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Resumo

The aim of this paper is to estimate the Multivariate Affine Generalized distributions (MAGH)
using market data. We use Ibovespa, CAC, DAX, FTSE, NIKKEI and S&P500 indexes . We estimate
the univariate distributions, the bi-variate distributions and the 6-dimensional distribution. Then, we
asses their goodness of fit using Kolmogorov distances.
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1 Introduction

In the last decade a class of distributions called Generalized Hyperbolic distributions (GH)
have been suggested to fit financial data. The development of theses distributions is due to
Barndorff-Nielsen (1977). He applied the Hyperbolic subclass to fit grain size of sand subjected
to continuous wind blow. Further, in Barndorff-Nielsen (1978), the extension to the Multivariate
Generalized Hyperbolic Distributions (MGH) was introduced. This class of MGH were used in
different fields of knowledge like physics, biology, agronomy and others (see Blæsild & Sørensen
(1992)).

Eberlein & Keller (1995) were the first to apply these distributions to finance. They used
univariate Hyperbolic subclasses to fit German data. Keller (1997) studied derivative pricing
with GH and Prause (1999) extended Eberlein & Keller (1995) results by fitting financial data
using the MGH class. He also prices derivatives and measures Value at Risk. Using GH class
we can capture fat tails and the skewness observed on asset returns.

Blæsild & Sørensen (1992) were the first to develop a computer program, called Hyp, to estimate
the parameter of the Hyperbolic subclass up to three dimensions. Prause (1999) developed a
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program to estimate the MGH class.

More recently, Schmidt et al. (2006) introduced the Multivariate Affine Generalized Hyperbolic
Distributions (MAGH). Their main goal was to develop a multivariate distributions that can
capture fat tails, skewness and tail dependence. Such that at the same time were simple to
estimate. Since, the parameter estimation procedure of MGH is computational intense and
have some shortcomings.

Some applications to the Brazilian market have been carried on to analyze the use of GH. Using
the Hyp software Fajardo et al. (2001) studied the goodness of fit Hyperbolic subclass. Fajardo
& Farias (2004) and Fajardo et al. (2005) extended that results and price some derivatives
using the GH class.

In this paper we generalize Fajardo & Farias (2004) using MAGH. We asses the goodness of fit
of MAGH with international financial data and the Brazilian index Ibovespa.

The paper is organized as follows: Section 2 presents the Generalized Hyperbolic Distributions.
In Section 3, we present Multivariate Affine Generalized Distributions. In Section 4, we describe
our sample. Section 5 describes the MAGH estimation procedures. In Section 6, we present the
empirical results and in the last sections we have the conclusions and an appendix.

2 Generalized Hyperbolic Distributions

The probability density function of the one dimensional GH is defined by:

gh(x; α, β, δ, µ, λ) = a(λ, α, β, δ)(δ2 + (x − µ)2)
(λ−

1
2 )
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where µ is a location parameter, δ is a scale factor, compared to Gaussian σ in Eberlein (2000), α
and β determine the distribution shape, λ defines the tail fatness (Barndorff-Nielsen & Blæsild
1981)), therefore the subclasses of GH, and
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is the modified Bessel function 1 of third kind with index λ. The domains of the parameters
are:

µ, λ ∈ R

−α < β < α

δ, α > 0.

The GH have semi-heavy tails, this name due to the fact that their tails are heavier than
Gaussian’s, but they have finite variance, which is observed by the following approximation:

gh(x; λ, α, β, δ) ∼| x |λ−1 exp ((∓α + β)x) as x → ±∞

Many distributions can be obtained as subclasses of or limiting distributions of GH. We cite
as examples the Gaussian distribution, Student’s T and Normal Inverse Gaussian. We refer to
Barndorff-Nielsen (1978) and Prause (1999) for a detailed description.

We can, alternatively, write the GH density as an affine transformation of a canonical form,
with scale 1 and position 0

Proposition 1 We can write GH(x; ω, δ2, µ) as an affine transformation of a canonical GH:
GH(x; ω, 1, 0), where ω := (α̃, β̃, λ).

3 Multivariate Affine Generalized Hyperbolic Distributions

The n-dimensional MAGH consists in the following stochastic representation:

X
d
= A′Y + M

where A is an upper triangular matrix ∈ R
nxn such that A′A = Σ is an positive definite

and the random vector Y ∈ R
n consists of n mutually independent one-dimensional canonical

GH(ω, 1, 0) (to more details see Schmidt et al. (2006)). This definition is responsible for
easying the estimation procedure. M is the location parameter and Σ is an scaling factor. The
family of n-dimensional Multivariate Affine Generalized Hyperbolic distributions is denoted by
MAGHn(ω, Σ, M), where ω := (ω1, . . . , ωn) and ωi := (λi, αi, βi), ı = 1, . . . , n.

The mean and variance of the MAGH can be easily calculated:

E[X] = E[A′Y + M ] = A′E[Y ] + M

where E[Y] by independence, is a vector containing at each row the mean of the univariate
GH(ω, 1, 0).

1 For more details about Bessel functions, see Abramowitz & Stegun (1968).
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V AR[X] = V AR[A′Y + M ] = ΣV AR[Y ]

where VAR[Y] by independence, is a vector containing at each row the variance of the univariate
GH(ω, 1, 0).

This distribution is extremely flexible because the parameters λ and α can be defined to each
margin, improving fitness even if the margins have extremely different tail fatness, because, λ
and α are directly responsible for that phenomena. Furthermore, if Σ is a diagonal matrix the
margins are independent, which is important in some scenarios.

The easiness on estimation is due to a simple procedure that allows, instead of a simultaneous
parameters acquiring process, estimation using n univariate estimations, where n represents
the number of dimensions.

4 Sample

The empirical evaluation uses the Ibovespa, CAC 40, Dax 100, FTSE 100, Nikkei 225 and
Standard and Poors 500 indexes. The data consisted of the daily log-returns which were
calculated using:

Ri,t = ln

(

Pi,t

Pi,t−1

)

The samples with their tickers and respective periods are in table 1. The chosen starting date
was the date Brazil implemented its currency stabilization plan (Real plan), that brought
some stability to the prices avoiding daily correction of asset prices. Since we are talking about
different countries we interpolated the data when some date wasn’t a trade date in all countries.
We didn’t exclude any trade date, not even the September 11th.

Tabela 1. Sample
Asset Ticker Start End

Bovespa BVSP 08/01/1994 10/20/2005
Cac40 CAC 08/01/1994 10/20/2005
Dax DAX 08/01/1994 10/20/2005
FTSE FTSE 08/01/1994 10/20/2005
Nikkei NIKK 08/01/1994 10/20/2005
Standard and Poors SP500 08/01/1994 10/20/2005

In table 2 we give the main descriptive statistics of the data, and in table 3 we have the
correlation matrix of the data. Using these two tables we can see important features of this
database:

• High-correlated data. CACxDAX have 0.7902 correlation coefficient;
• Almost uncorrelated data. BVSPxNIKK have 0.1136 correlation coefficient;
• High amplitude data. BVSP has a minimum of -17.2082 and a maximum of 28.8325, a lot

greater the other indexes.
• High kurtosis data. Following the last item, BVSP has a kurtosis of 16.9409, implying in a

much heavy distribution tail.
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Tabela 2. Descriptive Statistics (%)
Index Mean Std Deviation Skewness Kurtosis Min Max

BVSP 0.0668 2.4107 0.5901 16.9409 -17.2082 28.8325
CAC 0.0256 1.3766 -0.0988 5.7326 -7.6781 7.0023
DAX 0.0277 1.4967 -0.1415 5.6244 -6.4999 7.5527
FTSE 0.0174 1.0680 -0.1238 5.9075 -5.5888 5.9038
NIKK -0.0147 1.3625 -0.0997 5.1872 -7.2340 7.6553
SP500 0.0322 1.0737 -0.1002 6.4608 -7.1127 5.5744

Tabela 3. Correlation Matrix (%)
BVSP CAC DAX FTSE NIKK SP500

BVSP 1.0000 0.2682 0.2756 0.2735 0.1136 0.4277
CAC 0.2682 1.0000 0.7902 0.7875 0.2434 0.4366
DAX 0.2756 0.7902 1.0000 0.7215 0.2315 0.4983
FTSE 0.2735 0.7875 0.7215 1.0000 0.2551 0.4311
NIKK 0.1136 0.2434 0.2315 0.2551 1.0000 0.1138
SP500 0.4277 0.4366 0.4983 0.4311 0.1138 1.0000

Analyzing the correlation matrix, we can see that the more correlated data are Dax, CAC and
FTSE, what was expected since all of them are European markets (not EURO zone). The BVSP
and NIKK, following SP500 and NIKK are the less correlated data, which also was expected
since they are from completely different continents.

5 Estimation Algorithm

In order to estimate GH parameters we used a slight modification into Fajardo & Farias (2004)
algorithm in order to estimate the affine transformation form of GH(ω, δ2, µ).That algorithm
was implemented in Matlab and uses maximum likelihood estimation. Freund (2004); Lagarias
et al. (1998); Neumaier (2004) shows properties of restricted optimization and Baritompal &
Hendrix (2005); Björkman & Holmström (1999); Hart (1994); Iwaarden (1996); Mendivii et al.
(1999); Stützle & Hrycej (2002a) discuss, also ways to implement global optimization. Based
on them, in order to improve performance and get more reliable estimates we transformed the
restricted parameters to unrestricted parameters:

α̃u = ln(α̃) (1)

δu = ln(δ) (2)

β̃ = (1 − exp(−β̃u × sign(β̃u))) × sign(β̃u), (3)

To estimate MAGH parameters we used some propositions. In order to simplify the procedure
and improve efficiency in the estimation. This approach was used by Schmidt et al. (2006),
Stützle & Hrycej (2001), Stützle & Hrycej (2002a), Stützle & Hrycej (2002b) and Stützle &
Hrycej (2005), applied in many other distributions, included MAGH.

Proposition 2 If X ∼ MAGHn(ω, Σ,M) then W = BX is a set of n independent GH(ω, δ, µ)
distributions, where B is the inverse Cholesky factorization of X covariance matrix.
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By definition if X ∼ MAGHn(ω, Σ,M) then we can state that:

X
d
= A′Y + M

for some upper triangular matrix A such that A′A = Σ is positive-definite and the random
vector Y = (Y1, ..., Yn)′ consists of mutually independent random variables Yi ∼ GH(ωi, 1, 0).

So the dependence structure of the MAGH is due to the A matrix. Let S be he covariance
matrix of X, so we can use Cholesky to factorize it as S = B̃′B̃.

Applying the inverse, we have:

S−1 = B̃−1(B̃−1)′

Calling (B̃−1)′ = B we get S−1 = B′B

So, when we let:

W = BX

we indeed transform the correlated X to an uncorrelated W ((Horn & Johnson. 1985; Press
et al. 1992)). The question is: Is W ∈ MAGH?

W = BX = B(A′Y + M) = BA′Y + BM

BA′AB′ is clearly positive definite, so W ∈ MAGH and as stated is a set of independent
GH(ω, δ, µ) distributions. 2

Proposition 3 We can estimate X by a two step procedure

In above proposition we stated that W is a vector of independent distributions, so we can
estimate W by its conditional distributions Wi.

After we estimate all Wi we can recover the original X parameters:

Each Wi can be written as Wi
d
= δYi + µi, so:

W = BX → (W1, W2, ..., Wn)′ = BX → X = B−1W

As stated before

B−1W ∼ MAGH(ω, Σ,M) so, A′Y + M = B−1(DY + µ)

Thus:
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A′ = B−1D and M = B−1µ.

Where D is the diagonal matrix containing the δi of marginal distributions, and µ is the vector
of µi. 2

So we use the following steps:

(1) Find B as the Cholesky series factorization of the inverse sample covariance matrix.
(2) Get W = BX, that is a set of independent GH(ωi, δ

2, µ).
(3) Estimate the univariate GHs.
(4) Translate the univariate parameters into the multivariate parameters using Proposition 3.

This procedure leads to a less computational effort, since it consists of n univariate estimations,
acquiring 5 parameters at each, instead of 1 multivariate estimation of 4n+n(n+1)/2 parameters
at once.

6 Empirical Results

6.1 Unidimensional Estimation

Table 4 presents the results of the unidimensional estimation of GH distributions and Normal
Inverse Gaussian (NIG) and Hyperbolic (Hyp) subclasses. The GH estimation has to be taken
care, since the presence of λ as a free-parameter may lead to multiple local minimums.

Tabela 4. GH and its subclasses estimated parameters.

Index α̃ β̃ λ δ µ LogLike

BVSP GH 0.6350 -0.0998 -1.0149 2.3911 0.2131 -6387.0
NIG 0.8862 -0.0957 -0.5000 2.1473 0.2693 -6392.8
HYP 0.4917 -0.0437 1.0000 0.7420 0.2162 -6408.0

CAC GH 1.0065 -0.0819 -0.9964 1.6317 0.1194 -4919.8
NIG 1.0410 -0.0091 -0.5000 1.3874 0.0520 -4920.6
HYP 1.0511 -0.0041 1.0000 0.8504 0.0372 -4927.0

DAX GH 0.9814 -0.0863 -0.0100 1.2092 0.1776 -5141.6
NIG 0.9726 -0.1003 -0.5000 1.4476 0.1733 -5142.2
HYP 1.0531 -0.0057 1.0000 0.9167 0.0454 -5153.9

FTSE GH 0.9851 -0.0804 -0.4989 1.0388 0.0975 -4153.2
NIG 0.9851 -0.0804 -0.5000 1.0388 0.0975 -4153.2
HYP 1.0543 -0.0075 1.0000 0.6541 0.0318 -4163.7

NIKK GH 1.0405 -0.0055 0.5046 0.9902 0.0056 -4935.9
NIG 1.0376 0.0000 -0.5000 1.4066 -0.0067 -4937.7
HYP 1.0470 0.0000 1.0000 0.8489 -0.0085 -4936.8

SP500 GH 1.0444 -0.0075 0.0026 0.9030 0.0471 -4180.3
NIG 1.0414 -0.0076 -0.5000 1.0751 0.0477 -4180.4
HYP 1.0529 -0.0053 1.0000 0.6600 0.0424 -4186.7

The subclasses Hyp and NIG are specially important because the first one (Hyperbolic) is easier
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to estimate, since the Bessel function (the most computer demanding) is evaluated only once
for log-likelihood evaluation 2 while the others need at least n times, where n is the sample size.

The second one (Normal Inverse Gaussian) is more often desirable specially in derivative pricing,
since it is closed under convolution, characteristic not applicable to others subclasses.

Due to this, we did likelihood ratio tests checking for the possibility of restricting GH parameters
to NIG or Hyp subclasses. The tests statistics such as their p-values are in table 5.

Tabela 5. Log-likelihood ratio test
NIG Hyp

Index Stats P-Value Stats P-Value

BVSP 11.5260 6.86E-04 41.9750 9.24E-11
CAC 1.7523 0.1856 14.4540 1.44E-04
DAX 1.2142 0.2705 24.4810 7.50E-07

FTSE 0.0005 0.9820 20.9120 4.81E-06
NIKK 3.7139 0.0540 1.9122 0.1667
SP500 0.2018 0.6533 12.7990 3.47E-04

We can see in table 5 that the developed countries stocks markets can be modelled with NIG
instead of GH, not remaining true for Brazilian market. This happens because high kurtosis
and standard deviation of Brazilian stock market, characteristic already explored in Fajardo &
Farias (2004).

The same table shows that only for NIKK we can restrict estimation to Hyp subclass, being
the null hypothesis rejected for all other indexes.

6.2 Unidimensional Goodness of Fit

In order to evaluate the goodness of fit we show some figures and calculated distances. Figures
1-4 shows the estimated x empirical distributions of indexes BVSP and NIKK. We can see in
PDF graphics that the GH distribution fits well the kurtosis of the distribution, reenforced by
the log-density, showing that the tails are also well fitted too.
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Figura 2. NIKK log-PDF.

2 To explore GH subclasses see Barndorff-Nielsen (1977) and Barndorff-Nielsen (1978)
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Figura 4. BVSP log-PDF.

Table 6 lists all Kolmogorov distances and the respective p-values (for details see Fajardo &
Farias (2004)). The GH and NIG don’t reject the null hypothesis that the empirical distribution
is GH/NIG distributed. In HYP case, only DAX is rejected.

Tabela 6. Kolmogorov-Smirnov Tests.
Normal GH NIG Hyp

Index KS pValue KS pValue KS pValue KS pValue

BVSP 0.0683 2.7E-12 0.0129 0.7134 0.0115 0.8318 0.0141 0.6049
CAC 0.0525 1.9E-07 0.0098 0.9414 0.0085 0.9841 0.0139 0.6244
DAX 0.0680 3.4E-12 0.0167 0.3871 0.0173 0.3413 0.0307 0.0080

FTSE 0.0571 9.9E-09 0.0143 0.5875 0.0142 0.5917 0.0219 0.1199
NIKK 0.0486 2.0E-06 0.0112 0.8576 0.0107 0.8902 0.0122 0.7744
SP500 0.0549 4.2E-08 0.0149 0.5360 0.0144 0.5731 0.0200 0.1924

Just as an comparison exercise, we post in table 7 the Anderson & Darling distance (for more
details see Fajardo & Farias (2004)). This distance show mainly the difference in the tails of the
distribution. In this case the Normal distribution shows terrible performance, being the worst
a 50077 distance against 0.0339 of GH (BVSP) and in the best performance 0.6159 against
0.0288 of GH (DAX).

Tabela 7. Anderson-Darling distances.
Normal GH NIG Hyp

Bovespa 50077.4824 0.0470 0.1080 0.3071
CAC40 8.3298 0.0355 0.0530 0.0786

Dax 0.6159 0.0374 0.0375 0.0858
FTSE 2.8125 0.0416 0.0418 0.0868
Nikkei 3.2669 0.0388 0.0351 0.0563
SP500 334.6462 0.1211 0.0991 0.2245

The question is: how can we model multivariate data, considering the dependence among them?
So in next section we provide the Multivariate Affine Generalized Hyperbolic, an attempt to
solve this without intensive computational effort.

6.3 2-Dimension MAGH Estimation

Even though the Univariate estimates present desirable goodness of fit measures, the correlation
between the assets is not negligible, so if we want to model the joint distribution of the assets,
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for V@R necessities or even derivative pricing, we have to consider Multivariate distributions.

Now we present the results of MAGH estimation. In order to assess more easily the results,
we first present the estimation of 2 by 2 combinations of the sample, then we present the full
sample treated as one multivariate distribution.

Table 8 has the estimates of the two assets with higher correlation (CAC and DAX) and the
two assets with lower correlation (BVSP and NIKK).

Tabela 8. MAGH and its subclasses estimated parameters

Assets α̃ β̃ λ M Σ LogLike

CAC GH 1.0441 0.0037 -0.5036 0.1301 1.4936 1.0866 -3939.5
X 1.0028 -0.0878 -0.0100 0.1773 1.0866 1.4952 -3965.0

DAX Nig 1.0441 0.0037 -0.5 0.1310 1.8239 1.5411 -3939.5
0.9842 -0.1058 -0.5 0.1785 1.5411 2.1206 -3965.4

Hyp 1.0574 0.0024 1 0.1412 0.6857 0.5771 -3949.4
1.0191 -0.0699 1 0.1912 0.5771 0.7940 -3972.8

BVSP GH 1.0377 -0.0157 -1.0173 0.1208 7.3805 0.1977 -3820.7
X 1.0409 -2E-05 0.5022 -0.0011 0.1977 0.9834 -4033.1

NIKK Nig 1.0474 -0.0151 -0.5 0.1258 5.3607 0.3984 -3823.1
1.0386 -0.0056 -0.5 0.0010 0.3984 1.9816 -4034.6

Hyp 1.0759 -0.0077 1 0.0975 2.0753 0.1449 -3844.8
1.0470 -1.5E-07 1 -0.0033 0.1449 0.7206 -4033.8

Again, we may be interested in particular subclasses (MANig and MAHyp). Table 9 shows the
estimates concerning the restriction of MAGH to one of its main subclasses. The results are
quite similar to the univariate case. When BVSP is one of the distributions, only BVSP x CAC
can be restricted to MANig, but all other two-index combination can be restricted. Once again
the high volatility and kurtosis of BVSP distribution contributes to this. In the MAHyp case,
we cannot restrict any of the samples.

Tabela 9. Log-Likelihood ratio tests.
NIG Hyp

Assets Stats P-Value Stats P-Value

BVSP x CAC 3.1351 0.2086 57.2950 0.0000
BVSP x DAX 25.1630 0.0000 86.1360 0.0000
BVSP x FTSE 5.4250 0.0664 73.2390 0.0000
BVSP x NIKK 7.8421 0.0198 49.7060 0.0000
BVSP x SP500 7.9218 0.0190 59.6940 0.0000
CAC x DAX 0.8372 0.6580 35.4220 0.0000
CAC x FTSE 0.8429 0.6561 30.2700 0.0000
CAC x NIKK 3.0086 0.2222 12.1060 0.0024
CAC x SP500 0.2348 0.8892 25.3790 0.0000
DAX x FTSE 0.8951 0.6392 29.7720 0.0000
DAX x NIKK 3.4144 0.1814 18.5980 0.0001
DAX x SP500 0.4480 0.7993 16.9600 0.0002
FTSE x NIKK 3.0308 0.2197 16.3950 0.0003
FTSE x SP500 0.2363 0.8886 34.0040 0.0000
NIKK x SP500 3.3853 0.1840 14.8280 0.0006
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6.4 2-Dimension Goodness of Fit

We present two kinds of goodness of fit evaluations. First we show the multivariate distribution
of the more correlated pair of assets (CACxDAX) and the less correlated one (BVSPxNIKK),
then we calculate two-dimensional Kolmogorov distances.

Figures 5 and 6 represents the empirical, MAGH fit and Normal fit to BVSP x NIKK (correla-
tion = 0.1136) and CAC x DAX (correlation = 0.7902). Once again the kurtosis of the series
are better captured with MAGH distributions.

Furthermore we need to calculate Kolmogorov distance to the multidimensional case. We use
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the approach of Fasano & Franceschini (1987) and Peacock (1983) that calculates the maximum
distance in all possible directions (in this case 4). The number of sample points used in distance
calculus was 100 for each margin, totaling 10000 points.

Tabela 10. Kolmogorov distances for 2-dimensional estimations.
Normal GH Nig Hyp

BVSP x CAC 0.0065 0.0016 0.0017 0.0022
BVSP x DAX 0.0072 0.0022 0.0024 0.0028
BVSP x FTSE 0.0054 0.0028 0.0011 0.0021
BVSP x NIKK 0.0062 0.0016 0.0017 0.0017
BVSP x SP500 0.0059 0.0023 0.0028 0.0025
CAC x DAX 0.0023 0.0013 0.0008 0.0009
CAC x FTSE 0.0017 0.0010 0.0006 0.0006
CAC x NIKK 0.0018 0.0006 0.0005 0.0005
CAC x SP500 0.0017 0.0005 0.0006 0.0007
DAX x FTSE 0.0019 0.0008 0.0006 0.0009
DAX x NIKK 0.0019 0.0006 0.0005 0.0007
DAX x SP500 0.0019 0.0007 0.0010 0.0012
FTSE x NIKK 0.0015 0.0005 0.0005 0.0005
FTSE x SP500 0.0014 0.0004 0.0005 0.0006
NIKK x SP500 0.0016 0.0004 0.0004 0.0005

The results of table 10 leads us to conclude that the MAGH really provides better fit to the data.
Consistently the MAGH distributions and its subclasses have less distance between theoretical
distribution and empirical.

6.5 6-Dimension MAGH Estimation

In this section we present the results of the joint estimation of the assets. Table 11, 12 and 13
gives us the results concerning respectively for MAGH, MANig and MAHyp. The estimation
procedure explained in section 3 turns more easy this estimation.

Tabela 11. MAGH 6-dimensional estimations.
BVSP CAC DAX FTSE NIKK SP500

α̃ 1.0420 1.0430 1.0423 1.0432 1.0419 1.0447

β̃ -0.0142 0.0017 -0.0065 -0.0066 0.0000 -0.0079
λ -1.0157 -0.5017 -1.0146 -0.4980 0.5028 0.0030

M 0.1304 0.0510 0.0634 0.0374 0.0011 0.0480

Σ

6.9439 0.6938 0.7598 0.5495 0.2256 0.7831
0.6938 1.8567 1.6821 1.0513 0.2575 0.4564
0.7598 1.6821 2.5637 1.0277 0.2697 0.5665
0.5495 1.0513 1.0277 1.0582 0.2086 0.3496
0.2256 0.2575 0.2697 0.2086 0.9832 0.1178
0.7831 0.4564 0.5665 0.3496 0.1178 0.8155

Log-Like -3846.8 -3972.3 -4041.2 -3963.3 -4028.8 -3972.8

Following our script, we show in table 14 the log-likelihood ratio test for subclasses restriction.
They show that we can restrict to MANig subclass but not for MAHyp subclass, reaffirming
the previous results (less dimensions).
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Tabela 12. MANig 6-dimensional estimations.
BVSP CAC DAX FTSE NIKK SP500

α̃ 1.0135 1.0430 1.0415 1.0432 1.0382 1.0417

β̃ -0.0727 0.0017 -0.0070 -0.0066 0.0000 -0.0077
λ -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000

M 0.2329 0.0512 0.0637 0.0375 0.0012 0.0483

Σ

5.3897 0.8962 1.0013 0.7083 0.3862 1.1103
0.8962 1.9261 1.6716 1.1646 0.4781 0.6472
1.0013 1.6716 2.3335 1.1601 0.4933 0.8032
0.7083 1.1646 1.1601 1.1469 0.3889 0.4958
0.3862 0.4781 0.4933 0.3889 1.9640 0.1670
1.1103 0.6472 0.8032 0.4958 0.1670 1.1563

Log-Like -3848.3 -3972.3 -4042.7 -3963.3 -4030.3 -3972.9

Tabela 13. MAHyp 6-dimensional estimations.
BVSP CAC DAX FTSE NIKK SP500

α̃ 1.0726 0.5985 1.0451 1.0543 1.0470 1.0530

β̃ -0.0072 -0.0013 0.0000 -0.0047 0.0000 -0.0060
λ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

M 0.1050 0.0460 0.0535 0.0311 -0.0036 0.0433

Σ

2.1198 0.3279 0.3764 0.2664 0.1432 0.4181
0.3279 0.5989 0.6220 0.4382 0.1762 0.2437
0.3764 0.6220 0.8617 0.4365 0.1820 0.3025
0.2664 0.4382 0.4365 0.4316 0.1433 0.1867
0.1432 0.1762 0.1820 0.1433 0.7203 0.0629
0.4181 0.2437 0.3025 0.1867 0.0629 0.4354

Log-Like -3867.9 -3974.6 -4041.4 -3972.2 -4029.8 -3979.2

Tabela 14. Log-Likelihood Ratio tests.
NIG Hyp

Stats P-Value Stats P-Value

9.4108 0.1518 80.072 3.4E-15

6.6 6-Dimension Goodness of fit

We felt challenged to give some measure of goodness of fit to a 6-dimension data, since all
multidimensional Kolmogorov distances in literature goes up to 4 dimensions. We implemented
the algorithm mentioned in the 2-Dimension case, that calculates the Kolmogorov distance if
all possible accumulation directions.

In a 6 dimension problem, it leads do 26 = 64 possible directions. We used 20 point to evaluate
the data in each marginal, giving a total of 64,000,000 evaluation points in each accumulation.
Table 15 shows the results, and once again the MAGH distributions obtain better fit.

Tabela 15. 6-Dimension Kolmogorov Distances.
Distribution Distance

Normal 0.2394
GH 0.1773

NIG 0.1742
Hyp 0.2312
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The size of the distances were influenced by the number of data points in each marginal, but
the main result remains valid.

Another way to show the goodness of fit is showing the behavior of the fit in each marginal.
Figures 7-12 show a visual intuition of the fit in each one of the marginals. We can infer that
the MAGH distributions have a good fit performance.
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Figura 7. BVSP margin PDF.
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Figura 8. CAC margin PDF.
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Figura 9. DAX margin PDF.
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Figura 10. FTSE margin PDF.
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Figura 11. NIKK margin PDF.
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Figura 12. SP500 margin PDF.
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7 Conclusions

In this paper we evaluated the goodness of fit of Multivariate Affine Generalized Hyperbolic
Distributions to various assets return and showed that they present a very good fit. They can
improve multivariate derivative pricing since they capture in a better way the data kurtosis.

The main limitations of the model were the computational effort to parameter estimation,
although simpler than MGH estimation it is quite intensive, plus the utilization of numerical
calculus that requires attention in precision determination. It is important to observe the trade-
off between the use of a subclass or the Generalized family.

8 Appendix

Proof 1 (Proposition 1) Let X be a GH(x; ω, δ2, µ). Define Y as:

Y
d
=

X − µ

δ
, (4)

this leads to:

P (Y ≤ y) = P
(

X − µ

δ
≤ y

)

= P (X ≤ δy + µ), (5)

then,

FY (y) = FX(δy + µ) (6)

Deriving both sides w.r.t y, we have:

fY (y) = fX(δy + µ)δ (7)

SO using the definition of the GH density , we have:

fY (y) =





(α2 − β2)λ/2(δ2 + (δy)2)(λ− 1
2
)/2

√
2παλ− 1

2 δλKλ(δ
√

α2 − β2)
Kλ− 1

2

(

α
√

δ2 + (δy)2

)

eβδy



 δ (8)

Now doing a simple parameter transformation:

α =
α̃

δ
and β =

α̃β̃

δ
(9)

And replacing in 9 and 8, we obtain:
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fY (y) =

(

α̃2

δ2 − α̃2β̃2

δ2

)

λ
2
(δ2 + δ2y2)

(λ− 1
2
)/2

√
2π

(

α̃
δ

)λ−1/2
δλKλ

(

δ
√

α̃2

δ2 − α̃2β̃2

δ2

)Kλ− 1
2

(

α̃

δ

√

δ2 + δ2y2

)

e
α̃β̃δy

δ δ

=
δ(α̃2(1 − β̃2))

λ
2 δ−λ(1 + y2)(λ− 1

2
)/2δλ− 1

2

√
2πα̃λ− 1

2 δ−λ+ 1
2 δλKλ

(

δ
√

(α̃2(1 − β̃2))δ−2

)Kλ− 1
2

(

α̃δ−1
√

δ2(1 + y2)
)

eα̃β̃y

=
δα̃λ(1 − β̃2)

λ
2 δ−λ(1 + y2)(λ

2
−

1
4
) δλ−1/2

√
2πα̃λ−1/2δ−λ+1/2δλKλ

(

α̃
√

1 − β̃2

)Kλ− 1
2

(

α̃
√

1 + y2

)

eα̃β̃y

=
α̃1/2(1 − β̃2)

λ
2 (1 + y2)(λ

2
−

1
4
)

√
2πKλ

(

α̃
√

1 − β̃2

) Kλ− 1
2

(

α̃
√

1 + y2

)

eα̃β̃y (10)

We got an expression similar to Schmidt et al. (2006). 2
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Stützle, Eric, & Hrycej, Tomas. 2002a. Estimating multivariate conditional distributions
via neural networks and global optimization. In: Proceedings of the 2002 ieee international
joint conference on neural networks, honolulu, hawaii.
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