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Abstract

In this paper, we perform factor analysis on yield curves estimated by Mc-

Culloch and Nelson-Siegel methods. We estimate factors using nominal volume-

weighted average monthly zero-coupon yields data from the Turkish Secondary

Government Securities market. Our main aim is to characterize each monthly

yield curve by three factors and forecast yield curves using time series proper-

ties of each factor. According to loadings of each factor, we label the factors

as level, slope and curvature, respectively. We also examine their explanatory

power in different sub-samples and explore their time series properties using an

unrestricted VAR. We next forecast yield curves using AR-GARCH and random

walk processes for the factors and compare their relative performance. We find

encouraging results regarding explanatory power of three factor model and su-

perior forecasting power of the AR-GARCH specification.
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1 Introduction

In this study, we characterize monthly yield curves in Turkey by estimating three

factors which evolve through time. The data used in the study are the estimated

one to fourteen month zero-coupon yields estimated by Alper et al. (2004) using

McCulloch (1975) and Nelson-Siegel (1987) methods. We first explain time series

properties of yield curves using factor analysis and then calculate out-of-sample

forecasts by recursive estimations of the three factors.

Factor analysis is a widely used method to describe correlation relation be-

tween variables. Its use in empirical finance literature started with Litterman

and Scheinkman (1991), who identified three factors explaining the variation in

returns of fixed-income securities with various maturities. They labelled these

factors as level, slope and curvature. Knez et al.(1994) extended the argument

of Litterman and Scheinkman (1991) to analyze money market returns using the

method developed by Joreskog (1967). Bliss (1997) emphasize hedging applica-

tions of factor analysis and included an extensive survey of literature.

Since factor analysis assumes that sufficient number of factors can charac-

terize a yield curve, one can forecast yield curves by forecasting the factors.

Duffee (2000) forecasted yields using affine term structure models. Diebold and

Li (2003) forecasted yields by interpreting parameters of Nelson-Siegel model as

level, slope and curvature factors.

We use a three-factor model and estimate monthly factors of yields between

January 1992- March 2004. Rather than using the change in yields like Bliss

(1997) or returns like Knez et al (1994), we use nominal yields because we aim

to forecast nominal yields. We first analyze explanatory power of factors across

time using a two year moving window. Next, we discuss time series proper-

ties of factors and estimate an unrestricted VAR to determine the persistency

and exogeneity of each of the three factors. We then identify a data generating

process underlying each factor and make forecasts using this specification. Fi-

nally we compare forecast results with the random walk model specification, as

a benchmark case.

We proceed as follows. Section 2 discusses the basics of factor analysis. Sec-

tion 3 explains the methodology and the dataset used in estimations. Section 4
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provides estimation and forecast results. Section 5 concludes.

2 Factor Analysis

In this section, we introduce the basics of factor analysis. First, we broadly

describe orthogonal factor model. Next, we discuss issues pertaining to factor

loading and factor estimations.

2.1 Orthogonal factor model

Essentially factor analysis determines the covariance among many variables in

terms of a few underlying, but unobservable random quantities called the factors.

Within the context of term structure of interest rates, factors are a chosen in order

to characterize the yield curve compactly.

Factor analysis applications to the term structure generally utilizes the or-

thogonal factor model. The orthogonal factor model assumes a linear relation-

ship between the observable random vector X, unobservable random variables

F1, F2, .....Fk, called common factors, and k sources of variation, called errors, at

each period. In matrix notation,

Xn×1 − µ = Ln×k · Fk×1 + εn×1 (1)

where E(X) = µ. The matrix L is the matrix of factor loadings. Each element

in the factor loading matrix gives information about the effect of a unit change

in a factor on the observed random vector X. For each period there are n

observations and (n + 1) · k unknowns, hence direct estimation is not possible.

Restrictions on the factors F , and the errors, ε, are needed to make estimation

feasible. Orthogonal factor model assumes

E(F ) = 0; E(ε) = 0; Cov(F ) = I; Cov(ε) = Ψ; Cov(ε, F ) = 0 (2)

where Ψ is a diagonal matrix. These assumptions of the orthogonal factor model

implies the following variance-covariance matrix for X

Σ = Cov(X) = LL′ + Ψ. (3)
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Since the factors, F , and the errors, ε, do not appear in the variance-covariance

matrix, Σ, the number of parameters is reduced and estimation of factor loadings,

L, and idiosyncratic variances, Ψ, becomes feasible.

The share of the variance of each element of X explained by the common fac-

tors is called the communality, and the remaining portion is called idiosyncratic

variance. Let σii denote the variance of the ith variable of X. Then σii can be

written as

σii = l2i1 + · · ·+ l2ik︸ ︷︷ ︸
communality

+ Ψi︸︷︷︸
idiosyncratic variance

(4)

where li is the ith row of factor loading matrix L and Ψi is the ith element of the

diagonal matrix Ψ.

When k > 1, there is always an ambiguity concerning the factor loadings.

This is because factor loadings L can be multiplied by any orthogonal matrix T

such that the resultant loading matrix L∗ = LT and L both give same commu-

nalities and factors with identical statistical properties. This indeterminacy can

be utilized to “rotate” the original solution until the loadings have meaningful

interpretation.

2.2 Estimation of loadings and factors

There are two popular methods of estimating factor loadings, namely, the Princi-

pal Component Method and the Maximum Likelihood Method. We use Maximum

Likelihood in our analysis since it is the only method for factor extraction that

provides us with basis for statistical testing procedures. We next explain the

maximum likelihood factor extraction method by sketching Joreskog’s (1967)

iterative procedure.

Given that X and F come from a joint normal distribution and the assump-

tions of orthogonal factor model are satisfied, the log likelihood function can be

written as

logL(L,Ψ) = −1
2
N [ln|LL′ + Ψ|+ tr(S(LL′ + Ψ))] (5)

where S is the sample variance-covariance matrix1. Joreskog (1967) shows that

1One may also use sample correlation matrix with standardized values of X
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when L′Ψ−1L = ∆ is diagonal, it is possible to find an L̂ that maximizes the

log-likelihood function for a given Ψ. L̂ is given by

L̂ = Ψ̂1/2Ê(Λ̂− I)1/2 (6)

where Ê is the n×k matrix of first k normalized eigenvectors of Ŝ = Ψ̂−1/2SΨ̂−1/2

and Λ̂ is the k × k diagonal matrix of corresponding eigenvalues.

The estimation process starts by choosing an initial value for Ψ̂ and using

equation (6) calculates L̂. Then, plugging this L̂ and starting value of Ψ̂ into

equation (5), finds iteratively Ψ̂ that maximizes the log-likelihood function. With

the new value of Ψ̂ calculates a new L̂ and continues this process until the

convergence is achieved, when the difference between successive values of L̂ and

Ψ̂ are negligible.

Once the estimated loadings are obtained, factors can be computed by

F = (L′Ψ−1L)−1L′Ψ−1(X − µ). (7)

3 Data and Methodology

The data set used in this study include the following two series: volume weighted

monthly average yield series and number of days to maturity for zero-coupon

bonds and bills traded in the Turkish government secondary securities market.

The zero-coupon yields used in this study are the one to fourteen month yields

estimated by McCulloch and Nelson-Siegel methods. The maximum maturity of

fourteen month is selected since scarcity of observations beyond this maturity

decreases the reliability of yield estimations.

We follow maximum likelihood iterative procedure developed by Joreskog

(1967) to estimate factor loadings. We use correlation matrix to estimate loadings

and standardized values of yields to estimate factors2(Figures 1-3). In order to

determine the number of factors likelihood ratio (LR) statistic as proposed in

2Factors estimated using correlation matrix or covariance matrix is essentially the same. Loadings

are different however transformation of loadings is possible, see Johnson and Wichern (2002) for

details.
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Joreskog (1969) is used. Factors are rotated so that loadings are identical on the

first factor3. As a result, a change in first factor shifts the whole yield curve.

Thus one may interpret the first factor as determining the level of the yield curve.

One may also interpret the remaining two factors as slope and curvature without

further rotation. Interpretation of factors will be discussed in section 4 in detail.

In order to assess the explanatory power of each factor across time, we use

a two year moving window as proposed by Bliss (1997). Starting with January

1992, we compute proportion of total sample variance due to each factor using

two year data windows, then move the window until the end of the dataset.

In order to explore the persistency of each factor, we estimate an unrestricted

VAR and interpret impulse-response functions.

We obtain one to twelve months ahead yield forecasts in the following man-

ner. First, we identify each factors’ time series property through Box-Jenkins

methodology. We find that each of the three factors for the two methods are sta-

tionary at level and follow ARIMA(3,0,0)-GARCH(1,1) process. We assume that

this is the underlying data generating process for each factor and proceed with

accordingly henceforth. Secondly, we calculate out-of-sample forecasting based

on assumed time series properties for each factor. Out-of-sample forecasts are

calculated using AR(3)-GARCH(1,1). We also calculated out-of-sample forecasts

for the random walk process, as a benchmark case, and compare them. Finally,

from forecasted factors, we calculate yields for maturities for one to fourteen

months, and compare the forecasting performance of random walk process to the

AR(3)-GARCH(1,1), across time as well as belonging to different maturities.

Out-of-sample forecasting is based on recursive estimations of factor loadings

and AR-GARCH terms. First we obtain one to twelve months ahead forecasts

for the sample January 1992- January 1997. Next we add one observation and

forecast using the updated loadings and AR-GARCH terms. We continue to

add observations and calculate one to twelve-month-ahead forecast errors until

March 2003.
3See Appendix for details on rotation of factors.
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4 Results

4.1 Estimation Results

Using both Nelson-Siegel and McCulloch methods, we estimate loadings for

yields. Based on the LR test statistics as suggested by Joreskog (1969), we con-

clude that three factor model is sufficient for the whole sample for both methods.

The p-values are large for the hypothesis that number of factors is three.

The paths of rotated factor loadings with respect to maturity given in Figures

4-5, provide strong evidence for labelling them as level, slope and curvature.

The first factor has same loadings on yields of all maturities, which implies that

increase in this factor will increase yields for all maturities equally. Hence we

interpret the first factor as the level of the yield curve. Loadings on the second

factor are small in magnitude for short maturities and large for magnitude in

long maturities, which implies that any increase in the second factor increases

yields for longer maturities relatively more. Hence, one can interpret the second

factor as the slope or steepness of the yield curve. Estimated loadings on the

third factor are smaller in magnitude for middle maturities; increase in the third

factor will increase short and long maturities more than middle maturities. Hence

the third factor can be interpreted as the curvature of the yield curve.

When we consider different sub-samples, we note that loadings on slope factor

are increasing with maturity and plots of loadings on curvature factor make

inverted humps in the middle maturities (Figures 6 and 7).

The cumulative proportion of total sample variance due to each factor and

for each window are presented in Figures 8 and 9. It can be observed that the

explanatory power of the level factor is lower during periods of high volatility.

The explanatory power of the level factor during 1994 and 2001 crises are lower

than the other periods. This is due to low correlation between yields during

periods of high volatility. During 1994 and 2001 crises, we observe high term

premiums, steep yield curves and almost no change in total explanatory power

of the three factors. The increase in the explanatory power of the slope and

curvature factors compensate the decrease in the explanatory power of the level

factor. This finding indicates the robustness of the three factor model.
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For the VAR analysis, we select four lags using the LR criteria. The impulse-

response functions given in Figures 10 and 11 exhibit persistence for the level and

the slope factors but no persistence for the curvature factor. In addition, level

factor has significant effects on slope and curvature factors. We observe that one

standard deviation shock to level factor increases slope factor for one period and

curvature factor up to four periods. We may interpret this observation as follows:

given the Turkish Secondary Government Securities Market for the period 1992-

2004, an adverse shocks to the economy that shift yield curve up in the current

period, not only increases the overall level of the interest rates but also makes

the yield curve steeper, affecting yields for longer maturities more in the next

periods. We also note that shocks to the slope factors do not affect level and

curvature and shocks to curvature factor do not affect any factor. These results

are robust to the choice of method for constructing monthly yield curves. We

conclude that level factor is the major determinant in forecasting future yield

curves for Turkey.

4.2 Forecast results

We follow Box-Jenkins methodology to identify, estimate and diagnose the time

series properties of the three factors. Following the identification stage, we dis-

cover that the data generating process for each of the three factors is ARIMA(3,0,0)-

GARCH(1,1). Nevertheless, we estimate each factor by assuming two different

data generating precesses, namely, the random walk, as a benchmark and AR(3)-

GARCH(1,1).

In order to compare the relative performances of AR-GARCH and random

walk models, we use the average RMSE (Root Mean Squared Error) of forecasts.

Table 1 shows average RMSE statistics for one to twelve-month-ahead forecasts.

For all forecasts horizons RMSE criterion is lower for the AR-GARCH specifi-

cation. Tables 2 and 3 show average RMSE statistics for different maturities.

Based on the RMSE criterion, we conclude that AR-GARCH specification is

superior for all forecast horizons and across all maturities.

Tables 4 and 5 present descriptive test statistics of the forecast errors for

selected forecast horizons and methods. Based on the Augmented Dickey-Fuller
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(ADF) test statistics, all series are stationary at the level. When we consider

autocorrelation LM test statistics for two lags, AR-GARCH forecast errors for

one-month-ahead forecasts have no autocorrelation whereas, for one year forecast

errors as well as for the forecast errors from random walk specification, we fail to

reject the null hypothesis of no autocorrelation. Hence we conclude that forecasts

from random walk specification as well as AR-GARCH specification for longer

forecast horizons may be suboptimal.

Diebold and Li (2003) conduct a similar analysis for the US market. They

compare the AR(1)-GARCH(1,1) specification and random walk and find incon-

sistent results concerning the forecasting performance of two models. Diebold an

Li (2003) also find out that forecast errors are autocorrelated hence suboptimal

for all forecast horizons. When compared to their findings, our AR-GARCH

specification outperforms random walk for all maturities and forecast errors are

serially uncorrelated in the one month horizon.

5 Conclusion

In this paper, we use Turkish Secondary Government Securities Market data

and characterize monthly yield curves by three factors which evolve dynamically

through time. We use one to fourteen months zero-coupon yields, estimated

by Alper et al (2004) using the McCulloch and the Nelson-Siegel methods. We

analyzed explanatory power of the three factor model, time series properties of

the estimated factor loadings and factors and finally, relative performance of one

to twelve-month-ahead forecasts of AR-GARCH and random walk models.

We conclude that three factor model is able to capture most of the variation

of monthly yield curves in Turkey. Additionally, the level explanatory power of

three factor model is robust to the choice of sub-samples in the dataset. During

periods of high volatility, explanatory power of slope and curvature factors in-

crease and the level factor decreases without affecting the sum total of the three

factors. This indicates that term structure models utilizing a single factor may

not perform sufficiently well even worse in periods of high volatility, whereas

three factor models procedures will perform equally good in stable and volatile

periods.
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The VAR analysis indicates persistent level and slope factors and significant

effects of level on slope and curvature factors. These results imply that shocks

that affects the level of the yield curve this period will affect both the level and

the shape in following periods.

One to twelve-month-ahead forecasts are calculated for both the AR(3)-

GARCH(1,1) and random walk specifications. The forecasts are based on re-

cursive estimations of AR-GARCH terms and factor loadings. We found that

AR-GARCH specification outperforms random walk for all periods and maturi-

ties. In contrast to the findings by Diebold and Li (2003), we usually obtain non

serially correlated forecast errors for the one-month-ahead AR-GARCH specifi-

cation.

Directions for further research include an analysis of the efficacy of the mon-

etary policy in Turkey by investigating the response of the term premium as well

as the estimated factors of the yield curve.
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Appendix

Rotation of factor loadings

We perform orthogonal rotation to interpret factors as level, slope and curvature.

To achieve this, we rotate the loadings so that the loadings on the first factor

is approximately same. We follow Bliss (1997) to create the rotation matrix T .

Since we have three factors, T is the product of three two-dimensional clockwise

orthogonal rotation matrices. Each matrix leaves one column of the loading

matrix L unchanged. The matrices we use for rotation are given as follows

T1 =




cos θ1 sin θ1 0

− sin θ1 cos θ1 0

0 0 1




T2 =




cos θ2 0 sin θ1

0 1 0

− sin θ2 0 cos θ2




T3 =




1 0 0

0 cos θ3 sin θ3

0 − sin θ3 cos θ3




T = T1T2T3 is the orthogonal rotation matrix. We minimize the variance of the

first column of L∗ = LT with respect to θ = {θ1, θ2, θ3}, subject to θ taking on

values in the closed interval [−π, π], using constrained optimization.
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Tables

Table 1: RMSE for different forecast horizons

Method Forecast Horizon (Months)

1 2 3 6 9 10 11 12

AR-GARCH 0.384 0.396 0.397 0.420 0.429 0.431 0.434 0.436

Random walk 0.418 0.467 0.442 0.508 0.537 0.543 0.499 0.500

Table 2: RMSE for one-month-ahead forecasts from different maturities

Method Maturity (Months)

1 2 3 6 9 10 12 14

AR-GARCH 1.290 0.726 0.562 0.290 0.262 0.293 0.376 0.461

Random walk 1.535 0.842 0.641 0.375 0.312 0.347 0.450 0.557

Table 3: RMSE for one-year-ahead forecasts from different maturities

Method Maturity (Months)

1 2 3 6 9 10 12 14

AR-GARCH 2.005 0.624 0.356 0.098 0.081 0.103 0.168 0.247

Random walk 3.246 0.868 0.483 0.183 0.119 0.146 0.243 0.368
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Table 4: Error statistics for one-month-ahead forecasts

AR-GARCH (McCulloch)

Maturity Mean RMSE ADF LM 1 lag LM 2 lag J-B

1 month -0.137 0.725 0.002 0.063 0.093 0.000

6 month 0.132 0.144 0.002 0.271 0.078 0.000

9 month -0.104 0.126 0.000 0.148 0.000 0.000

1 year -0.051 0.156 0.000 0.229 0.256 0.000

AR-GARCH (Nelson-Siegel)

Maturity Mean RMSE ADF LM 1 lag LM 2 lag J-B

1 month -0.068 1.290 0.000 0.767 0.896 0.000

6 month 0.008 0.290 0.000 0.532 0.238 0.054

9 month -0.026 0.262 0.000 0.799 0.411 0.000

1 year 0.001 0.376 0.000 0.076 0.056 0.000

Random walk (McCulloch)

Maturity Mean RMSE ADF LM 1 lag LM 2 lag J-B

1 month -0.288 1.164 0.000 0.062 0.000 0.000

6 month 0.129 0.152 0.030 0.000 0.000 0.000

9 month -0.075 0.129 0.000 0.003 0.000 0.000

1 year -0.001 0.228 0.000 0.024 0.000 0.000

Random walk (Nelson-Siegel)

Maturity Mean RMSE ADF LM 1 lag LM 2 lag J-B

1 month -0.088 1.535 0.000 0.000 0.000 0.000

6 month 0.009 0.375 0.000 0.000 0.000 0.000

9 month -0.014 0.312 0.000 0.001 0.000 0.000

1 year 0.019 0.450 0.000 0.111 0.000 0.000

J-B stands for p-value of Jarque-Bera test statistics.
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Table 5: Error statistics for one-year-ahead forecasts

AR-GARCH (McCulloch)

Maturity Mean RMSE ADF LM 1 lag LM 2 lag J-B

1 month -0.169 0.792 0.001 0.006 0.023 0.000

6 month 0.153 0.098 0.015 0.071 0.176 0.000

9 month -0.058 0.117 0.022 0.000 0.000 0.000

1 year -0.071 0.187 0.000 0.001 0.002 0.000

AR-GARCH (Nelson-Siegel)

Maturity Mean RMSE ADF LM 1 lag LM 2 lag J-B

1 month -0.089 1.222 0.012 0.002 0.000 0.000

6 month 0.057 0.176 0.000 0.002 0.001 0.098

9 month -0.018 0.138 0.008 0.000 0.000 0.000

1 year -0.026 0.274 0.003 0.001 0.000 0.000

Random walk (McCulloch)

Maturity Mean RMSE ADF LM 1 lag LM 2 lag J-B

1 month -0.349 1.222 0.010 0.004 0.011 0.000

6 month 0.178 0.176 0.000 0.314 0.086 0.001

9 month -0.010 0.138 0.007 0.002 0.003 0.000

1 year -0.019 0.274 0.000 0.008 0.029 0.000

Random walk (Nelson-Siegel)

Maturity Mean RMSE ADF LM 1 lag LM 2 lag J-B

1 month -0.114 1.802 0.005 0.009 0.003 0.239

6 month 0.037 0.428 0.000 0.098 0.229 0.982

9 month -0.005 0.345 0.006 0.000 0.000 0.000

1 year 0.005 0.493 0.002 0.000 0.001 0.000

J-B stands for p-value of Jarque-Bera test statistics.
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Figure 1: Rotated values of first factor for the yields estimated by two methods
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Figure 2: Rotated values of second factor for the yields estimated by two methods
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Figure 3: Rotated values of third factor for the yields estimated by two methods
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Figure 5: Rotated factor loadings for cont. compounded yields (Nelson-Siegel)
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Figure 7: Rotated loadings on factor 3 on January for two year windows

20

40

60

80

100

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

Level
Level and Slope
All Three Factors

%
V

ar
ia

nc
e

E
xp

la
in

ed

Figure 8: Percentage of variations in yields explained by three factors (McCulloch)
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Figure 9: Percentage of variations in yields explained by three factors (Nelson-Siegel)
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Figure 10: Impulse response graphs for rotated factors (McCulloch)
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Figure 11: Impulse response graphs for rotated factors (Nelson-Siegel)
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Figure 12: Variance decomposition graphs for rotated factors (McCulloch)
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Figure 13: Variance decomposition graphs for rotated factors (Nelson-Siegel)
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