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Abstract

In this paper we compute equivalent martingale measures when
the asset price return is modelled by a Lévy process. We follow the
approach introduced by Gerber and Shiu (1994).
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1 Introduction

The asset returns behavior have been studied by many authors, many
models have been suggested. Some of them have captured a reasonable part
of this behavior, such as fat tails, asymmetry, autocorrelation, etc. For a
survey about stylized facts see Rydberg (1997).

The importance of the correct specification of asset returns is very well
understood, due to the implications on derivative pricing and Value at Risk
calculations. In that sense a class of processes called Lévy processes have
shown to be a suitable context for the modelling of these asset returns, since
a Lévy process is a simple Markov model with jumps that allow us to capture
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a huge class of asset returns without the necessity of introducing extreme
parameter values. But the most important fact to consider discontinuous
processes, as Lévy processes, is the fact that diffusion models can not con-
sider the discontinuous sudden movements observed on asset prices, for that
reason Lévy processes have shown to provide a good fit with real data, as we
can see in Carr and Wu (2004) and Eberlein, Keller and Prause (1998). In
the other hand, the mathematical tools behind these processes are very well
established and known.

After defining the process that better captures the asset return behavior,
we can construct the set of equivalent martingale measures (hereafter EMM),
under the absence of arbitrage assumption. This set is very important, be-
cause knowing this set we know the set of derivative arbitrage free prices.

In this paper we show how to compute EMM when the asset return is
modelled by a Lévy process, using the approach introduced by Gerber and
Shiu (1994).

The paper is organized as follows: In Section 2, we describe the Lévy
processes and give some examples, in Section 3, we introduce the stock price
model. In Section 4, we discuss the characterization of EMM, in Section 5,
we show how to compute an EMM. In Section 6 compute the EMM in two
cases: when we have a diffusion with jumps and when we have a pure jump
processes. In the last sections we have the conclusions and an appendix.

2 Lévy processes

In this section we introduce the Lévy processes, this name is due to the fact
that was Paul Lévy, a French mathematician, who studied deeply processes
with independent and stationary increments, obtaining the most important
results and properties concerning these processes.

Definition 1 We say that {Y (t)}t≥0 is a Lévy process if

• Y has right continuous paths and left limits.

• Y (0) = 0, and given 0 < t1 < t2 < ... < tn, the random variables

Y (t1), Y (t2)− Y (t1), · · · , Y (tn)− Y (tn−1)
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are independent.

• The distribution of the increment Y (t)−Y (s) is time-homogenous, that
is, depends only on t− s.

Observe that the first condition implies that the sample paths can present
discontinuities at random times.

A key result in this context is the Lévy-Khintchine formula, that allow
us to obtain the characteristic function of any Lévy process {Y (t)}:

ϕY (t)(z) = E(eizY (t)) = etψ(z),

the function ψ is called characteristic exponent , and is given by:

ψ(z) = iaz − 1

2
c2z2 +

∫

IR

(eizy − 1− izy1{|y|<1})Π(dy),

where a and c ≥ 0 are real constants, and Π is a positive measure in IR−{0}
such that

∫
(1∧y2)Π(dy) < ∞, that is called Lévy measure and describes the

jumps of the process.

An important consequence of this result is that the triplet (a, c, Π) com-
pletely characterizes the distribution of the Lévy processes {Y (t)}. In other
words we must know if the process has tendency (a 6= 0), diffusion component
(c 6= 0) and jumps (Π 6= 0).

2.1 Examples

Now we present some examples of Lévy processes:

• Let {B(t)}t≥0 be a Brownian Motion, that is the increments B(t)−B(s)
are independent and stationary with normal distribution of 0 mean and
variance t− s. The characteristic function is given by:

ϕB(t)(z) = e−tz2/2,

that is ψ(z) = − z2

2
, from here the triplet that characterize the Lévy

process is (0, 1, 0), that is, we have just a diffusion.
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• Let {N(t)} be a Poisson process with parameter λ, for each t > 0 the
random variable N(t) has a Poisson distribution with parameter λt,
that is:

P (N(t) = n) = e−λt(λt)n/n!, (n = 0, 1, · · · ),
from here

EezN(t) =
∞∑

n=0

ezne−λt (λt)n

n!
= e−λt

∞∑
n=0

(ezλt)n

n!
= eλt(ez−1). (1)

The characteristic exponent is given by:

ψ(z) = λt(ez − 1) =

∫

IR

(ezy − 1)Π(dy), where Π(dy) = λδ1(dy),

here δ1 is the Dirac delta measure, all the mass is concentrated in the
point 1. Then, the triplet of this process is (0, 0, λδ1), we have a process
with a finite number of jumps in a finite time interval (finite activity).

• Diffusion with Jumps: Let {Xt} be a process defined by:

Xt = at + cB(t) +

N(t)∑

k=1

Zk, t > 0.

where a e c are constants, {Bt} is a Brownian Motion, {N(t)} is a Pois-
son process with parameter λ and {Zn} is a sequence of independents
and identically distributed random variables, with distribution F (x).
Moreover, W,N, Z are mutually independent. Now, we find ψ:

EezXt = eaztEezcW (t)Eez
∑N(t)

k=1 Zk = et(az+c2 z2

2
+λ

∫
IR(ezy−1)F (dy)),

then ψ(z) = az +c2 z2

2
+

∫
IR

(ezy−1)Π(dy), where Π(dy) = λF (dy). Our
process has the triplet (a, c, λF ), that is we have trend, continuous part
and a finite number of jumps in a finite time interval.

In these examples was relatively easy to find the characteristic exponent,
due to the simple structure of jumps, that is we consider just finite activity
processes, but when we consider infinite activity processes (infinite number of
jumps in a finite time interval) the calculation can be hardly, due to the fact
that we need to make an analytic integration. Fortunately, for the huge class
of Lévy processes considered in the literature, the characteristic exponent
have been already computed. Now we can used this class of processes to
model asset prices.
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3 Stock Price Model

We consider a risky asset called stock. We denote by S(t) the stock price at
each time t ∈ [0, T ], T < ∞. The evolution of this price is modelled by the
following equation:

dS(t) = S(t−)[ρtdt + σtdY (t)], S(0) ∈ (0,∞). (2)

In this model the sources of risk are modelled by a Lévy process Y (t), 0 ≤
t ≤ T, and this process is defined on a given complete probability space
(Ω,F ,P ) and denote by F = {F(t), 0 ≤ t ≤ T} the P− augmentation1 of
the natural filtration generated by Y :

FY (t) = σ(Y (s), 0 ≤ s ≤ t), 0 ≤ t ≤ T.

The positiveness of the stock price will be analyzed in the next section. The
interest rate {r(t) : 0 ≤ t ≤ T}, is assumed finite, the appreciation rate
{ρ(t), 0 ≤ t ≤ T}, and the volatilities {σ(t), 0 ≤ t ≤ T} are deterministic
continuous functions.

4 Equivalent Martingale Measures

An EMM is an absolutely continuous probability measure with respect to P
that makes the discounted price process a martingale. Under absence of arbi-
trage the existence of EMM have been extensively studied, the most general
result is due to Delbaen and Schachermayer (1994), they studied the impli-
cations of absence of arbitrage when the price process is a semimartingale,
and Lévy processes are semimartingales. In this paper we will not discuss
the existence of EMM, we will suppose that they exist. But, under minor
assumptions, it is easy to verify that the set of EMM in not empty, moreover,
since most of the Lévy processes present random jumps there can be more
than one EMM.

Assuming that there a no arbitrage we describe the set of EMM, to do that
we use some properties of Lévy processes. From the Lévy-Ito decomposition
we know that all Lévy processes must be a linear combination of a standard

1The augmented filtration F is defined by F(t) = σ(FY (t) ∪N ), where N = {E ⊂ Ω :
∃G ∈ F with E ⊆ G,P(G) = 0} denotes the set of P-null events.
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Brownian Motion ({B(t)}) and a quadratic pure jump process2 {N(t)} which
is independent of the Brownian Motion B(t), then

Y (t) = cB(t) + N(t),

Now assume that3

E [exp(−bY (1))] < ∞, ∀b ∈ (−b1, b2)

and ∫

[|x|≥1]

e−bxdΠ(x) < ∞, ∀b ∈ (−b1, b2)

Where 0 < b1, b2 ≤ ∞. The first assumption said that Y (t) has all moments
finite and the second is technical and will let us separate integrands. With
this in mind we can return to the jumps and transform N(t) into:

N(t) = M(t) + at,

where {M(t)} is a discontinuous martingale and a = EN(1), as a conse-
quence the original process can be written as

Y (t) = M(t) + cB(t) + at. (3)

Now we can use the Generalized Ito’s Lemma4 to obtain the solution of
equation (2):

dS(t) = S(t−)[ρtdt+σtdY (t)] = (aσt +ρt)S(t−)dt+σtS(t−)(cdB(t)+dM(t))

When the coefficients ρt and σt are deterministic continuous function the
solution of this equation is given by the Doléans-Dade exponential5:

S(t) = S(0)exp





t∫

0

σsdY (s) +

t∫

0

(
ρs − c2σ2

s

2

)
ds





∏
0<s≤t

(1+σs∆Y (s))e−σs∆Y (s),

2A process X is said to be a quadratic pure jump process if 〈N〉c ≡ 0, where 〈N〉c
is the continuous part of its quadratic variation 〈N〉. Remember that 〈N〉 is the process
such that (N(t))2 − 〈N〉t is a martingale.

3E(·) denote the expectation with respect to P
4See appendix.
5See Jacod and Shiryaev (1987)
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with (3) we obtain:

S(t) = S(0)exp





t∫

0

cσsdB(s) +

t∫

0

cσsdM(s) +

t∫

0

(
aσs + ρs − c2σ2

s

2

)
ds





·
∏

0<s≤t

(1 + σs∆M(s))e−σs∆M(s), (4)

to ensure that St ≥ 0, a.s. ∀t ∈ [0, T ], we need that

1 + σt∆M(t) ≥ 0, ∀t ∈ [0, T ]

If we assume the convention ‘σ > 0’, we only need that the jumps of M(t)
be bounded from below, i.e. ∆M(t) ≥ − 1

σt
, it means that we consider only

“semi-fat tailed” distributions as Poisson, Gamma, Hyperbolic and Normal
Inverse Gaussian and we eliminate processes with heavy tails, it is worth
noting that the stable distributions (without including the Gaussian case)
were eliminated when we supposed that Y (t) has all moments finite.

Now we can characterize all the absolutely continuous measures with re-
spect to P, and then we can find necessary and sufficient conditions for these
measures to be EMM. This is a very technical part and we discuss it in the
appendix.

Our main concern now is how to compute in a very fast way one of these
EMM. In the next section we present one way to do that.

5 Gerber and Shiu Approach

In this section we present the approach introduced by Gerber and Shiu
(1994). Using a parameter θ ∈ IR we define a new probability by:

dPθ
t

dPt

= Zθ(t) = e{θYt−t log ϕ(θ)}. (5)

Where φ(θ) = EeθY (1). When the stock price process has constant coeffi-
cients, Gerber and Shiu (1994) prove that for a given constant r it is possible
to find a solution θ of the following equation:

r = log

(
φ(θ + 1)

φ(θ)

)
. (6)
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Then we can verify that the process Ŝ(t) = e−rtS(t) is a martingale under
Pθ,i.e. Pθ is an EMM. Moreover, the original process is still a Lévy process
under this new probability and is called the Esscher transform of the original
process. In our model we consider time dependent functions, then we consider
the generalized Esscher Transform:

dPθ
t

dPt

= Zθ(t) = e
{

t∫
0

θsdY (s)−
t∫
0

log φ(θs)ds}
,

we can prove that this new probability is an EMM for some θs. Since, we
can verify that equation (7) has an unique solution for which φ(θs) < ∞
and θs ∈ (−b1, b2) ∀s,

−c2σsθs + aσs + ρs − rs + σs

∫

IR

x(e−θsx − 1)Π(dx) = 0, (7)

we can see that in fact the measure obtained from this solution is an EMM
by taking K(s, x) = exp(−θsx), k(s, x) = −θsx and Rs = −cθs in equation
(15) in section 8.2.

Although, this choose can be arbitrary, we can said that this measure
minimize relative entropy6 with respect to P, i.e. this EMM is the EMM
closest to P in terms of its information contents, since P contains information
about the behavior of the market, but of course another criteria to choose
EMM can be used.

6 Examples

In this section we compute the EMM for two cases: A diffusion with jumps
and a Pure jump process, we make this choice, since the pure diffusion case
is very well understood, remember that Black and Scholes used the following
EMM for the geometric Brownian motion case:

dQ

dP
= e

(
r−µ

σ
Bt− (µ−r)2

2σ2 t

)

.

The presence of jumps in the stock price model will affect the density of the
EMM as we will see in the examples below.

6See appendix.
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6.1 Brownian Motion and Two Jumps process

We consider the following parameter σ = 36% and ρ = 0 in (2), and r = 16%.

Now assume that N(t) = N1(t)−N2(t)
2

, where Ni is a Poisson process with rate
1, so:

• Π = δ− 1
2

+ δ 1
2

• a = EN(t) = 0

Finally take c = 1. Then, the triplet of this process is (0, 1, Π). Now we
apply the approach presented in the last section to find an EMM, we obtain
the parameter θ that satisfy equation (7):

−0.36θ − 0.16 + 0.36

∫
x(e−θx − 1)(δ− 1

2
+ δ 1

2
)(dx) = 0,

reducing this expression, we have:

−θ − 4/9 +
e−

θ
2 − e

θ
2

2
= 0,

the solution of this equation is θ∗ ≈ −0.2959. In equation (5):

Zθ∗(t) = e{θ
∗Yt−t log φ(θ∗)},

we have also Y (t) = B(t) + N(t) and

φ(θ) = EeθB(1)+θN(1)

= EeθB(1)EeθN(1)

= EeθB(1)EeθN1(1)/2Ee−θN2(1)/2,

where the first equality is due to the independence of B(t) and N(t) and the
second is due to the fact that N1(t) and N2(t) are independent. Now, we use
the expected value of a Log-normal random variable and equation (1) with
λ = 1 and t = 1, to obtain:

φ(θ) = e
θ2

2 e(eθ/2−1)e(e−θ/2−1)

= e

(
θ2

2
+eθ/2+e−θ/2−2

)
,

then, log(φ(θ∗)) = 0.0657. From here we have

Zθ∗(t) = e{−0.2959B(t)−0.2959N(t)−0,0657t}, (8)

This is the density of the EMM.
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6.2 Normal Inverse Gaussian Process

We consider the parameters σ = 1 and ρ = 0 in (2) and a Normal In-
verse Gaussian distribution for the jump component7 that is N(1) has a
NIG(α, β, µ, δ) distribution, which has the following density:

nig(x; α, β, µ, δ) =
αδ

π
exp{δ

√
α2 − β2 + β(x− µ)}

K1

(
α
√

δ2 + (x− µ)2
)

√
δ2 + (x− µ)2

,

α, δ ≥ 0, |β| ≤ α, µ ∈ IR

where K1 is the modified Bessel function of the third kind. The Lévy measure
is given by:

Π(x) =
δα

π|x| exp{βx}K1(α|x|),

and we consider a Lévy process with the following triplet (0, 0, Π), that is
Y (t) = N(t), this type of process is called a Pure jump process. From here
we have

φ(θ) = EeθN(1) = exp(µθ + δ[(α2 − β2)1/2 − (α2 − (β + θ)2)1/2]. (9)

Then, in equation (6), we have

r = µ + δ[(α2 − (β + θ)2)1/2 − (α2 − (β + θ + 1)2)1/2], (10)

to obtain the parameter θ, we use the parameters obtained by Fajardo
and Farias (2002) for Brazilian index Ibovespa. The parameters are,

(α, β, µ, δ) = (31.9096,−0.0035, 0.0233, 0.0012)

Assuming r = 13%, the solution of equation (10) is θ∗ ≈ 80.65. Replacing
this values in equation (9), we obtain:

φ(θ∗) = e{0.0233∗80.65+0.0012∗[(31.90962−0.00352)1/2−(31.90962−(−0.0035+80.65)2)1/2]}

= 324.27

7We make this choice, since Eberlein et all. (1998) and Barndorff-Nielsen, O.E. (1998),
showed that this process has a good fit with real data.
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Now in (5), we have the density of the EMM:

Zθ∗(t) = e{80.65Y (t)−324.27t}.

From the fact that NIG distributions are closed under convolutions, we
have Y (t) ∼ nig(α, β, tµ, tδ) and from the fact that under the change of
measure (Zθ∗) the process N is still a Lévy process and N(1) still has a
NIG distribution, with the same α, δ and µ, but β∗ = β + θ∗, that is
the new density is nig(31.91, 80.65, 0.0233, 0.0012). We use the convolu-
tion property to obtain the distribution of Y (T ), that is, it has a density
nig(31.9096, 80.65, 0.0233T, 0.0012T ), from here, depending on the maturity
T , we can compute expectations under the EMM in order to obtain deriva-
tive prices.

In comparison with the EMM obtained in the Black and Scholes model
we can see that jumps are also present in the density of the EMM. In the
case of pure jump process we have just jumps in the density.

As we said there can be many EMM, the complete abstract characteriza-
tion is given in the appendix.

7 Conclusions

In this paper we have used a Lévy process to model asset price returns, which
allow us to capture more stylized facts from real data. Then, we have shown
how to compute EMM using the approach introduced by Gerber and Shiu
(1994). We compute the EMM in two cases, of course many other examples
can be done. For a discussion about which type of jumps can be observed in
asset returns see Aı̈t-Sahalia (2004) and Huang and Wu (2004).

Interesting processes do not considered in this paper are processes with
dependent increments and non-time-homogenous processes, with these pro-
cesses we can model the autocorrelation observed in the square and absolute
returns of the stocks and consider more flexible structures for implied volatil-
ities on option prices, facts that can not be modelled with Lévy processes.
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8 Appendix

8.1 Generalized Ito formula

For any measurable function f(t, x) we have

∑
0<s≤t

f(s, ∆Ns) =

t∫

0

∫

IR

f(s, x)L(ds, dx), (11)

and for any C2 function f , we have the Generalized Itô’s formula for càdlàg
semimartingales X1, ..., Xn:

df(X1
t , .., Xn

t ) =
∑

i

fi(X
1
t− , .., Xn

t−)dX i
t +

∑
i,j

1

2
fij(X

1
t− , .., Xn

t−)d[X i, Xj]ct

+f(X1
t , .., Xn

t )− f(X1
t− , .., Xn

t−)−
∑

i

fi(X
1
t− , .., Xn

t−)∆X i
t .

With fi = ∂f
∂xi

, fij = ∂2f
∂xixj

and [X i, Xj]c the continuous part of the mutual

variation8 of X i and Xj.

8.2 Equivalent measures

The process N(t) has a Lévy decomposition: Let L(dt, dx) be a Poisson
measure on IR+×IR\{0} with expectation (or compensator) measure dt×Π
9, then:

N(t) =

∫

[|x|<1]

x(L((0, t], dx)− tΠ(dx)) +

∫

[|x|≥1]

xL((0, t], dx) (12)

+tE

[
N1 −

∫

|x|≥1

xΠ(dx)

]
.

The following step consists in characterizing all the measures that are
absolutely continuous with respect to P, to this end let:

M(dt, dx) = L(dt, dx)− dtΠ(dx),

8For more details see Shiryaev (1999), Ch. III, 5C.
9∀B ∈ IR+ × IR \ {0}, L(B) has Poisson distribution with parameter (dt×Π)(B)
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then

Mt =

t∫

0

∫

IR

xM(ds, dx).

Now two useful results:

Lemma 1 Let Rt and K(t, x) be a previsible and a Borel previsible pro-
cesses10 respectively. Suppose that

E(

t∫

0

R2
sds) < ∞,

and K ≥ 0, K(t, 0) = 1 ∀t ∈ IR+. Let k(t, x) be another Borel previsible
process such that

∫

IR

[K(t, x)− 1− k(t, x)] Π(dx) < ∞,

Define a process Zt by

Zt = exp





t∫

0

RsdBs − 1

2

t∫

0

R2
sds +

t∫

0

∫

IR

k(s, x)M(ds, dx)

−
∫

[0,t)×IR

[K(s, x)− 1− k(s, x)]Π(dx)ds





∏
0<s≤t

K(s, ∆Ns)e
−k(s,∆Ns).

Then Z is a local martingale with Z0 = 1 and Z is positive if and only if
K > 0.

Proof See Chan (1999).¤ The following Theorem is a Girsanov’s type The-
orem, that tell us how the triplet of the process change when we make a
change of measure

10a Process Kω(t, x) is said to be a Borel previsible function or process if the process
t 7→ Kω(t, x) is a previsible function for fixed x and the function x 7→ Kω(t, x) is Borel-
measurable for fixed t.
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Theorem 1 Let Q be a measure which is absolutely continuous with respect
to P on {FT}. Then

dQ

dP

∣∣∣
FT

= ZT ,

where Z is as in the lemma 1, for some R,K and k for which EZT = 1.
Moreover under Q, the process

B̂t = Bt −
t∫

0

Rsds, (13)

is a Brownian Motion and the process N(t) is a quadratic pure jump process
with compensator measure given by dtΠ̂t(dx) with

Π̂t(dx) = K(t, x)Π(dx),

and constant part given by

ât = EQN(t) = at +

t∫

0

∫

IR

x(K(s, t)− 1)Π(dx)ds.

Proof: See Chan (1999).¤ An implication of this results is that under Q
the process N(t) can be represented as

N(t) = M̂t + at +

t∫

0

∫

IR

x(K(s, t)− 1)Π(dx)ds,

with

M̂t = Mt −
t∫

0

∫

IR

x(K(s, t)− 1)Π(dx)ds. (14)

This process is a Q−martingale and it is easy to see that ∆M̂t = ∆Mt.
Now let

Ŝt = exp


−

t∫

0

rsds


 St,
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be the discounted price process. Replacing the processes Bt and Mt in the
equation (4) by their respective Q−versions, we obtain:

Ŝt = S0exp





t∫

0

cσsdB̂s +

t∫

0

cσsdM̂s +

t∫

0

(
aσs + cσsRs + ρs − rs − c2σ2

s

2

)
ds

+

t∫

0

σs

∫

IR

x(K(s, x)− 1)Π(dx)ds





∏
0<s≤t

(1 + σs∆M̂s)e
−σs∆M̂s .

A necessary and sufficient condition for Ŝt be a Q−martingale is the existence
of R and K > 0 a.s. for which :

cRs + a +
ρs − rs

σs

+

∫

IR

x(K(s, x)− 1)Π(dx) = 0 ∀s, (15)

and EZt = 1, ∀t > 0. Since the process

exp





t∫

0

cσsdB̂s +

t∫

0

σsdM̂s −
t∫

0

c2σ2
s

2
ds





∏
0<s≤t

(1 + σs∆M̂s)e
−σs∆M̂s ,

is a Q−martingale.

8.3 Minimizing Relative Entropy

As we said the new measure obtained using the Esscher transform minimize
entropy, to see this remember the definition of entropy:

IP(Q) = EQ

[
log

dQ

dP

]
,

where Q is any absolutely continuous measure with respect to P, with Lemma
1 we have

IP(Q) = EQ


1

2

T∫

0

R2
sds +

T∫

0

∫

IR

[K(s, x)(log K(s, x)− 1) + 1]Π(dx)ds


 ,
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where Q depends on the choice of K and R, and these functions have to
satisfy equation (15). We can show 11 that this minimum is obtained when
K = exp(−xσλ) and R = −cσλ, where λ is the lagrange multiplier associated
to the constraint (15), this can justify the choice of the measure associated
to θ = σλ.
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