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Abstract

This paper investigates the source of predictability of bond risk premia by means of

long-term forward interest rates. We show that the predictive ability of forward rates

could be due to the high serial correlation and cross-correlation of bond prices. After

a simple reparametrization of models used to predict spot rates or excess returns, we

�nd that forward rates exhibit much less predictive power than previously recorded.

Furthermore, our economic value analysis indicates that there are no economic gains to

mean-variance investors who use the predictions of these models in a stylized dynamic

asset allocation strategy.

JEL classi�cation: G0; G1; E0; E4.
Keywords: bond prices, bond risk premia, predictability.
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1 Introduction

The predictability of bond risk premia has occupied the attention of �nancial economists for

many years. Several studies have reported consistent evidence that empirical models based

on forward rates or forward spreads are able to generate accurate forecasts of future bond

risk premia (or excess returns) Since forward rates represent the rate on a commitment to

buy a one-period bond in a future date, it is natural to hypothesize that they incorporate

information that is useful for predicting future bond risk premia (or excess returns). In

support of this conjecture Fama and Bliss (1987, henceforth FB) �nd that the forward-spot

spread has predictive power for the change in the spot rate and its forecasting power increases

as the forecast horizon lengthens. This evidence is con�rmed by Campbell and Shiller (1991),

who show that bond yield changes can be forecast by means of yield spreads. Recently,

Cochrane and Piazzesi (2005, henceforth CP) extend FB�s original work by proposing a

framework in which bond excess returns are forecast by initial forward rates. They �nd

that their speci�cation is able to account for more than 30 percent of the variation of bond

excess returns one to �ve years ahead over the period January 1964 - December 2003.1

Furthermore, their speci�cation, in contrast with FB, is able to explain about 19 percent

of the one-year-ahead change in the one-year bond yield.2 The predictability recorded

in these studies strongly corroborates the well-known empirical failure of the Expectations

Hypothesis of the term structure of interest rates (Fama, 1984; Stambaugh, 1988; Bekaert

et al., 1997, 2001; Sarno et al., 2007) and it is generally assumed to be the consequence of

the slow mean reversion of the spot rate toward a time-invariant equilibrium anchor that

becomes more evident over longer horizons (Fama 1984, 2003, and the references therein).

Although the proposed theoretical and empirical rationales are intuitively appealing, the

predictive ability of forward rates is not immune from criticism. In fact, two key statis-

tical properties of bond yields data, namely their high serial correlation and the similarly

high correlation across maturities, pose serious econometric problems when estimating and

evaluating the predictive performance of empirical models based on forward rates. If both

regressors and regressands exhibit a high serial correlation, the predictive regressions based

1Cochrane and Piazzesi (2009) con�rm these results using the dataset constructed by Gürkaynak et al.
(2007), which includes a larger set of maturities.

2However, not all studies are supportive of the predictive power of forward rates. In fact, Hamburger and
Platt (1975), Fama (1984), and Shiller et al. (1985) �nd weak evidence that forward rates predict future
spot rates.
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on forward rates may su¤er from a spurious regression problem (see Ferson et al., 2003a,b,

and the references therein).3 . This argument is echoed in Dai et al. (2004) and Singleton

(2006) who show that the predictive regressions, such as CP and FB, are a¤ected by a small-

sample bias which causes the R2 statistics to be substatially higher than their population

values. By the same token, Du¤ee (2002) demonstrates that it is very di¢ cult to improve

upon the performance of forecasts obtained by bond yields that follow random walks.4

In this paper, we investigate the predictive ability of empirical models based on forward

rates and innovate on two fronts. First, we propose a statistical framework that mitigates

the spurious e¤ect generated by the high serial correlation of individual bond prices and

their similarly high cross-correlation among various maturities. Second, we move beyond a

purely statistical perspective and provide evidence on whether the predictive information in

forward rates is also economically signi�cant. It is well known that statistical signi�cance

does not necessarily imply economic signi�cance (Leitch and Tanner, 1991; Fleming, et al.,

2001; Della Corte et al., 2008a,b,c). Moreover, it is unclear whether statistical tests of

predictability are powerful enough to discriminate among competing predictive variables or

models (Inoue and Kilian, 2004, 2006).

To preview our main results, we show that bond yields, forward rates, holding period

returns, and excess returns used in these models are all simple linear functions of bond

prices. Consequently, the same prices appear on both sides of the equations routinely used

to evaluate the predictive power of forward rates. Since bond prices (and hence bond

yields) are highly correlated over time and across maturities, it is possible that some of

the explanatory power of forward rates is spurious. This spurious regression problem is

mitigated by rewriting the relevant equations in an observationally equivalent form where

variables that appear on the left-hand side of the equations are not present on the right-

hand side. A statistical assessment of these reparametrized equations suggests that forward

rates have some predictive power, but much less than previously recorded in the literature.

Moreover, this predictive power is present only at longer maturities and only recorded by

some statistics. The economic assessment of these models suggests that there are no

3The evidence of the near unit-root nature of bond yields is strenghtened by other studies that record
that the slow mean reversion of the spot rate toward a constant is no longer valid after 1986 (Fama, 2003)
and its dynamics are better approximated by a mean-reverting process that is anchored to a nonstationary
central tendency that stochastically changes over time (Balduzzi et al., 1998).

4Du¤ee and Stanton (2007) also show that the high persistence of interest rates has important implications
for the preferred method used to estimate term structure models.
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economic gains to an investor who allocates capital between the one-period and the n-period

bonds simply using the predictions implied by models based on forward rates.

The reminder of the paper is as follows: Section 2 de�nes the variables used in the

empirical analysis and outlines the empirical framework. Section 3 discusses in detail the

reparametrization of the FB and CP regressions in terms of bond prices and explores the be-

havior of their coe¢ cients of determination, R2; under a variety of data generating processes

(DGPs) encompassing di¤erent assumptions about the time-series properties of bond yields.

Section 4 assesses the predictive ability of both FB and CP regressions from a statistical

perspective. In Section 5, we outline the framework for measuring the economic value in a

mean-variance setting and report the results of using economic value measures to assess the

predictive power of forward rates. Section 6 concludes.

2 The empirical framework

De�ne the log yield of a n-year bond as

y
(n)
t � � 1

n
p
(n)
t ; (1)

where p(n)t is the log price of an n-year zero-coupon bond at time t, i.e., p(n)t = lnP
(n)
t , where

P (n) is the nominal dollar-price of zero coupon bond paying $1 at maturity. A forward rate

with maturity n is then de�ned as

f
(n)
t � p

(n�1)
t � p(n)t : (2)

The excess return of an n-year bond is computed as the log holding period return from

buying an n-year bond at time t and selling it at time t+1 less the log return on a 1-year

bond at time t,5

rx
(n)
t+1 � p

(n�1)
t+1 � p(n)t � y(1)t : (3)

FB estimate a linear regression of the change in the 1-year bond yield on the forward-spot

spread,

y
(1)
t+1 � y

(1)
t = �+ '(f

(n)
t � y(1)t ) + �

(1)
t+1: (4)

5 It is instructive to note that with monthly data the one-year excess return on a n -year bond is computed
as rx(n)t+12 = p

(n�1)
t+12 � p(n)t � y(n)t : However, for comparability purposes, the notation adopted throughout

the paper follows the one in CP and FB.
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They also estimate a related excess return equation of the form

rx
(n)
t+1 = �+ �(f

(n)
t � y(1)t ) + �

(n)
t+1: (5)

Note that equation (5) is equal to equation (4), with opposite sign and � = (1� ') ; when

n = 2.

CP estimate a modi�ed version of equation (5) as follows:

rx
(n)
t+1 = �0 + �1y

(1)
t + �2f

(2)
t + :::+ �5f

(5)
t + "

(n)
t+1: (6)

Because the log yields, forward rates, holding period yields, and excess returns are all

calculated solely from bond prices, equation (6) can be rewritten as

p
(n�1)
t+1 � p(n)t + p

(1)
t = �0 + �1(�p

(1)
t ) + �2(p

(1)
t � p(2)t ) + :::+ �5(p

(4)
t � p(5)t ) + "

(n)
t+1: (7)

Following the same line of reasoning, FB�s equations (4) and (5) can be also rewritten as

�p(1)t+1 + p
(1)
t = �+ �(p

(n�1)
t � p(n)t + p

(1)
t ) + �

(1)
t+1 (8)

p
(n�1)
t+1 � p(n)t + p

(1)
t = �+ �(p

(n�1)
t � p(n)t + p

(1)
t ) + �

(n)
t+1: (9)

We begin by estimating equations (7), (8), and (9). The equations are estimated over both

CP�s sample period, January 1964 - December 2003, and FB�s sample period, January 1964

- December 1985.6 ;7 The estimates are presented in Table 1. Estimates of equation (7) are

identical to CP�s estimates of equation (6). In particular, the tent shape of the coe¢ cients,

noted by CP, is evident over both sample periods. The predictive power of forward rates is

slightly higher at the short end and slightly lower at the long end over the shorter sample.

Estimates of (8) and (9) are very similar to the estimates of equations (4) and (5)

reported by FB over their sample period. Consistent with Cochrane and Piazzesi�s (2004)

�ndings, however, there is a marked decline in the predictive power of the FB equation (8)

over the full sample compared with the shorter sample. For example, in the case of n = 5,

the estimated R
2
is 0.47 for the shorter sample, compared with only 0.11 for the full sample.

The predictive power of equation (9) is fairly stable over the two sample periods, with R
2

slightly higher over the longer sample across all maturities.
6We thank Monika Piazzesi for providing us with the dataset employed in Cochrane and Piazzesi (2004a,

2005).
7Fama and Bliss (1987) estimate the equation over di¤erent sample periods re�ecting data lost in the

construction of the variables. For example, when n = 5 the sample period is January 1964- December
1981. Our estimates over this period are very similar to theirs and our actual and predicted values are very
similar to those reported by Fama and Bliss (1987, p. 687, Figure 2). As n is reduced by one, Fama and
Bliss�sample period increases by 12 months. See also footnote 3.
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3 Bond risk premia predictability: A simple example
and Monte Carlo evidence

The reparametrization of equations (4), (5), and (6) into equations (7), (8), and (9) makes

clear that some of the variables that appear on the left-hand side of these equations also

appear on the right-hand side. This, coupled with the high serial correlation of individual

bond prices, gives rise to the possibility that the predictability of bond risk premia reported

by CP and FB may be a¤ected by a spurious regression problem. This section explores this

possibility. Speci�cally, we investigate the behavior of R2 from these equations by assuming

a variety of DGPs encompassing several assumptions regarding the time series properties

of bond yields. We �rst consider the simplest possible DGP for bond yields, i.e., they are

assumed iid. This assumption allows us to obtain a closed-form solution for the R2 of the CP

equation. We then relax the hypothesis of iid bond yields to carry out simple comparative

exercises using more realistic DGPs based on the empirical estimates obtained from the zero

coupon data used in this study.

Consider the reparametrized CP equation (7) under the assumption that bond yields are

iid: It is easy to demonstrate that:8

R2(n) =
var

�
y
(1)
t

�
+ n2var

�
y
(n)
t

�
var

�
y
(1)
t

�
+ (n� 1)2var

�
y
(n�1)
t

�
+ n2var

�
y
(n)
t

� for n = 2; ::; 5; (10)

where R2(n) is the theoretical R
2 obtained from the CP predictive regression for maturity n.

Equation (10) shows that R2(n) is decreasing as n increases and the minimum R2(n) attainable

by the CP predictive regression equals 0.5.9

Of course, actual bond yields are not iid. In fact they are correlated both serially and

cross-sectionally. However when more realistic bond yields�DGPs are employed, no closed-

form solutions can be obtained. Hence, to illustrate the e¤ect of di¤erent bond yields�

correlation patterns on the distribution of R2(n) from both CP and FB predictive regressions,

we carry out a set of Monte Carlo exercises. Speci�cally, we assume that bond yields y(n)t

8Full details of the analytical derivations are reported in Appendix A.
9When the assumption of iid bond yields is relaxed by assuming that bond yields are serially correlated,

the resulting R2 increases toward the value of unity the larger the �rst-order correlation coe¢ cient. Full
details of the analytical derivations and a brief discussion of these results are reported in Appendix A.
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follow a vector autoregressive process of order p (VAR(p)):

yt = 
 +

pX
i=1

�pyt�p +�et;

where yt =
h
y
(1)
t ; :::; y

(5)
t

i0
is a (5� 1) vector of bond yields, 
 is (5� 1) vector of intercept

terms, � and � are (5� 5) matrices of parameters, and et � NIID(0; 1) is a vector of

residuals. In what follows we impose the following assumptions:

� DGP 1: yt = 
 +�et; with � diagonal

� DGP 2 :yt = 
 + �1yt�1 +�et; with �1 and � diagonal

� DGP 3: yt = 
 + �1yt�1 +�et; with �1 and � full rank

� DGP 4: yt = 
 +
Pp

i=1 �pyt�p +�et; with p = 12 and �p and � full rank.

The DGPs 1 to 4 encompass a wide range of assumptions about bond yields. We con-

sider the following: full independence in mean (DGPs 1 and 2), full independence in variance

(DGPs 1 and 2), persistence in mean (DGPs 2 to 4) and dependence across yields in mean

and variance (DGPs 3 and 4). We executed a battery of Monte Carlo experiments based

on the DGPs 1 to 4 calibrated on the estimates of the individual DGPs on the data under

investigation with iid Gaussian innovations. Initializing the arti�cial series at zero, we gen-

erated 5,000 samples of 959 observations and discarded the �rst 500, leaving 5,000 samples

of 459 observations, matching exactly the total number of observations used in this study.

The �rst 500 observations are discarded to reduce to the impact of the initialization.

For each generated sample and each individual DGP we estimate the CP predictive

regression (7) and the FB equation (9). The average and the 5th and 95th percentile of the

empirical distribution of R
2
for all maturities are reported in Table 2. We �nd considerable

predictive power for the forward rates when bond yields are assumed to be independent

(i.e., DGP 1). The averages of the empirical distributions of R
2
for the CP regression range

between 0.613 and 0.829 and are very similar to the analytical estimates of R2 discussed

earlier in this section. Estimates relative to the FB equation are somewhat lower, ranging

between 0.375 and 0.744.

When bond yields for all maturities are assumed to be highly serially correlated (DGP

2), but not cross-correlated, with an identical autoregressive root of about 0.98 across bond
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maturities, the average R
2
increases across bond maturities for both CP and FB speci�ca-

tions. The results of these exercises suggest that the high R2 recorded in Table 2 may be

caused by a spurious regression problem.

If bond yields are assumed to follow a full VAR(1) (DGP 3), the results exhibit mean R
2

which are in line with the values reported by CP and FB and similar to those reported in

Table 1. The overall picture does not change when the assumption of a single lag entering

the VAR model for bond yields is relaxed (DGP 4). In fact, CP argue that VAR(1) models

may not be able to capture the predictability patterns recognizable at the annual frequency.

In order to take this issue into account we estimated a DGP where the maximum lag length

is set equal to 12.10 The results reported in the last line of Table 2 exhibit average R
2

values which are slightly higher than those obtained under DGP 3 with di¤erences ranging

between 2 and 10 percent.11

Cochrane and Piazzesi (2004b, p. 2) attempt to deal with the issue of the same variable

appearing on both sides of the regression by noting that �the forecasts work quite well with

lagged right hand variables, in which case the same pt is not on both sides of the regressions�.

As a robustness exercise we carried out the full set of Monte Carlo experiments by estimating

equations (7) and (9) using the variables on the RHS one-month lagged. The results of this

exercise, not reported to save space, show that for DGP 2 - 4 the empirical distributions

of R
2
is qualitatevely and quantitatively similar to the ones reported in Table 2. However,

when bond yields are assumed to be independent (DGP1) the average R
2
across bond

maturities and empirical speci�cations, are equal to zero. This evidence suggest once again

that the high R
2
recorded in the literature may be due to the fact that both regressors and

regressands exhibit a high serial and cross-correlation.12

Overall, the results reported in this section corroborate with the early �ndings by Dai et

10More precisely, the employed DGP is a reduced version of a full VAR(12) where a general-to-speci�c
procedure has been applied to avoid parameter proliferation. Nevertheless, in some equations the maximum
signi�cant lag length is equal to 12.
11The results of DGP 1 and DGP 2 show that both CP and FB equations can generate evidence of high

predictive power of forward rates even in the case where bond yields are iid. In the case of DGP 3 and
DGP 4 we chose cross correlations in the means and variances that matched the ones of the historical data.
Consequently, we cannot rule out the possibility that the estimates of R

2
reported in Table 2 for DGP 3

and DGP 4 re�ect the predictive power of forward rates embedded in the structure of the VAR used in our
simulations.
12This �nding reinforces the argument that although the same price (recorded at the same time) is not

present on both sides of the regressions, it does it with a lag. Given the large serial correlation of exhibited
by bond prices, it is not surprising that using lagged right hand variables do not make a big di¤erence on
the overall result.
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al. (2004) and Singleton (2006). In fact these studies, along the lines of Bekaert et al. (1997)

and Backus et al. (2001), argue that bond yields are highly persistent and therefore, the

asymptotic distribution of the statistics of interest (e.g. R
2
) may be poor approximations

for the actual small-sample distributions. In the next section we provide a reparametrization

of these models that mitigates the spurious e¤ect generated by the high serial correlation of

individual bond prices.13

4 Evaluating the predictive power of forward rates: Sta-
tistical signi�cance

The results of the previous sections suggest the possibility that because some of the same

variables appear on both the left- and right-hand sides of the CP and FB predictive equa-

tions, their high values for R
2
may be due to the fact that bond prices (and bond yields) are

highly correlated over time and across maturities. In this section, we provide an alternative

framework to evaluate the ability of forward rates to predict future bond risk premia.

To understand the procedure, we �rst consider CP equation written solely in terms of

bond prices. When n = 2, (p(1)t � p
(2)
t ) appears on both the right- and left-hand sides of

equation (7), so it can be written as

p
(1)
t+1 = �0 + �1(�p

(1)
t ) + (�2 � 1)(p

(1)
t � p(2)t ) + :::+ �5(p

(4)
t � p(5)t ) + "

(n)
t+1: (11)

Note that (6), (7), and (11) are observationally equivalent, i.e., they have an identical

standard error of the estimate (henceforth s:e:). However, the estimates of R
2
are di¤erent.

This is a consequence of the fact that equations (6) and (7), on the one hand, and equation

(11), on the other hand, have di¤erent dependent variables and, consequently, di¤erent total

sums of squares.14

Equation (11) can be seen as an AR(1) in p(1)t with the addition of the forward rates,

f
(2)
t ; :::; f

(5)
t . Hence, the marginal contribution of the forward rates can be investigated by

comparing the di¤erence between the s:e: from (11) and that of a simple AR(1) in p(1)t .

13The framework introduced in Section 4 with the speci�cation of alternative AR benchmarks for both
CP and FB predictive regressions mitigates but not eliminates the spurious regression problem. In fact, as
detailed in the next section, the AR benchmark allows the identi�cation of the predictive ability of forward
rates net of the high serial correlation associated with bond prices. The same benchmarks do not eliminate
the potential bias associated with the correlation of bond prices across maturities.
14For an analytical treatment of the e¤ects of normalization on parameter estimates and measures of

statistical accuracy, see Koopmans (1953), Chow (1964) and Hamilton et al. (2007).

9



The above result is not limited to n = 2; but it applies to all bond maturities. This can

be seen by noting that since p(1)t and p(n)t appear on both the right- and left-hand side of

(7), a mechanical relationship holds for all n. Speci�cally, (6), (7), and

p
(n�1)
t+1 = �0 + �1p

(1)
t + �2p

(2)
t + :::+ �5p

(5)
t + "

(n)
t+1 (12)

are also observationally equivalent for any value of n, where �1 = (�2 � �1 � 1) for all n,

�i = (1 � �i + �i+1) for i equal to n, �i = (�i+1 � �i) for i = n 6= 5, �5 = �5 for n 6= 5;

and �5 = (1 � �5) for n = 5. Note that for any n, p(n�1)t+1 and p(n�1)t appear on the left-

and right-hand sides of (12). Given this fact and the observational equivalence of equations

(6) and (12), the marginal contribution of forward rates for predicting excess returns can

be obtained by comparing the di¤erence between the s:e: from (12) and the corresponding

AR(1) model15

p
(n�1)
t+1 = #0 + #1p

(n�1)
t + !

(n�1)
t+1 : (13)

It is important to reiterate that the information provided by the reduction in terms of s:e:

improves upon conventional statistics of in-sample accuracy (such as R2). This is due to

the fact that the reduction in terms of s:e:, unlike R2, is a unit-free statistics that does not

su¤er from a scaling problem caused by the di¤erent dependent variables, e.g. equations (7)

and (12).

Estimates of equations (12) and (13) over the period January 1964 - December 2003

are presented in Table 3. The reduction in s:e: from equation (12) against equation (13)

range from 5.9 percent for n = 2 to 12.4 percent for n = 5. These changes are re�ected in

improvements in the values of R
2
, in the range between 7 and 10 percent.16

The evaluation of the predictive power of bond yields for the two FB equations is more

complex because neither the change in the sport rate equation (8) or the excess return

equation (9) can be rewritten in an equivalent form as the CP�s equation (7). Equation (8)

can be rewritten as

�p(1)t+1 = �+ �1p
(1)
t + �2(p

(n�1)
t � p(n)t ) + �

(1)
t+1: (14)

15This can be easily seen by noting that equation (12) is observationally equivalent to equation (11), which
is just a reparametrization of the original CP equation (6).
16We can also compute similar improvements when the dependent variables are expressed as excess returns.

The magnitude of the improvements in R
2
equals 9.2, 11.6, 15.4 and 19.9 percent, for n = 2; 3; 4;and

5:respectively.
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This equation is identical to the FB equation (4) when the restriction �2 � �1 = 1 applies.

Likewise, equation (9) can be written as

p
(n�1)
t+1 = �+  1p

(n�1)
t +  2(�p

(n)
t + p

(1)
t ) + �

(n)
t+1. (15)

Again, equation (15) is identical to the FB equation (5) when the restriction  2 �  1 = 1

applies.

Equation (14) can be thought of as a simple AR(1) in p(1)t with the additional term

(p
(n�1)
t � p

(n)
t ). Likewise, equation (15) can be thought of as an AR(1) in p

(n�1)
t with

the additional term (�p(n)t + p
(1)
t ). Hence, if neither of the restrictions implied by FB�s

equations hold, the marginal predictive power of the forward rates can be evaluated by

comparing the s:e: of equations (14) and (15) with those obtained from their corresponding

AR speci�cations

�p(1)t+1 = �0 + �1p
(1)
t +$

(1)
t+1 (16)

and

p
(n�1)
t+1 = %0 + %1p

(n�1)
t + e

(n�1)
t+1 , (17)

respectively.

The �rst step in evaluating the marginal predictive power of forward rates for FB equa-

tion is to test whether the restrictions imposed in the original study are consistent with

the data. The results of these tests are reported in Table 4. Both restrictions are strongly

rejected with p-values virtually close to zero. Moreover, estimates of �1 decline in absolute

value and become statistically insigni�cant as n increases, while estimates of �2 get larger

and become statistically signi�cant when n = 5. In contrast, estimates of  1 get larger, the

larger is n and is always statistically signi�cant, while the estimates of  2 become smaller

and it statistically signi�cant only when n = 4 and 5.

Table 5 presents estimates of equations (16) and (17) over the sample period January

1964 - December 2003. A comparison of the s:e: from equation (16) with those from equation

(14) presented in Table 4 show that virtually no increase in predictive power is associated

with the inclusion of the forward rates for any n. However, there is some reduction in s:e:

for longer maturities. A similar comparison for equations (15) and (17) shows that there is

some marginal reduction in s:e: associated with the spread between long-term and short-
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term rates, especially for n = 3 and 4; where the marginal improvement in the standard

error equals 2.2 and 3.2 percent, respectively.

The evidence reported so far suggests that there is some predictive power in forward

rates for both CP and FB regressions; however, this predictive ability is much lower than

previously thought. Because of the small predictive power associated with forward rates,

it is important to investigate whether the improvements in s:e: reported in Tables 4 and

5 are statistically signi�cant. We do this by a simple bootstrap simulation generating the

empirical distributions of R
2

(n) and s:e: under the null hypothesis that forward rates contain

no predictive power over and above the AR models (13), (16), and (17).17

The results of the simulation are reported in Table 6. The s:e: recorded for the CP

predictive equation are found to be statistically signi�cant at the 5 percent statistical level for

all maturities. That is, the estimates of s:e: from equation (12) are statistically signi�cantly

smaller than those estimated from equation (13). However, none of the recorded R
2

(n)

exceeds the 95th percentile of the empirical distribution of R
2

(n) under the null hypothesis.

The results for the FB equations are less encouraging. There is no evidence of statistically

signi�cant improvement in predictive power at any conventional signi�cance level for either

s:e: or R
2
.

To sum up, the statistical tests provide some evidence of for the CP speci�cation but no

evidence of predictive power for the FB equations. A legitimate concern therefore is whether

the weak evidence in favor of models based on forward rates may be due to low power of

the tests employed (e.g., Inoue and Kilian, 2004, 2006). More importantly, the outcome of

statistical tests is not necessarily informative on the economic value of forward rates for an

investor. Speci�cally, the tests employed until now are not designed to discriminate between

the performance of a strategy that trades on the basis of the information in forward rates

and one that relies purely on the AR benchmarks proposed in this section. In order to

shed light on this issue, we proceed to an economic evaluation of the information content in

forward rates.18

17Full details of the bootstrap procedure are reported in Appendix B.
18The economic assessment of model based on forward premia proposed in this paper is novel in this

literature. Cochrane and Piazzesi (2004) carry out a simple real time forecast test based on trading rule
pro�ts. However they indicate that the economic assessment of models based on forward rates should �follow
an explicit portfolio maximization problem�(Cochrane and Piazzesi, 2004, p. 12). This is the goal of the
economic value exercise carried out in the next section.
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5 Evaluating the predictive power of forward rates: eco-
nomic signi�cance

In this section we outline the framework used to assess the economic value of the predictive

regressions discussed in Section 2. We consider a classic portfolio choice problem where

an investor optimally invests in a portfolio comprising two bonds denominated in the same

currency but with di¤erent maturities: a riskfree one-period bond and a risky n-period

bond. The resulting portfolio return r(n)p;t+1 is computed as follows:

r
(n)
p;t+1 = y

(1)
t+1 + w

(n)
t

�
rx

(n)
t+1

�
; (18)

where y(1)t+1 and rx
(n)
t+1 are one-period bond yield and the n-period excess return, respectively,

as discussed in Section 2 and w(n)t is the weight attached to the risky n-period bond within

the portfolio p. In mean-variance analysis, the maximum expected utility strategy leads to

a portfolio allocation on the e¢ cient frontier. Speci�cally, consider the trading strategy

of a risk-averse investor who constructs a dynamically rebalanced portfolio that comprises

the riskfree bond and the risky n-period bond. The solution to the optimization problem

delivers the following weight on the risky bond:

w
(n)
t =

1

�

Et

�
rx

(n)
t+1

�
V art

�
rx

(n)
t+1

� ; (19)

where Et
�
rx

(n)
t+1

�
is the conditional expectation of rx(n)t+1; V art

�
rx

(n)
t+1

�
is the conditional

variance of rx(n)t+1; and � is the relative risk aversion (RRA) coe¢ cient (e.g., Campbell

and Thomson, 2008). The weight on the riskfree bond is 1� w
(n)
t . In this setting we can

compute asset allocations on the basis of the predictive regressions (12) and (15) (henceforth

P) and compare them with the ones obtained from their relative benchmarks, equations (13)

and (17), respectively, (henceforth B).19 Assuming quadratic utility and following West et

al. (1993) and Fleming et al. (2001), Cheung and Valente (2008) and Della Corte et al.

(2008a,b,c), we can consistently estimate the average realized utility, U (�) ; for an investor

with initial wealth W0 as

19 It is important to emphasize that a portfolio consisting only of a one-year bond and a n -year risky bond
is unlikely to be a realistic portfolio managed by a US investor in the �xed income market. However, our
objective is not to design a realistic (executable) asset allocation strategy, but to measure the economic
signi�cance of the information embedded in forward interest rates.
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U (�) = W0

T

T�1X
t=0

�
R
(n)
p;t+1 �

�

2 (1 + �)

�
R
(n)
p;t+1

�2�
; (20)

where R(n)p;t+1 = 1 + y
(1)
t+1 + w

(n)
t

�
rx

(n)
t+1

�
is the period t + 1 gross return on the portfolio.

We standardize the investor problem by assuming W0 = 1.20

We measure the economic value of the P strategy against the B strategy by equating their

average realized utilities. Suppose, for example, that holding a portfolio constructed using

the optimal weights based on the B strategy yields the same average utility as holding the

portfolio implied by the P strategy. The latter portfolio is subject to management expenses

�(n), expressed as a fraction of wealth invested in the portfolio. Since the investor would

be indi¤erent between these two strategies, we interpret �(n) as the maximum performance

fee the investor would be willing to pay to switch from the B to the P strategy. In general,

this criterion measures how much a risk-averse investor is willing to pay for conditioning

on the information in the forward rates, as modeled in the predictive regression (12) and

(15).21 To estimate the performance fee, we �nd the value of �(n) that satis�es

T�1X
t=0

��
R
(n);P
p;t+1 � �(n)

�
� �

2 (1 + �)

�
R
(n);P
p;t+1 � �(n)

�2�
=

T�1X
t=0

�
R
(n);B
p;t+1 �

�

2 (1 + �)

�
R
(n);B
p;t+1

�2�
;

(21)

where R(n);Pp;t+1 denotes the gross portfolio return constructed using the predictions from re-

gressions (12) and (15) and RBp;t+1 is the gross portfolio return implied by their relative

benchmarks (13) and (17). If there is no predictive power embedded in forward rates, then

�(n) � 0; whereas, if forward rates predict bond risk premia, �(n) > 0. We calculate and

report the performance fee �(n) in annual basis points.

A commonly used performance criterion is the realized Sharpe ratio. However, the

Sharpe ratio, like many other performance measures of active management, can be ma-

nipulated in various ways. Goetzmann et al. (2007, henceforth GISW) suggest a set of

conditions under which a manipulation-proof measure exists. This manipulation-proof per-

formance measure is essentially an estimate of the portfolio�s premium return after adjusting

20West et al.(1993) �rst derive expression (20) under the restriction that RRA is constant. Alternatively,
one could build a utility-based measure using the certainty equivalent return (CER), de�ned as the riskfree
return that gives the investor the same utility as the average utility obtained from the trading strategy
examined. It turns out that this measure is similar to the performance fee measure discussed below (see
Abhyankar et al., 2005; Han, 2006).
21For studies following this approach see also Fleming, Kirby and Ostdiek (2003), Marquering and Verbeek

(2004), Han (2006), Della Corte et al. (2008a,b,c), Cheung and Valente (2008).
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for risk. Building on GISW, as a complement to the performance fee �, we calculate the

risk-adjusted abnormal return of the P strategies relative to the B strategies as follows:

�(n) =
1

(1� �)

24ln
0@ 1
T

T�1X
t=0

"
R
(n);P
p;t+1

Rf

#1��1A� ln
0@ 1
T

T�1X
t=0

"
R
(n);B
p;t+1

Rf

#1��1A35 : (22)

where Rf = 1 + y
(1)
t+1 denotes the gross yield on the riskfree one-period bond.

We compute the performance measures �(n) and manipulation-proof performance mea-

sure �(n) for all bond maturities n > 1: Furthermore we assume � = 3 as in GISW and

Campbell and Thomson (2008), we compute V art
�
rx

(n)
t+1

�
as the variance of the n-period

excess returns during the previous 12 month, and we assume that �1 � w
(n)
t � 2; which

essentially allows for full proceeds of short sales (Abhyankar et al., 2005).22 The results of

this exercise are reported in Table 7.

It is interesting to note that for all bond maturities and for both CP and FB speci�-

cations, the performance fees �(n) and the manipulation-proof performance measures �(n)

are small in magnitude and negative in sign. These �ndings suggest that, from an eco-

nomic perspective, an individual investor would not obtain any tangible economic gains by

using the predictions of equations (12) and (15) instead of the ones generated by equations

(13) and (17). The evidence reported in Table 7 complements and supports the statistical

analysis discussed in Section 4. Overall, they indicate that there is very limited evidence of

predictability associated with forward rates when one takes into account that bond yields

(and hence bond prices) are highly autocorrelated over time and across maturities. Consis-

tent with the existing literature, they once again con�rm that it is very di¢ cult to improve

upon the predictive performance of simple autoregressive models of bond yields.

6 Conclusions

This study revisits the predictability of bond risk premia by means of forward rates. We note

that the forward rates, holding period returns, and excess returns are simple functions of the

same primitive bond prices. Hence, by construction, the same bond prices appear on both

sides of equations commonly used in the literature to evaluate the predictive power of forward

rates. Because bond yields (and hence bond prices) are highly correlated over time and across

22We have carried out the same exercise imposing no allowance for short selling 0 � w(n)t � 1. The results,
not reported to save space, are qualitatively and quantitatively similar to the ones reported in Table 7.
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maturities, the fact that the same bond prices appears on both sides of these equations gives

rise to the possibly that at least some of predictive power of forward rates re�ected in the

R
2
for these equaitons may be spurious. We demonstrated this possibility analytically and

through Monte Carlo simulations. We then show that these equations can be rewritten

in a form that is observationally equivalent to an AR(1) in bonds prices with additional

terms being linear functions of forward rates. When R
2
is used as metric of evaluation

of predictability, the results suggest that including forward rates as in the Cochrane and

Piazzesi (2005) equation translates in a marginal improvement of the R
2
on the order of a

third to half of that reported in the original study. However these �gures are not statistically

signi�cant at conventional statistical levels. When we used the percentage reduction in the

standard errors of the regression as the performance metric, however, forward rates were

found to be statistically signi�cant. In the case of the Fama and Bliss (1987) predictive

regressions, there is no marginal improvement associated with the forward rates using either

metric. When economic criteria are used to assess the predictive performance of forward

rates, we �nd there are no economic gains to an investor who invests in a portfolio consisting

of a one-period bond and a n-period bond using the predictions implied by models based

on forward rates.
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Table 1. Reparametrized Predictive Regressions

Panel A) and B) report the OLS estimates of the reparametrized Cochrane and Piazzesi

(2005) equation p(n�1)t+1 + (p
(1)
t � p

(n)
t ) = �0 + �1(�p

(1)
t ) + �2(p

(1)
t � p

(2)
t ) + ::: + �5(p

(4)
t �

p
(5)
t )+"

(n)
t+1: Panel C) and D) report the OLS estimates of the reparametrized Fama and Bliss

(1987) equations �p(1)t+1+ p
(1)
t = �+ �(p

(n�1)
t � p(n)t + p

(1)
t )+�

(1)
t+1 and p

(n�1)
t+1 � p(n)t + p

(1)
t =

� + �(p
(n�1)
t � p

(n)
t + p

(1)
t ) + �

(n)
t+1. R

2
denotes adjusted coe¢ cient of determination, s.e.

and mean dep are the standard errors of estimate and the average value of the dependent

variable respectively. Values in parentheses are asymptotic standard errors.

Panel A) Cochrane and Piazzesi (2005), January 1964 - December 2003

n = 2 n = 3 n = 4 n = 5

�0 -0.0162 -0.0267 -0.0380 -0.0489

(0:002) (0:004) (0:006) (0:008)

�1 -0.9816 -1.7811 -2.5700 -3.2083

(0:126) (0:227) (0:308) (0:385)

�2 0.5917 0.5327 0.8680 1.2409

(0:262) (0:472) (0:305) (0:799)

�3 1.2141 3.0736 3.6068 4.1080

(0:217) (0:391) (0:529) (0:662)

�4 0.2877 0.3821 1.2849 1.2504

(0:160) (0:288) (0:390) (0:488)

�5 -0.8860 -1.8580 -2.7285 -2.8304

(0:135) (0:244) (0:331) (0:414)

R
2

0.313 0.333 0.364 0.338

s.e. 0.0160 0.0288 0.0390 0.0488

mean dep 0.0050 0.0083 0.0103 0.0099

(continued)
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(continued Table 1)

Panel B) Cochrane and Piazzesi (2005), January 1964 - December 1985

n = 2 n = 3 n = 4 n = 5

�0 -0.0236 -0.0383 -0.0523 -0.0656

(0:003) (0:006) (0:008) (0:010)

�1 -1.0194 -1.7755 -2.4836 -2.9925

(0:155) (0:276) (0:373) (0:472)

�2 0.9620 0.9983 1.2300 1.3283

(0:344) (0:611) (0:824) (1:043)

�3 1.2009 3.0742 3.6024 4.1283

(0:245) (0:436) (0:589) (0:745)

�4 0.0085 0.1047 1.0414 1.1153

(0:197) (0:350) (0:473) (0:598)

�5 -0.9404 -1.9562 -2.8140 -2.885

(0:164) (0:292) (0:394) (0:499)

R
2

0.409 0.420 0.442 0.403

s.e. 0.0169 0.0300 0.0405 0.0512

mean dep 0.0014 0.0016 0.0009 -0.0010

(continued)
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(continued Table 1)

Panel C) Fama and Bliss (1987), January 1964 - December 2003

n = 2 n = 3 n = 4 n = 5

� -0.0007 -0.0035 -0.0069 -0.0078

(0:001) (0:001) (0:001) (0:003)

� 0.0068 0.3335 0.6332 0.7925

(0:106) (0:110) (0:105) (0:106)

� 0.0007 -0.0013 -0.0040 -0.0008

(0:001) (0:001) (0:002) (0:003)

� 0.9932 1.3512 1.6122 1.2718

(0:106) (0:136) (0:157) (0:193)

R
2

-0.002 0.156 0.017 0.172 0.073 0.182 0.111 0.082

s.e. 0.0177 0.0177 0.0252 0.0321 0.0282 0.0442 0.0298 0.0574

mean dep -0.0007 0.0050 -0.0013 0.0082 -0.0018 0.0102 -0.0016 0.0099

Panel D) Fama and Bliss (1987), January 1964 - December 1985

n = 2 n = 3 n = 4 n = 5

� 0.0019 0.0038 0.0047 0.0008

(0:001) (0:001) (0:001) (0:001)

� 0.0652 0.5663 1.3609 1.7447

(0:151) (0:148) (0:152) (0:125)

� -0.0019 -0.0057 -0.0094 -0.0104

(0:001) (0:002) (0:003) (0:003)

� 0.9348 1.2350 1.4100 0.7946

(0:151) (0:196) (0:247) (0:276)

R
2

-0.003 0.129 0.053 0.132 0.258 0.111 0.471 0.028

s.e. 0.0198 0.0198 0.0255 0.0349 0.0262 0.0476 0.0236 0.0606

mean dep 0.0021 -0.0001 0.0054 -0.0014 0.0078 -0.0039 0.0121 -0.0071
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Table 2. Monte Carlo Exercise

The Table reports averages of the empirical distributions of R
2
obtained from the esti-

mation of Cochrane and Piazzesi (2005) (equation 7) and Fama and Bliss (1987) (equation

9) predictive regressions under the various DGP reported in Section 3. The number of repli-

cations used in the Monte Carlo experiments is 5,000 and values in brackets are 95th and

5th percentile of the resulting empirical distributions.

Panel A) Cochrane and Piazzesi (2005)

n = 2 n = 3 n = 4 n = 5

DGP 1 0.829 0.704 0.649 0.613

[0:849; 0:806] [0:741; 0:664] [0:691; 0:604] [0:659; 0:566]

DGP 2 0.942 0.889 0.875 0.859

[0:978; 0:886] [0:959; 0:778] [0:955:0:746] [0:950; 0:718]

DGP 3 0.182 0.176 0.193 0.186

[0:331; 0:055] [0:326; 0:049] [0:341; 0:063] [0:336; 0:059]

DGP 4 0.253 0.234 0.298 0.269

[0:398; 0:117] [0:383; 0:098] [0:458; 0:143] [0:423; 0:121]

Panel B) Fama and Bliss (1987)

n = 2 n = 3 n = 4 n = 5

DGP 1 0.744 0.495 0.420 0.375

[0:777; 0:710] [0:552; 0:436] [0:481; 0:358] [0:438; 0:311]

DGP 2 0.930 0.864 0.847 0.829

[0:973; 0:866] [0:948; 0:734] [0:944:0:697] [0:936; 0:663]

DGP 3 0.068 0.062 0.074 0.061

[0:185;�0:002] [0:178;�0:009] [0:199; 0:001] [0:174;�0:001]
DGP 4 0.121 0.090 0.166 0.108

[0:249; 0:022] [0:218; 0:005] [0:327; 0:037] [0:242; 0:009]
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Table 3. Cochrane and Piazzesi�s (2005) Alternative Benchmark

The Table reports the OLS estimates of the equations p(n�1)t+1 = �0 + �1p
(1)
t + �2p

(2)
t +

�3p
(3)
t + �4p

(4)
t + �5p

(5)
t + "

(n)
t+1 and p

(n�1)
t+1 = #0 + #1p

(n�1)
t + !

(n�1)
t+1 discussed in the text.

See notes to Table 1.

n = 2 n = 3 n = 4 n = 5

�0 -0.0162 -0.0267 -0.0379 -0.0489

(0:002) (0:004) (0:006) (0:008)

�1 0.5733 1.3137 2.4379 3.4492

(0:373) (0:673) (0:911) (1:139)

�2 1.6223 2.5409 2.7388 2.8671

(0:395) (0:713) (0:965) (1:207)

�3 -0.9263 -1.6915 -2.3218 -2.8576

(0:318) (0:573) (0:776) (0:970)

�4 -1.1736 -2.2400 -3.0134 -4.0807

(0:223) (0:402) (0:544) (0:680)

�5 0.8859 1.8579 2.7285 3.8304

(0:135) (0:244) (0:331) (0:414)

� -0.0118 -0.0218 -0.0314 -0.0426

(0:002) (0:004) (0:006) (0:008)

� 0.8112 0.8331 0.8445 0.8461

(0:030) (0:028) (0:027) (0:026)

R
2

0.653 0.607 0.698 0.645 0.734 0.670 0.755 0.682

s.e. 0.0160 0.0170 0.0288 0.0312 0.0390 0.0435 0.0487 0.0556

mean dep -0.0658 -0.0659 -0.1363 -0.1363 -0.2097 -0.2097 -0.2851 -0.2851
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Table 4. Fama and Bliss�(1987) Reparametrization and Parameters�

Restrictions

The Table reports the OLS estimates of the equation �p(1)t+1 = �+ �1p
(1)
t + �2(p

(n�1)
t �

p
(n)
t ) + �

(1)
t+1 and p

(n�1)
t+1 = � +  1p

(n�1)
t +  2(�p

(n)
t + p

(1)
t ) + �

(n)
t+1 respectively. Values in

brackets denote p-values of the null hypothesis that the restriction �2 � �1 = 1 (equation

15) or  2 �  1 = 1 (equation 16) holds. 0 denotes p-values lower than 10
�5: See notes to

Table 1.

n = 2 n = 3 n = 4 n = 5

� 0.0137 0.0286 0.0327 0.0377

(0:002) (0:003) (0:004) (0:004)

�1 -0.9820 -0.6386 -0.2084 -0.0508

(0:101) (0:101) (0:095) (0:095)

�2 -0.1862 -0.0728 0.2581 0.3406

(0:106) (0:110) (0:101) (0:102)

� -0.0137 -0.0324 -0.0459 -0.0510

(0:002) (0:004) (0:006) (0:008)

 1 0.9820 1.4448 1.6588 1.3379

(0:101) (0:130) (0:150) (0:186)

 2 0.1862 0.6555 0.8474 0.5061

(0:106) (0:136) (0:153) (0:189)

R
2

0.609 0.609 0.285 0.661 0.152 0.689 0.103 0.686

s.e. 0.0170 0.0170 0.0230 0.0305 0.0253 0.0421 0.0262 0.0552

mean dep 0.0658 -0.0658 0.0664 -0.1363 0.0668 -0.2097 0.0673 -0.2851

H0 : �2 � �1 = 1 [0] [0] [0] [0]

H0 :  2 �  1 = 1 [0] [0] [0] [0]
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Table 5. Fama and Bliss�(1987) Alternative Benchmarks

The Table reports the OLS estimates of the equation �p(1)t+1 = �0 + �1p
(1)
t +$

(1)
t+1 and

equation p(n�1)t+1 = %0 + %1p
(n�1)
t + e

(n�1)
t+1 . See notes to Table 1.

n = 2 n = 3 n = 4 n = 5

�0 0.0118 0.0272 0.0380 0.0453

(0:002) (0:003) (0:003) (0:003)

�1 -0.8111 -0.5779 -0.4191 -0.3197

(0:030) (0:042) (0:048) (0:050)

%0 -0.0118 -0.0217 -0.0314 -0.0426

(0:002) (0:004) (0:006) (0:008)

%1 0.8111 0.8331 0.8445 0.8461

(0:030) (0:028) (0:027) (0:026)

R
2

0.609 0.609 0.285 0.645 0.142 0.670 0.082 0.682

s.e. 0.0170 0.0170 0.0230 0.0312 0.0255 0.0435 0.0265 0.0556

mean dep 0.0658 -0.0658 0.0664 -0.1363 0.0668 -0.2097 0.0673 -0.2851
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Table 6. Statistical Evaluation

The Table reports the results of the comparisons between the reparametrized Cochrane

and Piazzesi�s (2005) and Fama and Bliss�(1987) predictive regressions and their relative AR

benchmark as discussed in Section 4. �R
2

(n) denotes the increment in R
2

(n) obtained from

predictive regression (R
2

(n);predictive) with respect to ones obtained from their benchmark

(R
2

(n);bench) computed as �R
2

(n) = R
2

(n);predictive �R
2

(n);bench. �s:e:denotes the percentage

reduction in s:e: obtained from predictive regression (s:epredictive) with respect to ones

obtained from their benchmark (s:e:bench) computed as �s:e: = 1 �
�
s:e:predictive
s:e:bench

�
: (ex)i

denotes the i�th percentile of the distribution of the variable x = R
2

(n); s:e: obtained by

parametric bootstrap as discussed in Section 4 and detailed in Appendix B. i = max denotes

the maximum value of the distribution of the variable of interest x obtained in the bootstrap

exercise.

Panel A) Cochrane and Piazzesi (2005)

n = 2 n = 3 n = 4 n = 5

�R
2

(n) 0.046 0.053 0.064 0.073

�s:e: 0.059 0.077 0.103 0.124

R
2

(n) Table 3 0.653 0.698 0.734 0.755�g
R
2

(n)

�
95

0.715 0.744 0.758 0.762�g
R
2

(n)

�
99

0.743 0.765 0.784 0.784�g
R
2

(n)

�
max

0.772 0.803 0.825 0.816

s:e:. Table 3 0.0160 0.0288 0.0390 0.0487

(fs:e)95 0.0161 0.0295 0.0411 0.0525

(fs:e)99 0.0156 0.0287 0.0400 0.0511

(fs:e)max 0.0146 0.0272 0.0383 0.0482

(continued)
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(continued Table 6)

Panel B) Fama and Bliss (1987)

n = 2 n = 3 n = 4 n = 5

eq. (14) eq. (15) eq. (14) eq. (15) eq. (14) eq. (15) eq. (14) eq. (15)

�R
2

(n) � � � 0.016 0.010 0.019 0.021 0.004

�s:e: � � � 0.022 0.008 0.032 0.011 0.007

R
2

(n) Table 4 0.609 0.609 0.285 0.661 0.152 0.689 0.103 0.686�g
R
2

(n)

�
95

0.720 0.714 0.522 0.744 0.386 0.760 0.288 0.761�g
R
2

(n)

�
99

0.743 0.740 0.558 0.766 0.429 0.785 0.334 0.782�g
R
2

(n)

�
max

0.797 0.778 0.662 0.814 0.546 0.819 0.442 0.814

s:e:. Table 4 0.0170 0.0170 0.0230 0.0305 0.0253 0.0421 0.0262 0.0552

(fs:e:)95 0.0161 0.0161 0.0204 0.0295 0.0227 0.0411 0.0240 0.0525

(fs:e:)99 0.0156 0.0156 0.0198 0.0287 0.0220 0.0400 0.0231 0.0511

(fs:e:)max 0.0146 0.0146 0.0184 0.0272 0.0198 0.0383 0.0207 0.0482
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Table 7. Economic Assessment

The Table reports the results of the economic assessment between the reparametrized

Cochrane and Piazzesi�s (2005) and Fama and Bliss�(1987) predictive regressions and their

relative AR benchmark as discussed in Section 5. The performance fee �(n) denotes the

amount that a risk-averse investor is willing to pay to switch from strategies based on the

predictive regressions (12) or (15) in the main text to strategies based on equations (13)

or (17) respectively. The manipulation-proof risk-adjusted abnormal return �(n) measures

the di¤erence between the risk-adjusted portfolio�s premium return of the strategies based

on the predictability regressions (12) or (15) realtive to their benchmark (13) or (17). The

measures are all computed by assuming a coe¢ cient of relative risk aversion � = 3 and they

are expressed in annual basis points.

Cochrane and Piazzesi (2005) Fama and Bliss (1987)

Eq. (12) vs Eq. (13) Eq. (15) vs Eq. (17)

�(n) �(n) �(n) �(n)

n = 2 -6.15 -5.23 -0.87 -0.72

n = 3 -14.55 -11.84 -4.22 -3.85

n = 4 -19.78 -15.10 -4.47 -3.75

n = 5 -32.48 -24.12 -3.87 -3.47
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A Appendix: Theoretical R2

A.1 iid bond yields

Let�s consider the reparametrized Cochrane and Piazzesi�s (2005) equation under the as-

sumption that bond yields are iid

p
(n�1)
t+1 + (p

(1)
t � p(n)t ) = �0 + �1(�p

(1)
t ) + �2(p

(1)
t � p(2)t ) + :::+ �5(p

(4)
t � p(5)t ) + "

(n)
t+1 (A1)

the variance of the LHS variable is

var
h
p
(n�1)
t+1 + (p

(1)
t � p(n)t )

i
= var

�
p
(n�1)
t+1

�
+ var

�
p
(1)
t � p(n)t

�
(A2)

the variance of the prediction on the RHS is

var
nb�0 + b�1(�p(1)t ) + b�2(p(1)t � p(2)t ) + b�3(p(2)t � p(3)t ) + b�4(p(3)t � p(4)t ) + b�5(p(4)t � p(5)t )

o
(A3)

Equation (A3) can only be computed conditional upon the values of estimated parame-

ters b� = hb�1; :::; b�5i : For simplicity we compute b� under the assumption of yields being
independent by simulation for all n. The results are as follows:

n = 2 : b� = h 0:0 1:0 0:0 0:0 0:0
i

n = 3 : b� = h 0:0 1:0 1:0 0:0 0:0
i

n = 4 : b� = h 0:0 1:0 1:0 1:0 0:0
i

n = 5 : b� = h 0:0 1:0 1:0 1:0 1:0
i

(A4)

The results reported in (A4) allow us to de�ne closed-form formulae for R2(n) for all n:

The general formula for the theoretical R2(n) for all n can be written as follows

R2(n) =
var

�
y
(1)
t

�
+ n2var

�
y
(n)
t

�
var

�
y
(1)
t

�
+ (n� 1)2var

�
y
(n�1)
t

�
+ n2var

�
y
(n)
t

� (A5)

To investigate the behavior of equation (A5) at the limits (i.e. when n = 1 and, more

importantly, when n!1) we rewrite equation (A9) as follows:
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1

R2
=

var
�
y
(1)
t

�
+ (n� 1)2var

�
y
(n�1)
t

�
+ n2var

�
y
(n)
t

�
var

�
y
(1)
t

�
+ n2var

�
y
(n)
t

� =

= 1 +
(n� 1)2var

�
y
(n�1)
t

�
var

�
y
(1)
t

�
+ n2var

�
y
(n)
t

� (A6)

when n ! 1, then
(n�1)2var

�
y
(n�1)
t

�
var

�
y
(1)
t

�
+n2var

�
y
(n)
t

� ! 0 which causes R2 ! 1:When n ! 1 it is

plausible to hypothesize that n � 1 ' n. Let var
�
y
(1)
t

�
= k constant independent from n,

then

n!1 :
n2var

�
y
(n)
t

�
k + n2var

�
y
(n)
t

� ! 1

This will causes 1
R2 ! 2, or alternatively R2 ! 0:5:

A.2 Persistent bond yields

In the previous Section A.1 we have demonstrated that when bond yields are iid the

Cochrane and Piazzesi� (2005) predictive equation implies theoretical R2 higher than 0.5

and decreasing with the bond maturity n In this section, we relax the assumption of inde-

pendence of bond yields and we allow the possibility that at least one bond yield is serially

correlated. This will cause the b� to be di¤erent from the one reported in (A4). More speci�-
cally, for simplicity, we assume that only the short-term bond yield y(1)t is serially correlated.

Also in this case we compute b� by simulation for all n. The results are as follows:
n = 2 : b� = h b�(2)1;P 1:0 0:0 0:0 0:0

i
n = 3 : b� = h 0:0 1:0 1:0 0:0 0:0

i
n = 4 : b� = h 0:0 1:0 1:0 1:0 0:0

i
n = 5 : b� = h 0:0 1:0 1:0 1:0 1:0

i
(A7)

where b�(2)1;P is the estimate of b�1 obtained under the assumption that only the short-term
bond yield y(1)t is serially correlated The estimates reported in (A7) indicate that only when

n = 2 the plim b�1 6= 0. If we compute the equivalent of equation (A5), we obtain:
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R2(2);P =
var

nb�1(�p(1)t ) + b�2(p(1)t � p(2)t )
o

var
�
p
(1)
t+1

�
+ var

�
p
(1)
t � p(2)t

� =

var

�b�(2)1;P (y(1)t ) + (�y(1)t + 2y
(2)
t )

�
var

�
�y(1)t+1

�
+ var

�
�y(1)t + y

(2)
t

� =

=

"
1 +

�b�(2)1;P�2
#
var

�
y
(1)
t

�
+ 4var

�
y
(2)
t

�
2var

�
y
(1)
t

�
+ 4var

�
y
(2)
t

�
+ cov

�
y
(1)
t+1; y

(1)
t

� (A8)

Equation (A8) is a convolution of the estimated parameter b�(2)1;P ;that is itself a com-
plex function of variance and covariances of bond prices at di¤erent maturities. Note that

(A8) also includes in the denominator a non-zero covariance cov
�
y
(1)
t+1; y

(1)
t

�
which is due

to the assumption of serial correlation in short-term bond yield. The theoretical R2(2) can-

not be computed analytically since it requires the empirical estimates of both b�(2)1;P and

cov
�
y
(1)
t+1; y

(1)
t

�
: However equation (A8) does provide us with an insight about the e¤ect

of a serial correlation on R2(2). When short-term bond yields are serially correlated the

variance var
�
y
(1)
t

�
is no longer equal to unity and it increases with the absolute value of

the �rst-order autoregressive parameter. The higher the absolute value of the �rst-order

autoregressive parameter, ceteris paribus, the larger is var
�
y
(1)
t

�
. When the var

�
y
(1)
t

�
is

su¢ ciently large, it will dominate the other variances and covariances reported in equation

(A8). This will cause the R2 obtained from equation (A8) to increase towards unity, since

var
�
y
(1)
t

�
is in both the numerator and denominator of (A8)23 . If we assume that both

y
(1)
t and y(2)t are serially correlated (but not cross-correlated) with both �rst-order autocor-

relation coe¢ cients equal to 0.99, equation (A8) does not change24 . However the variances

of both y(1)t and y(2)t are both no longer equal to unity and they are larger than one. This

will cause the value of the R2(2) to increase further towards the value of unity
25 .

23A simple Monte Carlo simulation that replicates the above DGP generates an average value for R2
(2)

of
0.90 that is higher than one computed for n = 2 when bond yields are assumed iid.
24This is due to the fact that, under the assumptions postulated in this exercise, autocovariances relative

to bond yields with 2-year maturity are not present when n = 2:
25 In fact the resulting distribution of R2

(2)
from estimating equation (7) under the assumption of both

y
(1)
t and y(2)t being serially but not cross-sectionally correlated, exhibits an average of 0.95.
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B Appendix: Bootstrap

To evaluate the statistical signi�cance of the marginal predictability of Cochrane and Pi-

azzesi�s (2005) and Fama and Bliss� (1987) equations over and above their relative AR

benchmarks, we rely on a parametric bootstrapping procedure26 . In this exercise we simply

simulate arti�cial time series based on the estimates of the AR benchmarks and compute the

empirical distribution of their adjusted coe¢ cient of determination R
2

(n) and their standard

error of estimate s:e. This allows us to see how the values of R
2

(n) and s:e recorded for the

predictive regressions based on forward rates (reported in Table 3 and 4 of the main text)

compare to a case in which there is no forward rates predictability.

For each maturity n we assume a null DGP where bond prices follow an AR process

consistent with no predictive power from forward rates as outlined in Section 4. For the

Cochrane and Piazzesi (2005) empirical framework is represented by

p
(n�1)
t+1 = #0 + #1p

(n�1)
t + !

(n�1)
t+1 (B1)

while for the Fama and Bliss�(1987) predictive regressions, their benchmark are represented

by

�p(1)t+1 = �0 + �1p
(1)
t +$

(1)
t+1, (B2)

p
(n�1)
t+1 = %0 + %1p

(n�1)
t + e

(n�1)
t+1 . (B3)

We choose the parameters of the three DGPs to match the actual data and then construct

bootstrapped distributions for the test statistics as follows:

1. Estimate the null DGPs described in equations (B1), (B2) and (B3).

2. Draw with replacement 1; 500 errors from the estimated null DGPs.

3. Use the errors to compute arti�cial time series of p(n�1)t+1 and �p(1)t+1 from equations

(B1), (B2) and (B3). We discard the �rst 700 observations in order to minimize the impact

of the initialization.

4. Estimate the AR regressions, to obtain values of R
2

(n) and s:e

5. Repeat 2. to 4. 5; 000 times.

26Parametric bootstrapping is a method of simulating the distribution of statistics with the distribution
of actual errors estimated by the model - rather than pseudo-random errors form a normal (or other)
distribution - under some assumption about the data generating process (DGP) of the data (Berkowitz and
Kilian, 2000).
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6. Obtain the bootstrapped distribution of R
2

(n) and s:e: generated by the AR benchmark

equations (B1), (B2) and (B3). Then compute the 95th, 99th percentiles of these distribution

and the maximum value of the distribution recorded during the simulation.
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