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Abstract

There is strong empirical evidence that risk premia in long-term
interest rates are time-varying. These risk premia critically depend on
interest rate volatility, yet existing research has not examined the im-
pact of time-varying volatility on excess returns for long-term bonds.
To address this issue, we incorporate interest rate option prices, which
are very sensitive to interest rate volatility, into a dynamic model for
the term structure of interest rates. We estimate three-factor affine
term structure models using both swap rates and interest rate cap
prices. When we incorporate option prices, the model better captures
interest rate volatility and is better able to predict excess returns for
long-term swaps over short-term swaps, both in- and out-of-sample.
Our results indicate that interest rate options contain valuable infor-
mation about risk premia and interest rate dynamics that cannot be
extracted from interest rates alone.
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Introduction

In a regression framework, Fama and Bliss (1987) demonstrate that expected

excess bond returns are both predictable and time-varying. Campbell and

Shiller (1991) present further evidence from regressions that risk premiums

on long-term bonds are also time varying. Recently, Duffee (2002) and Dai

and Singleton (2002) have shown that dynamic term structure models with

a flexible specification of the market price of interest rate risk can capture

this variation in expected returns. However, the expected excess returns for

long-term bonds depends on both the price of interest rate risk as well as the

amount of interest rate volatility, yet comparatively little research attention

has been focused on the impact of time-varying volatility on expected excess

returns.

With few exceptions, previous research has not included interest rate op-

tions when estimating dynamic term structure models and therefore has not

exploited the additional information about interest rate volatility that may

be contained in these option prices. In this paper we estimate arbitrage-free

dynamic term structure models jointly on both swap rates and the prices of

interest rate caps. We use quasi-maximum likelihood to estimate three-factor

affine term structure models with 0, 1, or 2 factors having stochastic volatil-

ity.1 In order to make estimation with cap prices computationally feasible,

we build on the work of Jarrow and Rudd (1982) and develop a computa-

1See Dai and Singleton (2000) for a detailed specification of the AM (N) affine term
structure models that we estimate in this paper.

2



tionally efficient method for computing cap prices that is well-suited to esti-

mation. When we incorporate information in option prices, we significantly

improve the model’s ability to price interest options without impairing its

ability to capture the term structure of interest rates. More importantly, the

model’s that are estimated with options are dramatically better at predict-

ing excess returns for long-term swaps over short-term swaps, both in- and

out-of-sample.

Previous papers that have used both interest rates and interest rate op-

tions in estimation have focused on accurately pricing both interest rates and

options. Umantsev (2002) estimates affine models jointly on both swaps and

swaptions and analyzes the volatility structure of these markets as well as

factors influencing the behavior of interest rate risk premia. Longstaff et al.

(2001) and Han (2004) explore the correlation structure in yields that is

required to simultaneously price both caps and swaptions. Bikbov and Cher-

nov (2004) use both Eurodollar futures and option prices to estimate affine

term structure models and discriminate between various volatility specifica-

tions. Our paper differs from these papers in that we examine how including

options in estimation affects a model’s ability to capture the dynamics of

interest rates and predict excess returns.

The remainder of the paper is organized as follows. Section 2 describes

the dynamic term structure models, data, and our estimation procedure.

Section 3 presents the cross-sectional fit to swap rates and cap prices. Section

4 examines the fit to swaption implied volatilities and to historical estimates
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of conditional volatility. Section 5 compares the estimated models’ ability

to predict excess returns and Section 6 concludes. Technical details, and all

tables and figures are contained in the appendix.

1 Excess Returns in Fixed Income Markets

Any bond held for a period less than its maturity will have a risky return.

For example, although the 5-year interest rate is known, the return on a 5-

year bond that is sold in one year is uncertain and risky. Economic reasoning

suggests that investors may demand a premium for holding this risk. Interest

rate volatility is one measure of the amount of such risk that a bond is exposed

to, and in this section we use regression analysis to test whether interest rate

volatility explains variation in bond returns.

Specifically, defining:

pn
t = price at time t of n year zero coupon bond,

rn
t = n-year continuously compounded yield

= −1

n
log(pn

t ).

The log excess return for holding an n-year bond for one year is then:

re,n
t+1 = log(pn−1

t+1 ) − log(pn
t ) − r1

t

= −(n − 1)rn−1
t+1 + nrn

t − r1
t
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Previous papers have shown that the current term structure of interest rates

can be used to predict excess bond returns. For instance, Fama and Bliss

(1987) and Campbell and Shiller (1991) provide evidence that the slope of

the yield curve explains variation in excess returns. Cochrane and Piazzesi

(2005) argue that the entire yield curve provides valuable information for

explaining variation in risk premia.

If investors demand a premium for holding long term bonds with a risky

return, then interest rate volatility may provide additional predictive power

in a regression. As a measure of volatility, we use interest rate cap data. An

interest rate cap is a financial derivative that caps the interest rate that is paid

on the floating side of a swap. The market convention is to quote prices in

terms of the volatility implied by Black’s formula. In our regression analysis,

we use the Black implied volatility of at-the-money caps as a measure of

the unobserved true volatility.2 The implied volatility from at-the-money

caps provides a forward looking measure of volatility that incorporates risk

preferences.

As a preliminary test of this hypothesis, we regress the one year excess

returns of 2- to 5-year bonds on three sets of explanatory variables (all include

a constant):

1. the slope of the yield curve, taken as rn
t − r1

t ,

2. the slope and n-year interest rate cap implied volatility,

2See Section 2 for a detailed description of the data.
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3. one to five year zero rates.

We report the R2 from the regressions using 483 weekly observations from

June 1995 to March 2004 in Table 1. The results indicate that indeed in-

cluding the cap implied volatility increases the amount of variation which

is explained from just using the slope alone. However, it should be noted

that the sample size is relatively small and the regressions choose coefficients

to maximize the R2 by construction (in particular there are only 10 non-

overlapping one year returns.)

The preliminary evidence in these regressions indicates that excess bond

returns depend on interest rate volatility, and suggests that it may be benefi-

cial to incorporate interest rate cap prices into a dynamic model of the term

structure of interest rates. We now turn to this objective.

2 Model and Estimation Strategy

Empirical studies of dynamic asset pricing models estimate the dynamics of a

pricing kernel Mt that prices at time t an arbitrary payment ZT at time T by

Et [(MT /Mt)ZT ]. Dynamic term structure models focus particular attention

on pricing payoffs at different maturities T .

The dynamic term structure models we estimate fall within the broad

class of models in which the pricing kernel is modelled as

dMt = −Mt r (Xt) dt − Mt Λ (Xt)
> d Wt
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where Xt are latent factors with dynamics

dXt = µ (Xt) dt + σ (Xt) dWt.

The price P T
t at time t of zero coupon bond3 that pays $1 at time T is

Et [MT / Mt] and depends critically on the dynamics of both the instanta-

neous short interest rate rt = r (Xt) and the market price of risk Λt = Λ (Xt).

A simple application of Itô’s Lemma implies that zero coupon bond price dy-

namics follow

dP T
t =

[

rt P
T
t +

∂P T
t

∂Xt

· σt Λt

]

dt +
∂P T

t

∂Xt

· σt dWt .

From (1) it is clear that expected excess returns of zero coupon bonds depend

on both the market price of risk Λt as well as the volatility σt of the latent

factors.

We estimate three 3-factor affine term structure models4 such that:

rt = ρ0 + ρ1 · Xt ,

µP
t = KP

0 + KP
1 Xt ,

σtσ
′

t = H0 + H1 · Xt

3In this paper we focus on modelling the swap rate and therefore the price of a zero
coupon bond is the price of $1 discounted at the relevant swap discount rate for that
maturity.

4These models were introduced by ? and Dai and Singleton (2000). We use an extended
affine market price of risk introduced by Cheridito et al. (2004) as a generalization of the
essentially affine market price of risk used in Duffee (2002). The model specifications are
described in more detail in the appendix.
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The drift is also affine under the risk neutral measure:

µQ
t = KQ

0 + KQ
1 Xt

and the associated market price of risk is given by:

Λ (Xt) = (σt)
−1
[

KP
0 − KQ

0 +
(

KP
1 − KQ

1

)

Xt

]

Any claim with payoff at time T given by f(XT ) can then be priced by

the discounted risk-neutral expected value

EQ
t [e−

R T
t

rτdτf(XT )]

In this affine setting, Duffie and Kan (1996) show that zero coupon bond

prices are given by

P T (Xt, t) = eA(T−t)+B(T−t)·Xt ,

where the functions A and B satisfy Riccati ODEs

Ḃ = −ρ1 + KQ>

1 B +
1

2
B>H1B , B (0) = 0 ,

Ȧ = −ρ0 + KQ>

0 B + +
1

2
B>H0B , A (0) = 0 .

We also include the prices of interest rate caps in our model estimation.
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An interest rate cap is a financial derivative that caps the interest rate that

is paid on the floating side of a swap. And so a cap is a portfolio of options

on 3 month LIBOR. The price CN
t

(
C
)

of an N -period interest rate cap with

strike rate C and time ∆t between floating interest payments is5

CN
t

(
C
)

=
N∑

n=2

Et

[

e−
R tn∆t

t
rτdτ

(

1

P t+n ∆t
t+(n−1)∆t

−
(
1 + C ∆t

)

)+]

.

In the setting of affine term structure models, Duffie et al. (2000) show

that cap prices can be computed as a sum of inverted Fourier transforms.

However, as we show in the appendix, when the solutions A and B to the

Riccati ODEs are not known in closed form, numerical evaluation of the in-

verted Fourier transforms is computationally expensive for use in estimation.

We use a more computationally efficient cumulant expansion technique to

compute cap prices.6 The cumulant expansion method we develop is espe-

cially well-suited to option pricing in an affine framework and is described in

more detail in Section C in the appendix.

Our data, obtained from Datastream, consists of Libor, swap rates, and

at-the-money cap implied volatilities from January 1995 to March 2004. We

use 3-month Libor and the entire term structure of swap rates to bootstrap

swap zero rates at 1-, 2-, 3-, 5- and 10-years.7 Finally, we use at-the-money

5The market convention is that there is no cap payment for the first floating rate
payment.

6Jarrow and Rudd (1982) were the first to use cumulant expansions in an asset pric-
ing setting. Collin-Dufresne and Goldstein (2002) use cumulant expansions to compute
swaption prices.

7Our bootstrap procedure assumes that forward swap zero rates are constant between
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caps with maturities of 1-, 2-, 3-, 4-, 5-, 7-, and 10-years.

We use quasi-maximum likelihood to estimate model parameters for A0(3),

A1(3), and A2(3) models.8 The full model specifications and estimation pro-

cedure are described in detail in the appendix. All of the models are esti-

mated using the assumption that the model correctly prices 3-month Libor

and the 2- and 10-year swap zero coupon rate exactly and the remaining

swap zero coupon rates are assumed to be priced with error.9 For the A1(3)o

and A2(3)o models, we also assume that at-the-money caps with maturities

of 1-, 2-, 3-, 4-, 5-, 7-, and 10-years are priced with error. For each model, we

used the following procedure to obtain Quasi-maximum likelihood estimates:

1. Randomly generate 25 feasible sets of starting parameters.

2. Starting from the best of the feasible seeds, use a gradient search

method to obtain a (local) maximum of the quasi-likelihood function

constructed using the model’s exact conditional mean and variance.10

3. Repeat these steps 1000 times to obtain a global maximum.

The parameter estimates are contained in Table 2.

observations.
8An AM (3) model has three latent factors with M factors having stochastic volatility.
9By assuming that a subset of securities are priced correctly by the model, we can use

these prices to invert for the values of the latent states. See Chen and Scott (1993) for
more details.

10In an affine model, the conditional mean and variance are known in closed form as the
solution to a linear constant coeffiecient ODE.
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3 Cross Sectional Fit

Table 3 provides the root mean squared errors (in basis points) for the swap

zero coupon rates. The root mean squared errors are 0 for the 3-month, 2-,

and 10-year swap zero rates because the latent states variables are chosen so

that the models correctly price these instruments. The A0(3) model has the

lowest mean squared errors across term structure maturities. More impor-

tantly, the pricing errors are only slightly higher for the A1(3)o and A2(3)o

models that are estimated with options than they are for the A1(3) and A2(3)

models that are not estimated with options. Thus, including options in esti-

mation does not appear to adversely affect the model’s ability to successfully

price the cross-section of interest rates.

Figure 1 plots at-the-money cap prices and Table 4 displays the root mean

squared error in percentage terms for at-the-money caps with various matu-

rities. While the A0(3) model had the lowest pricing errrors for interest rates,

it has the highest pricing errors for caps. The large cap pricing errors for the

A0(3) model are due to its lack of factors with stochastic volatility. Since the

A0(3) model does not contain stochastic volatility, we do not estimate it with

options. The cap pricing errors for the A1(3)o model are approximately half

the size of the pricing errors for its A1(3) counterpart that is not estimated

with options. More strikingly, the cap pricing errors for the A2(3)o model

are approximately one quarter the size of the pricing errors for the A2(3)

model. Thus, while including options slightly increases the pricing errors for
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the term structure of swap zero rates, it dramatically decreases the pricing

errors for interest rate caps.11

4 Matching Volatility

For the A1(3)o and A2(3)o models, cap prices are used in estimation and thus

it is possible that these models are accurately capturing cap prices without

accurately capturing interest rate volatility. As an additional measure of how

well the models are capturing interest rate volatility, we also compute the

prices of at-the-money swaptions. Swaptions differ from interest rate caps

in that they are a single option on a long maturity swap rate rather than a

portfolio of options on the 3-month Libor interest rate.

Figures 2 and 3 plot the times series of Black’s swaption implied volatil-

ities.12 Tables 5 and 6 give the pricing errors for a cross section of swaption

prices. The results for swaptions are similiar to those for caps. The A0(3)

model has the largest pricing errors. Again, the swaption pricing errors for

the A1(3)o and A2(3)o models that are estimated with caps are significantly

lower than their counterpart models A1(3) and A2(3) that are estimated

without using options. Data from SwapPX indicates that typical bid-ask

11It should be noted that none of the five models does a good job of pricing 1-year caps.
Dai and Singleton (2002) find that a fourth factor is required to capture the short end of
the yield curve. We choose to implement more parsimonious three-factor models because
we are primarily interested in predicting changes in long term yields.

12We assume that the strike prices is the at-the-money forward swap rate implied by
the model. This assumption is designed to minimize the effect of pricing errors in swap
rates on the computation of swaption prices.
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spreads are on the order of 2% implied volatility. Thus, the pricing errors for

the A1(3)o and A2(3)o models are very close to the bid-ask spreads in these

markets. Thus we find that these models are able to capture prices in both

the bond and cap and swaptions markets (with the exception of the short

end of the curve.)

In regards to pricing, these results differ somewhat from prior literature.

Longstaff et al. (2001) and Han (2004) suggest that affine term structure

models require a large number of parameters to simultaneously match both

swaption and cap prices. Longstaff et al. (2001) price swaptions in estimation

and find implied errors on cap prices of a similar magnitude to ours, but which

under-price the caps on average whereas our model estimates have near zero

average price errors for both cap and swaptions. Jagannathan et al. (2003)

find that AN(N) models with independent factors do a very poor job of

pricing caps whether or not they are included in the estimation. However,

we use a more general price of risk and our computational procedure allows

us to include affine models where cap prices are not known in closed form.

Our results are similar to Umantsev (2002) and Joslin (2005). Umantsev

(2002) finds that low factor affine models can simultaneously price well both

a cross section bonds and swaptions (though he does not consider caps.)

Joslin (2005) finds the complementary result that including swaption prices

in estimation gives models which price bonds, swaptions, and caps well.

Implied volatilities from caps and swaptions are forward looking and, in

the case of stochastic volatility models, also contain risk premia. The realized
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volatility however is not observed. For estimates of conditional volatility

based on historical data we use a 26 week rolling window, an exponential

weighted moving average (EWMA) with a 26-week half-life, and estimate an

EGARCH(1,1) for each maturity.

Figures 4 plots the model’s conditional volatility of zero coupon rates

against these estimates of conditional volatility using historical data. None

of the models do a good job of tracking the various estimates of the volatility

of the 6-month zero coupon rate, though the A1(3)o and A2(3)o at least

appear to get the level right.13 However, for the 2- and 5- year maturities, the

conditional volatility of the A1(3)o and A2(3)o models more closely tracks the

various estimates of conditional volatility. The A2(3) model complete misses

the level of volatility for the 6-month and 2-year zero coupon rates. Though,

on average, the A2(3) model matches the level of the volatility of the 5-year

zero coupon rate, it appears to miss the dynamics. The A1(3) model does a

better job than the A2(3) model at matching the various historical estimates

of conditional volatility. However, in each case, the A1(3) and A2(3) models

are worse than their A1(3)o and A2(3)o counterparts.

13As noted earlier, Dai and Singleton (2002) suggest that a fourth factor is required to
capture the dynamics of the short end of the yield curve. Collin-Dufresne et al. (2004)
are able to match the volatility of the short end with an unspanned stochastic volatility
model.
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5 Predictability of Excess Returns

Table 7 presents evidence on the predictability of excess returns for long

term interest rates for the in-sample period from January 1995 to March

2004. R2’s are calculated as

R2 = 1 − var(Rexpected
t,n − Rn

t,t+1)/var(Rn
t,t+1) ,

where where var(.) denotes variance, Rexpected
t,n are weekly model implied

expected returns for discount bonds with n years to maturity, and Rn
t,t+1 are

weekly realized returns for the corresponding bond. We include R2’s for each

model we estimated, as well as R2’s from three versions of the regressions

of excess returns on forward rates as performed in Cochrane and Piazzesi

(2005).14

On average, amongst models that were estimated without options, the

A0(3) model has higher excess return predictability than the A1(3) model,

which in turn has higher predictability than the A2(3) model. Both Duffee

(2002) and Dai and Singleton (2002) also estimate three-factor term structure

14For different maturities, Cochrane and Piazzesi (2005) run regressions of yields vari-
ations on a linear combination of forward rates. Letting pn

t and yn
t denote respectively

the price and yield to maturity of a n-year discount bond at time t, for each fixed n they
regress:

rn
t+1 − y1

t = βn
0 + βn

1 y1
t + βn

2 f2
t + βn

3 f3
t + βn

4 f4
t + βn

4 f5
t + εn

t+1 ,

where rn
t+1 is the holding period return from buying an n period discount bond at time t

and selling it at time t + 1, and f i
t = pi−1

t − pi
t, i = 2, ..., 5 is the time t one period forward

rate for loans between the maturities i−1 and i. CP5 are the regressions described above,
while CP10 are correspondent regressions using one period forward rates for loans between
maturities that go up to 10 years. Finally, CP5,10 use only 5 one year forward rates (which
begin in 0,2,4,6, and 8 years) as regressors.
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models without options and find that the A0(3) model has the best perfor-

mance in terms of predictability. When options are included in estimation,

the predictability of both the A1(3)o and A2(3)o models improve dramatically

over their A1(3) and A2(3) counterparts. On average, the R2’s for the A1(3)o

model are two to three times as large as those for the A0(3). The difference

is dramatic for the 10-year maturity were the R2 for the A0(3) model is only

2.5% but the R2 for the A1(3)o is 33.1%.

Moreover, the R2’s are much closer in magnitude to those obtained from

the regressions in Cochrane and Piazzesi (2005). The regressions in Cochrane

and Piazzesi (2005) are designed to only match excess returns and so they

serve as somewhat of an upper bound for the the level of predictability of

excess returns.

Table 8 provides R2’s for the out-of-sample period from April 1988 to

December 1994. (Recall that the models were estimated with historical data

from January 1995 to March 2004, which corresponded to the availability of

cap data in Datastream.) The A0(3) and A2(3) models do extremely poorly

out-of-sample, while CP10 seems to be overfitting in-sample data (which mo-

tiviating including the CP5,10). As was the case with in-sample predictabil-

ity, the inclusion of options in the A1(3)o and A2(3)o models dramatically

improves their out-of-sample predictability. Equally as striking, the out-of-

sample predictability of the A1(3)o model estimated with options is on par

with that of the CP5 and CP 10 results from the regressions in Cochrane and

Piazzesi (2005).
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Figure 5 plots the realized excess returns as well as the expected excess

returns for the A0(3), A1(3), and A1(3)o models and the CP5 regressions.

The variation in expected excess returns is higher for the A1(3)o and A2(3)o

models than for their A1(3) and A2(3) counterparts, presumably because

these models capture more time variation in volatility when they are esti-

mated with options. The results in Table 9 confirm this observation. In

addition, not only is the level of predictability of excess returns higher for

the A1(3)o and A2(3)o models than for the A0(3) model, the variation in the

predict excess returns is actually lower. Since there is no time variation in

volatility for the A0(3) model, all of the variation in expected excess returns

is due to variation in the market price of risk. Thus, the A0(3) model ap-

pears to overstate the true amount of variation in the market prices of risk.

The variation in expected excess returns for the A1(3)o and A2(3)o models is

also lower than that for the CP5 regressions. However, the CP5 regression is

not an economic model and therefore the expected excess returns cannot be

decomposed into volatility and the market prices of risk.

6 Conclusion

We estimate three-factor affine term structure models jointly on both swap

rates and interest rate cap prices. When we incorporate information in inter-

est rate caps, we significantly improve the model’s ability to price swaptions

and match realized volatility without impairing its ability to capture the term
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structure of interest rates. Furthermore, the model’s that are estimated with

options are dramatically better at predicting excess returns for long-term

swaps over short-term swaps, both in- and out-of-sample. In contrast to

previous literature, the arbitrage-free models with the most predictive power

contain a stochastic volatility component. Our results indicate that inter-

est rate options contain valuable information about term structure dynamics

that cannot be extracted from interest rates alone.
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A Detailed Model Specifications

The short rate is given by rt = ρ0 + ρ1 · Xt, where Xt is a Markov state

variable with dynamics and the physical and risk neutral measures given by:

dXt = (KP
0 + KP

1 Xt) + σtdBP
t

dXt = (KQ
0 + KQ

1 Xt) + σtdBQ
t

and where the conditional variance is affine in the state: σtσ
′

t = H0 +H1 ·Xt.

In the A0(3) model, H1 ≡ 0, so none of the three factors in Xt have

stochastic volatility. In the A1(3) model, one of the factors in Xt drives

stochastic volatility, and in the A2(3) model, two of the factors in Xt drive

stochastic volatility. For each model, Dai and Singleton (2000) and Cheridito

et al. (2004) identify the necessary restrictions required to ensure that the

stochastic processes are admissable, the parameters are identified, and the

physical and risk neutral measures are equivalent. The full specifications of

the A0 (3), A1 (3), and A2 (3) are described below.
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A0 (3) Model Specification

KP
1 =









KP
1,11 0 0

KP
1,21 KP

1,22 0

KP
1,31 KP

1,32 KP
1,33









KP
0 =









0

0

0









σt = I3

ρ1,1 ≥ 0, ρ1,2 ≥ 0, ρ1,3 ≥ 0

A1 (3) Model Specification

KP
1 =









KP
1,11 0 0

KP
1,21 KP

1,22 KP
1,23

KP
1,31 KP

1,32 KP
1,33









KP
0 =









KP
0,1

0

0









KQ
1 =









KQ
1,11 0 0

KQ
1,21 KQ

1,22 KQ
1,23

KQ
1,31 KQ

1,32 KQ
1,33









KQ
0 =









KQ
0,1

0

0









σt =









√

X1
t 0 0

0
√

1 + β12X1
t 0

0 0
√

1 + β13X1
t









KP
0,1 ≥ 1

2
, KQ

0,1 ≥
1

2

β12 ≥ 0, β13 ≥ 0

ρ1,2 ≥ 0, ρ1,3 ≥ 0
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A2 (3) Model Specification

KP
1 =









KP
1,11 KP

1,12 0

KP
1,21 KP

1,22 0

KP
1,31 KP

1,32 KP
1,33









KP
0 =









KP
0,1

KP
0,2

0









KQ
1 =









KQ
1,11 KQ

1,12 0

KQ
1,21 KQ

1,22 0

KQ
1,31 KQ

1,32 KQ
1,33









KQ
0 =









KQ
0,1

KQ
0,2

0









σt =









√

X1
t 0 0

0
√

X2
t 0

0 0
√

1 + β13X1
t + β23X2

t









KP
0,1 ≥ 1

2
, KP

0,2 ≥
1

2
, KQ

0,1 ≥
1

2
, KQ

0,2 ≥
1

2

KP
1,12 ≥ 0, KP

1,21 ≥ 0, KQ
1,12 ≥ 0, KQ

1,21 ≥ 0

β13 ≥ 0, β23 ≥ 0

ρ1,3 ≥ 0

B Detailed Estimation Procedure

We estimate all the models using quasi-maximum likelihood in a procedure

similar to Duffee (2002) and Dai and Singleton (2002). Using the instruments

priced without error and the risk neutral dynamics of Xt, we invert to find

the time series of states {Xt}. Given the states, we then compute the model
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implied prices of the instruments priced without error. Following Dai and

Singleton (2002), we assume that the pricing errors are i.i.d. normal with

mean zero. Finally, using the physical dynamics of the state vector and the

QML approximation, we compute the likelihood of the inverted states. This

gives the liklelihod of a given set of parameters to be:

likelihood =
∏

`P
QML(Xt|Xt−1) · (Jacobian) · (likelihood of pricing errors)

We use a slighlty different procedure than Duffee (2002) to compute the

conditional mean and variance of the state variable. For a general affine

process, Xt, with conditional drift K0 +K1Xt and conditional variance H0 +

H1 ·Xt, the mean and variance of Xt conditional on X0 satisfy the differential

equations

Ṁt = K0 + K1Mt

V̇t = K1Vt + VtK
t
1 + H0 + H1 · Mt

If we let f be the (N+N2)-vector (M, vec(V )), then by stacking these coupled

ODEs we see that f satisfies the ODE

ḟ =






K1 0

∆ IN ⊗ K1 + K1 ⊗ IN




 f +






K0

vec(H0)






Where ∆ is an (N2 × N) matrix with ∆i,j = vec(H1,·,·,i)j. Rather than con-
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sidering separate cases to solve this ODE in closed form, we instead compute

the fundamental solution numerically using 4th order Runge-Kutta. From

the fundamental solution, it is then easy to compute the solution for arbitrary

initial conditions.

C Cap Valuation via a Cumulant Expansion

Recall that P T
t is the price at time t of $1 paid at time T . The price CN

t

(
C
)

of an N -period interest rate cap with strike rate C and time ∆t between

floating interest payments is

CN
t

(
C
)

=
N∑

n=2

Et

[

Mt+n ∆t

Mt

(

1

P t+n ∆t
t+(n−1)∆t

−
(
1 + C ∆t

)

)+]

= e−A(∆t)

N∑

n=2

Gt

(
−A (∆t) − ln

(
1 + C∆t

)
;−B (∆t) , B (∆t) , (n − 1)∆t

)

−e−A(∆t)
(
1 + C∆t

)
N∑

n=2

Gt

(
−A (∆t) − ln

(
1 + C∆t

)
; 0, B (∆t) , (n − 1)∆t

)
,

where

Gt (y; b, γ, τ) := Et

[
Mt+τ

Mt

eb>Xt+τ
{
γ>Xt+τ ≤ y

}
]

.

Thus, cap valuation requires that we be able to efficiently compute Gt.
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By the Lévy inversion formula,

Gt (y; b, γ, τ) =
1

2
Ĝt (0; b, γ, τ) − 1

π

∫
∞

0

1

v
Im
[

e−i v yĜt (v; b, γ, τ)
]

dv ,

where Ĝt is the Fourier transform of Gt. In an affine framework Ĝt is given

by

Ĝt (v; b, γ, τ) = Et

[
Mt+τ

Mt

e(b+ivγ)>Xt+τ

]

= eA(b+ivγ,τ)+B(b+ivγ,τ)>Xt ,

where, A and B satisfy the Riccati ODEs

∂ B (b + ivγ, u)

∂ u
= −ρ1 + KQ>

1 B (b + ivγ, u) +
1

2
β ∆ [B (b + ivγ, u)] B (b + ivγ, u) ,

∂ A (b + ivγ, u)

∂ u
= −ρ0 + KQ>

0 B (b + ivγ, u) +
1

2
α>∆ [B (b + ivγ, u)] B (b + ivγ, u) ,

with boundary conditions

B (b + ivγ, 0) = b + ivγ ,

A (b + ivγ, 0) = 0 .

If the affine model is such that the solutions A and B to the Riccati

ODEs are known in closed form, then cap valuation only requires numerical

evaluation of a 1-dimensional integral. However, in the general case, the

Riccati ODEs must be solved numerically and thus valuing a cap using the
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Lévy inversion formula is not computationally feasible for model estimation.

Instead, we use a more computationally efficient cumulant expansion tech-

nique to compute cap prices. The cumulant expansion requires that we com-

pute the Taylor series expansion of the log of the Fourier transform of Gt.

Define the cumulants cm by

cm :=
∂m ln Ĝt (0; b, γ, τ)

∂ (iv)m

= i3m

{

∂mA (b + ivγ, τ)

∂ vm
︸ ︷︷ ︸

∂m
v A(τ)

+
∂mB (b + ivγ, τ)>

∂ vm
︸ ︷︷ ︸

∂m
v B(τ)

Xt

}∣
∣
∣
∣
∣
v=0

,

so that

ln Ĝt (v; b, γ, τ) = ln Ĝt (0; b, γ, τ) +
∞∑

m=1

1

m !
cm (iv)m .

In an affine framework, the cumulants are affine in the state vector Xt

with coefficients that again satisfy Riccati ODEs,

∂1
vB (u) = KQ>

1 ∂1
vB (u) + β ∆

[

B (u)> Σ
]

Σ>∂1
vB (u) , ∂1

vB (0) = iγ ,

∂1
vA (u) = KQ>

0 ∂1
vB (u) + α>∆

[

B (u)> Σ
]

Σ>∂1
vB (u) , ∂1

vA (0) = 0 ,
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and for m > 1,

∂m
v B (u) = KQ>

1 ∂m
v B (u) +

m∑

k=0

ϕm
k β ∆

[

∂m−k
v B (u)> Σ

]

Σ>∂k
vB (u) , ∂m

v B (0) = 0 ,

∂m
v A (u) = KQ>

0 ∂m
v B (u) +

m∑

k=0

ϕm
k α>∆

[

∂m−k
v B (u)> Σ

]

Σ>∂k
v B (u) , ∂m

v A (0) = 0 ,

where ϕm
k =

(
m

k
)

if m 6= 2k and ϕm
k = 1

2

(
m

k
)

if m = 2k.

Once we have computed the cumulants, we can accurately approximate

Gt by

Gt (y; b, γ, τ) ≈
M∑

m=0

[
χm
−1 Φ−1 (y − c1) + χm

0 Φ0 (y − c1)
]

where

Φ−1 (y) =
1√
2πc2

e
−

y2

2 c2

Φ0 (y) =

∫ y

−∞

Φ−1 (z) dz ,

and the coefficients χm
−1 and χm

0 are related to the cumulants as described

below. Φ−1 and Φ0 are just the density and cumulative distribution of the

Normal distribution. There exist accurate approximations to the cumulative

Normal density, therefore computation of cap prices using a cumulant expan-

sion does not require any numerical integration (aside from solving Riccati

ODEs). We now turn to determining the coefficients χm
−1 and χm

0 .
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Define am to be the coefficients in a Taylor series expansion of

Ĝt (v; b, γ, τ) e−[c1(iv)+ 1
2
c2(iv)2] ,

about v = 0, so that

Ĝt (v; b, γ, τ) = ec1(iv)− 1
2
c2 v2

∞∑

m=0

am vm .

Then

1

2π

∫
∞

−∞

e−i z vĜt (v; b, γ, τ) dv =

∞∑

m=0

am

1

2π

∫
∞

−∞

e−i(z−c1)v−
1
2
c2 v2

vmdv

=

∞∑

m=0

am

1

2π

∫
∞

−∞

∂meuv− 1
2
c2 v2

∂um

∣
∣
∣
∣
∣
u=−i(z−c1)

dv

=
∞∑

m=0

∂m

∂um

{

am

1√
2πc2

e
u2

2 c2

}∣
∣
∣
∣
u=−i(z−c1)

≈
M∑

m=0

∂m

∂um

{

am

1√
2πc2

e
u2

2 c2

}∣
∣
∣
∣
u=−i(z−c1)

=:
1√
2πc2

e
−(z−c1)2

2 c2

M∑

m=0

λm (z − c1)
m ,

where the last line defines the coefficients λm.
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Then by the inverse Fourier transform,

Gd
t (y; b, γ, τ) =

∫ y

−∞

1

2π

∫
∞

−∞

e−i z vĜd
t (v; b, γ, τ) dv dz

≈
M∑

m=0

λm

∫ y

−∞

1√
2πc2

e
−(z−c1)2

2 c2 (z − c1)
m dz

︸ ︷︷ ︸

Φm(y−c1)

,

Φm (y) can be expressed in terms of Φ−1 (y) and Φ0 (y) via the recursive

relationship

Φ−1 (y) =
1√
2πc2

e
−

y2

2 c2

Φ0 (y) =

∫ y

−∞

Φ−1 (z) dz ,

Φm (y) = −c2

∫ y

−∞

zm−1 d Φ−1 (z)

= −c2

[
ym−1Φ−1 (y) − (m − 1)Φm−2 (y)

]
.

Therefore, Gt (y; b, γ, τ) is of the form

Gt (y; b, γ, τ) ≈
M∑

m=0

[
χm
−1 Φ−1 (y − c1) + χm

0 Φ0 (y − c1)
]

,

as desired.

Finally, M must be chosen to balance accuracy and computational speed.

We follow Collin-Dufresne and Goldstein (2002) and choose M = 7 in our

estimations.
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D Tables and Figures
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2 Year 3 Year 4 Year 5 Year
Slope only 3.4% 6.3% 7.9% 8.7%
Slope and cap implied volatility 15.1% 25.2% 31.7% 35.2%
All yields 38.1% 45.3% 50.8% 54.7%

Table 1: Regression of Excess Returns.
This table shows the R2 from regressions of (overlapping) one year excess
returns of 2-year to 5-year bonds for various regressors. The sample period is
June 1995 to March 2004.

32



A0(3) A1(3)o A1(3) A2(3)o A2(3)

K0P
1,1 0 3.607 (1.55) 2.264 (1.776) 0.5711 (2.298) 0.7991 (3.648)

K0P
2,1 0 0 0 1.319 (3.842) 0.9439 (2.285)

K0P
3,1 0 0 0 0 0

K
0Q
1,1

1.386 (4.33) 1.097 (0.1348) 1.301 (0.3113) 1.919 (0.437) 1.376 (0.1462)

K
0Q
2,1

0.4015 (2.877) 0.8248 (0.3585) 4.263 (1.174) 0.8986 (0.255) 0.7215 (0.5222)

K
0Q
3,1

-0.2268 (0.2842) -0.2536 (4.76) 2.54 (1.011) -1.569 (0.8322) 0.3154 (1.16)

K1P
1,1 -0.02769 (0.1655) -1.534 (0.6193) -5.094e-005 (0.4953) -0.7572 (0.4223) -0.9914 (1.207)

K1P
1,2 0 0 0 1.025 (0.5063) 0.4955 (2.057)

K1P
1,3 0 0 0 0 0

K1P
2,1 0.664 (0.3809) 0.4467 (0.5795) -0.6818 (0.7408) 0.4932 (0.819) 0.5848 (0.8917)

K1P
2,2 -0.3399 (0.1812) -0.592 (0.6694) -1.046 (0.3693) -1.031 (1.12) -1.45 (1.005)

K1P
2,3 0 0.006785 (0.5246) -1.758 (1.013) 0 0

K1P
3,1 -0.9474 (0.3542) -0.8855 (1.006) -0.4861 (0.4114) -1.284 (0.2839) -0.6992 (0.8984)

K1P
3,2 -0.4975 (0.3785) -0.5759 (0.7353) -0.6248 (0.2242) 1.67 (0.3843) -1.168 (1.485)

K1P
3,3 -1.181 (0.5553) -0.5555 (0.6346) -1.414 (0.5087) -0.1309 (0.07153) -0.03759 (0.06582)

K
1Q
1,1

-1.153 (0.09701) -0.5376 (0.009432) -0.5307 (0.01271) -1.613 (0.03691) -0.5734 (0.05517)

K
1Q
1,2

1.783 (0.299) 0 0 1.18 (0.04536) 0 (0.0674)

K
1Q
1,3

1.597 (0.03679) 0 0 0 0

K
1Q
2,1

0.1279 (0.01355) -0.5693 (0.03321) -2.213 (0.4629) 1.023 (0.04626) 1.433 (0.1664)

K
1Q
2,2

-0.4049 (0.05457) -0.3371 (0.03703) -1.003 (0.07605) -1.425 (0.04184) -2.376 (0.09309)

K
1Q
2,3

-0.4135 (0.009265) -0.1229 (0.01658) -1.916 (0.2753) 0 0

K
1Q
3,1

-0.1348 (0.007076) -0.7597 (0.1177) -0.926 (0.1237) -1.618 (0.03916) 0.579 (0.1147)

K
1Q
3,2

-0.1364 (0.009808) -2.388 (0.1048) -0.6465 (0.09368) 2.992 (0.04763) -2.122 (0.2817)

K
1Q
3,3

-0.2887 (0.02507) -1.494 (0.09641) -1.34 (0.1018) -0.133 (0.00154) -0.04871 (0.001681)

α1,1 1 0 0 0 0
α2,1 1 1 1 0 0
α3,1 1 1 1 1 1
β1,1 0 1 1 1 1
β1,2 0 0.3849 (0.03349) 3.363 (1.715) 0 0
β1,3 0 2.581e-008 (0.03023) 0 (0.04901) 0.03079 (0.02461) 0.5111 (0.4016)
β2,1 0 0 0 0 0
β2,2 0 0 0 1 1
β2,3 0 0 0 0.0002741 (0.02945) 0.438 (0.3572)
β3,1 0 0 0 0 0
β3,2 0 0 0 0 0
β3,3 0 0 0 0 0

ρ0 -0.1934 (0.9732) 0.07265 (0.0314) 0.001041 (0.1396) 0.01166 (0.01518) 0.2885 (0.1359)

ρ1

1,1 0.01278 (0.0005886) 0.0002245 (0.0003265) 0.0001308 (0.0003784) 0.001844 (7.342e-005) 0.01011 (0.002518)

ρ1

2,1 0.008455 (0.001243) 0.0014 (0.0003625) 0.0007724 (0.0002196) -0.003853 (0.0001577) 0.01435 (0.002262)

ρ1

3,1 0 (0.001307) 0.008652 (0.0003321) 0.01049 (0.001036) 0.004448 (8.368e-005) 0.005957 (0.00119)

M 0 1 1 2 2
N 3 3 3 3 3
timestep 0.01923 0.01923 0.01923 0.01923 0.01923
LogLikelihood 40.17 71.44 40.6 72.17 39.55

Table 2: Parameter Estimates.
This table presents all parameter values for the different affine term structure
models estimated. Standard errors are in parentheses. The A0(3), A1(3),
and A2(3) models were estimated by inverting 3-month, 2-year, and 10-year
swap zeros and measuring 1-, 3-, 5-, and 7-year zeros with error. The A1(3)o

and A2(3)o models were estimated with the additional assumption that 1-, 2-,
3-, 4-, 5-, 7-, and 10-year at-the-money caps were measured with error. If a
parameter is reported as 0 or 1, it is restricted to be so by the identification and
existence conditions in Dai and Singleton (2000) and Cheridito et al. (2004).
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A0(3) A1(3)o A1(3) A2(3)o A2(3)
3 Month 0.0 0.0 0.0 0.0 0.0

1 Year 13.4 13.3 13.9 14.0 14.2
2 Year 0.0 0.0 0.0 0.0 0.0
3 Year 4.3 5.5 4.3 5.7 4.4
5 Year 5.3 8.0 5.5 8.2 5.5
7 Year 3.8 6.4 4.2 6.6 4.2

10 Year 0.0 0.0 0.0 0.0 0.0

Table 3: Relative Pricing Errors in % for Swap Implied Zeros
The A0(3), A1(3), and A2(3) models were estimated by inverting 3-month,
2-year, and 10-year swap zeros and measuring 1-, 3-, 5-, and 7-year zeros
with error. The A1(3)o and A2(3)o models were estimated with the additional
assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money caps were
measured with error.

A0(3) A1(3)o A1(3) A2(3)o A2(3)
1 Year 202.9 67.8 80.1 44.1 272.5
2 Year 73.8 17.7 24.4 17.1 90.1
3 Year 54.3 11.7 21.1 11.0 57.1
4 Year 45.9 9.5 21.4 8.7 43.1
5 Year 40.4 8.8 22.0 8.0 36.1
7 Year 34.4 8.3 22.5 7.5 30.4

10 Year 29.2 9.3 23.9 8.4 26.8

Table 4: Relative Pricing Errors in % for At-the-Money Caps
This table shows the root mean square relative pricing errors in % for at-the-
money caps. The A0(3), A1(3), and A2(3) models were estimated by inverting
3-month, 2-year, and 10-year swap zeros and measuring 1-, 3-, 5-, and 7-year
zeros with error. The A1(3)o and A2(3)o models were estimated with the
additional assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money caps
were measured with error.
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A0(3) A1(3)o A1(3) A2(3)o A2(3)
In 1 yr-For 1 yr 66.1 14.2 24.9 21.3 57.1
In 1 yr-For 2 yr 51.7 10.9 28.3 14.3 33.7
In 1 yr-For 3 yr 40.9 10.2 29.6 10.3 25.3
In 1 yr-For 4 yr 32.4 9.9 29.7 8.8 24.5
In 1 yr-For 5 yr 26.3 9.5 29.5 8.6 25.5
In 3 months-For 1 yr 95.1 24.0 29.7 35.4 108.5
In 3 months-For 2 yr 62.1 16.6 29.9 25.3 53.9
In 3 months-For 3 yr 48.6 13.3 32.1 18.1 32.6
In 3 months-For 4 yr 37.8 11.9 33.0 14.5 25.2
In 3 months-For 5 yr 30.1 11.5 33.0 13.0 24.7

Table 5: Relative Pricing Errors in % for At-the-Money Swaption
This table shows the root mean square relative pricing errors in % for at-the-
money swaptions. The A0(3), A1(3), and A2(3) models were estimated by
inverting 3-month, 2-year, and 10-year swap zeros and measuring 1-, 3-, 5-,
and 7-year zeros with error. The A1(3)o and A2(3)o models were estimated
with the additional assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-
money caps were measured with error. The swaptions were not including in
the estimation in any of the models.

35



A0(3) A1(3)o A1(3) A2(3)o A2(3)
In 1 yr-For 1 yr 16.0 4.2 5.8 6.5 9.9
In 1 yr-For 2 yr 10.2 2.8 6.4 4.1 7.5
In 1 yr-For 3 yr 7.3 2.4 6.5 2.9 7.3
In 1 yr-For 4 yr 5.5 2.3 6.3 2.5 7.6
In 1 yr-For 5 yr 4.6 2.1 6.1 2.4 7.8
In 3 months-For 1 yr 33.1 10.0 13.9 9.3 24.7
In 3 months-For 2 yr 16.2 5.1 6.5 7.1 10.2
In 3 months-For 3 yr 9.8 3.6 6.6 5.0 8.4
In 3 months-For 4 yr 6.7 3.1 7.0 4.3 8.7
In 3 months-For 5 yr 5.3 3.0 7.2 4.3 9.3

Table 6: At-the-Money Swaption Implied Volatility Errors
This table shows the root mean square implied volatility errors for at-the-
money swaptions. The A0(3), A1(3), and A2(3) models were estimated by
inverting 3-month, 2-year, and 10-year swap zeros and measuring 1-, 3-, 5-,
and 7-year zeros with error. The A1(3)o and A2(3)o models were estimated
with the additional assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-
money caps were measured with error. The swaptions were not including in
the estimation in any of the models.
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A0(3) A1(3)o A1(3) A2(3)o A2(3) CP5 CP10 CP5,10

2 Yr -36.4 10.4 1.4 -4.0 6.3 27.9 41.5 34.7
3 Yr 4.3 24.7 4.8 6.3 6.7 37.3 49.2 43.2
4 Yr 14.1 27.7 7.9 11.2 2.6 43.5 54.1 48.6
5 Yr 15.8 29.4 9.2 13.1 0.1 47.4 57.0 51.9
6 Yr 14.8 30.6 9.6 13.8 -1.6 0.0 58.6 53.6
7 Yr 12.5 31.7 9.7 14.0 -2.9 0.0 59.8 54.9
8 Yr 10.0 31.8 9.5 13.7 -3.8 0.0 60.2 55.6
9 Yr 6.5 32.6 9.5 13.6 -4.6 0.0 60.5 55.8

10 Yr 2.5 33.1 9.4 13.3 -5.2 0.0 60.8 56.1

Table 7: In-Sample Predictability of Excess Returns (R2’s in %)
This Table presents R2s obtained from projections of weekly realized zero
coupon returns, for different maturities, on model in-sample implied returns.
CP5 is the prediction from a regression of excess returns on 1-year zero rates
and 1-year forward rates at 1-, 2-, 3-, and 4-years. CP10 is the prediction from
a regression of excess returns on 1-year zero rates and 1-year forward rates at
1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, and 10-years. CP5,10 use only 5 forward rates as
regressors ranging up to 10 years. Regressions are based on overlapping data.
The A0(3), A1(3), and A2(3) models were estimated by inverting 3-month,
2-year, and 10-year swap zeros and measuring 1-, 3-, 5-, and 7-year zeros
with error. The A1(3)o and A2(3)o models were estimated with the additional
assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money caps were
measured with error.
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Figure 1: Cap Prices
The top figure plots 2-year at-the-money cap prices. The bottom figure plots
5-year at-the-money cap prices. The actual prices are plotted with a solid
black line. The prices from the A0(3) model plotted with a solid pink line.
The prices from the A1(3) model are plotted with a solid blue line and the
prices from the A1(3)o model are plotted with a solid red line. The prices from
the A2(3) model are plotted with a dashed blue line and the prices from the
A2(3)o model are plotted with a dashed red line. The A0(3), A1(3), and A2(3)
models were estimated by inverting 3-month, 2-year, and 10-year swap zeros
and measuring 1-, 3-, 5-, and 7-year zeros with error. The A1(3)o and A2(3)o

models were estimated with the additional assumption that 1-, 2-, 3-, 4-, 5-,
7-, and 10-year at-the-money caps were measured with error.
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Figure 2: In 3 Months At-the-Money Swaption Implied Volatilities
These figures plot prices and Black’s implied volatilities for at-the-money in-
3-months-for-2-year and in-3-months-for-5-year swaptions. The at-the-money
strike rates are the forward swap rates which are taken from the model. The
data are plotted with a solid black line. The values from the A0(3) model
plotted with a solid pink line. The values from the A1(3) model are plotted
with a solid blue line and the values from the A1(3)o model are plotted with
a solid red line. The values from the A2(3) model are plotted with a dashed
blue line and the values from the A2(3)o model are plotted with a dashed
red line. The A0(3), A1(3), and A2(3) models were estimated by inverting
3-month, 2-year, and 10-year swap zeros and measuring 1-, 3-, 5-, and 7-year
zeros with error. The A1(3)o and A2(3)o models were estimated with the
additional assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money caps
were measured with error.

39



Jan96 Jan97 Jan98 Jan99 Jan00 Jan01 Jan02 Jan03 Jan04
2

4

6

8

10

12

14
x 10

−3

pr
ic

e

In 1 yr−For 2 yr model ATM swaption

data
A

0
(3)

A
1
(3)o

A
1
(3)

A
2
(3)o

A
2
(3)

Jan96 Jan97 Jan98 Jan99 Jan00 Jan01 Jan02 Jan03 Jan04
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Im
pl

ie
d 

V
ol

at
ili

ty

In 1 yr−For 2 yr model ATM swaption

data
A

0
(3)

A
1
(3)o

A
1
(3)

A
2
(3)o

A
2
(3)

Jan96 Jan97 Jan98 Jan99 Jan00 Jan01 Jan02 Jan03 Jan04
0.005

0.01

0.015

0.02

0.025

0.03

pr
ic

e

In 1 yr−For 5 yr model ATM swaption

data
A

0
(3)

A
1
(3)o

A
1
(3)

A
2
(3)o

A
2
(3)

Jan96 Jan97 Jan98 Jan99 Jan00 Jan01 Jan02 Jan03 Jan04
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Im

pl
ie

d 
V

ol
at

ili
ty

In 1 yr−For 5 yr model ATM swaption

data
A

0
(3)

A
1
(3)o

A
1
(3)

A
2
(3)o

A
2
(3)

Figure 3: In 1 Year At-the-Money Swaption Implied Volatilities
These figures plot prices and Black’s implied volatilities for at-the-money in-
1-year-for-2-year and in-1-year-for-5-year swaptions. The at-the-money strike
rates are the forward swap rates which are taken from the model. The data
are plotted with a solid black line. The values from the A0(3) model plotted
with a solid pink line. The values from the A1(3) model are plotted with a
solid blue line and the values from the A1(3)o model are plotted with a solid
red line. The values from the A2(3) model are plotted with a dashed blue line
and the values from the A2(3)o model are plotted with a dashed red line. The
A0(3), A1(3), and A2(3) models were estimated by inverting 3-month, 2-year,
and 10-year swap zeros and measuring 1-, 3-, 5-, and 7-year zeros with error.
The A1(3)o and A2(3)o models were estimated with the additional assumption
that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money caps were measured with
error.
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Figure 4: Realized Volatility
These figures plot model conditional volatility of zero coupon rates against
various estimates of conditional volatility using historical data. For estimates
of conditional volatility based on historical data we use a 26 week rolling
window, an exponential weighted moving average (EWMA) with a 26-week
half-life, and estimate an EGARCH(1,1) for each maturity. The A0(3), A1(3),
and A2(3) models were estimated by inverting 3-month, 2-year, and 10-year
swap zeros and measuring 1-, 3-, 5-, and 7-year zeros with error. The A1(3)o

and A2(3)o models were estimated with the additional assumption that 1-, 2-,
3-, 4-, 5-, 7-, and 10-year at-the-money caps were measured with error.
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A0(3) A1(3)o A1(3) A2(3)o A2(3) CP5 CP10 CP5,10

2 Yr -50.7 10.1 5.6 -2.3 9.8 22.2 -95.6 21.5
3 Yr -40.5 22.7 6.7 5.2 8.1 27.1 -85.9 24.8
4 Yr -39.2 24.1 10.7 11.7 2.8 31.8 -76.2 28.2
5 Yr -40.8 25.9 13.8 16.7 -0.5 36.1 -66.6 31.7
6 Yr -38.8 25.0 14.8 19.7 -3.0 0.0 -64.0 34.9
7 Yr -37.7 28.5 15.7 22.7 -4.7 0.0 -64.0 33.8
8 Yr -40.9 32.8 16.1 24.2 -5.2 0.0 -65.4 30.0
9 Yr -42.7 34.1 15.8 25.1 -5.9 0.0 -68.9 27.9

10 Yr -44.0 35.4 15.3 25.3 -6.4 0.0 -71.4 24.8

Table 8: Out-of-Sample Predictability of Excess Returns (R2’s in %)
This Table presents R2s obtained from projections of weekly realized zero
coupon returns, for different maturities, on model out-of-sample implied re-
turns. CP5 is the prediction from a regression of excess returns on 1-year zero
rates and 1-year forward rates at 1-, 2-, 3-, and 4-years. CP10 is the prediction
from a regression of excess returns on 1-year zero rates and 1-year forward
rates at 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, and 10-years. CP5,10 use only 5 forward
rates as regressors ranging up to 10 years. Regressions are based on overlap-
ping data. The A0(3), A1(3), and A2(3) models were estimated by inverting
3-month, 2-year, and 10-year swap zeros and measuring 1-, 3-, 5-, and 7-year
zeros with error. The A1(3)o and A2(3)o models were estimated with the ad-
ditional assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money caps
were measured with error.
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A0(3) A1(3)o A1(3) A2(3)o A2(3) CP5

2 Year 48 25 10 17 18 37
3 Year 79 46 17 30 23 80
4 Year 107 69 23 42 24 119
5 Year 136 92 27 51 24 158
6 Year 165 114 30 58 23
7 Year 195 134 32 64 22
8 Year 224 153 34 68 21
9 Year 253 170 36 72 21

10 Year 282 185 38 76 21

Table 9: Time Variation in Expected Returns.
This table contains the 1-week variance of 1-year expected excess return (ex-
pressed in basis points). The A0(3), A1(3), and A2(3) models were estimated
by inverting 3-month, 2-year, and 10-year swap zeros and measuring 1-, 3-, 5-,
and 7-year zeros with error. The A1(3)o and A2(3)o models were estimated
with the additional assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-
money caps were measured with error. CP5 is the prediction from a regression
of excess returns on 1-year zero rates and 1-year forward rates at 1-, 2-, 3-,
and 4-years.

A0(3) A1(3)o A1(3) A2(3)o A2(3)
First Eigenvalue 1.18 1.53 2.29 1.62 1.81
Second Eigenvalue 0.34 0.57 0.17 0.17 0.64
Third Eigenvalue 0.03 0.57 0.00 0.13 0.04

Table 10: Eigenvalues of KP
1 Matrix

A0(3) A1(3)o A1(3) A2(3)o A2(3)
First Eigenvalue 1.08 1.71 2.30 2.62 2.38
Second Eigenvalue 0.75 0.54 0.53 0.42 0.57
Third Eigenvalue 0.02 0.12 0.05 0.13 0.05

Table 11: Eigenvalues of KQ
1 Matrix
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Figure 5: Excess Returns
This figure plots weekly realized excess returns, and model implied expected
excess returns for a 5 year zero coupon bond. Realized excess returns are
plotted with a solid black line. Predicted excess returns from the A0(3) model
are plotted with a solid pink line. Predicted excess returns from the A1(3)
model are plotted with a solid blue line and those from the A1(3)o model are
plotted with a solid red line. Predicted excess returns from the A2(3) model are
plotted with a dashed blue line and those from the A2(3)o model are plotted
with a dashed red line. The prediction of excess returns from a regression of
excess returns on 1-year zero rates and 1-year forward rates at 1-, 2-, 3-, and
4-years is labelled CP5 and is plotted with a solid green line.
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