0) ;

D(»;½) eF (»0; 0; ¼0) has full rank:

Lemma 12 is equivalent to the following one:

Lemma 13 In an open and dense set of ¦, the following system computed
at eF (»; 0; ¼) = 0 has no solutions in the unknowns bd

bdT
�
D ~F
DG

¸
= 0

bdT bd¡ 1 = 0

(8)

Proof.
Openness: De…ne the projection

Á : eF¡1 (0) ! ¦; Á : (»; ¼) 7! ¼

and
M ´ f (»; ½; ¼) 2 ¥£ R2 £ ¦ : eF (»; ½; ¼) = 0 , ½ = 0 and

rank
h
D»;½

³
eF;G

´i
< n + 2 g :

Observe that Á (M) = E¤: Consider all the square submatrices of
h
D»;½

³
eF;G

´i

of dimension smaller than (n+ 2) : The rank condition in the de…nition ofM
requires that the determinants of all those submatrices are zero. Since the
function determinant is a continuous function, M is a closed subset of the
closed set F ¡1 (0) :

If the function Á is proper, then Á(M) = E¤ is closed, as desired. The
proof of properness of Á is (almost) identical to the proof of Lemma 8 by
Villanacci and Zenginobuz (2001).
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Density: The proof of density goes through some steps. We …rst compute³
D eF ;DG

´
: We perform some elementary row and column operations. We

write system (8) at » such that eF (»; 0; ¼) = 0. Finally, distinguishing two
cases, we prove the desired result.

For simplicity of notation, we take h = 1 as the household who is a
contributor and whose corresponding columns are used to clean up columns
of the matrix under analysis; h = 2 as a non-contributor who is taxed; h = 3
as a contributor who is not taxed; and h = 4 as a non-contributor who is not
taxed.

We display below the matrix
³
D eF ;DG

´
after we performed the elemen-

tary row and column operations mentioned above:
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C+1
d11

®1
D2t1

DtT
2

I
0
0

0
0
1

1
d12

Dt1

C+1
dF1

®F
D2tF

DtT
F

I
0
0

0
0
1

1
dF2

DtF

C
c11

D1
xx ¡pT ¡¸1

bI
1
c12

D1
Gx

¡pg ¡¸1

1
c13

¡p pg ¡ezn1 ¡eg1

C
c21

D2
xx ¡pT ¡¸2

bI
1
c23

¡p ¡ezn2 ¡eg2

C
c31

D3
xx ¡pT ¡¸3

bI
1
c32

D3
Gx

¡pg ¡¸3

1
c33

¡p ¡pg
¡ezn

3
¡eg3

1
c41

D4xx ¡pT ¡¸4
bI

1
c43

¡pT ¡ezn4
¡eg4

1
cm1

I00 I00 ¡I0 ¡I0 ¡I0 ¡I0

1
cm2

001 001

1
cm3

22



where

bI ´
�

IC¡1
12£(C¡1)

¸
;

bbI ´
�

IC¡1
02£(C¡1)

¸
; eI ´

�
0(C+1)£1
01£1

¸
;

and for each h

ezh ´ xh ¡ eh ¡
X

f

sfhyf and egh ´ gh +
X

f

sfhy
g
f :

Next to each super row in the above matrix, we wrote the subvector of
bd ´ (b; d) that multiplies the elements in that super row18; and the number
above each subvector is the number of its components.19

System (8), modi…ed consistently with the above procedure, is displayed
below.

(f:1:1) b11®1D
2t1 + b12Dt1 + dm1 [I00] + dm2 [001] = 0

(f:1:2) b11 [Dt1]
T = 0

(f:F:1) bF1®FD2tF + bF2DtF + dm1 [I00] + dm2 [001] = 0³
_fF:2

´
bF1 [DtF ]

T = 0

(1:1) d11D
1
xx + d12D

1
Gx ¡ d13p¡ dm1 [I0] = 0

(1:3) ¡d11pT ¡ d12pg = 0
(2:1) d21D2

xx ¡ d23pT ¡ dm1 [I0] = 0
(2:3) ¡d21pT = 0
(3:1) d31D

3
xx + d32D

3
Gx ¡ d33p¡ dm1 [I0] = 0

(3:2) d13p
g + d33p

g = 0
(3:3) ¡d31pT ¡ d32pg = 0
(4:1) d41D4

xx ¡ d43pT ¡ dm1 [I0] = 0
(4:1) ¡d41pT = 0

(M:1)
P

f bf1
bbI ¡ d11¸1bI ¡ d13ezn1 ¡ d21¸2bI+

¡d23ezn2 ¡ d31¸3bI ¡ d33ezn3 bI ¡ d41¸4bI ¡ d43ezn4
= 0

(M:2)

P
f bf1

eI ¡ d12¸1 ¡ d13eg1 ¡ d23eg2+
¡d32¸3 ¡ d33eg3 ¡ d43eg4

= 0

(M:3) ¡d13 + dm3 = 0
(M:4) ¡d23 + dm3 = 0
(M:5) dTd¡ 1 = 0

: (9)

18We used the letter b for …rm related entries of the matrix.
19Note that blank entries stand for zero entries in the this and all other matrices.
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The perturbation of the transformation function we are going to use has
the following form

tf
¡
yf ; y

G
f

¢
= tf

¡
yf ; y

G
f

¢
+

¡¡
yf ; y

G
f

¢
¡

¡¡
y¤f ; y

G¤
f

¢¢¢T ¢Af ¢
¡¡
yf ; y

G
f

¢
¡

¡¡
y¤f ; y

G¤
f

¢¢¢
;

where
¡
y¤f ; y

G¤
f

¢
are equilibrium values, and Af is a symmetric negative de…-

nite matrix. Observe that the above proposed perturbation of the transfor-
mation function can be done because, generically, in equilibrium yGf 6= 0 - see
Lemma 7: Moreover, the derivative of df1 ¢ Af with respect to the elements
of Af has full row rank i¤ df1 6= 0.

The perturbation of the utility function we are going to use has the fol-
lowing form:

uh (xh; gh) = u (xh; gh)+((xh; gh)¡ (x¤h; g¤h))T
�
Ahxx 0
0 ahgg

¸
((xh; gh)¡ (x¤h; g¤h)) ;

where (x¤h; g
¤
h) are equilibrium values, Ahxx is a symmetric negative de…nite

matrix and ahgg is a strictly negative number. Using the utility function per-
turbation proposed above, we can perturb independently equations (h:1) and
(h:2) as long as dh1 6= 0 and dh2 6= 0: In fact, the derivative of

£
dh1 dh2

¤�
Ahxx 0
0 ahgg

¸

with respect to the elements of Ahxx and ahgg is the following:

2
6666664

a11 a21 aC1 ::: a22 aC2 aCC agg

d1h1 d2h1 dCh1
:::

d1h1
::: d2h1 dCh1

::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::

d1h1
::: d2h1 dCh1

::: dh2

3
7777775
: (10)

We denote the utility function perturbation via the Hessian perturba-
tion relative to private goods and public good for a generic household h
by ¢(dh1) and ¢(dh2) : In fact, in this Section, we are going to use only
¢(dh1) :20 We denote the transformation function perturbation by ¢(df1) :

20For a detailed account of the use of this methodology of proof, see Citanna, Kajii and
Villanacci (1998) and also Villanacci et al. (forthcoming).
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For each h and f it is crucial whether dh1 and/or bf1 are or are not
equal to zero.21 In principle, we should therefore distinguish among all the
possible 24+2 = 64 cases. Therefore, we preliminarily study the e¤ect of each
vector dh1 and bf1 being zero on the other vector. Such an analysis reduces
dramatically the number of cases to be studied. The remaining cases are
then discussed in detail. More precisely, we go through proving the following
preliminary facts:

Step 1: If dh01 = 0 for some h0, then dh1 = 0 for each h:
Step 2: bf1 = 0 ) bd = 0: Therefore, there are only two cases to be

considered in this step:
Case 1: dh1 6= 0 for each h and bf1 6= 0 for each f:
Case 2: dh1 = 0 for each h and bf1 6= 0 for each f:
We now analyze each of these situations separately.
Step 1: We just show that d11 = 0 ) bd = 0:The other cases of the form

dh1 = 0 ) bd = 0;for all h, are proved in a similar way.
>From (1:3) ; d12 = 0:
>From (1:1) ; d13 = 0 and dm1 = 0:
For h = 2; 4; from (h:1) and (h:3) ; dh1 = 0 and dh3 = 0:
>From (3:2) ; d33 = 0:
>From (3:1) and (3:3) ; d31 = 0 and d32 = 0:
>From (M:3) ; dm3 = 0:

Step 2: bf1 = 0 for some f ) bd = 0:
>From equation (f:1:1), bf2 = 0; dm1 = 0 and dm2 = 0:
>From (fF 1) and (fF 2) ; bF1 = 0 and bF2 = 0:
>From (2:1) and (2:3) ; d21 = 0 and d23 = 0:
>From (M:4) ; dm3 = 0:
>From (M:3) ; d13 = 0:
>From (1:1) and (1:3) ; d11 = 0;and then following the same steps as in

Case 1, we can show that d = 0:
Case 1:

21Observe that we do not use dh2 to perturb the utility function.
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The required perturbations are shown below:

(f1:1) ¢ (b11)
(f1:2) bC11
(fF:1) ¢ (bF1)
(fF; 2) : bCF1
(1:1) : ¢ (d11)
(1:3) : dC11
(2:1) : ¢ (d21)
(2:3) : dC21
(3:1) : ¢ (d31)
(3:2) : d33
(3:3) : dC31
(4:1) ¢ (d41)
(4:3) dC41
(M:1) : d

nC;G
11

(M:2) : dGf1
(M:3) : dm3
(M:4) : d23
(M:5) : dm2

: (11)

Case 2:
>From Step 1, we are left with the following system:

C+ 1 C+ 1 1 1

(11) C+ b11¢
®1D2t1

b12
Dt1

dm2¢
[001]

(12) 1 b11¢
[Dt1]

T

(F1) C+ bF1¢
®FD

2tF

bF2
DtF

dm2¢
[001]

(F2) 1 bF 1¢
[DtF ]

T

(M:1) C¡

b11

I
0
0 bF1

I
0
0

(M:2) 1 b11

0
0

0
bF1

0
0
0

(M:5)

: (12)
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Observe that in the above system, the number of extra equations is (C ¡ 1)+
1 ¸ 1: To perturb the remaining equations proceed as follows:

(f1:1) ¢ (b11)
(f1:2) bC11
(fF:1) ¢ (bF1)
(fF; 2) : bCF1
(M:1) : bnC;G11

(M:2) : bGf1
(M:5) : dm2

:

3.3 Redistributions between Non-Contributors

The only di¤erence in the analysis of this case with respect to the case of the
previous Section is that in system (6) we have

½h = 0 for h 6= 2; 4:

De…ne bga0 : ½2 7! G (h (½2) ; ½2; ¼) ; with meaning of h similar to that one
introduced in relationship with the de…nition of bga in (7).

Theorem 14 If H > 2 and C > 1, for an open and dense subset S¤a0 of the
set ¦ of the economies for which there exists at least two non-contributors,
at any equilibrium »0; the function bga0 is locally onto around 0: That is, there
exists a redistribution of the endowments of private good C between two non-
contributors which increases (or decreases) the level of provided public good.

Remark 7 The Assumption C ¸ 2 is used below in Case 2 of the proof
of the Theorem. The intuition behind this requirement is the following one.
Consider the case of one public and one private good. Redistributing the pri-
vate good among non-contributors does not change the demand of the public
good: contributors are not a¤ected by this intervention and non contributors
do not become contributors (because we are not on the border line cases and
taxes are small). Therefore, not even the demand of private goods changes.
The total e¤ect is just some changes on the demand of private goods by some
non contributors.
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Proof. The only di¤erence between this system and system (6) above is
the fact that d43 and not d13 appears in equation (M:3) : As in Subsection
3.2, we preliminary study the e¤ect of each vector dh1 and bf1 being zero on
the other vectors, and then we analyze the relevant cases. More precisely, we
go through the following steps:

Step 1: [d11 = 0 or d31 = 0] ) bd = 0;
Step 2: d21 = 0 , d41 = 0;

Step 3: bf 01 = 0 )
h
(bf1)

F
f=1 = 0 and d21 = d41 = 0

i
: Therefore, the

following cases are possible:
Case 1: 8 f; bf1 6= 0 and 8h; dh1 6= 0:
Case 2: 8 f; bf1 6= 0; d21 = d41 = 0 and d11 6= 0; d31 6= 0:
Case 3: 8 f; bf1 6= 0 and 8h; dh1 = 0:
Case 4: 8 f; bf1 = 0; d21 = d41 = 0 and d11 6= 0; d31 6= 0:
The argument in Steps 1, 2, 3 and in Cases 1 and 3 of Step 3 is very

similar to that the analogous ones in Subsection 3.2. Therefore we are left
with analyzing Cases 2 and 4.

Case 2: 8 f; bf1 6= 0; d21 = d41 = 0 and d11 6= 0; d31 6= 0:

Lost unknowns # Lost equations # # Eqns. we can erase
d21 C (2:1) C
d23 1 (2:3) 1
d41 C (4:1) C
d43 1 (4:3) 1
dm1 C ¡ 1 C ¡ 1
dm3 1 (M:3) 1

(M:4) 1 ¡1
¡¡¡¡¡¡¡
(C ¡ 1)¡ 1 in total

In the above table, by ”lost unknowns” we mean unknowns that are equal
to zero, and by ”lost equations” we mean equations which, in the case under
analysis, take the form of identity 0 = 0:

Observe from the table above that we have more equations than unknowns
i¤ C ¸ 2: Since we assumed so, we can then proceed with the perturbation
used in Case 1. Observe that we lost unknowns we were using to perturb
equations we lost as well: for example, in Case 1 to perturb equation (f:1:1)
we use b11. Here we lose both those equations and unknowns.
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Case 4: 8 f; bf1 = 0; d21 = d41 = 0 and d11 6= 0; d31 6= 0:

Lost unknowns # Lost equations # # Eqns. we can erase
b11 C + 1 (11) C + 1
b12 1 (12) 1
bF1 C + 1 (F:1) C + 1
bF2 1 (F:2) 1
d11 C (1:1) C
d23 1 (2:3) 1
d41 C (4:1) C
d43 1 (4:3) 1
dm1 C ¡ 1 C ¡ 1
dm3 1 (M:3) 1
dm2 (M:4) 1

¡¡¡¡¡¡¡
(C ¡ 1) in total

Since C ¡ 1 ¸ 1; we can erase equation (M:5) and perturb the other
equation as we did in Case 1.

4 Crowding-out E¤ects
We will show that a planner can increase G if her intervention is as described
below:

1. She taxes all non contributors and one contributor by an amount ½h
of the numeraire good;

2. She uses those taxes to …nance the purchase of an amount µg of the
public good. This purchase occurs on the market at market equilibrium
prices.

Equilibrium with planner intervention:
1. For each h, the amount of consumed public good is

PH
h=1 gh + µ

g;
2. The budget set has to take into account the tax ½h for h = 2;
3. The purchase of µg has to be …nanced with the revenue from tax

collection, i.e.,
½2 ¡ pgµg = 0:
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4. The market clearing condition becomes

¡
HX

h=1

gh +
FX

f=1

ygf ¡ µg = 0:

The equilibrium system with planner intervention in this case is the fol-
lowing:

C + 1 byf bp + ®fDtf (byf ) = 0
1 ®f tf (byf) = 0

:::
C xh Dxhuh

¡
xh; gh +Gnh

¢
¡ ¸hp = 0

1 gh Dghuhuh
¡
xh; gh +Gnh

¢
¡ ¸hpg + ¹h = 0

1 ¹h min fgh; ¹hg = 0

1 ¸h ¡p (xh ¡ eh + ½h)¡ pggh +
PF

f=1 sfhbpbyf = 0
:::

C ¡ 1 pn ¡PH
h=1 x

n
h +

PH
h=1 e

n
h +

PF
f=1 y

n
f = 0

1 pg ¡PH
h=1 gh +

PF
f=1 y

g
f ¡ µg = 0

where
½h 6= 0 i¤ h = 2

F2 (»; ½; ¼) = (½2 ¡ pgµg)

Gb (»; ½; µ; ¼) =
HX

h=1

gh + µ
g:

Note that # goals =1, # constraints = 1, tools: ½2; µ
g and thus # tools = 2.

Therefore, condition (24) in the Appendix is satis…ed simply because 2 ¸ 2.
Observe that » is an equilibrium i¤ eF (»; ½ = 0; µ = 0; ¼) = 0:
Observe that Walras’ law holds in the above case. Summing up con-

sumers’ budget constraints, and observing that
PH

h=1 sh = 1, we get

¡p
Ã

HX

h=1

xh ¡
HX

h=1

eh ¡
FX

f=1

yf

!
¡ ½2 ¡ pg

Ã
HX

h=1

gh ¡
FX

f=1

ygf

!
= 0:

Since ½2 ¡ pgµg = 0, we also have

¡p
Ã

HX

h=1

xh ¡
HX

h=1

eh ¡
FX

f=1

yf

!
¡ pg

Ã
HX

h=1

gh ¡
FX

f=1

ygf + µ
g

!
= 0;
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i.e., the Walras’ law.
We now show an important preliminary result.

Lemma 15 There exists an open and dense subset ¦0 µ ¦ such that for
every ¼0 2 ¦0 and for every »0 such that eF (»0; ½ = 0; ¼0) = 0;

D(»;½2;µG)
eF (»0; 0; ¼0) has full row rank (equal to dim¥ + 1):

Proof. D(»;½2;µg)
eF (»0; 0; ¼0; u) is

�
D»F1 ¤ ¤
0 1 ¤

¸
;

and the desired result follows.
>From the above result and the Implicit Function Theorem it follows

that there exist an open set V µ R containing ½1 = 0 and a unique smooth
function h : V ! Rdim¥+1 such that h is C1; h (0) = (»0; ½2 = 0) ; and

for every ¿ 1 2 V; eF (h (µg) ; ½1; ¼0; u) = 0 ; i.e.; (h (µg) ; µg) 2 eF¡1(¼0;u) (0)
(13)

In words, the function h describes the e¤ects of local changes of µg around 0
on the equilibrium values of » and ½2.

For every economy ¼; and every »0 2 F¡1¼ (0) ; we can then de…ne

bgb : V ! R; bgb : ½1 7! Gb (h (µ
g) ; µg; ¼)

such that h (0) = (»0; ½2 = 0) :
We are now ready to state the main result of this section.

Theorem 16 For an open and dense subset S¤b of the set of the economies
for which there exists at least one non contributor, at any equilibrium »0; the
function bgb is locally onto around 0: That is, there exists a tax on the en-
dowments of private good C of one non-contributor and a choice of public
good production which increases the total amount of produced public good.

Proof. The proof of the Theorem goes through the usual steps. In fact,
up to elementary row and column operations, the matrix to be analyzed to
prove denseness is the same as in the analogous proof in Subsection 3.2.
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5 Pareto Improving Interventions
Our techniques of proof require the number of independent tools to be not
smaller than the number of goals. That observations implies that a simple
redistribution of the numeraire good among all households would not work.
That redistribution has to satisfy the constraint

PH
h=1 ½h = 0; and, therefore,

the number of independent tools is only H ¡ 1, while the number of goals -
the utility levels of all households - is H .

On the other hand, if the planner can tax not only households but also
…rms, more tools become available. In fact, we show that a planner can
Pareto improve upon the market outcome if her intervention is as described
below:

The planner imposes taxes the use of inputs and the production of output
in a proportion ¿ c for each good c = 1; :::; C;G.

De…ne ¿ = (¿ c)C;Gc=1 : Observe that the …rm f ’s problem becomes:

max(yf ;ygf)
PC;G

c=1 (1¡ ¿ c) pcycf s:t: tf
¡
yf ; y

g
f

¢
= 0:

Therefore to describe equilibria with planner intervention we have to change
the equilibrium system as follows:

1. The tax collection has to balance:

FX

f=1

C;GX

c=1

¿ cpcycf = 0:

2. The First Order Conditions for Firm f becomes

(1¡ ¿ )¤ (p; pg) + ®fDtf
¡
yf ; y

g
f

¢
= 0

tf
¡
yf ; y

g
f

¢
= 0

;

where, for given x; y 2 Rn; x¤y ´ (xiyi)
n
i=1 :

Remark 8 Here we choose to tax each …rm in the same proportion with
respect to each good. Another possibility would be to impose taxes (and sub-
sidies) which depend on the type of goods and identity of …rms. That would
allow substituting for the requirement C ¸ H of the main Theorem of the
Section a much weaker requirement of the form FC ¸ H.

We could also let the government have her own demand µg for the public
good: that would increase by one the number of tools at her disposal.
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Finally, we could let the government impose taxes on households; it turns
out that this does not have any signi…cant e¤ect.

Another tool which may be e¤ective would be a subsidy/tax on the price
of the public good for the households. Observe that taxing only one good does
not create any kink in the budget set, but it only rotates the budget plane.

Remark 9 If we use production functions (ygf = tf (yf )) instead of transfor-
mation functions, there are two di¤erent ways to show the above mentioned
generic result:

1. Impose a condition of the following form

lim
ycf!0

Dycf
tf (yf) = ¡1:

2. Write down the problem as

maxyf p
gygf ¡ pyf s:t: ygf = tf (yf ) °f

yf ¸ 0 ¯f

Then, it is enough to show that generically it cannot be the case that

yf = 0 and ¯f = 0:

In this case, we can partition …rms in the group of ”strictly” active and
”strictly” inactive ones, and proceed taxing and subsidizing the active ones
only.

The function F1 de…ning the ”equilibrium with planner intervention” in
this case is the left hand side of the following system:

(1¡ ¿)¤ (p; pg) + ®fDtf
¡
yf ; y

g
f

¢
= 0

tf
¡
yf ; y

g
f

¢
= 0

:::
Dxhuh

¡
xh; gh +Gnh

¢
¡ ¸hp = 0

Dghuhuh
¡
xh; gh +Gnh

¢
¡ ¸hpg + ¹h = 0

min fgh; ¹hg = 0

¡p (xh ¡ eh)¡ pggh +
P

f shf
PC;G

c=1 (1¡ ¿ c) pcycf = 0
:::

¡PH
h=1 x

n
h +

PH
h=1 e

n
h +

P
f y

n
f = 0

¡PH
h=1 gh +

P
f y

g
f = 0
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½h 6= 0 i¤ h 2 H0 [ f1g :

F2 : (»; ½; ¼) 7!
FX

f=1

C;GX

c=1

¿ cpcyc +
X

h2H0[f1g
½h;

G : (»; ½; ¼) 7! (uh (xh))
H
h=1 :

Note that # goals =H, # constraints = 1, tools:
¡
¿ cf

¢C;G
c=1

and thus # tools
= C + 1. Therefore, to be consistent with condition (24), we must have

C + 1 ¸ H + 1; or, C ¸ H: (14)

Remark 10 In fact, as shown in the proof of the main Theorem of this
section, see Case 18 and Remark 12, we have to impose C ¸ H+: Moreover,
since H+ is an endogenous variable which at most can be equal to H, we are
going to require C ¸ H.

Denote a H+¡dimensional subvector of ¿ by ¿¤ 2 RH+
.

Observe that » is an equilibrium i¤ eF (»; (½; ¿ ) = 0; ¼) = 0:
Observe that the Walras’ law holds in the above case. Summing up

consumers’ budget constraints, and observing that
PH

h=1 sh = 1, we get

¡p
Ã

HX

h=1

xh ¡
HX

h=1

eh ¡
FX

f=1

yf

!
¡

Ã
HX

h=1

FX

f=1

shf

C;GX

c=1

¿ cpcycf

!
¡pg

Ã
HX

h=1

gh ¡
FX

f=1

ygf

!
= 0:

Since
PH

h=1

PF
f=1 shf

PC;G
c=1 ¿

cpcycf = 0, we also have

¡p
Ã

HX

h=1

xh ¡
HX

h=1

eh ¡
FX

f=1

yf

!
¡ pg

Ã
HX

h=1

gh ¡
FX

f=1

ygf

!
= 0;

i.e., the Walras’ law.
We now show an important preliminary result.
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Lemma 17 There exists an open and dense subset ¦0 µ ¦ such that for
every ¼0 2 ¦0 and for every »0 such that eF (»0; (¿; ½) = 0; ¼0; u) = 0;

D(»;¿;½) eF (»0; 0; ¼0) has full row rank (equal to dim¥ + 1):

Proof. D(»;½1)
eF (»0; 0; ¼0; u) is

�
D»F1 ¤
0

PF
f=1 y

g
f > 0

¸
;

and the desired result follows. Observe that in the above matrix, D»F2 = 0
because it is computed at ¿ = 0:

As usual, from the above result, for every economy ¼; and every »0 2
F¡1¼ (0) ; we can then de…ne

bgc : V ! R; bgc : (¿ ¤) 7! Gc (h (¿
¤) ; ¿ ¤; ¼)

such that h (0) = (»0; ¿ ¤ = 0) :

Theorem 18 Assume that C ¸ H. For an open and dense subset S¤c of
the set of the economies, at any equilibrium »0; the function bgc is locally
onto around 0: That is, there exists a choice of taxes on the …rm’s inputs and
outputs which Pareto improves or impairs upon the equilibrium »0: Moreover,
in the subset of the economies for which there are H+ contributors, it is
enough to assume that C ¸ H+:

Proof. For simplicity of notation, we take h = 1 as the household whose
associated columns are used to clean up the columns of the matrix under
analysis; h = 2 as a non-contributor, and h = 3 as a contributor.

The proof of the Theorem goes through the usual steps. Properness
follows in the same way as in the other cases. Denseness is proved in detail
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below. We have

(f:1:1) b11®1D2t1 + b12Dt1 + dm1 [I00] + dm2 [001] = 0

(f; 1:2) b11 [Dt1]
T = 0

(f:F:1) bF1®FD
2tF + bF2DtF + dm1 [I00] + dm2 [001] = 0

(f:F:2) bF1 [DtF ]
T = 0

(1:1) d11D
1
xx + d12D

1
Gx ¡ d13p¡ dm1 [I0] + du1D1

x = 0

(1:2)
d11D

1
xG + d12D

1
GG ¡ d13pg ¡ d21D2

xG+
d31D3

xG + d32D
3
GG + du1D

1
G + du2D

2
G + du3D

3
G

= 0

(1:3) ¡d11pT ¡ d12pg = 0
(2:1) d21D2

xx ¡ d23pT ¡ dm1 [I0] + du2D2
x = 0

(2:3) ¡d21pT = 0
(3:1) d31D

3
xx + d32D

3
Gx ¡ d33p¡ dm1 [I0] + du3D3

x = 0
(3:2) d13p

g + d33p
g = 0

(3:3) ¡d31pT ¡ d32pg = 0

(M:1)
P

f
bbIdf1 ¡ d11¸1bI ¡ d13ezn1+

¡d21¸2bI ¡ d23ezn2 ¡ d31¸3bI ¡ d33ezn3 bI
= 0

(M:2)

P
f

eIdf1 ¡ d12¸1 ¡ d13eg1+
¡d23eg2 ¡ d32¸3 ¡ d33eg3

= 0

(M:3)

P
f bf1 ¢ dg¤ (bp¤)¡ c33

P
f s3f (bp¤byf )¤+

+dm3
P

f (bp¤by)¤ = 0

(M:4) dTd¡ 1 = 0

;

where

dg¤ (bp¤) ´
�
[dg (bp¤)]H+£H+

0[(C+1)¡H+]£H+

¸
;

and
(bp¤by)¤ ´ (p¤¤y¤) ;

(i.e. the variables with ¤) are H dimensional vectors of the same type as ¿ ¤:
Observe that [bf 01 = 0 for some f 0] implies that ( bf 02 = 0; dm1 = 0; dm2 = 0,
and therefore) [bf1 = 0 for each f ].

Remark 11 Moreover, observe that we cannot perturb equations (f1) with-
out using the perturbation of the transformation function: bf1 is going to be
used to perturb equations (M:3) : For that reason, we have to consider the
two cases bf1 6= 0 and bf1 = 0. We …rst consider the cases in which bf1 6= 0.
As pointed out in Remark 12, the cases under which bf1 = 0 reduces to only
one case (Case 19 below).
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Assuming that bf1 6= 0; we summarize the relevant cases in the following
table:

Case
1 d11 6= 0; c12 6= 0 c21 6= 0 d31 6= 0; d32 6= 0
2 d31 6= 0; d32 = 0
3 d31 = 0; d32 = 0
4 c21 = 0 d31 6= 0; d32 6= 0
5 d31 6= 0; d32 = 0
6 d31 = 0; d32 = 0
7 d11 6= 0; c12 = 0 d21 6= 0 d31 6= 0; d32 6= 0
8 d31 6= 0; d32 = 0
9 d31 = 0; d32 = 0
10 d21 = 0 d31 6= 0; d32 6= 0
11 d31 6= 0; d32 = 0
12 d31 = 0; d32 = 0
13 c11 = 0; c12 = 0 d21 6= 0 d31 6= 0; d32 6= 0
14 d31 6= 0; d32 = 0
15 d31 = 0; d32 = 0
16 d21 = 0 d31 6= 0; d32 6= 0
17 d31 6= 0; d32 = 0
18 d31 = 0; d32 = 0

After that we should consider the same case when df1 = 0: As pointed
out in Remark 12 , those other Cases reduce to only one (Case 19).

Since the strategy of proof is similar, we analyze the most interesting
cases.
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Case 1: bf1 6= 0; for h 2 H dh1 6= 0; for h 2 H+ d2h 6= 0:22

(f:1) ¢ (bf1)
(f:2) bCf1
(1:1) ¢ (d11)
(1:2) ¢ (d12)
(1:3) dC11
(2:1) ¢ (d21)
(2:3) dC21
(3:1) ¢ (d31)
(3:3) dC31
(M:1) d

n
h1

(M:2) dh2; h 2 H+

(M:3) b
nC
f1

(M:4) duh as long as d12 6= 0 and dh1 6= 0

(15)

We now show in more detail the perturbation of equation (M:4) :

(M:4) Ã duh Ã (1:2) Ã ¢(d12)
Ã (h:1) Ã ¢(dh1)

: (16)

Observe that we could perturb equation (M:4) also using dm2 - as long
as d12 6= 0 and dfi 6= 0:23

Case 18. d11 = 0; d12 = 0; d21 = 0; d31 = 0; d32 = 0:

Lost unkns. # Lost eqns. # # Eqns. we can erase Eqns. we erase #
d11 C C (M:3) H
d12 1 (1:3) 1 (M:4) 1
d21 C (2:3) 1 C ¡ 1 …rst (C ¡ 1) in (2:1) C ¡ 1
d31 C C …rst (C ¡ 1) in (3:1) C ¡ 1
d32 1 (3:3)

¡¡¡
3C ¡ 1 in total

¡¡¡
2C +H

(17)

22If c12 = 0; we have to erase (1:2) : To perturb (f:2), we need to use a dc
f1 with

c 6= 1; :::;H. We take dC
f1to perturb (f:2), because dC

f1 does not appear in (M:3) :
23See Remark 12 for the reason for which we didn’t choose cm2 as the perturbing variable.
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Then, proceed as illustrated in the following table:

(f:1) ¢ (bf1)
(f:2) bCf1
(1:1) dm1; du1
(1:2) dm2
(1:3) cancelled
(2:1) du2
(2:3) cancelled
(3:1) du3
(3:3) cancelled
(M:1) d

nC;G
f1

(M:2) dnC;Gf1

(M:3) cancelled
(M:4) cancelled

: (18)

Remark 12 We should now analyze the other remaining 18 Cases in which
bf1 = 0 for each f: But it is enough to observe what follows.

1. If bf1 = 0; then we have the following situation:

Lost unkns. # Lost eqns. # # Eqns. we can erase Eqns. we erase #
bf1 C + 1 (f:1) C + 1 (H:7) H
bf2 1 (f:2) 1
dm1 C ¡ 1 C ¡ 1
dm2 1 1

¡¡¡
C in total

¡¡¡
H

:

In all …rst 17 cases, we never used dm2 and we used bf1 and bf2 to perturb
equations (f:1), (f:2) and (M:3) which we erased.

2. The case in which all the perturbing variables are equal to zero is
analyzed below.

Proof. Case 19. bf1 = 0 for each f ; dh1 = 0 for h 2 H ; and d2h = 0 for
h 2 H+:
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>From (f:1) ; bf2 = 0; dm1 = 0; and dm2 = 0: Therefore, the system
reduces to the following:

(1:1) C ¡d13
p

du1
D1
x

12 1 ¡d13
pg

du1
D1G

du2
D2
G

du3
D3
G

(2:1) C ¡d23
p

du2
D2
x

(3:1) C ¡d33
p

du3
D3
x

(3:2) 1 d13
pg

¡d33
pg

(M:1) C¡ ¡d13
ezn1

¡d23
ezn2

¡d33
ezn3

(M:2) 1 ¡d13
eg1

¡d23
eg2

¡d33
eg3

(M:3) H+ ¡d13
s1(bp¤by)¤

¡d23
s2(bp¤by)¤

¡d33
s3(bp¤by)¤

dm3
(bp¤by)¤

(M:4) 1

: (19)

Using the …rst order conditions of households’ problems, we can rewrite
the …rst part of the system as follows:

(1:1C) 1 ¡c13 cu1¸1

(1:2) 1 ¡c13 cu1¸1 cu2¸2 cu3¸3

(2:1C) 1 ¡c23 cu2¸2

(3:1C) 1 ¡c33 cu3¸3

(3:2) 1 c13 ¡c33

:

Using (1:1C) in (1:2) ; we get

(1:1C) 1 ¡d13 du1¸1

(1:2) 1 du2
¸2 du3

¸3

(2:1C) 1 ¡d23 du2
¸2

(3:1C) 1 ¡d33 du3
¸3

(3:2) 1 d13 ¡d33

: (20)

>From (3:2) ; d13 = d33:
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>From (3:1C) ; d33 = du3¸3:
>From (2:1C), d23 = du2¸2:
>From (1:2) ; du2¸2 = ¡du3¸3:
Therefore, d13 = d33 = ¡d23; or more generally,

d13 = dh+03 = dh+1 = ¡dh003 = ¡dh03 for h+; h+
0 2 H+ and h0; h0

0 2 H0:

Substituting in (M:1) ; (M:2) and (M:3), and using some obvious notation,
we get

(M:1) :

d13
¡P

h2H+ (xch ¡ ech)¡
P

h2H0 (xch ¡ ech)¡ yc
¡P

h2H+ sh ¡ P
h2H0 sh

¢¢

= d13
¡
xc+ ¡ ec+ ¡ xc0 + ec0 ¡ yc (s+ ¡ s0)

¢

= d13
¡
xc+ ¡ ec+ ¡ xc0 + ec0 ¡ yc (s+ ¡ s0) + (xc0 ¡ xc0 ¡ ec0 + ec0 ¡ s0yc + s0yc)

¢

=24 d13 (¡xc0 + ec0 + s0yc ¡ xc0 + ec0 + s0yc)
= ¡2d13 (xc0 ¡ ec0 ¡ s0yc) :
(M:2) :

d13
¡P

h2H+ egh ¡ P
h2H0 egh

¢
= d13

¡P
h2H+ gh ¡ yc

¡P
h2H+ sh ¡ P

h2H0 sh
¢¢

=25 d13y
g (1¡ s0 + s+) = 2d13s0yg:

(M:3) :

d13p
cyc

¡P
h2H+ sh ¡ P

h2H0 sh
¢
+ dm3p

cyc

= [d13 (s+ ¡ s0) + dm3] pcyc:
To summarize, we have

(M:1) d13 (x
c
0 ¡ ec0 ¡ s0yc) = 0

(M:2) d13s0y
g = 0

(M:3) [d13 (s+ ¡ s0) + dm3] pcyc = 0
:

Therefore, if d13 = 0; then, using (M:3) ; and recalling that pgyg 6= 0; dm3 = 0
and also d = 0; a contradiction.

To get d13 = 0, it must be that either
1. for all H0 µ H it is the case that

P
h2H0 (xch ¡ ech ¡ shyc) 6= 0, or

2. for all H0 µ H it is the case that
P

h2H0 sh 6= 0:
24We used tha fact, from market clearing, xc

+ ¡ ec
+ + xc

0 ¡ ec
0 ¡ yc = 0:

25We used tha fact, from market clearing, g ¡ yg = 0:
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The …rst condition can be proved to hold true and the second condition
is clearly true, generically in the space of economies and as long as H0 6= ;:
Observe that it cannot be that H0 = H:

The case in which H0 = ; is analyzed below:
If H0 = ;, then equations (2:1) and all terms related to household 2 in

the system disappear, and we get the following system.

(1:1) C ¡d13
p

du1
D1
x

12 1 ¡d13
pg

du1
D1
G

du3
D3
G

(3:1) C ¡d33
p

du3
D3
x

(3:2) 1 d13
pg

¡d33
pg

(M:1) C¡ ¡d13
ezn1

¡d33
ezn3

(M:2) 1 ¡d13
eg1

¡d33
eg3

M7 H+ ¡d13
s1(bp¤by)¤

¡d33
s3(bp¤by)¤

dm3
(bp¤by)¤

M8 1

:

Using the …rst order conditions of households’ problems, we can rewrite the
…rst part of this system as:

(1:1C) 1 ¡d13 du1¸1

(1:2) 1 ¡d13 du1¸1 du3
¸3

(3:1C) 1 ¡d33 du3
¸3

(3:2) 1 d13 ¡d33

: (21)

Using (1:1C) in (1:2) ; we get

(1:1C) 1 ¡d13 du3¸1

(1:2) 1 du3
¸3

(3:1C) 1 ¡d33 du3
¸3

(3:2) 1 d13 ¡d33

: (22)

From(1:1) ; d13 = du1¸1:
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>From (3:2) ; d13 = d33:
>From (3:1C) ; d33 = du3¸3:
>From (1:2) ; du3 = 0:
Therefore, d13 = d33 = du1 = du2 .
Finally with (M:3) ; and recalling that pgyg 6= 0; dm3 = 0 and also d = 0;

we get a contradiction.

6 Appendix. Di¤erential Analysis on the Equi-
librium Manifold

The starting point of the analysis is a function whose zeros describe equilibria:

F : ¥n1 £££ U ! Rn1; F : (»; µ; u) 7! F (»; µ; u) ;

where ¥n1 is an open subset of Rn1, the set of endogenous variables, £ is the
set of the exogenous variables, and U is the utility function space.

Then some new variables ¿ 2 T ´ Rm are added. T is the set of the
planner’s tools. The function

F1 : ¥
n1 £ T £££ U ! Rn1; F1 : (»; ¿ ; µ; u) 7! F1 (»; ¿ ; µ; u)

describes the equilibrium ”with planner intervention”, and the function

F2 : ¥n1 £ T ! Rp; F2 : (»; ¿) 7! F2 (»; ¿ )

describes the constraints on the planner intervention. De…ne

eF : ¥n1 £ T £££ U ! Rn1+p´n; eF : (»; ¿ ; µ; u) 7! (F1 (»; ¿ ; µ; u) ; F2 (»; ¿ )) :

The set T of tools can be written as T = T1 £ T2 = Rm¡p £ Rp; with
(¿ 1; ¿ 2) 2 T; and where ¿ 1 can be interpreted as the vector of independent
tools and ¿ 2 as the vector of dependent tools.

Step 1. There exists ¿ 1 such that for each (µ; u) 2 ££ U

f» 2 ¥n1 : F (»; µ; u) = 0g
=

n
» 2 ¥n1 : 9! ¿ 2 such that eF (»; ¿ 1; ¿2; µ; u) = 0

o (23)

That is, we have ”An equilibrium without planner intervention is an equilib-
rium with planner intervention when the planner decides not to intervene”.
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In fact, we want to study the e¤ects of changes in ¿ 1 around ¿ 1:
Finally, G describes the goals of the planner:

G : ¥n1 £ T £££ U ! Rk; G : (»; ¿ ; µ; u) 7! G (»; ¿; µ; u) :

Step 2. For every u 2 U ; there exists an open and full measure sub-
set £u of £ such that for every µ0 2 £u and for every »0 2 ¥ such that
eF (»0; ¿1; ¿ 2; µ; u) = 0;

rank D(»;¿2)
eF (»0; ¿ 1; ¿2; µ; u) is full.

Usually, the above result follows from the fact that D(»;¿2)
eF (»0; ¿1; ¿ 2; µ; u) is

�
D»F1 D¿2F1
D»F2 D¿2F2

¸
;

and, from a Regularity Lemma, D»F1 has full row rank in an open and full
measure subset of £u, the fact that D»F2 = 0; and that D¿2F2 has full row
rank.

De…ning

bg : T1 ! Rk; bg : ¿1 7! G (» (¿ 1) ; ¿ 2 (¿1) ; ¿ 1) ;

we want to show that in an open and dense set of economies dbg¿1 is onto
and, therefore, bg is locally onto around ¿ 1: As explained in Citanna, Kajii
and Villanacci (1998), that condition is implied by the following one.

There exists an open and dense subset S¤ µ £ £ U such that for every
(µ0; u0) 2 ££ U and for every »0 2 ¥n1 such that eF (»0; ¿ 1; ¿ 2; µ; u) = 0

rank
h
D(»;¿) eF (»0; ¿ 1; ¿ 2; µ; u)

i
(n1+p+k)£(n1+m)

= n1 + p + k:

The above condition implies that it must be

m ¸ p + k;

i.e.,

(number of tools ¸ (number of constraints on planner intervention) +
(number of goals)

(24)
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or
m¡ p ¸ k;

i.e., (number of independent tools)¸ (number of goals).
The above statement is equivalent to showing that for (µ; u) 2 S¤ the

following system has no solutions (»; c) 2 ¥n1 £ Rn1+p+k :

8
><
>:

eF (»; ¿1; ¿ 2; µ; u) = 0

cT
h
D(»;¿)

³
eF;G

´
(»; ¿ ; µ; u)

i
= 0

cT c¡ 1 = 0;

;

or, using condition (23), that the following system has no solutions:
8
><
>:

F (»; µ; u) = 0

cT
h
D(»;¿)

³
eF;G

´
(»; ¿ ; µ; u)

i
= 0

cT c¡ 1 = 0:

: (25)

Step 3. Openness of S¤:
Since

M ´ f(»; µ; u) 2 ¥£££ U : system (25) has a solution at ¿ = 0g

is closed, it is su¢cient to show that the following function is proper:

pr : F¡1 (0) ! ££ U ; pr : (»; µ; u) 7! (µ; u) :

Step 4. Density of S¤:
We apply the Parametric Transversality Theorem to the function de…ned

by the left hand side of system (25). That amounts to show that the following
matrix has full row rank:

» c ; ®u

F (»; µ; u) D»F (»; c; µ; ua) B (»; c; µ; ua)

cT
h
D(»;¿)

³
eF;G

´
(»; ¿ ; µ; u)

i

cT c¡ 1
¤ A (»; ¿; c; µ; ua)

;

where ®u is an element of an Euclidean space which is a …nite dimensional
local parametrization of the utility function space.

45



Again from a Regularity result, D»F has full row rank in an open and
dense subset of £ £ U : Moreover, it is crucial to have B (»; c; µ; ua) = 0: If
that is the case, to get the result in Step 4, it is enough to show that the
following matrix has full row rank

A (»; ¿ ; µ; u) =

" h
D(»;¿ )

³
eF;G

´
(»; ¿ ; µ; u)

iT
N (®u)

c 0

#
:
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