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Abstract

Using vector autoregressive (VAR) models and Monte-Carlo simulation methods
we investigate the potential gains for forecasting accuracy and estimation uncertainty
of two commonly used restrictions arising from economic relationships. The first re-
duces parameter space by imposing long-term restrictions on the behavior of economic
variables as discussed by the literature on cointegration, and the second reduces pa-
rameter space by imposing short-term restrictions as discussed by the literature on
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serial-correlation common features (SCCF). Our simulations cover three important
issues on model building, estimation, and forecasting. First, we examine the per-
formance of standard and modified information criteria in choosing lag length for
cointegrated VARs with SCCF restrictions. Second, we provide a comparison of fore-
casting accuracy of fitted VARs when only cointegration restrictions are imposed and
when cointegration and SCCF restrictions are jointly imposed. Third, we propose a
new estimation algorithm where short- and long-term restrictions interact to estimate
the cointegrating and the cofeature spaces respectively.

We have three basic results. First, ignoring SCCF restrictions has a high cost in
terms of model selection, because standard information criteria chooses too frequently
inconsistent models, with too small a lag length. Criteria selecting lag and rank
simultaneously have a superior performance in this case. Second, this translates into
a superior forecasting performance of the restricted VECM over the VECM, with
important improvements in forecasting accuracy — reaching more than 100% in extreme
cases. Third, the new algorithm proposed here fares very well in terms of parameter
estimation, even when we consider the estimation of long-term parameters, opening up
the discussion of joint estimation of short- and long-term parameters in VAR models.

Keywords: Reduced rank models, model selection criteria, forecasting accuracy.

JEL Classification: C32, C53.

1 Introduction

One of the objectives of time-series econometrics is to identify relationships between eco-
nomic variables and then use them for estimation and forecasting. In theory, an identified
relationship should improve the accuracy of forecasts through the reduction of estimation
uncertainty. However, in practice, the ultimate gains of this procedure may be small or
nonexistent, because of the risk of model misspecification at several stages of model selec-
tion; see the discussion on cointegration testing in Lin and Tsay(1996), and the discussion
on VAR-order and rank selection in Vahid and Issler(2002). A reason for model misspeci-
fication in the context of VAR models is given in Johansen(1991) and Gonzalo(1994), who
point out that VAR-order selection may affect proper inference on cointegrating vectors
and rank.

In this paper, we take vector autoregressive (VAR) models, which have become the
“working horses” for macroeconometric studies, and investigate the potential gains for
forecasting accuracy and estimation uncertainty of two commonly used restrictions arising
from economic relationships. The first reduces parameter space by imposing long-term
restrictions on the behavior of economic variables as discussed by the literature on coin-
tegration after Granger(1981), Engle and Granger(1987), and Johansen(1988, 1991). The
second reduces parameter space by imposing short-term restrictions as discussed by the
literature on serial-correlation common features (SCCF) after Engle and Kozicki(1993),
Vahid and Engle(1993, 1997) and Hecq, Palm and Urbain(2005).

There is a dichotomy between these two sets of rank restrictions, since cointegra-
tion restricts the low-frequency behavior of economic time-series and SCCEF restricts their
high-frequency behavior. One should expect that the gains of imposing cointegrating re-
strictions are realized for long-term forecasts of the series being modelled, whereas those
of imposing SCCF restrictions are realized for their short-term forecasts. Indeed, this is a



fundamental difference between them and it works toward the benefit of focusing on short-
term restrictions. In the simulations of Engle and Yoo(1987), unconstrained VAR models
produced better short-term forecasts than cointegrated VARs. Despite this shortcoming,
the importance of cointegration for long-term forecasts was stressed by Lin and Tsay on a
theoretical basis. However, their simulation and empirical results were not very encourag-
ing, something Clements and Hendry(1995) concur with. Because forecasting uncertainty
at long horizons can be large, time-series models are generally most useful for forecasting
at short horizons. Hence, imposing short-term constraints are a way of improving the
effectiveness of time-series models at horizons where they are most useful.

As far as we are aware of, this paper is the first to make a direct forecasting com-
parison between the consequences of imposing short- and long-term constraints on VAR
models. Although there has been a considerable effort examining the importance of coin-
tegration restrictions in VAR, forecasting — see, among others, Engle and Yoo, Clements
and Hendry, Lin and Tsay, Hoffman and Rasche(1996), Christoffersen and Diebold(1998),
Diebold and Kilian(2001), and Silverstovs, Engsted and Haldrup(2004) — with the ex-
ception of Vahid and Issler there has been no thorough examination of the forecasting
importance of common-cyclical features on the same scale. Even in the latter, data was
assumed to be I (0), therefore only SCCF restrictions were considered as a potential source
for improving forecasting accuracy. There is an urge to make this direct comparison, since
initial simulation and empirical results using cointegration restrictions have been discour-
aging while the opposite has happened when SCCF restrictions were considered.

As shown by Vahid and Issler, short-term SCCF restrictions impose linear constraints
in forecasts at every forecasting horizon. If we apply this logic to a cointegrated VAR with
SCCF restrictions, we conclude that it should outperform a cointegrated VAR in every fi-
nite horizon. Moreover, in the infinite horizon, their performance should be identical, since
both impose the same long-term restrictions on the data. Despite that, there is always the
risk of imposing false restrictions, which calls for conservative behavior: it is presumably
better to use a possibly inefficient model instead of risking using an inconsistent model
in the search for parsimony. Recent Monte-Carlo results in Vahid and Issler challenge
this view with respect to VAR models with common cycles. They argue that the cost
of ignoring common-cycle restrictions is more than just the efficiency loss. This happens
because the usual practice in applied work of choosing lag length by information crite-
ria will severely underparameterize in this case. For example, even for a relatively large
sample size of 200 observations, the Akaike, Hanan-Quinn, and Schwarz criteria choose
respectively a model with too small a lag length 55.7%, 95% and 99.9% of the time. For
such misspecified models, there is little to learn from theory, except that all estimates are
inconsistent.

Our simulations cover three important issues on model building, estimation, and fore-
casting. First, we examine the performance of standard information criteria (/C (p)) in
choosing lag length p for cointegrated VARs with SCCF restrictions. The consequences
of this performance for the estimation of long-term parameters is also investigated. We
also compare the performance of IC (p) with that of information criteria that chooses
simultaneously lag length and the rank of the dynamic system r — (IC (p,r)). Second,
we provide a comparison of forecasting accuracy of fitted VARs when only cointegra-
tion restrictions are imposed and when cointegration and SCCF restrictions are jointly
imposed. For the sake of completeness, we also make comparisons with the forecasting



performance of unrestricted VARs. These comparisons take into account the possibility of
model misspecification in choosing the lag length of the VAR, the number of cointegrating
vectors, and the number of coefeature vectors. Third, independently from Hecq(2005), we
propose a new estimation algorithm where short- and long-term restrictions interact to
estimate jointly the cointegrating and the cofeature spaces respectively. This algorithm
follows closely the idea of weak-form reduced-rank structure suggested by Hecq, Palm and
Urbain(2005). There, the reduced-rank structure of the lagged coefficient matrices in the
cointegrated VAR is different from that of the adjustment coefficient matrix. The first
pass of our algorithm only imposes weak-form SCCF restrictions, without imposing any
restrictions on cointegrating rank. Based on first-pass restricted estimates, the long-run
impact matrix is estimated without any rank constraints. The algorithm runs until there is
convergence of short- and long-term coefficient estimates. At the end, it is possible to con-
duct inference on the cointegrating rank for the system. Here we inverted the usual order
of estimation of VAR coefficients. The usual practice is to estimate cointegrating (rank)
vectors first, and then, conditional on them, estimate the short-term dynamics of the sys-
tem. Here, we estimate first the short-term dynamics, with no long-term constraints, only
conducting cointegration inference and estimation at the end. We also provide a smaller
simulation study examining the accuracy in estimating cointegrating vectors using this
new algorithm, which allows a comparison with the method proposed by Johansen (1988,
1991).

The current study extends the work of Vahid and Issler in two dimensions. First,
the unrestricted model being analyzed here is a cointegrated VAR, whereas in Vahid and
Issler unit-root and cointegration restrictions were ignored, i.e., series were I (0). Since
cointegration is a common occurrence in macroeconomic models and data, we provide
more relevant information about VAR models with SCCF restrictions than initial studies.
Second, we propose a new estimation algorithm, where short- and long-term restrictions
interact to estimate jointly the cointegrating and the cofeature spaces respectively. Because
of its superior performance in small samples, we believe that it has the potential to form
the basis of a future estimator for cointegrated VAR coefficients in the presence of SCCF
restrictions.

The outline of the paper is as follows. Section 2 states the reduced-rank restrictions
that common-cyclical fluctuations impose on the parameters of cointegrated VAR models,
and discusses their consequences for forecasting. Section 3 describes in detail the new
estimation algorithm proposed here for VAR models with short- and long-term restrictions.
Section 4 describes our Monte-Carlo design; see also the discussion in the Appendix on
DGP selection. Section 5 presents the simulation results and Section 6 concludes.

2 Theory and forecasting with restricted VAR models

2.1 Theory

In this section we present a brief discussion of VAR models with cointegration and SCCF
restrictions. We focus on the autoregressive representation. For a complete discussion
readers are referred to Engle and Granger(1987), Johansen(1991), Vahid and Engle(1993)
and Hecq, Palm and Urbain(2005). We assume that y; is a n x 1 random vector generated



by a Vector Autoregression (VAR) of order p:

yr = A1ys—1+ ...+ Apyi—p + €1 (1)

P
Cointegration implies that the matrix I — >  A; must have less than full rank, which
i=1
imposes cross-equation restrictions on the VAR, which can be written as a Vector Error-
Correction model (VECM):

Ayt = AT Ayt,1 + ... + A;—l Aytprrl + ’YO/ Yt—1 + €t (2)
Ay
= (4] AR 4] : +e (3)
Ayt—pﬂ
'y
= BZ 1 +ey, (4)
where v and « are full rank matrices of order n x ¢, ¢ is the rank of the cointegrating
P P
space, — (I— ZA,) =/, and A] = — 37 A; ,j =1,...,p— 1. Cointegrating
i=1 i=j+1

vectors are stacked in /. Vahid and Engle(1993) show that the VAR may have additional
cross-equation restrictions if there are SCCF (or common cycles):

Definition 1 (Vahid and Engle(1993)) The variables in y: are said to have SCCF if
there are n —r linearly independent vectors, stacked in an (n —r) x n matriz & , with the
property that:

a A = 0,i=1,2,---,p—1, and,

(n—r)xn
a v = 0.
(n—r)xn

Matrix & stacks the cofeature vectors, which can be rotated as:

e
a:x(n—r) .

Considering rotations of & Ay; as n —r equations in a simultaneous-equation system, and
completing the system by adding the unconstrained VECM equations for the remaining r
series, we obtain,

Ay
I,., a ] 0 0 0
e Ayt = |: . o * :| ’ + vy, (5)
[ 0 I, Ay Ap_l ~ Ayy_pin
&'yi1
= O Zi 1+, (6)

where A7* and v* represent the partitions of A} and 7 respectively, corresponding to the
Infr a*/

bottom 7 reduced form VECM equations, and v; = [ 0 I

] €¢. Notice that the



matrix ®* will be of reduced-rank r, and:

a  d*=0.

(n—r)xn

0 I
invertible, allowing to recover (2) from (5), and the latter has fewer parameters than the
former.

Hecq, Palm and Urbain(2005) consider what they call weak-form serial-correlation
common features. In this case, only restrictions coming from the short-run dynamics
hold, &’A¥ =0,i=1,2,--- ,p— 1, but not &’y = 0.

. . . . Ly @] .
It is easy to show that (5) parsimoniously encompasses (2), since [ ner @ ] is

Definition 2 (Hecq, Palm and Urbain(2005)) The variables in y; are said to have
SCCF in weak-form if there are n—r linearly independent vectors, stacked in an (n —r)xXn
matriz & , with the property that:

o Af=0,i=1,2,---,p—1.

(n—r)xn

The conditions listed by Vahid and Engle are labelled SCCF in strong-form.

It is straightforward to write the dynamic structure of the system in the case of weak-
form SCCF:

Ay
L, a*’] [0 e 0 :
Ay = * * * ’ +U7 7
R CAE D Agyn | T
QY1
= q)** Zt,1 + Vt, (8)
,.y*

where v = 7}< . Notice that ®** will not be of reduced-rank.

Cointegrated VARs such as (2) can be estimated using OLS with a two-step procedure
replacing o/y;—1 by @’y;—1, where @’ stacks super-consistent estimates of cointegrating
vectors; see Johansen and Lin and Tsay(1996). Estimation of (5) and (7) is performed by
full-information maximum likelihood (FIML), because errors and regressors are correlated.
Likelihood-ratio tests can be used to do inference on the number of cofeature vectors &’'.
These can be based on squared canonical correlations between Ay, and Z;_1. In previous
work, SCCF tests were performed conditional on cointegration using @’y;_1. Under correct
specification, log likelihood-ratio tests would have a limiting x? distribution; see Vahid and
Engle.

2.2 Forecasting

In our discussion about forecasting, we consider the basic VECM (2), with or without
the restrictions imposed by SCCF in strong-form. Denote by h the forecasting horizon
(h > 0) and by Ay yp); and g4 p); respectively the linear projections of Ay, p and yiyp
on information dated ¢ and earlier. The h-step ahead forecasts of Ay; using (2) is:

Aypne = ATA Y qqnpe + oo AL A Y pinp + YO Yy g hpe- 9)

6



As long as long-term constraints (cointegration) hold in the data, there will be linear
constraints in forecasting as h — oco. If we pre-multiply (9) by (' 'y)*l v/, and take limits
as h — 00, Ay pe — E(Ay) = 0, and we obtain the well known result that cointegrating
linear combinations of level forecasts are colinear,

hlir{:oa' Yt—1+nt =0, (10)

although level forecasts of individual series in y;,p; diverge. Obviously, for any finite h
forecasts o Yi—14+x)¢ Will not be colinear. Forecasts Ay, ; are well defined for all h, but
they are not colinear for any h finite.

If short- and long-term constrains (cointegration and strong-form SCCF) hold in the
data, not only (10) holds as h — oo, but forecast Ay, ,p; will also be colinear at any finite
horizon h. This can be seen by pre-multiplying (9) by &/,

&'Aywh“ =0, (11)

because &’A¥ = 0, i = 1,2,--- ,p— 1, and &'y = 0. This point was stressed by Vahid
and Issler(2002) to show the importance of SCCF for forecasting with VAR models. We
usually build econometric models to forecast at small or medium h, since forecasting
uncertainty associated with Ay, p; gets close to B (Ay;Ay;) as h — oo. In these cases,
only short-term constraints help, as is the case with SCCF in VAR models.

Suppose that we are not interested in forecasting differences, but levels. One may be
tempted to argue that only restrictions on levels matter, such as cointegration. However,
this is not true. Suppose we start at ¥y = E(Ay;) = 0, and want to forecast y; h-periods
into the future:

h
Yern = > Ay (12)
i=1

Its forecast, conditional on information ¢ and earlier is given by:
h
Yt+nlt = Z Aypiift- (13)
i=1

Pre-multiplying (13) by & we obtain,

a/yt+h|t =0, (14)

showing that there is colinearity for y;,; at every horizon h.
If instead we impose long-term restrictions coming from cointegration, we obtain:

h
o Y gy = Z Ayprn # 0,
i=1

but,
lim o Yi—1+hit = 0.
h—o0



3 Model selection criteria and estimation of reduced-rank
VAR models

One of the objectives of this paper is to compare the forecasting performance of VAR
models when short- and long-term restrictions to the data are considered. To make our
results useful to the applied researcher using VAR models for forecasting, we follow the
modal strategy in applied work for model selection and estimation. As is well known,
most applied research do not consider the presence of SCCF, despite being commonplace
testing for cointegration and imposing cointegration restrictions in VAR models used for
forecasting. However, when data contain short- and long-term restrictions, ignoring the
former may have an impact on the final selection of VAR models, which will be poten-
tially misspecified because the chosen lag length is too short, leading to inconsistent VAR
estimates. Of course, this will impact the forecasting performance of VAR models in this
context, which is one of the issues we study here.

When dealing with potentially cointegrated VARSs, a usual procedure in applied work is

2
to estimate first the long-term coefficient matrix — (I - A¢> = 7va’. The estimate of o/
i=1

is then used to obtain estimates of short-term coefficient matrices A} and of 7. There is a
hierarchy in estimation going from long-term coefficient matrices to short-term coefficient
matrices, which typically entails the following steps:

1. Using standard information criteria (AIC, HQ or SC), the lag length of the VAR in
levels is chosen for subsequent cointegration analysis.

2. Using the lag length chosen in step 1 above, cointegrating rank and vectors are
estimated using the full-information maximum likelihood (FIML) method proposed
in Johansen(1989, 1991).

3. Conditional on the results of cointegration analysis, a final VECM is estimated and
multi-step ahead forecasts are computed.

According to Johansen(1991), the critical issue of model selection for FIML estimates
occurs when selecting the lag length of the VAR. As shown by Gonzalo(1994), the cost
of overparameterizing is small. This is what we should expect a priori, since estimating
a VAR with higher order than necessary only hurts efficiency but not the consistency of
parameter estimates. Therefore, the real issue is the cost of underparameterizing, as noted
above. In this case, we obtain inconsistent estimates of the VAR coefficient matrices, which
yields inconsistent estimates of cointegrating vectors and rank.

Clements and Hendry(1995) and Lin and Tsay(1996) showed that the appropriate
choice of the number of unit-roots in the system is critical for out-of-sample forecasting.
Moreover, for small and medium sample sizes, Vahid and Issler(2002) showed that, for VAR
models with SCCF restrictions and I (0) variables, the performance of information criteria
choosing lag length is downward biased toward choosing underparameterized models with
too short a lag length. If this result carries through to the case of cointegrated VARs,
then steps 1, 2, and 3 above may be a bad strategy for model selection. In this case,
given results in Clements and Hendry and Lin and Tsay, it will also be a bad strategy for
forecasting, and that is why we worry about it here.



In our context, because we want to design a model selection strategy that avoids the
problem of underparameterizing our estimated VAR, we will consider a new strategy for
lag-length selection. Instead of using standard information criteria for choosing the lag
length of the VAR in levels, we follow Vahid and Issler choosing simultaneously lag order
p and the number of common cycles r (i.e. the rank of ®*), by minimizing the following

criteria!,

AIC(p,r) = Z ln(l—)\i(p))—l—%><7’><(n(p—1)+q+n—7“) (15)
i=n—r+1

HQ(r) = 3 Mm(-N{)+ T xrx (nlp—1)+qtn—r) (16)
i=n—r+1

SC (p,r) = Z ln(l—)\i(p))—l—#xrx(n(p—l)—i—q—i—n—r), (17)
i=n—r+1

where n is the dimension of the (number of series in the) system, r is the rank of the
VEC model, (p — 1) is the number of lagged differences in the VECM, T is the number of
observations, and ); are the sample squared canonical correlations between Ay and the
set of regressors Zy_1.

It is obvious from (15)-(17) that all these information criteria depend on ¢ as well.
Therefore, we need to design a strategy for setting ¢ in selecting (p, ). Here we use the idea
in Hecq, Palm and Urbain(2005) of SCCF in weak form, where & A¥ = 0,i=1,2,--- ,p—1,
but &'y = 0 does not hold. Notice that cointegration implies rank reduction for 7, because
v is a full-rank matrix of order n x ¢, and ¢ < n. Hence, not imposing any cointegration
constraints on the rank of 7 is equivalent to consider ¢ = n. In this case, - is square and
invertible. Hence, &'y = 0 only accepts a trivial solution for &', and &'+ = 0 does not
hold. In selecting (p, ), when ¢ = n, we do not impose &'y = 0 by construction, although
&’Ar=0,i=1,2,--- ,p— 1, may hold, depending on the final choice of (p,r). Therefore
we implicitly use the idea of weak-from SCCF put forth by Hecq, Palm and Urbain.

Once p and r are chosen, we propose estimating the short-run dynamic matrices A}
without imposing any constraints on cointegrating rank ¢g. We do this by running a
regression of Ay; and of Ay, ¢ = 1,2,--- ,p — 1, on y;_1, respectively, saving the
respective set of residuals. We then run a reduced-rank regression of the first set of
residuals on the second, estimating the short-run dynamic matrices AY,¢=1,...,p—1, on
a first pass. These matrices will all have rank r. Using these first-pass short-run coefficient
matrices, we then estimate — (I — Zp: AZ), without imposing any rank restrictions on it.
This allows getting second-pass estirznaites of A7, i=1,...,p—1, since we can now compute

P
residuals of Ay; and of Ay, 4,9 =1,2,---,p—1, on — (I -3 AZ-) yt_1, respectively,
i=1

P
where the latter is the first-pass estimate of the long-run matrix — <I -> AZ). These
i=1

second-pass matrices will all have rank r as well. This algorithm iterates until convergence.

"When variables are not cointegrated ¢ = 0, and these criteria are the same as those suggested in
Liitkepohl(1993, p. 202).



Then, we can compute the canonical correlations between A y; and ;1\}‘ Ay 1+ ... +

— P

Ay 1 Ayrpa— (1 - 231 A; | y:—1, where hats denote estimates obtained after convergence
1=

of the algorithm. At this stage, it is possible to test for cointegration, determining the rank

P
of — (I -3 Ai> and the corresponding cointegrating vectors using Johansen’s method
i=1

(Trace test, at 5% significance).

At the end, this algorithm produces a choice of p, r, and ¢, which can be used for
estimation and forecasting using a VECM with short- and long-term restrictions. Its
forecasting performance can be compared with that of a regular VECM obtained from
the first procedure described in this section (currently the most used in applied research),
where SCCF restrictions are ignored in every modelling stage. Notice that there is the risk
of misspecification when both procedures are used. For the first procedure, the critical
issue for misspecification is the lag-length selection by standard information criteria, as
pointed out by Vahid and Issler. For the second, although lag-length selection may still
generate a misspecified model, this risk is reduced. However, there is the potential for
misspecification in the choice of (p,r) and later in the choice of g.

The new algorithm proposed here inverts the hierarchy in estimating short- and long-
term restrictions in VAR models. Because cointegrating vectors are super-consistent, the
usual practice in the literature is to first estimate cointegrating vectors and cointegrating
rank. Using super-consistent estimates of cointegrating vectors, and an estimate of the
cointegrating rank, VECM estimation is performed conditional on them. Under correct
specification, short-term coefficient matrices will converge at rate VT. Our procedure
first estimates short-term coefficient matrices after using preferred lag-length selection
criteria. This reduces the chance of choosing too small a lag length for the VAR. Based
on these short-term estimates, and on unrestricted long-term estimates of — (I — Zp: Ai> ,
we finally test for cointegration. Hence, long-term coefficients are a function of shértl—term
coeflicient matrices estimates, inverting the usual practice in the literature. This, we hope,
will open up the discussion on joint estimation of short- and long-term coefficient matrices
estimates.

4 Monte-Carlo design for VARs with short- and long-term
restrictions

One of the critical issues in any Monte-Carlo study is that of diversity of Data Generating
Processes (DGPs), which allows sampling a wide spectrum of the parameter space. One of
the limitations in our context is that the VAR contains short- and long-term restrictions,
which must hold simultaneously in every DGP. If we fix the cointegrating and the cofea-
ture vectors, o and « respectively, the VAR coefficients must then obey simultaneously

P
— (I - Ai> =/, dAF =0,i=1,2,--- ,p—1, and &'y = 0. Also, the eigenvalues
i=1

of the companion matrix of the VAR have all to be on or inside the unit circle (or all
the eigenvalues of the companion matrix of the VECM have to be inside the unit circle).
The simulation exercise would be very time consuming if we simply fix o and & and then

10



randomly select A;, i =1,2,--- , p, verifying whether these restrictions hold for every one
of these choices. Although this procedure will certainly sample a wide spectrum of the
parameter space, with current PC technology, it will take more than 50 years to be com-
pleted, and is obviously ruled out. There are two alternatives. The first is to fix o and &
and then solve analytically what are restrictions the elements of A;, ¢ = 1,2,--- , p, must
obey in order for the eigenvalues of the companion matrix of the VECM to be inside the
unit circle. This will somehow limit the search on the parameter space, but is feasible.
The only problem is that the number of series n and the number of lags p cannot be too
big, otherwise finding the analytical solution becomes a time-consuming problem. This is
the main procedure used in our simulation study. The alternative is to fix the restricted
VECM coefficients (equation (5)), varying them slightly, verifying whether the eigenval-
ues of the companion matrix of the VECM are inside the unit circle in every case. This
procedure imposes greater limits on sampled parameter space, but is the most practical
one, and it is used when we investigate the performance of the new algorithm proposed
above.

To make the Monte-Carlo simulation manageable, we propose using as DGP a three-
dimensional VAR, i.e., n = 3. Models that consider the real side of the economy are
often three-dimensional. For example, King et al. (1991) estimate a VAR including
output, consumption, and investment in order to test the real-business-cycle model of
King, Plosser and Rebelo (1988). The first parameter we set in the Monte-Carlo design is
the lag length p = 3 of the VAR (the lag length of the VECM is p — 1 = 2). This choice
allows either under- or over-parameterization of the VAR model, which is an important
ingredient of any VAR Monte-Carlo study as stressed by Vahid and Issler(2002):

Y = Aryp—1 + Aoys—o + Azyr_3 + &4 (18)

Next, we set the number of cointegrating vectors to one, i.e., ¢ = 1, and the number of
cofeature vectors to two, i.e., n —r = 2, or r = 1. The cointegrating and cofeature vectors
are respectively:

1.0 1.0 0.1
o= 0.2 and o= | 0.0 1.0 . (19)
-1.0 0.5 —-0.5

Conditional on these values, we then choose the number of free parameters remaining
in the coefficient matrices A, Ao, and As in order to keep all the eigenvalues of companion
matrix of the VECM inside the unit circle. Appendix A contains a detailed discussion of
the final choice of these free parameters, including analytical solutions.

The final number of DGPs in which ¢ = 1, and r = 2, satisfying (19), with eigenvalues
of the companion matrix inside the unit circle, was set equal to 100. For each of these
100 DGPs, we generated 1,000 samples of y;’s, by sampling random series €;’s. Fach of
these 1,000 samples had 1,000 observations. However, in all cases, to reduce the impact of
initial values on simulated series, we only used the last T' = 100 or T" = 200 observations
in running regressions. Therefore, our final results will be based on 1,000 samples of 100
different DGPs — a total of 100,000 different samples — of either 7' = 100 or T" = 200
observations.

As discussed in Vahid and Issler, it is worth sorting results by signal-to-noise ratio (or
system R? measures). Here, we selected two different set of parameters with the following
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characteristics: the first has the median of the system R? measure between 0.4 and 0.5,
with 3% larger than 0.6 and none greater than 0.7. The second has the median of the
system R? between 0.7 and 0.8, with 22% larger than 0.8, none greater than 0.9, and none
smaller than 0.7.

The Monte-Carlo procedure can be summarized as follows. Using each of our 100
DGPs, we generated 1,000 samples (once with 100, and again with 200 observations).
Then, we recorded the lag length chosen by traditional (full-rank) information criteria,
labelled IC (p): AIC(p), HQ(p) and SC (p)?, and the corresponding lag length chosen by
alternative information criteria, labelled IC (p,r): AIC(p,r), HQ(p,r) and SC (p,r), in
(15)-(17), with ¢ = 3.

For choices made using IC (p) we used Johansen’s(1989, 1991) trace test at 5% to
choose g and then estimated a VECM with no SCCF restrictions. Their out-of-sample
forecasting accuracy measures were recorded up to 16 periods ahead. For choices made
using IC (p,r), we used the algorithm described in detail in the last section to obtain a
triplet (p,q,r) in each case, with a resulting VECM estimated using SCCF restrictions.
Their respective out-of-sample forecasting accuracy measures were recorded up to 16 pe-
riods ahead. Out-of-sample forecasting accuracy measures were then compared for these
two types of VAR estimates.

4.1 Measuring forecast accuracy

The loss functions used here to compute forecasting accuracy are a blend of tradition,
such as the determinant of the mean-squared forecast error matrix at different horizons
(|JMSFE|) and the trace of the mean-squared forecast error matrix (TMSFFE), and of
modern loss functions that are invariant to linear transformation of forecasts, such as
Clements and Hendry’s(1993) generalized forecast error second moment (GFESM). The
excellent discussion in Lin and Tsay(1996) justifies the use of these two types of loss
functions in measuring forecast accuracy.

There is one complication associated with simulating 100 different DGPs. Simple av-
eraging across different DGPs is not appropriate, because the forecast errors of different
DGPs do not have identical variance-covariance matrices. Liitkepohl(1985) normalizes the
forecast errors by their true variance-covariance matrix in each case to get i.i.d. observa-
tions. Unfortunately, this would be a very time consuming procedure for a measure like
GFESM, which involves stacked errors over many horizons. Instead, for each information
criterium, we calculate the percentage gain in forecasting measures, comparing the full-
rank models selected by IC (p), with the reduced-rank models chosen by IC (p,r). The
percentage gain is computed using natural logs of ratios of respective loss functions, since

*Formulas for IC (p) are as follows:

AIC(p,7) = Z In(1— X (p)) + % X n2p, (20)

HQ@.r) = 3= X () + 2 ', ey
" InT 5

SC (p,r) = Zln(1-Mp))+T x n’p. (22)
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this implies symmetry of results for gains and losses. This procedure is done at every
iteration, for every DGP, and the final results are then averaged.

5 Monte-Carlo simulation results

5.1 Known lag order and cointegrating and cofeature ranks

In order to establish a benchmark, we first examine what are the potential gains of impos-
ing SCCF restrictions when all chosen models are correctly specified, i.e., we know the lag
order, cointegrating rank, and rank of ®*: (p,q,r). Cointegration vectors are estimated
by FIML as proposed by Johansen (1988, 1991) for models that ignore SCCF restrictions.
Then, conditional on @', a VECM is estimated by OLS, equation-by-equation. For mod-
els that take into account SCCF restrictions, cointegrating vectors are estimated by the
iterative procedure discussed in Section 3. We also include a unrestricted VAR in levels
in the analysis, which is estimated by OLS, equation-by-equation.

Simulation results are presented in Table 1, allowing the following conclusions. First,
the result in Engle and Yoo(1987) that the VAR in levels outforecasts the VECM at
short horizons only happens when the system R? is high and does not seem to hold as
a general result for vector error-correction models. Indeed, it seems that the rule is that
the VECM outforecasts the unrestricted VAR in short and long horizons. Hence, the
strategy of presenting results according to the value of the system R? has an important
payoff — changing the conventional wisdom with regard to forecasting with VECMs at
short horizons. Second, the restricted VECM outforecasts the unrestricted VECM almost
everywhere. Percentage gains can be higher than 100% in some short-horizon cases, al-
though gains tend to decline as the horizon increases. This final result is what we should
expect a priori: a constrained model should forecast better than an unrestricted model
whenever these constraints are true, which is the case here. The only point of interest
is: by how much? The benchmark numbers obtained here in favor of the constrained
model are encouraging. Comparisons of the restricted VECM with the unrestricted VAR
come out in favor of the former almost everywhere as well, the exception being when the
system R? is high and the horizon is shortest. We next consider the possibility of model
misspecification in our simulation study.

5.2 Selection of lag and rank order and number of cointegrating vectors

We now examine the performance of standard information criteria, followed by Johansen’s(1988,
1991) cointegrating test in selecting the number of lags of the VAR in levels p and the
number of cointegrating vectors ¢ when the DGP is a VAR(3) with r = 1, and ¢ = 1.
Table 2 shows the frequency of choice of p and ¢ in 1,000 simulations of 100 trivariate
VARs with a low system R2. Table 3 shows the same when systems with high R?s are
considered.

We can draw the following conclusions from Tables 2 and 3. First, the total frequency
in which the true lag length p = 3 is selected (adding up row 3 for all three IC (p))
varies very little with respect to the system R?, being about 50%, 20%, and 2%, for
AIC (p), HQ (p) and SC (p), respectively, when T' = 100, and about 80%, 50% and 10%,
when T = 200. Although the true lag length and number of cointegrating vectors of
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the DGP is (3,1), it is never the mode in Table 2, and is rarely the mode in Table 3.
The performance of using IC (p) to select p and g is discouraging for HQ (p) and SC (p):
even when T = 200, and system R2s are high, (p,q) = (3,1) is selected only 44.22% and
8.31% of times, respectively. Despite that, the frequency in which (3, 1) is selected rises in
both directions (sample size and R? measure) as expected. Second, the AIC (p) criterium
selects more frequently VARs where the number of lags is overestimated than the other
criteria. This result is very similar to the one reported in Vahid and Issler(2002). Also,
in Tables 2 and 3, AIC (p) chooses the correct (p,q) pairs more often than the other two
criteria. The modal choice of the SC (p) criterium is a VAR(2) with one cointegrating
vector even when the number of observations is 200 and the system R? is high.

Table 4 shows the frequency of lag-rank-cointegrating vectors (p, r, q) selection in 1,000
simulations of 100 trivariate VAR(3) with = 1, one cointegrating vector and low system
R%. There are two steps in this selection: (i) chose the number of lags and rank simul-
taneously by AIC (p,r), HQ (p,r) and SC (p,r); and (ii) use this information to perform
Johansen’s cointegrating test to select the number of cointegrating vectors after applying
the algorithm described in Section 3. Table 5 shows the analogous results when a high
system R? is considered.

The following conclusions emerge from analyzing Tables 4 and 5. First, the total
frequency in which the true lag length (2 lags in differences) is selected (adding up row 2
for all three IC (p,r)) varies very little with respect to the R? of the system: it is about
60%, 67%, and 48%, for AIC (p,r), HQ (p,r) and SC (p,r), respectively, when T = 100,
and about 78%, 91% and 78%, when T" = 200. These results are equal or better than those
of standard information criteria IC (p). The mode for the selected lag length is always the
correct one — 2 lags in differences — except for SC (p,r). Second, the AIC (p,r) criterium
selects more frequently VARs where the number of lags is overestimated than the other
criteria. In both tables, HQ (p,r) chooses the correct (p, ¢, r) triplets more often than the
other two criteria, with SC (p,r) in second place. For high system R2s, the modal choice
of HQ (p,r) criterium is the correct one with a relatively high frequency. Third, for low
system RZ?s, and sample size 7' = 100, the true model is selected about 8%, 10%, and
8% of times using respectively AIC (p,7), HQ (p,7) and SC (p,r). For high system R?
measures, and sample size T = 200, these same frequencies are about 78%, 91% and 78%.

When we compare the results in Tables 2 and 3 with those of Tables 4 and 5, it becomes
apparent that using information criteria in selecting (p, ) jointly fares much better than
selecting p alone. In Tables 1 and 2 the true model with p = 3 and ¢ = 1 is selected
by AIC (p), HQ (p) and SC (p) respectively with frequency ranging from 8%-71%, 4%-
44%, and 1%-8%. The equivalent figures in Tables 4 and 5 for AIC (p,r), HQ (p,r) and
SC (p,r) are: 8%-66%, 10%-78%, and 8%-68%. The only instance when IC (p) performs
better than IC (p,r) is when AIC (-) is used. Even then, differences are rather small. The
direction in which IC (p) performs badly is also worrisome, since the rule is for IC (p) to
choose too small a lag length, leading to models with inconsistent estimates.

Overall, the results in Tables 2 to 5 confirm that, when data have cointegration and
SCCF restrictions, ignoring the latter has a high cost in terms of model selection. This
happens because applied researchers usually select lag length of VAR models using stan-
dard information criteria. However, as our simulation study confirms, SCCF restrictions
leads to selected VAR models with a number of lags that are generally smaller than true
ones, generating inconsistent estimates of the number of lags and of cointegrating vec-

14



tors. As discussed in previous theoretical and applied studies, if data have unit roots,
selecting them appropriately is critical for consistent estimation and forecasting efficiency;
see Johansen(1991), Gonzalo(1994), Clements and Hendry(1995) and Lin and Tsay(1996).
However, the latter is jeopardized by the traditional way of model selection under coin-
tegration and SCCF restrictions, which calls for a different approach — selecting lag and
rank simultaneously using IC' (p, ).

5.3 Forecasts

In this section, we compare the forecasting performance of three different estimation pro-
cedures for VARs containing short- and log-term restrictions. The first is to estimate
the system in levels with no restrictions using OLS, equation-by equation. Lag length is
selected using standard information criteria. The second is to select lag length using stan-
dard information criteria, later imposing long-term restrictions arising from cointegration,
and estimating a VECM. The third is to impose simultaneously short- and log-term re-
strictions in VECM estimation using the algorithm described in Section 3, after selecting
lag length and the rank of ®* simultaneously.

Tables 6 to 11 exhibit pairwise percentage improvement in forecasting for different
models, when we consider systems with low and high R%s. Numbers in boldface denote
the best information criterium for model selection when we use as loss function the trace
of the mean-squared forecast error (lowest value), while underlined numbers denote the
worst information criterium for model selection.

When we compare reduced-rank VECMs with unrestricted VECMs, we observe large
percentage improvements at short horizons. These are really impressive — as big as 138% —
when system R2s are high and 7' = 100. Even when R?s are low and 7' = 100, we observe
percentage improvements ranging from 7%-20% for reduced-rank VECMs over VECMs.

When we compare the VECM with the unrestricted VAR we observe that the former
fares better in general, although when system R2s are high, and the horizon is low, the
unrestricted VAR performs better. Unless one uses GFESM, as the horizon increases, the
percentage gains of the VECM over the unrestricted VAR increases, reaching more than
800% in some cases. Of course, this is a consequence of imposing long-term restrictions as
stressed by Engle and Yoo(1987). In Tables 8 and 9 there is a large forecasting improve-
ment over all horizons when the R? measure is low, opposite to the findings in Engle and
Yoo. Of course, this is reverted when R2s are high, showing that their results hold only
as a special case as discussed in Section 5.1.

It is hard to use the results in Tables 6 to 11 to choose overall the best information
criterium to use for lag-length selection. However, if one suspects that the data has SCCF
and cointegration restrictions, then the HQ criterium should be used if the system R?
is low, while AIC should be used if the system R? is high. The worst criterium to use
in the first case is AIC, while in the second case it is SC. Notice that using HQ avoids
selecting the worst models for forecasting, which may be a deciding factor in its favor. If
one is considering only long-term restrictions AIC should be avoided, since it produces the
largest loss overall. A strong candidate to be used here is the HQ criterium, especially if
the system R? is low.

Tables 10 and 11 show the total improvement of imposing short- and log-term re-
strictions — comparing the reduced-rank VECM with the unrestricted VAR. Gains are
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non-trivial at all horizons, reaching over 800% in some cases. The exception is when the
system R? measures are high and the horizons are lowest, although as it increases gains
can reach more than 600%.

Overall, it seems that considering appropriately constrained models helps in forecast-
ing. These gains can be important in short horizons, especially when high system R2s are
considered. As seen above, the gains in imposing long-term restrictions only materialize as
the horizon increases, while those of imposing short-term restrictions are usually obtained
at short-horizons. Because forecasting uncertainty at long horizons can be large, time-
series models are generally most useful for forecasting at short horizons. Hence, imposing
short-term constraints are a way of improving the effectiveness of time-series models at
horizons where they are most useful. This is one of the main points of our paper, which
is not stressed very often in the forecasting literature. The other is the comparison of the
gains arising from imposing short- and long-term restrictions in VAR estimation, which
came always in favor of imposing short-term restrictions, with or without considering the
possibility of misspecified models.

6 Estimation performance of the new estimation algorithm

Our last investigation is on the performance of the new estimation algorithm, described
in detail in Section 3. To save space, our simulation study will not be as broad as the
one presented above in the forecasting experiment. Instead of fixing a and «, solving
analytically for A;, i = 1,2,---,p, imposing the restriction that all the eigenvalues of
the companion matrix of the VECM to be inside the unit circle, we fixed the restricted
VECM coefficients (equation (5)), varying them slightly, verifying whether the eigenvalues
of the companion matrix of the VECM are inside the unit circle in every case. To limit
further the scope of our simulation study, we will assume that the lag length of the VAR
(p), the cointegrating rank (g) and the coefeature rank (n — r) are known with certainty.
Therefore, results here do not allow for model misspecification, and are consistent with
those presented in Table 1.

We will examine the mean-squared error (MSE) in estimating short- and long-term
coefficients in the VAR. In all DGPs, the VAR in levels is assumed to be of order 2, i.e.,
a VECM of order 1. The number of variables in the VAR was set equal to 3, i.e., n = 3,
and we have varied ¢ and r with all possible combinations: ¢ =1 and r =1, ¢ = 1 and
r =2, and ¢ =2 and r = 2. In order to summarize MSE information we stack respectively
short-term coefficients, long-term coefficients, and all coefficients in a vector, computing
the determinant of the MSE matrix |[MSE| as well as its trace (TTM SE). We also report
MSEs of individual coefficients.

First, MSE results were computed for VECMs, with cointegrating vectors estimated
by FIML using Johansen’s(1988, 1991) technique, imposing the true value of g. Other
coefficients were estimated by OLS, equation-by-equation. No reduced-rank structure for
®* is imposed in this case. Second, MSE results were computed imposing a reduced-
rank structure for ®*, using the algorithm described in detail in Section 3: first estimate
short-term coefficients imposing rank (®*) = r, later estimating — <I — Zp: Ai> using
short-term estimates, iterating until convergence. After convergence, we imzpése the true
value of ¢ in estimating the cointegrating vector and the components of v. We report the
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percentage gains in MSE measures of the second procedure over the first for every DGP,
finally averaging across all DGPs. We have 100 different DGPs, each with 1,000 different
simulations. Results are grouped by system Rs.

Table 12 (a and b) presents results for ¢ = 1 and r = 1. Here, rank reduction is the
highest possible, leading to a relatively high payoff of imposing rank restrictions in ®*.
As expected, estimation of short-term coefficients largely benefit from correctly imposing
r = 1. For high system RZ?s, percentage gains in TMSE are higher than 50% when
T = 100, and higher than 60% when T' = 200. For low system RZs, these numbers are
about 40%. What is interesting about Table 12, is the percentage gain on the TMSE
of long-term coefficients: with high system R2s, for 7' = 100 or T = 200 they are about
15%, showing that long-term coefficient estimation can also benefit from imposing valid
short-term restrictions. It also interesting to observe that + estimates benefit the most,
while for estimates of o/ the gains are more modest. This is a consequence of the fact that
estimates of o/ using FIML are super-consistent. When system R2s are low, there is a loss
of about 7% in estimating «; for 7' = 100, which reverts to a 4.86% gain for T" = 200.
Notice that results for |[MSE| compound variance and covariance gains, leading to much
higher percentage gains.

Table 13 (a and b) presents results for ¢ = 1 and r = 2, while Table 14 (a and b)
presents results for ¢ = 2 and r = 2. We should expect a smaller percentage gain because
there are not as many restrictions in ®* as in the case where r = 1. Still, in Table 13,
long-term coefficient estimates show an improvement in TMSE of 8.5% for T' = 100, when
system R?s are high, falling to 6.5%, when system R2s are low. Improvement in short-term
coefficient estimates are also sizable, despite the fact that we observe a few cases where
there is a loss in using the algorithm. In Table 14, we present long-term coefficients in
canonical echelon form, since the cointegrating rank is now 2. In this case, improvement in
TMSE for long-term coefficients are 19.79% for T' = 100, when system R2s are high, and
20.55%, when system R2s are low. Gains for short run coefficients measured by TMSE
can reach more than 200% when system R?s are low, and more than 300% when system
R?s are high.

Overall, it seems that the new algorithm performs very well not only in estimating
short-term coefficients but also in estimating long-term coefficients. This is a consequence
of the fact that long-term coeflicients are a cumulation of short-term coefficients. There-
fore, gains in estimating the latter can translate into gains in estimating the former. Fur-
ther research should focus on the long due issue of joint estimation of short- and long-term
parameter estimation when VAR models are subject to short- and long-term restrictions.

7 Conclusion

In empirical studies, common-cyclical features have been shown to exist for a variety of
macroeconomic data sets: Campbell and Mankiw (1989) find a common cycle between
consumption and income for most G-7 countries, Engle and Kozicki (1993) find common
international cycles in GNP data for OECD countries, Vahid and Engle(1993) and Issler
and Vahid (2001) find common cycles for macroeconomic aggregates, Engle and Issler
(1995) and Carlino and Sill (1998) find common cycles for sectoral and regional outputs
respectively, Issler and Vahid(2005) find common cycles in U.S. coincident series, and
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Hecq, Palm and Urbain(2005) and Hecq(2005) find common cycles for Latin American
GDPs. In all these articles, the dynamic representation of the data was a cointegrated
VAR. A natural question which then arises is the following: what are the consequences of
imposing short- and long-term restrictions in estimation and forecasting if a VAR is used
as the dynamic representation of the data? The objective of our paper is to answer this
question, hoping that the answer will be useful for model building.

In order to investigate these issues, we take VAR models, which have become the
“working horses” for macroeconometric studies, and investigate the potential gains for
forecasting and estimation uncertainty of imposing short- and long-term restrictions arising
from the existence of common cycles and cointegration. The environment of our study is
that of simulation, and our exercise is devised in such a way that the results are applicable
to an applied researcher which has access to a relatively small number of time-series of
observations, making parsimony a critical issue in model building.

In model selection and forecasting, we compare the behavior of the two strategies. The
first is widely employed in applied work: VAR order is selected by standard information
criteria IC' (p) and later used in testing for cointegration. The existence of common cycles
is completely ignored and forecasting is performed with a standard VECM. The second
takes into account short- and long-term restrictions in a novel way. In a first step, in-
formation criteria IC (p,r) are used to choose lag length and rank order simultaneously.
Next, weak-form SCCF restrictions on VECM coefficient matrices are used in devising a
new algorithm for joint estimation of short- and long-term parameters of the VAR. Fore-
casting is based on a final model taking into account these two sets of restrictions. We
also compare the estimation performance of these two strategies in model building, where
short- and long-term parameters are considered separately.

First, our results confirm that, when data have cointegration and SCCF restrictions,
ignoring the latter has a high cost in terms of model selection. This happens because IC (p)
chooses too frequently inconsistent models, with too small a lag length. Choosing lag and
rank simultaneously using IC (p,r) has a superior performance in this case, reducing
drastically the frequency in which inconsistent models are selected. Second, the superior
performance of IC (p,r) over IC (p) translates into a superior forecasting performance
of the restricted VECM over the VECM, with considerable gains in some cases. Our
conclusion is that, overall, there is a relatively large forecasting improvement for small
horizons when SCCF restrictions are accounted for. Results for systems with high R?
measures are really impressive. Third, the new algorithm proposed here fares very well
in terms of parameter estimation, even when we consider the estimation of long-term
parameters.

These and previous results on SCCF restrictions in VAR analysis call for a change in
focus in the literature on forecasting with these models. While in the past there has been a
considerable effort examining the importance of cointegration restrictions in VAR models,
there has been very little work examining the importance of common-cyclical features in
VAR analysis. We hope that our results and others will help changing the focus of the
literature towards SCCF restrictions.
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A VAR restrictions for the DGPs

Consider the following VAR(3) in levels:

Y = Aryp—1 + Aoys—o + Asyr_3 + &y,

which can be rewritten as the following VAR(1) process,

Ay; — (A + A3) —As 8l Ayi_1 £t
Ayp1 I3 0 0 Ayo |+ 0 |, (23)
o'y, —a' (As + A3) —d’A3 oy +1 &'y ey
a1l Q19 11 Y11
where, v&/ = (A1 + Ao+ A3 —3), a = | a1 ax |,a= | axa |,v=| Y |,
Q3; 032 asy V31
a%l G%Q a%3 a?l a§’2 a§’3
Ag = ‘151 a§2 a§3 and Az = a§1 ‘132 ‘133
agl 0%2 0%3 a%l 032 a§3
It is helpful to define,
Ay — (A2 +A43) —As Y £t
&= Ay | F = I3 0 0 andv,=| 0 |,
o'y —a/ (Aa+ A3) —d/A3 o'y+1 ey
to arrive at,
§=F& 1+t (24)

If we consider cointegration and common-cycle restrictions, the following relations hold:
Ga3, Ga3y Gadg
(i) &’A3 = 0 = A3 = | Ka3; Ka3, Ka3; |, where G = [RyK + Ra1], K =
3 3
@31 A3z a3z 1
(R32 — R31) / (Ro1 — Ra2), Rin = ay1/an1 and Rjp = agp/ans (i = 2,3),
Ga3, Ga3y, Ga3g
(ii) &/ (A2 + A3) =0=>d'A3 =0= Ay = | Ka3; Ka3, Ka3,

2 2 2
asy aszg ass

)

Gv31
(ii) @y =0=vy= | Ky
V31
(iv) o (A2 + A3) = [ (a3 +ad))S (a3 +ady)S (a3; +a;)S | and
o/ Az = [ a3 S a3yS a3sS ] , where S = a11G + a1 K + a1,
(V) &'y +1=r35+1.
The restrictions above imply that:

9

[ —G(a3, +a3;) —G(a3y+a3y) —G(a3s+azs) —Ga3, —Ga3, —Gazz  Gyy
—K (a3, +a3;) —K(a3y+a3,) —K(a3z+als) —Ka} —Ka3y, —Kajy Kygy

—(a3; + a3;) —(a3q + a3y) —(a33 + a33) —a3 —a3y  —ajs V31

F = 1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 0 1 0 0 0 0
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If all the eigenvalues of matrix F' lie inside the unit circle, then the VAR (24) is covariance-
stationary. The eigenvalue of the matrix F is a number A such that

|F' — \7| = 0. (25)
The solution of (25) is:

0 = N —[(1+755) — (a3 + a3 K +a,G) — (afs + a3 K +a5:G)] \°  (26)
— (a3s + a3, K + a3,G) N — (a35 + a3, K + a3,G) \*.

If we define Q = — [(1+73,5) — (a35 + a3, K 4+ a3, G) — (a33 + a3 K + a3,G)],
O = — (a33 + a3, K + a4 G) and ¥ = — (a3; + a3, K + a,G), (26) is:

A+ aX LN +uat=o. (27)
The roots of this polynomial are Ay = Ao = A3 = A\ =0, \s = A+ B — 2, Xg
Aw + Bw? — 2, A7 = Aw? —i—Bw——,where w:M A\/ © \2/b2+‘21;,

5= i/_% - ,2/b2 T2 0= 1(30-02) and b= o (20° — 900 4 270).

Using these restrictions we can guarantee that cointegration and SCCF restrictions
hold for well behaved VECMs being simulated.
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B Tables

Table 1
Percentage improvement in different forecast accuracy measures when the true restrictions (lags, rank and number of
cointegrated vectors) are imposed and the true models are trivariate (3,1,1).

Reduced-rank VECM over the Reduced-rank VECM over the
ECM AR in level .
Horizon VECM over VAR in levels VAR in levels VECM

(h) GFESM MSFE| TMSFE GFESM [MSFE| TMSFE GFESM MSFE| TMSFE

Low system R’ Measure
Sample size 100
1 5.11 5.11 1.67 1640  16.40 5.34 11.28 11.28 3.68
4 20.48 407.50  99.96 44.55 409.99 102.33 24.06 2.50 2.37
8 3339 63526 171.01 60.44 63599 172.38 27.06 0.73 1.37
12 44.08 769.22 21298 72.74  769.63 213.95 28.66 0.41 0.97
16 5473 866.74 242.75 84.61 867.05 243.51 29.89 0.31 0.76

Sample size 200
| 1.92 1.92 0.62 7.30 7.30 2.38 5.38 5.38 1.76
4 7.50 38137 93.96 17.99 382.16 94.99 1049  0.79 1.03
8 12.66 59471 161.02 2421 59491 161.59 11.56  0.20 0.57
12 16.12  719.71 200.69 28.26 719.84 201.08 12.14  0.13 0.40
16 19.20 809.72 228.77 31.71  809.75 229.07 12.51 0.03 0.30

High system R” Measure
Sample size 100
1 -165.41 -165.41 -85.26 -30.33  -30.33 -13.73 135.08 135.08 71.53
4 -278.95 275.06 49.22 -197.63 273.60 64.62 81.32  -1.46 15.40
8 -321.63 442.14 103.05  -288.41 44331 110.86 33.22 1.17 7.81
12 -330.03 53734 138.04  -323.14 537.74 143.33 6.89 0.39 5.29
16 -325.15 60736 165.11 -330.58 607.47 169.10 -5.43 0.11 3.98

Sample size 200
1 -169.09 -169.09 -88.58 -40.54 -40.54 -16.87 128.55 128.55 71.72
4 -287.72 261.16 45.16 -230.40 256.60 58.97 5733 456 13.80
8 -336.24 421.61 97.18 -334.98 421.94 103.68 1.25 0.33 6.50
12 -350.81 512.31 130.20 -379.24 512.47 134.52 -28.43  0.15 433
16  -352.76 577.82 155.52  -395.17 577.84 158.76 -42.41  0.02 3.24

GFESM is Clements and Hendry's generalized forecast error second moment measure, [MSFE] is the determinant of the of the mean squared forecast error matrix and
TMSEFE is the trace of the MSFE matrix.
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Table 2 - Low system R~ Measure
Frequency of lag (p) and cointegrating vectors (q) choice by different criteria when the
true model is (3,1,1) in levels.

Number of Observations = 100 Number of Observations = 200
Selected Cointegrating Vectors Selected Cointegrating Vectors

Selected Lag 0 1 2 3 0 1 2 3
1 0.01 0.36 0.07 0.05 0.00 0.00 0.00 0.00
2 35.79 3.20 0.45 0.47 7.66 1.85 0.44 0.51
3 40.32 8.23 1.06 0.60 42.60  31.47 5.14 3.98
AIC(p) 4 4.13 1.42 0.20 0.08 2.46 1.96 0.35 0.24
5 1.14 0.56 0.07 0.02 0.41 0.41 0.07 0.04
6 0.46 0.32 0.06 0.02 0.11 0.13 0.03 0.01
7 0.27 0.21 0.04 0.01 0.04 0.04 0.00 0.01
8 0.16 0.20 0.04 0.01 0.01 0.03 0.01 0.00
1 0.26 2.53 0.50 0.24 0.00 0.00 0.00 0.00
2 68.50 5.66 0.78 0.87 35.07 8.10 1.86 2.39
3 1534  4.26 0.56 0.27 2447  21.95 3.46 2.63
HQ(p) 4 0.14 0.07 0.02 0.00 0.03 0.03 0.01 0.00
5 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 3.08 11.69  2.10 1.13 0.02 0.05 0.02 0.00
2 72.73 5.59 0.75 0.88 66.71  15.02 3.38 4.48
3 1.34 0.63 0.07 0.03 3.90 5.12 0.78 0.53
SC(p) 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Numbers represent the percentage times that the model selection criterion chose that cell, corresponding to the lag and
number of cointegrating vectors, in 100,000 times (1000 simulations of 100 different DGPs). The true lag-cointegrating
vectors are indentified by bold numbers.
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Table 3 - High system R” Measure
Frequency of lag (p) and cointegrating vectors (q) choice by different criteria when the
true model is (3,1,1) in levels.
Number of Observations = 100 Number of Observations = 200
Selected Cointegrating Vectors Selected Cointegrating Vectors

Selected Lag 0 1 2 3 0 1 2 3
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 32.93 2.69 1.37 0.00 8.64 1.08 0.67
3 0.00 49.10 3.50 1.43 0.00 71.47 7.57 4.47
AIC(p) 4 0.01 5.24 0.46 0.16 0.00 4.17 0.47 0.26
5 0.03 1.42 0.16 0.06 0.00 0.73 0.08 0.06
6 0.04 0.59 0.08 0.02 0.00 0.20 0.03 0.02
7 0.04 0.30 0.05 0.01 0.00 0.06 0.01 0.00
8 0.04 0.23 0.05 0.01 0.00 0.02 0.00 0.00
1 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00
2 0.00 68.34 5.55 2.87 0.00 39.86 5.15 3.17
3 0.00 20.69 1.60 0.66 0.00 44.22 4.73 2.82
HQ(p) 4 0.00 0.23 0.02 0.01 0.00 0.05 0.01 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.42 0.10 0.06 0.00 0.00 0.00 0.00
2 0.00 86.26 6.96 3.60 0.00 74.78 9.46 6.00
3 0.00 2.35 0.17 0.08 0.00 8.31 0.95 0.50
SC(p) 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Numbers represent the percentage times that the model selection criterion chose that cell, corresponding to the lag and
number of cointegrating vectors, in 100,000 times (1000 simulations of 100 different DGPs). The true lag-cointegrating
vectors are indentified by bold numbers.
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Table 6 - Low system R’ Measure
Percentage improvement in different measures of accuracy in forecast generated by the possibly reduced-rank VECM
over the VECM chosen by the same model selection criterion when the true models are trivariate (3,1,1).

Horizon AIC HQ SC

(h) "GFESM |MSFE| TMSFE GFESM |MSFE| TMSFE GFESM |MSFE| TMSFE

Sample size 100

1 7.13 7.13 2.19 10.55 10.55  3.59 19.75  19.75  7.27
4 7.44 0.46 0.99 14.09  0.22 1.19 26.87  0.74 2.06
8 4.01 0.00 0.43 14.62  0.16 0.61 30.12  0.77 1.15
12 3.28 -0.12 0.28 15.01 0.05 0.41 3242 0.57 0.83
16 2.95 -0.10  0.21 1543 0.14 0.32 3457  0.57 0.68
Sample size 200
1 5.01 5.01 1.62 6.63 6.63 2.23 7.85 7.85 2.73
4 8.30 0.60 0.87 11.10 042 0.97 12.53  0.03 0.93
8 8.12 0.15 0.46 12.07  0.13 0.51 14.05  0.17 0.49
12 8.47 0.04 0.32 12.69  0.05 0.36 15.04  0.05 0.35
16 8.75 0.03 0.24 13.13  0.03 0.28 15.70  0.01 0.27

GFESM is Clements and Hendry's generalized forecast error second moment measure, [MSFE] is the determinant of the of the mean squared forecast error matrix
and TMSFE is the trace of the MSFE matrix. Bold and underline numbers denote, respectively, the best and the worst forecasting performance across all three
information criteria based on TMSFE.

Table 7 - High system R* Measure
Percentage improvement in different measures of accuracy in forecast generated by the possibly reduced-rank VECM
over the VECM chosen by the same model selection criterion when the true models are trivariate (3,1,1).

Horizon AIC HQ SC

(h) 'GFESM |MSFE| TMSFE GFESM |MSFE| TMSFE GFESM |MSFE| TMSFE

Sample size 100
1 138.40 138.40 71.77 110.49 110.49 58.76 95.76 9576  51.07
4 103.73  1.73 17.20 5533 -322  11.24 3427 -3.56 843

8 56.88 1.11 8.77 9.19 0.54 5.46 -7.61 0.35 4.01
12 27.76 0.09 5.90 -16.36  0.17 3.66 -28.33  0.10 2.67
16 10.11  -0.06 4.43 -29.33  0.03 2.74 -37.80  0.03 2.00

Sample size 200
1 133.34 133.34  73.70 11791 11791 6543 99.75  99.75  54.73
4 76.12 242  15.59 5255  -522  12.20 36.39 -6.38 9.24

8 20.25 0.17 7.44 -1.39 0.18 5.61 -14.53  -0.02 4.08
12 -11.63  0.06 4.92 -30.73  0.16 3.72 -41.80  0.06 2.68
16 -29.18  -0.03 3.68 -44.92  0.00 2.79 -54.58  0.01 2.00

GFESM is Clements and Hendry's generalized forecast error second moment measure, [MSFE] is the determinant of the of the mean squared forecast error matrix
and TMSFE is the trace of the MSFE matrix. Bold and underline numbers denote, respectively, the best and the worst forecasting performance across all three
information criteria based on TMSFE.
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Table 8 - Low system R’ Measure
Percentage improvement in different measures of accuracy in forecast generated by the VECM over the VAR in levels
when the true models are trivariate (3,1,1).

Horizon AIC HQ SC
(h) GFESM |MSFE| TMSFE GFESM |MSFE| TMSFE GFESM [MSFE| TMSFE
Sample size 100
1 10.31  10.31 3.36 1098 1098  3.54 1047 1047  3.28
4 36.52  413.09 101.68 38.03 413.81 101.86 39.19 420.44 102.98
8 57.11 640.17 172.27 56.50 638.34 171.44 57.17 645.17 172.04
12 72.72  774.16 214.09 70.62  771.59 212.73 70.63  779.15 213.20
16 87.01 87135 243.82 83.48 868.17 242.18 82.35 875.86 242.63
Sample size 200
1 1.71 1.71 0.53 2.53 2.53 0.78 3.47 3.47 1.07
4 6.38  381.87 94.00 7.80 38243 95.05 921 383.72 94.27
8 11.09 595.67 161.08 11.98 595.64 161.35 12.64 596.16 160.59
12 1440 720.74 200.77 14.94 720.74 200.70 15.01 72130 199.88
16 17.27 810.68 228.87 17.55 810.76 228.63 17.21  811.28 227.77

GFESM is Clements and Hendry's generalized forecast error second moment measure, [MSFE] is the determinant of the of the mean squared forecast error matrix

and TMSFE is the trace of the MSFE matrix. Bold and underline numbers denote, respectively, the best and the worst forecasting performance across all three

information criteria based on TMSFE.

Table 9 - High system R* Measure
Percentage improvement in different measures of accuracy in forecast generated by the VECM over the VAR in levels
when the true models are trivariate (3,1,1).

Horizon AIC HQ SC
(h) GFESM |MSFE| TMSFE GFESM |MSFE| TMSFE GFESM [MSFE| TMSFE
Sample size 100
1 -162.81 -162.81 -82.96  -139.92 -139.92 -72.04  -126.87 -126.87 -65.06
4 -285.21 273.12 48.54  -264.51 274.67 5143 -254.78 275.11 52.73
8 -331.16 441.54 102.48  -310.61 439.34 103.83  -302.50 43834 104.37
12 -339.86 537.27 137.61 -319.49 534.17 138.14 -312.58 532.86 138.32
16  -334.70 607.62 164.82 -314.97 604.05 164.83 -309.10 602.53 164.78
Sample size 200
1 -169.58 -169.58 -88.65  -155.64 -155.64 -81.24  -13548 -135.48 -69.89
4 -290.20 260.25 44.80  -281.78 261.19 100.02 -269.76 262.29 48.58
8 -339.60 42149 96.95  -333.23 420.79 148.56 -323.40 42030 98.72
12 -354.77 512.23 130.02  -348.81 511.35 180.21 -339.44 510.66 130.99
16  -357.24 577.86 15540 -351.48 57690 204.83 -342.52 576.13 15592

GFESM is Clements and Hendry's generalized forecast error second moment measure, [MSFE]| is the determinant of the of the mean squared forecast error matrix

and TMSFE is the trace of the MSFE matrix. Bold and underline numbers denote, respectively, the best and the worst forecasting performance across all three

information criteria based on TMSFE.
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Table 10 - Low system R’ Measure
Percentage improvement in different measures of accuracy in forecast generated by the possibly reduced-rank VECM
over the VAR in levels when the true models are trivariate (3,1,1).

Horizon AIC HQ SC
(h) GFESM |MSFE| TMSFE GFESM |MSFE| TMSFE GFESM [MSFE| TMSFE
Sample size 100
1 17.44 1744  5.55 21.53 21.53 7.13 30.22  30.22  10.55
4 4397 413.55 102.68 52.12  414.03 103.06 66.06 421.18 105.04
8 61.11 640.17 172.70 71.13 63851 172.05 87.30 64594 173.19
12 76.00 774.04 214.37 85.63 771.64 213.15 103.04 779.73 214.04
16 89.96 871.25 244.03 98.91 86831 242.50 116.92 876.43 243.30
Sample size 200
1 6.72 6.72 2.15 9.16 9.16 3.00 11.32 1132 3.80
4 14.68 38247 94.87 18.90 382.85 95.07 21.74 38375 95.19
8 19.21 595.82 161.54 24.05 595.77 161.36 26.69 59633 161.07
12 22.87 720.77 201.09 27.64 720.79 200.71 30.05 721.35 200.23
16 26.02 810.71 229.11 30.68 810.79 228.64 3291 811.29 228.04

GFESM is Clements and Hendry's generalized forecast error second moment measure, [MSFE]| is the determinant of the of the mean squared forecast error matrix

and TMSFE is the trace of the MSFE matrix. Bold and underline numbers denote, respectively, the best and the worst forecasting performance across all three
information criteria based on TMSFE.

Table 11 - High system R” Measure
Percentage improvement in different measures of accuracy in forecast generated by the possibly reduced-rank VECM
over the VAR in levels when the true models are trivariate (3,1,1).

Horizon AIC HQ SC
(h) GFESM |MSFE| TMSFE GFESM |MSFE| TMSFE GFESM [MSFE| TMSFE
Sample size 100
1 2440 -2440 -11.19 -29.44 2944 -13.27 -31.11  -31.11  -14.00
4 -181.47 274.86 65.75 -209.18 27145 62.68 -220.52 271.55 61.16
8 -27428 442.65 111.26  -301.42 439.88 109.29  -310.11 438.69 108.38
12 -312.10 537.37 143.51 -335.85 53434 141.80 -34091 532.96 140.99
16  -32459 607.56 169.24 -34429 604.08 167.58 -346.90 602.57 166.78
Sample size 200
1 -36.25  -36.25 -14.95 -37.73 3773 -15.80 -35.74 -35.74 -15.16
4 -214.07 257.82  60.39 -229.23 25597 58.65 -233.38 25591 57.82
8 -319.35 421.66 104.38  -334.61 420.97 103.35 -337.93 420.29 102.80
12 -366.40 512.29 13495 -379.55 511.51 134.16  -381.24 510.72 133.67
16  -386.42 577.83 159.08 -396.40 57690 158.39  -397.09 576.14 157.92

GFESM is Clements and Hendry's generalized forecast error second moment measure, [MSFE| is the determinant of the of the mean squared forecast error matrix

and TMSEFE is the trace of the MSFE matrix. Bold and underline numbers denote, respectively, the best and the worst forecasting performance across all three
information criteria based on TMSFE.
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Table 12a: Percentage Improvement on MSE
Restricted VECM over VECM
n=3q=1r=1
Systems with high R?
Long-Term Coeffs. | Short-Term Coeffs. All Coeffs.
N | [MSE| | TMSE | |MSE| | TMSE | |MSE| | TMSE
100 | 118.24 14.79 1917.04 56.80 1751.00 | 47.25
200 | 113.98 15.77 2286.29 61.61 2108.90 | b7.77
Individual Results: Long-Term Coefficients
N 71 V2 73 ay a2
100 | 21.97 29.40 36.91 6.20 7.40
200 | 23.97 29.45 39.60 3.51 3.44
Individual Results: Short-Term Coefficients
N o1 P19 P13 P21 P20 Pa3
100 | 42.99 40.38 57.81 67.19 70.38 76.86
200 | 44.54 47.31 54.49 72.67 70.30 83.60
Individual Results: Short-Term Coefficients
N P31 P32 P33
100 | 99.12 102.82 110.26
200 | 103.23 113.29 120.17
Notes:

|MSE| denotes the determinant of the mean-squared error matrix, while
TMSE denotes its trace. Parameters in the restricted VECM have the following labels:

Ay, =

/
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Table 12b: Percentage Improvement on MSE

Restricted VECM over VECM

n=3q=1r=1

Systems with low R?

Long-Term Coeffs. | Short-Term Coeffs. All Coeffs.

N | [MSE| | TMSE | |MSE| | TMSE | |MSE| | TMSE

100 | 70.45 8.47 1396.64 39.53 1339.71 | 20.92

200 | 51.18 9.19 1785.18 44.73 1714.05 | 40.53
Individual Results: Long-Term Coefficients

N 71 V2 73 ay a2

100 | 14.70 12.89 15.84 -6.88 9.07

200 | 13.90 11.20 14.90 4.86 5.38
Individual Results: Short-Term Coefficients

N o1 P19 P13 P21 P20 Pa3

100 | 52.10 44.12 52.15 52.44 50.37 46.71

200 | 53.99 51.15 48.81 61.17 50.34 54.35
Individual Results: Short-Term Coefficients

N P31 P32 P33

100 | 70.37 66.85 63.10

200 | 75.73 79.18 73.43

Notes: Same as in Table 12a.
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Table 13a: Percentage Improvement on MSE
Restricted VECM over VECM
n=3q=1r=2

Systems with high R?
Long-Term Coeffs. | Short-Term Coeffs. All Coeffs.
N | [MSE|| TMSE | |MSE|| TMSE | |MSE||TMSE
100 | 21.97 8.49 147.75 7.68 149.56 | 13.39
200 | 15.44 2.83 254.94 10.30 237.53 9.96
Individual Results: Long-Term Coefficients
N 71 V2 73 ay a2
100 | 4.28 4.66 2.99 7.7 5.45
200 | 5.58 4.97 3.04 0.62 0.41
Individual Results: Short-Term Coefficients
N o1 P19 P13 P21 P20 Pa3
100 | 18.19 14.46 -0.95 22.17 18.23 -0.43
200 | 24.22 19.84 -0.70 28.00 22.50 -0.38
Individual Results: Short-Term Coefficients
N P31 P32 P33
100 | 15.25 12.58 -4.73
200 | 17.25 16.56 -2.30
Notes:

|MSE| denotes the determinant of the mean-squared error matrix, while
TMSE denotes its trace. Parameters in the restricted VECM have the following labels:
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Table 13b: Percentage Improvement on MSE

Restricted VECM over VECM

n=3q=1r=2

Systems with low R?

Long-Term Coeffs. | Short-Term Coeffs. All Coeffs.
N | [MSE|| TMSE | |MSE|| TMSE | |MSE||TMSE
100 | 34.64 6.46 161.56 6.63 181.13 7.03
200 | 16.07 2.74 292.45 9.70 282.62 8.08
Individual Results: Long-Term Coefficients
N 71 V2 73 ay a2
100 | 4.00 0.64 6.38 14.64 1.69
200 | 4.66 1.96 6.25 1.79 1.28
Individual Results: Short-Term Coefficients
N o1 P19 P13 P21 P20 Pa3
100 | 10.78 9.15 -2.58 7.50 4.87 -1.28
200 | 14.53 14.76 -0.02 11.24 8.59 -0.45
Individual Results: Short-Term Coefficients
N P31 P32 P33
100 | 28.85 24.63 -0.03
200 | 33.35 35.30 0.33

Notes: Same as Table 13a.
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Table 14a: Percentage Improvement on MSE
Restricted VECM over VECM
n=3q¢q=2,r=2

Systems with high R?
Long-Term Coeffs. | Short-Term Coeffs. All Coeffs.
N | [MSE|| TMSE | |MSE|| TMSE | |MSE||TMSE
100 | 31.52 19.79 656.35 303.04 709.41 | 222.43
200 | 25.55 10.00 834.81 381.13 875.44 | 307.15
Individual Results: Long-Term Coefficients
N | 1h 5 oen 1 % Vi
100 3.35 2.68 2.27 1.32 2.86 2.21
200 3.93 3.82 2.88 2.10 3.72 1.97
Individual Results: Long-Term Coefficients
N aly ok
100 16.70 17.89
200 7.81 7.83
Individual Results: Short-Term Coefficients
N P11 P19 P13 P21 P22 $a3
100 | 212.81 284.27 | 154.87 259.75 344.40 | 63.81
200 | 274.24 | 360.95 | 218.85 332.52 426.55 | 106.48
Individual Results: Short-Term Coefficients
N P31 P32 P33
100 | 175.70 124.21 199.58
200 | 233.47 172.88 | 257.02
Notes: |MSE| denotes the determinant of the mean-squared error matrix, while

TMSE denotes its trace.

lon form, have the following labels:

Parameters in the restricted VECM, put in canonical eche-
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Table 14b: Percentage Improvement on MSE

Restricted VECM over VECM

n=3q¢q=2,r=2

Systems with low R?

Long-Term Coeffs. | Short-Term Coeffs. All Coeffs.
N | [MSE| | TMSE | |MSE| | TMSE | |MSE| | TMSE
100 | 85.91 20.55 1164.25 | 218.65 | 1232.60 | 94.97
200 | 67.39 13.58 1588.65 | 287.59 | 1632.52 | 209.33
Individual Results: Long-Term Coefficients
N | 1h 5 oen 1 % Vi
100 7.29 3.83 4.98 13.39 10.43 10.02
200 6.65 3.25 3.92 13.50 10.81 11.92
Individual Results: Long-Term Coefficients
N aly ok
100 26.61 18.43
200 10.15 8.77
Individual Results: Short-Term Coefficients
N P11 P19 P13 P21 P22 $a3
100 | 150.02 | 142.22 166.05 | 158.09 178.03 | 174.47
200 | 199.59 | 206.38 233.70 | 205.15 244.52 | 229.52
Individual Results: Short-Term Coefficients
N P31 P32 P33
100 | 164.28 167.71 | 177.95
200 | 224.57 232.45 236.73

Notes: Same as Table 14a.
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