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Skewness Premium with Lévy Processes
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Abstract

We study the skewness premium (SK) introduced by Bates (1991)
in a general context using Lévy Processes. We obtain sufficient and
necessary conditions for Bate’s x% rule to hold. Then, We derive
sufficient conditions for SK to be positive, in terms of the characteristic
triplet of the Lévy Process under the risk neutral measure.

Keywords: Skewnes Premium; Lévy Process.
JEL Classification: C52; G10

1 Introduction

The option prices have been largely studied by many authors, an important
fact from option prices is that relative prices of out-of-the-money calls and
puts can be used as a measure of symmetry or skewness of the risk neutral
distribution. Bates (1991), called this diagnosis “skewness premium”, hence-
forth SK. He analyzed the behaviour of SK using three classes of stochastic
processes: Constant Elasticity of Variance (CEV), Stochastic Volatility and
Jump-diffusion. He found conditions on the parameters for the SP be posi-
tive or negative.

But, as many models in the literature have shown, the behaviour of the
assets underlying options is very complex, the structure of jumps observed
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is more complex than Poisson jumps. They have higher intensity, see for ex-
ample Aı̈t-Sahalia (2004). For that reason diffusion models cannot consider
the discontinuous sudden movements observed on asset prices. In that sense,
the use of more general process as Lévy processes have shown to provide a
better fit with real data, as was reported in Carr and Wu (2004) and Eber-
lein, Keller, and Prause (1998). On the other hand, the mathematical tools
behind these processes are very well established and known.

In this paper we establish a theoretical proposition that quantify the rela-
tion between OTM Calls and Puts when the underlying follows a Geometric
Lévy Process. In this way we establish a simply diagnostic for judging which
distributions are consistent with observed option prices. Then we pass to
study the SK and we obtain sufficient conditions for the SK be positive or
negative.

The paper is organized as follows: in Section 2 we introduce the Lévy
processes and we present the duality results. In Section 3 we present the
Bate’s rule. In Section 4 we analyze symmetry. In Section 5 we present the
estimated parameters using real data and in Section 6 we study the skewness
premium. Section 7 concludes.

2 Lévy processes and Duality

Consider a real valued stochastic process X = {Xt}t≥0, defined on a stochas-
tic basis B = (Ω,F ,F = (Ft)t≥0,Q), being càdlàg, adapted, satisfying
X0 = 0, and such that for 0 ≤ s < t the random variable Xt − Xs is in-
dependent of the σ-field Fs, with a distribution that only depends on the
difference t − s. Assume also that the stochastic basis B satisfies the usual
conditions (see Jacod and Shiryaev (1987)). The process X is a Lévy process,
and is also called a process with stationary independent increments (PIIS).
For general reference on Lévy processes see Jacod and Shiryaev (1987), Sko-
rokhod (1991), Bertoin (1996), Sato (1999). For Lévy process in Finance
see Boyarchenko and Levendorskĭi (2002), Schoutens (2003) and Cont and
Tankov (2004).

In order to characterize the law of X under Q, consider, for q ∈ IR the
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Lévy-Khinchine formula, that states

E eiqXt = exp
{
t
[
iaq − 1

2
σ2q2 +

∫

IR

(
eiqy − 1 − iqh(y)

)
Π(dy)

]}
, (1)

with
h(y) = y1{|y|<1}

a fixed truncation function, a and σ ≥ 0 real constants, and Π a positive
measure on IR \ {0} such that

∫
(1 ∧ y2)Π(dy) < +∞, called the Lévy mea-

sure. The triplet (a, σ2,Π) is the characteristic triplet of the process, and
completely determines its law.

Consider the set

C0 =
{
z = p+ iq ∈ C :

∫

{|y|>1}

epyΠ(dy) <∞
}
. (2)

The set C0 is a vertical strip in the complex plane, contains the line z =
iq (q ∈ IR), and consists of all complex numbers z = p + iq such that
E epXt < ∞ for some t > 0. Furthermore, if z ∈ C0, we can define the
characteristic exponent of the process X, by

ψ(z) = az +
1

2
σ2z2 +

∫

IR

(
ezy − 1 − zh(y)

)
Π(dy) (3)

this function ψ is also called the cumulant of X, having E |ezXt| < ∞ for
all t ≥ 0, and E ezXt = etψ(z). The finiteness of this expectations follows
from Theorem 21.3 in Sato (1999). Formula (3) reduces to formula (1) when
Re(z) = 0.

2.1 Lévy market

By a Lévy market we mean a model of a financial market with two assets: a
deterministic savings account B = {Bt}t≥0, with

Bt = ert, r ≥ 0,

where we take B0 = 1 for simplicity, and a stock S = {St}t≥0, with random
evolution modelled by

St = S0e
Xt , S0 = ex > 0, (4)
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where X = {Xt}t≥0 is a Lévy process.

In this model we assume that the stock pays dividends, with constant rate
δ ≥ 0, and that the given probability measure Q is the choosen equivalent
martingale measure. In other words, prices are computed as expectations
with respect to Q, and the discounted and reinvested process {e−(r−δ)tSt} is
a Q-martingale.

In terms of the characteristic exponent of the process this means that

ψ(1) = r − δ, (5)

based on the fact, that E e−(r−δ)t+Xt = e−t(r−δ+ψ(1)) = 1, and condition (5)
can also be formulated in terms of the characteristic triplet of the process X
as

a = r − δ − σ2/2 −
∫

IR

(
ey − 1 − h(y)

)
Π(dy). (6)

In the case, when
Xt = σWt + at (t ≥ 0), (7)

where W = {Wt}t≥0 is a Wiener process, we obtain the Black–Scholes–
Merton (1973) model (see Black and Scholes (1973),Merton (1973)).

In the market model considered we introduce some derivative assets. More
precisely, we consider call and put options, of both European and American
types. Denote by MT the class of stopping times up to a fixed constant time
T , i.e:

MT = {τ : 0 ≤ τ ≤ T, τ stopping time w.r.t F}
for the finite horizon case and for the perpetual case we take T = ∞ and
denote by M the resulting stopping times set. Then, for each stopping time
τ ∈ MT we introduce

c(S0, K, r, δ, τ, ψ) = E e−rτ (Sτ −K)+, (8)

p(S0, K, r, δ, τ, ψ) = E e−rτ (K − Sτ )
+. (9)

In our analysis (8) and (9) are auxiliary quantities, anyhow, they are inter-
esting by themselves as random maturity options, as considered, for instance,
in Schroder (1999) and Detemple (2001). If τ = T , formulas (8) and (9) give
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the price of the European call and put options respectively. For the Amer-
ican finite case, prices and optimal stopping rules τ ∗c and τ ∗p are defined,
respectively, by:

C(S0, K, r, δ, T, ψ) = sup
τ∈MT

E e−rτ (Sτ −K)+ = E e−rτ
∗

c (Sτ∗c −K)+ (10)

P (S0, K, r, δ, T, ψ) = sup
τ∈MT

E e−rτ (K − Sτ )
+ = E e−rτ

∗

p (K − Sτ∗p )+, (11)

and, for the American perpetual case, prices and optimal stopping rules are
determined by

C(S0, K, r, δ, ψ) = sup
τ∈M

E e−rτ (Sτ −K)+1{τ<∞} = E e−rτ
∗

c (Sτ∗c −K)+1{τ<∞},

(12)

P (S0, K, r, δ, ψ) = sup
τ∈M

E e−rτ (K − Sτ )
+1{τ<∞} = E e−rτ

∗

p (K − Sτ∗p )+1{τ<∞}.

(13)

2.2 Put Call duality and dual markets

Lemma 2.1 (Duality). Consider a Lévy market with driving process X with
characteristic exponent ψ(z), defined in (3), on the set C0 in (2). Then, for
the expectations introduced in (8) and (9) we have

c(S0, K, r, δ, τ, ψ) = p(K,S0, δ, r, τ, ψ̃), (14)

where

ψ̃(z) = ãz +
1

2
σ̃2z2 +

∫

IR

(
ezy − 1 − zh(y)

)
Π̃(dy) (15)

is the characteristic exponent (of a certain Lévy process) that satisfies

ψ̃(z) = ψ(1 − z) − ψ(1), for 1 − z ∈ C0,

and in consequence,





ã = δ − r − σ2/2 −
∫
IR

(
ey − 1 − h(y)

)
Π̃(dy),

σ̃ = σ,

Π̃(dy) = e−yΠ(−dy).
(16)
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Proof. See Fajardo and Mordecki (2006).

Remark 2.1. The presented Lemma is very similar to Proposition 1 in
Schroder (1999) and the results obtained in Eberlein and Papapantoleon (2005)
and Fajardo and Mordecki (2005). The main difference is that the particu-
lar structure of the underlying process (Lévy process are a particular case of
the models considered in Schroder (1999)) allows to completely characterize
the distribution of the dual process X̃ under the dual martingale measure Q̃,
and to give a simpler proof. Considering Additive processes similar result,
in the case of European plain vanilla options, were obtained by Eberlein and
Papapantoleon (2005), see Corollary 4.2.

If we take τ = T in the Duality Lemma we obtain the following put call
relation.

Corollary 2.1 (European Options). For the expectations introduced in
(8) and (9) we have

c(S0, K, r, δ, T, ψ) = p(K,S0, δ, r, T, ψ̃), (17)

with ψ and ψ̃ as in the Duality Lemma.

To formulate the duality result for American Options, we observe that
the optimal stopping rules for the American Call and Put options have,
respectively, the form

τ ∗c = inf{t ≥ 0: St ≥ Bc(t)} ∧ T,
τ ∗p = inf{t ≥ 0: St ≤ Bp(t)} ∧ T.

where the curves Bc and Bp are the boundaries of the continuation region.
(See 12.1.3 in Cont and Tankov (2004), or Theorem 6.1 in Boyarchenko and
Levendorskĭi (2002).)

Corollary 2.2 (American Options). For the value functions in (10) and
(11) we have

C(S0, K, r, δ, T, ψ) = P (K,S0, δ, r, T, ψ̃), (18)

with ψ and ψ̃ as in the Duality Lemma. Furthermore, when δ > 0, for the
optimal stopping boundaries, we obtain that

Bc(t)Bp(t) = S0K. (19)

In case δ = 0 we have τ ∗c = τ ∗p = T .
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Remark 2.2. The relation between the stopping boundaries is analogous to
the one for Itô processes obtained by Detemple (2001) (see equation (30)).

In what respects Perpetual Call and Put American Options, the optimal
stopping rules have, respectively, the form

τ ∗c = inf{t ≥ 0: St ≥ S∗
c},

τ ∗p = inf{t ≥ 0: St ≤ S∗
p}.

where the constants S∗
c and S∗

p are the critical prices. (See Theorem 1 and 2
in Mordecki (2002).)

Corollary 2.3 (Perpetual Options). For prices of Perpetual Call and Put
options in (12) and (13) we have

C(S0, K, r, δ, ψ) = P (K,S0, δ, r, ψ̃), (20)

with ψ and ψ̃ as in the Duality Lemma. Furthermore, when δ > 0, for the
optimal stopping levels, we obtain the relation

S∗
cS

∗
p = S0K. (21)

2.3 Dual Markets

The Duality Lemma motivates us to introduce the following market model.
Given a Lévy market with driving process characterized by ψ in (3), consider
a market model with two assets, a deterministic savings account B̃ = {B̃t}t≥0,
given by

B̃t = eδt, δ ≥ 0,

and a stock S̃ = {S̃t}t≥0, modelled by

S̃t = KeX̃t , S̃0 = K > 0,

where X̃ = {X̃t}t≥0 is a Lévy process with characteristic exponent under
Q̃ given by ψ̃ in (15). The process S̃t represents the price of KS0 dollars
measured in units of stock S. This market is the auxiliary market in Detemple
(2001), and we call it dual market ; accordingly, we call Put–Call duality the
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relation (14). It must be noticed that Peskir and Shiryaev (2001) propose
the same denomination for a different relation. Finally observe, that in the
dual market (i.e. with respect to Q̃), the process {e−(δ−r)tS̃t} is a martingale.
As a consequence, we obtain the Put–Call symmetry in the Black–Scholes–
Merton model: In this case Π = 0, we have no jumps, and the characteristic
exponents are

ψ(z) = (r − δ − σ2/2)z + σ2z2/2,

ψ̃(z) = (δ − r − σ2/2)z + σ2z2/2.

and relation (14) is the result known as put–call symmetry. In the presence
of jumps like the jump-diffusion model of Merton (1976), if the jump returns
of S under Q and S̃ under Q̃ have the same distribution, the Duality Lemma,
implies that by exchanging the roles of δ by r and K by S0 in (14) and (16),
we can obtain an American call price formula from the American put price
formula. Motivated by this analysis we introduce the definition of symmetric
markets in the following section.

3 Market Symmetry

It is interesting to note that in a market with no jumps (i.e. in the Black-
Scholes model), the distribution of the discounted and reinvested stock both
in the given risk neutral and in the dual Lévy market, taking equal initial
values, coincide. It is then natural to define a Lévy market to be symmetric
when this relation hold, i.e. when

L
(
e−(r−δ)t+Xt | Q

)
= L

(
e−(δ−r)t−Xt | Q̃

)
, (22)

meaning equality in law. In view of (16), and due to the fact that the
characteristic triplet determines the law of a Lévy processes, we obtain that
a necessary and sufficient condition for (22) to hold is

Π(dy) = e−yΠ(−dy). (23)

This ensures Π̃ = Π, and from this follows a− (r − δ) = ã− (δ − r), giving
(22), as we always have σ̃ = σ. Condition (23) answers a question raised
Carr and Chesney (1996). Let us illustrate our result in an example.
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4 Bates’ Rule

Corollary 4.1. Take r = δ and assume (23) holds, we have

c(F0, Kc, r, τ, ψ) = (1 + x) p(F0, Kp, r, τ, ψ), (24)

where Kc = (1 + x)F0 and Kp = F0/(1 + x), with x > 0.

Proof. Follows directly from Proposition 1. Since r = δ and ψ = ψ̃.

From here calls and puts at-the-money (x = 1) should have the same
price. As we mention this x%−rule, in the context of Merton’s model was
obtained by Bates (1997). That is, if the call and put options have strike
prices x% out-of-the money relative to the forward price, then the call should
be priced x% higher than the put.

5 Asymmetry in Lévy markets

Our intention is to review several concrete models proposed in the literature.
We restrict ourselves to Lévy markets with jump measure of the form

Π(dy) = eβyΠ0(dy), (25)

where Π0(dy) is a symmetric measure, i.e. Π0(dy) = Π0(−dy), everything
with respect to the risk neutral measure Q.

As a consequence of (23), we obtain that the market is symmetric if and
only if β = −1/2. In view of this, we propose to measure the asymmetry in
the market through the parameter β + 1/2. When β + 1/2 = 0 we have a
symmetric market.

As we have seen when the market is symmetric, the skewness premium is
obtained using the x%−rule. The idea is to describe numerically the depar-
ture from the symmetry, the main difference with Bates (1997) is that the
parameter β is a property of the market, independent of the derivative asset
considered.

9



Although from the theoretical point of view the assumption (25) is a real
restriction, most models in practice share this property, and furthermore,
they have a jump measure that has a Radon-Nikodym density. In this case,
we have

Π(dy) = eβyp(y)dy, (26)

where p(y) = p(−y), i.e. the function p(y) is even. See the examples below,
in 5.1.1 - 5.1.3.

More precisely, all parametric models that we found in the literature, in
what concerns Lévy markets, including diffusions with jumps, can be repa-
rametrized in the form (26). As we will see, empirical risk-neutral markets
are not symmetric, and in view of (26), we propose to model the asymmetry
of the market through the parameter β + 1/2. Before considering concrete
examples, we review the Esscher transform.

5.1 Esscher transform and asymmetry

As in the presented concrete examples we departure from historical data,
we now review some notation and useful facts. All the developments up to
now where with respect to the risk neutral martingale measure Q. Now we
consider that there is an historical probability measure P and that Q is the
consequence of an Esscher transform. It is clear that this is one between
several possibilities, and we refer to Chan (1999) and Shiryaev (1999) for a
discussion on this topic. In consequence, when necessary, we add a subscript
P to refer to parameters under the historical probability measure P, i.e. ψP,
ΠP, and even sometimes we use the subscript Q to distinguish risk neutral
parameters. As we said, the link between P and Q is given by the Esscher
transform, and this is stated through the change of measure

dQt = eθXt−tψP(θ)dPt, (27)

where θ is a parameter to be determined. From (27) follows that

ψ(z) = ψQ(z) = ψP(z + θ) − ψP(z), (28)

As we require that the discounted and reinvested stock is a martingale
under Q, i.e. {e−(r−δ)tSt} is a Q-martingale, we obtain that

ψ(1) = ψP(1 + θ) − ψP(1) = r − δ,
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and this determines θ. It is relevant for us, that from (28) follows that

ΠQ(dy) = eθyΠP(dy).

(See Theorem VII.3.2 in Shiryaev (1999).) If we combine this result with
our model assumption (25) we conclude that

eβyΠ0(dy) = eθyΠP(dy),

meaning that the form of the jump measure under P is

ΠP(dy) = e(β−θ)yΠ0(dy) = eβPyΠ0(dy), (29)

that is, the same form with a translated parameter. We conclude, that
under the Esscher transform, our model assumption (25) is equivalent to the
assumption (29), and that the relation between the symmetry parameters is

β = βQ = βP + θ. (30)

5.1.1 The Generalized Hyperbolic Model

This model has been proposed by Eberlein and Prause (2000) as they allow
for a more realistic description of asset returns (see Eberlein and Prause
(2000) and Eberlein, Keller, and Prause (1998)). This model, under P, has
σ = 0, and a Lévy measure given by (29), with

p(y) =
1

|y|
( ∫ ∞

0

exp
(
−
√

2z + α2|y|
)

π2z
(
J2
λ(δ

√
2z) + Y 2

λ (δ
√

2z)
)dz + 1{λ≥0}λe

−α|y|
)
,

where α, βP, λ, δ are the historical parameters that satisfy the conditions
0 ≤ |βP| < α, and δ > 0; and Jλ, Yλ are the Bessel functions of the first and
second kind. Particular cases are the hyperbolic distribution, obtained when
λ = 1; and the normal inverse gaussian (NIG) when λ = −1/2.

Using the daily returns from Brazilian Index Ibovespa for the period
07/01/1994 to 12/13/2001, Fajardo and Farias (2004), estimate the param-
eter βP = −0.0035 for the NIG distribution and the estimate βQ = 80.65 for
the risk neutral distribution, given by (30). They also estimate the parame-
ters for various Brazilian assets finding βQ 6= −1/2. This indicates absence
of symmetry.
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Index â b̂ θ βQ + 1/2
Nikkei 225 0.02982825 0.12716244 0.42190524 5.18506

DAX 0.02612297 -0.50801886 -4.46513538 -23.4123
FTSE-100 0.01502403 -0.014336370 -4.34746821 -4.8017

SMI 0.02954687 -0.33888717 -3.97213216 -14.9416
Nasdaq Comp. 0.03346698 -0.49356259 -5.95888693 -20.2066

CAC-40. 0.02539854 -0.23804755 -5.77928595 -14.6518

Table 1: Estimates of the Meixner Distribution

5.1.2 The Meixner Model

The Meixner process was proposed to model financial data by Grigelionis
(1999) and by Schoutens (2001). The Lévy process derived from this distri-
bution has, under P, the following Lévy measure:

Π(dy) = c
e

b
a
y

y sinh(πy/a)
dy,

where a, b and c are parameter of the Meixner density, such that a > 0,
−π < b < π and c > 0. The Lévy measure also corresponds to the form in
(29), if we take βP = b/a, and

p(y) =
c

y sinh(πy/a)
.

Using daily returns from various index Schoutens in Schoutens (2002), found
parameters estimates â and b̂ for the period 1/1/1997 to 31/12/1999. We
resume this results and the corresponding parameter βQ = b̂/â + θ in Table
1.

5.1.3 The CGMY model

This Lévy market model, proposed by Carr, Geman, Madan, and Yor (2002)
is characterized by σ = 0 and Lévy measure given by (29), where the function
p(y) is given by

p(y) =
C

|y|1+Y e
−α|y|.
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The parameters satisfy C > 0, Y < 2, and G = α + β ≥ 0, M = α − β ≥ 0,
where C,G,M, Y are the parameters used in Carr, Geman, Madan, and Yor
(2002).

For studying the presence of a pure diffusion component in the model,
condition σ = 0 is relaxed, and risk neutral distribution is estimated in a five
parameters model. Values of β = (G−M)/2 are given for different assets in
Table 3 in Carr, Geman, Madan, and Yor (2002), and in the general situa-
tion, the parameter β is negative, and less than −1/2. The condition needed
in this case for the market to be symmetric is G = M − 1.

In the particular case (25), when β 6= −1/2, equation (24) does not
hold, in that case we need to analyze each market model to know for which
parameters the skewness premium is positive or negative and compare with
the available empirical data.

6 Skewness Premium

In order to study the sign of SK, lets analyze the following data on S&P500
American options in 08/31/2006 that matures in 09/15/2006 with Future
price F = 1303.82. To verify if the Bates’ rule holds we need to interpolate
some non-observed option prices for some strike prices. To this end we use a
cubic spline, as we can see in Fig. 1.
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Figure 1: Observed Call and Put Prices on S&P500 08/31/2006.
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The x% Skewness Premium is defined as the percentage deviation of x%
OTM call prices from x% OTM put prices. The interpolating calls and put
prices for the non-observed strikes are presented in Iables 2 and 3. We can
see in both tables that this rule does not hold. Moreover, for OTM options
usually xobs < x, what implies c

p
− 1 < x and for ITM options, xobs > x,

implying c
p
− 1 > x.

Then we want to know for what distributional parameter values we can
capture the observed vies in these option price ratios. To this end we use the
following definition introduced by Bates (1991).

SK(x) =
c(S, T ;Xc)

p(S, T ;Xp)
− 1, for European Options, (31)

SK(x) =
C(S, T ;Xc)

P (S, T ;Xp)
− 1, for American Options,

where Xp = F
(1+x)

< F < F (1 + x), x > 0.

The SK was addressed for the following stochastic processes: Constant
Elasticity of Variance (CEV), include arithmetic and geometric Brownian
motion. Stochastic Volatility processes, the benchmark model being those
for which volatility evolves independently of the asset price. And the Jump-
diffusion processes, the benchmark model is the Merton’s (1976) model. For
that classes Bates (1991) and Bates (1996) obtained the following result.

Proposition 1. For European options in general and for American options
on futures, the SK has the following properties for the above distributions.

i) SK(x) ≶ x for CEV processes with ρ ≶ 1.

ii) SK(x) ≶ x for jump-diffusions with log-normal jumps depending on
whether 2µ+ δ2 ≶ 0.

iii) SK(x) ≶ x for Stochastic Volatility processes depending on whether
ρSσ ≶ 0.

Now in equation (31) consider

Xp = F (1 − x) < F < F (1 + x), x > 0.

Then,
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iv) SK(x) < 0 for CEV processes only if ρ < 0.

v) SK(x) ≥ 0 for CEV processes only if ρ ≥ 0.

When x is small, the two SK measures will be approx. equal. For in-the-
money options (x < 0), the propositions are reversed. Calls x% in-the-money
should cost 0% − x% less than puts x% in-the-money.

Proof. See Bates (1991).

Then, we have the main SK sign results

Theorem 6.1. Take r = δ and assume Π(dy) = λF (dy), if F is such that∫
eyF (dy) ≷ 1, then

C(F0, Kc, r, τ, ψ) ≷ (1 + x) P (F0, Kp, r, τ, ψ), (32)

where Kc = (1 + x)F0 and Kp = F0/(1 + x), with x > 0.

Proof. The idea is to exploit the monotonicity property of option prices on
jump intensity and jump size, as Ekström and Tysk (2005) have shown in
the unidimensional case we can still preserve this monotonicity. Then, first
assume that Π(dy) = λF (dy), λ > 0. Then Π̃(dy) = e−yλF (−dy).

Let λ̃ = λ
∫
e−yF (−dy) and F̃ (dy) = e−yF (−dy)∫

e−yF (−dy)
. Then, Π̃ = λ̃F̃ (dy) and

as F is such that
∫
eyF (dy) ≷ 1, then λ̃ ≷ λ. Using Ekström and Tysk

(2005) result, option prices are monotonic on jump intensity:

C(F0, Kc, r, τ, a, σ, λ̃F̃ ) ≷ C(F0, Kc, r, τ, a, σ, λF )

= (1 + x)P (F0, Kp, r, τ, a, σ, λ̃F̃ )

where the last equality is obtained from duality.

Now lets obtain a sufficient condition on the symmetry parameter.

Theorem 6.2. Take r = δ and assume that in the particular case (25), If
β ≷ −1/2, then

C(F0, Kc, r, τ, ψ) ≷ (1 + x) P (F0, Kp, r, τ, ψ), (33)

where Kc = (1 + x)F0 and Kp = F0/(1 + x), with x > 0.
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Proof. We need monotonicity of call prices on the parameter β. We have
that β ≷ −1/2 ⇐⇒ β ≷ β̃ := −β − 1. Then, Π(dy) = eβyΠ0(dy) has β ≷ β̃

of Π̃ = e−(1+β)yΠ0(dy). By monotonicity

C(F0, Kc, r, δ, τ, a, σ,Π) ≷ C(F0, Kc, r, τ, a, σ, Π̃)

= (1 + x)P (F0, Kc, r, τ, a, σ,Π),

where the last equality is obtained from duality and the fact that
˜̃
Π = Π.

Now the same can be obtained if put were decreasing on β: β ≷ −1/2
implies

(1 + x)P (F0, Kc, r, τ, a, σ,Π) ≶ (1 + x)P (F0, Kc, r, τ, a, σ, Π̃)

= C(F0, Kc, r, τ, a, σ,Π), ∀x > 0.

6.1 Diffusions with jumps

Consider the jump - diffusion model proposed by Merton (1976). The driving
Lévy process in this model has Lévy measure given by

Π(dy) = λ
1

δ
√

2π
e−(y−µ)2/(2δ2)dy,

and is direct to verify that condition (23) holds if and only if 2µ + δ2 = 0.
This result was obtained by Bates (1997) for future options, that result is
obtained as a particular case.

Note that in that model β = µ
δ2

, so we obtain that sufficient conditions
in the above theorems are equivalent. That is,

∫
e−yF (−dy) = eµ+δ2/2 ≷ 1 ⇐⇒ β ≷ −1/2.

But, in general that conditions are not equivalent neither one imply the other.
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7 Conclusions

Departing from duality, a relation between call and put prices, obtained
through a change of numeraire, and corresponding to a change of probability
measure in a Lévy market model under a given risk neutral probability mea-
sure, the main contribution of this paper is the characterization of symmetry
in these market models, a notion that is also introduced.

This characterization allows to introduce a parameter in the risk neu-
tral model that, in certain sense, measures the asymmetry of a Lévy market
model. We also find the expression of this asymmetry parameter in the his-
torical market model, assuming that we rely in the Esscher transform to
obtain the given risk neutral measure. We analyze popular models used in
the literature, concluding that, in general, markets are not symmetric. Then,
we verify that when a market is symmetric the Bates’s x%−rule holds.

Finally, we analyze the sign of the Skewness premium. Using data from
S&P500 we observe that this rule does not hold. In that case We derive suf-
ficient conditions for SK to be positive, in terms of the characteristic triplet
of the Lévy Process under the risk neutral measure. In particular on the
symmetry parameter.

In this way we obtain a simple diagnostic to observe what Lévy model
deals with the behaviour of the underlying and with the sign of the SK.

Implications of this result is that we need to correct the martingale mea-
sure using the symmetry parameter and that the volatility smiles depends
on this parameter.
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Lévy Models, ed. by P. W. A. Kyprianou, W. Schoutens. Wiley.

Eberlein, E., and K. Prause (2000): “The Generalized Hyperbolic
Model: Financial Derivatives and Risk Measures,” in Mathematical
Finance-Bachelier Congress 2000, ed. by S. P. T. V. H. Geman, D. Madan.
Springer Verlag.

Ekström, E., and J. Tysk (2005): “Properties of Option Prices in Models
with Jumps,” Preprint. http://www.arxiv.org/.

Fajardo, J., and A. Farias (2004): “Generalized Hyperbolic Distribu-
tions and Brazilian Data,” Brazilian Review of Econometrics, 24(2), 249–
271.

Fajardo, J., and E. Mordecki (2005): “Duality and Derivative Pricing
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Kc Kp = F 2/Kc x = Kc/F − 1 xobs = cobs/pint − 1 x− xobs
1230 1382.07 -0.05662 0.050681 -0.1073
1235 1376.475 -0.05278 0,13642 -0.1892
1240 1370.925 -0.04895 0.115006 -0.16395
1245 1365.419 -0.04511 0.197696 -0.24281
1250 1359.957 -0.04128 0.277944 -0.31922
1255 1354.539 -0.03744 0.280729 -0.31817
1260 1349.164 -0.03361 0.536286 -0.5699
1265 1343.831 -0.02977 0.574983 -0.60476
1270 1338.541 -0.02594 0.606719 -0.63266
1275 1333.291 -0.0221 0.675372 -0.69748
1280 1328.083 -0.01827 0.691325 -0.70959
1285 1322.916 -0.01443 0.966306 -0.98074
1290 1317.788 -0.0106 0.904839 -0.91544
1295 1312.7 -0.00676 0.794059 -0.80082
1300 1307.651 -0.00293 0.78018 -0.78311
1305 1302.641 0.000905 0.614561 -0.61366
1310 1297.669 0.00474 0.532798 -0.52806
1315 1292.735 0.008575 0.427299 -0.41872
1320 1287.838 0.01241 0.108911 -0.0965
1325 1282.979 0.016245 -0.11658 0.132826
1330 1278.155 0.020079 -0.45097 0.471053
1335 1273.368 0.023914 -0.50378 0.527697
1340 1268.617 0.027749 -0.61306 0.640807
1345 1263.901 0.031584 -0.73872 0.770305
1350 1259.22 0.035419 -0.81448 0.849896
1355 1254.573 0.039254 -0.80297 0.842224
1360 1249.961 0.043089 -0.82437 0.867454

Table 2: Options prices Interpolating Put prices
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Kp Kc = F 2/Kp x = F/Kp − 1 xobs = cint/pobs − 1 x− xobs
1250 1359.957 0.043056 -0.88837 0.931421
1255 1354.539 0.0389 -0.86897 0.907873
1260 1349.164 0.034778 -0.85655 0.891331
1265 1343.831 0.030688 -0.78107 0.81176
1270 1338.541 0.02663 -0.70531 0.731941
1275 1333.291 0.022604 -0.63926 0.661869
1280 1328.083 0.018609 -0.51726 0.535865
1285 1322.916 0.014646 -0.31216 0.326801
1290 1317.788 0.010713 -0.20329 0.214005
1295 1312.7 0.006811 -0.03659 0.043397
1300 1307.651 0.002938 0.090739 -0.0878
1305 1302.641 -0.0009 0.130843 -0.13175
1310 1297.669 -0.00472 0.252541 -0.25726
1315 1292.735 -0.0085 0.261905 -0.27041
1320 1287.838 -0.01226 0.242817 -0.25507
1325 1282.979 -0.01598 0.346419 -0.3624
1330 1278.155 -0.01968 0.183207 -0.20289
1335 1273.368 -0.02336 0.237999 -0.26135
1340 1268.617 -0.027 0.145858 -0.17286
1345 1263.901 -0.03062 0.152637 -0.18325
1350 1259.22 -0.03421 0.101211 -0.13542
1355 1254.573 -0.03777 -0.03964 0.001869
1360 1249.961 -0.04131 0.028337 -0.06965
1365 1245.382 -0.04482 -0.0101 -0.03472
1375 1236.325 -0.05177 -0.0451 -0.00667

Table 3: Options prices Interpolating Call prices
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