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1 Introduction1

The median voter theorem (Hotelling 1929; Downs 1957; and Black 1958) is one of

the most widely used results in analytical political economy. In a setup also known

as the Hotelling-Downs model, the theorem states that two-candidate unidimensional

spatial competition has a unique pure strategy Nash Equilibrium (PSNE) in which

both candidates adopt the policy most preferred by the median voter. In the model,

there is a continuum of voters. The voting is sincere, non-stochastic, and without

abstention. The candidates are vote-maximizing, and they may di¤er only in their

policies; otherwise they are identical. Although the model is commonly used to

study two-candidate competition when candidates are homogeneous, it cannot be

easily extended to other cases: More speci�cally, the PSNE does not exists when the

candidates have di¤erent non-policy characteristics (also known as valence) in two-

candidate competition2, nor when three homogeneous candidates compete (Eaton

and Lipsey 1975). In this paper, however, we show that a unique (modulo symmetry)

PSNE exists when one considers competition among three candidates with valence

di¤erences.

In our base model (presented in Section 2) we impose two main restrictions on

the standard Hotelling-Downs model: Voters�policy preferences are represented by a

strictly convex loss function; and the density of voters is both unimodal and symmet-

ric. We then show that a (modulo symmetry) unique Local Nash Equilibrium (LNE)

exists for a large set of valence parameters. The set of parameters for which the PSNE

exists is smaller, yet it is non-empty. For a symmetric density of voters, the PSNE

exists only when two of the three competing candidates have the same valence, and

the valence di¤erence between these candidates and the third one exceeds a certain

threshold. That is, for PSNE to exists, two of the three candidates must have the

1I would like to thank Şule Atahan-Evrenk, Darlene Chisholm, Tim Groseclose, Hsueh-Ling
Hyunh, Dilip Mookherjee, and Jörgen Weibull for comments. All errors are mine

2For a partial list of people who established this claim, see (Groseclose 2001, footnote 10).
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same appeal, and the appeal of the third candidate must be su¢ ciently di¤erent from

the appeal of the other two. Further, under an alternative set of assumptions, such

as asymmetric voter density or plurality-maximizing candidates, the PSNE exists for

a much larger set of parameters including cases where each candidate has di¤erent

valence.

We �nd that the location of candidates in equilibrium depends on the number of

the candidate(s) with the highest valence. When only one candidate, say Candidate

2, has higher valence than the rest, in any LNE, Candidate 2 locates between the two

lower-valence candidates (Candidates 1 and 3). Candidates 1 and 3 locate equidis-

tantly from the center, and receive the same vote share. Candidate 2 is located closer

to the candidate with the second highest valence. A PSNE for this case does not

exist unless Candidates 1 and 3 have the same valence. In the PSNE, Candidate 2 is

located at the center.

When two of the candidates have the same valence and the third one has a lower

valence, the former candidates choose the same policy platform on one side of the

center, receiving the same vote share. The lower valence candidate locates at the

other side of (and further away from) the center. His vote share is lower than that of

the other two candidates.3

We characterize both the LNE and the PSNE of the base model for a general

strictly convex loss function (that is, for a general strictly concave utility function).

We show that the quadratic loss function, commonly used in models of two-candidate

competition, restricts the set of candidate valences under which an LNE exists; it

rules out many plausible equilibria. This does not happen under many other loss

functions.

When we consider some modi�cations of the base model, such as plurality max-

imizing candidates or asymmetric voter density, we �nd that the LNE of the base

model is also an LNE in these models. More important, in these models PSNE exists

3When all three candidates have the same valence, we return to competition between three
identical candidates, and neither a PSNE nor an LNE exists.
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for a much larger set of parameters including the case in which none of the candidates

have the same valence. Although both the model and its extensions mentioned above

are quite stylized, they have two advantages. Both the LNE and the PSNE (i) are

unique (modulo symmetry) when they exist, and (ii) can be characterized analyti-

cally. Thus, for instance, the model could be used for comparative statics concerning

both marginal and large changes in candidate valences.4 Further, given the existence

of a unique equilibrium with an analytical solution, the model could also serve as a

benchmark case for understanding the e¤ects of additional modelling assumptions,

such as probabilistic voting, on the equilibrium outcome.

Lin, Enelow and Dorussen (1999) considers spatial competition among homoge-

nous candidates under probabilistic voting. They prove that when the variance of the

uncertainty about the voting decision is large enough, there exists a PSNE. However,

in this PSNE all candidates locate at the mean of the voter density. Two recent book-

length treatments of multi-party competition, Adams, Merrill and Grofman (2005),

and Scho�eld and Sened (2006), study detailed models of probabilistic voting. These

models predict party divergence in equilibrium. Adams, Merrill and Grofman (2005)

considers features such as party loyalty, policy discounting, and abstention in a uni-

dimensional setup. Scho�eld and Sened (2006) has an integrated and more detailed

approach. They study models of policy making that include many factors such as

post election bargaining, activist valence, party principals, and a multi-dimensional

policy space. Characterizing PSNE of these models in analytical form is not possible

in general; the authors estimate the equilibrium using simulations based on country

speci�c estimates of several parameters in their models. Adams (1999) runs simula-

tions to calculate the PSNE of a more stylized model: three candidate competition

4For instance, Evrenk (2004) studies the support for anti-corruption reforms in a setup with
three candidates who di¤er both in the level of their honesty and ability. The reform will raise the
minimum level of honesty among the candidates, and thus will change the valence vector signi�cantly.
A candidate�s support for the reform depends on the change in his vote shares before and after the
reform. When we have an equilibrium in analytical form both before and after the reform, one can
determine the sign of the change in vote share.
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with valence di¤erences under probabilistic voting and uniform voter density. The

structure of the equilibrium in his Figures 2B and 2C look similar to the equilibrium

locations that we �nd in Propositions 1 and 2 without probabilistic voting.5

Chisik and Lemke (2006) studies a model of simultaneous move unidimensional

spatial competition among three homogeneous candidates without probabilistic vot-

ing. They prove that under a uniform density a continuum of PSNE exists when one

assumes that candidates care only about winning a majority of votes. This, however,

is a strong assumption. It implies that a candidate is indi¤erent between receiving a

49 percent vote share and no vote at all, if another candidate receives 50 percent of

votes in both situations. Hug (1995) studies PSNE of three-party competition when

there is uncertainty about the policy that a party will implement, �extending Enelow

and Hinich (1984, section 7.4) to three-party competition. This model is isomorphic

to a special case of the model we study, as we discuss in greater detail at the end of

Section 2.

2 The model

Consider an Hotelling-Downs model of political competition where each candidate

j 2 f1; 2; 3g chooses a policy platform, pj, from R. Unlike the standard model, we

assume that each candidate j has exogenous non-policy characteristics (known as

valence and denoted by vj 2 R) favored by voters, such as competency, honesty, and

charisma.6 There is a continuum of voters (of measure one), and i denotes the voter

whose most preferred policy platform is i 2 R. Voting is sincere: i votes for candidate

j who provides the highest U ji (pj; vj), and randomizes when there are more than one

such j�s, where

5However, using these simulations and our results, one cannot identify how probabilistic voting
would a¤ect the equilibrium. Because, under the uniform voter density used in these simulations,
no equilibrium exists without probabilistic voting.

6For more on valence, see Stokes (1963).
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U ji (pj; vj) = �L(ji� pjj) + vj: (1)

In (1), L(x) : R+ ! R+ is the �loss function�representing the voter�s policy prefer-

ences, and ji� pjj is the distance between i and the policy platform of candidate j.

Let f(i) : I ! R+ denote the the density of i. We assume that: (A1 ) The loss func-

tion, L(:), is twice continuously di¤erentiable and strictly convex with L0(0) = 0 and

limx!1 L
0(x) =1; (A2 ) The domain of the density is (i) closed, convex and symmet-

ric around zero, and the density is (ii) continuous, (iii) symmetric with f(i) = f(�i),

(iv) di¤erentiable on all its domain with the possible exceptions at zero and sup I,

(at these points we assume that at least the directional derivatives exist), and (v)

unimodal; (A3 ) Each candidate j simultaneously chooses his policy platform to max-

imize his vote share, Vj(pj; p�j).

We study the Nash Equilibria of the above model in which each candidate receives

a non-zero vote share, �if a candidate receives no votes in equilibrium, his policy plat-

form does not matter for any practical purposes. The existence of a global equilibrium

is hard to verify, so, we follow a method proposed in Scho�eld (2005). We �rst identify

the set of Local Nash Equilibria, LNE, i.e. any strategy pro�le (p�1; p
�
2; p

�
3) where p

�
j

maximizes Vj(pj; p��j) over a (small) " neighborhood of p
�
j . We, then, use simulations

to check if a given LNE is a PSNE.7

We normalize candidate valences as v2 � v1 � v3. Then, the following cases are

collectively exhaustive and mutually exclusive; (a) v1 = v2 = v3, (b) v2 > v1 > v3,

(c) v2 > v1 = v3, and (d) v2 = v1 > v3. Let �j denote the valence di¤erence between

Candidate 2, and Candidate j, i.e., v2 � vj. Case (a) with no valence di¤erence

is the same as the competition between three identical candidates, and therefore

has no LNE. For the other cases, we �nd that the number of candidate(s) with the

highest valence determines the structure of the equilibrium policy platforms. When

7Scho�eld (2005) works from Local Strict Nash Equilibrium, LSNE, to PSNE. In our model,
however, LNE and LSNE coincide generically.

5



one candidate has higher valence than the rest, i.e., cases (b) and (c), we have the

following result.

Proposition 1 When v2 > v1, if the LNE exists, then it is unique modulo symmetry,

and it is given by [�L
�1(�3)�L�1(�1)

2
,L

�1(�1)�L�1(�3)
2

,L
�1(�3)+L�1(�1)

2
]. A necessary (su¢ -

cient) condition for the existence is �2f 0(p�2+L�1(�3))
f(p�2+L

�1(�3))
� (>) L00(0)

[L0(L�1(�3))]2
+ L00(0)

[L0(L�1(�1))]2
.

For non-zero vote shares we need p�3 < sup I.

Remark 1 When v2 > v1 = v3, the LNE becomes [�L�1(�1); 0; L�1(�3)], and the

su¢ cient condition becomes f 0(�L�1(�1))
f(L�1(�1))

> L00(0)
[L0(L�1(�1))]2

.

Next, we consider case (d). Let F (i) denote the cumulative density of i, and let z

be de�ned by8 F (z) = F (z+L�1(�3))
2

.

Proposition 2 When v2 = v1 > v3, if the LNE exists, then it is unique modulo

symmetry, and is given by [z; z; z + L�1(�3)]. A necessary (su¢ cient) condition for

the existence is f(z) � (>)2f(z + L�1(�3)).

We prove Propositions 1 and 2 in the Appendix. Here we �rst discuss the equi-

librium locations and the vote shares. When one candidate has higher valence than

the others, the lower-valence candidates are located symmetrically around the mean,

p�1 = �p�3. Note that this is true even when the candidates 1 and 3 have unidentical

valence, i.e., in case (b). The high-valence candidate always locates in between the

lower-valence candidates. The higher-valence candidate locates exactly at the center

only when both of the lower-valence candidates have the same valence. Otherwise, he

locates at the same side of the center as the second highest valence candidate does.

When two of the candidates have exactly the same valence, and the third one has

a lower valence, case (d), the policy platforms of high-valence candidates converge,

8To ensure the existence and uniqueness of z, a su¢ cient condition is that the valence di¤erence
is small, more precisely, F (�L�1(�3)) < 1

4 . To see that under this assumption there exists a unique
z 2 (�L�1(�3); 0], note that the function D(z) = 2F (z) � F (z + L�1(�3)) is continuous with
D(�L�1(�3)) < 0, D(0) � 0, and D0(z) = 2f(z)� f(z + L�1(�3)) > 0.
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p�1 = p
�
2. However, they do not converge on the center. These two candidates locate

on one side of the center and the third (lower-valence) candidate locates on the other

side. The unimodal and symmetric voter density implies that the higher-valence

candidates�platform is closer to the center, i.e., jzj < jz + L�1(�3)j.

Given the equilibrium locations, we can calculate equilibrium vote shares. As

Lemma 2 in Appendix shows, in any LNE, all voters located between a low valence

candidate and a high valence candidate vote for the latter. Thus, in (b) and (c),

low valence candidates receive V �1 = V �3 = F (�L
�1(�3)�L�1(�1)

2
), where Candidate 2

receives the rest of the votes, V �2 = 1 � 2F (
�L�1(�3)�L�1(�1)

2
). Similarly, in (d), V �3 =

1�F (z+L�1(�3)), and each of the high valence candidates receives 12F (z+L
�1(�3)),

or, equivalently, F (z), fraction of votes. The LNE vote shares in cases (b) and (c)

can not be further ordered. For instance, depending on �1 in some equilibria V �1 is

less than V �2 and in some other equilibria V
�
1 is larger than V

�
2 .
9 In case (d), we can

rank the equilibrium vote shares of all candidates: since jzj < jz + L�1(�3)j, each

high-valence candidate receives a larger vote share than the candidate with the lower

valence, V �1 = V �2 > V �3 . It is also worth noting that in cases (b) and (c), the low

valence candidates are not locally competing with each other in the equilibrium. That

is to say, when one of them locally deviates from his equilibrium platform, then the

vote share of the other low valence candidate remains unchanged. In contrast, in case

(d) when the low valence candidate locally deviates from his LNE location, the vote

share of all candidates change.

Before we study when LNE is PSNE, let us note an implication of the quadratic

loss function speci�cation on LNE. Quadratic loss function has been used extensively

in the literature on two-candidate competition with valence di¤erences, (Groseclose

(2001) is a notable exception); when the loss function is quadratic, it is quite easy to

calculate the location of the indi¤erent voter analytically. Yet, using this speci�cation

in three-candidate competition restricts the set of valence di¤erences under which an

9As we discuss below, in PSNE we can always order the vote shares.
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LNE exists, ruling out many plausible LNE. To see why, let us compare the set of

LNE under L(x) = x2 with the same set under L(x) = x4, �or, for that matter,

under any L(x) = x2n where n is an integer larger than one. Both loss functions

satisfy A1, but L00(0) = 2 in the former and L00(0) = 0 in the latter. To see how

the value of L00(0) imposes a lower bound on the set of valence di¤erences, �j�s,

under which an equilibrium exists, consider the following voter densities that di¤er

from each other in terms of support and curvature: (i) Gaussian with zero mean,

f1(x;�) =
1

�
p
2�
e�x

2=2�2 for x 2 R, (ii) Symmetric Exponential, f2(x;�) = �
2
e�jxj�

for x 2 R, and (iii) Symmetric Zero-mode Triangular, f3(x; b) de�ned as b+x
b2

for

x 2 [�b; 0], and as b�x
b2
for x 2 [0; b]. The necessary condition in Remark 1 becomes

L�1(�1)
�2

� L00(0)
[L0(L�1(�1))]2

for (i), � � L00(0)
[L0(L�1(�1))]2

for (ii), and 1
b�L�1(�1) �

L00(0)
[L0(L�1(�1))]2

for

(iii). Note that the larger the L00(0), the larger is the minimum valence di¤erence,

�j, that satisfy these inequalities: When L00(0) = 0, there exists an LNE for any

0 < � < L(sup I). Yet, when L00(0) = 2, the LNE does not exists under small valence

di¤erences. We need 1
22=3

< � < L(sup I) for f1(x; 1), 12 < � < L(sup I) for f2(x; 1),

and 1
4
< � < L(sup I) for f3(x; 1). Thus,

Remark 2 Although under any strictly convex loss function with L00(0) = 0 the LNE

exists for any � > 0, when L00(0) = 2, one needs the variance of the voter density to

converge to in�nity for this to happen.

Since the variance of the voter density is a parameter over which the modeler has

the least control, the constraint pointed out in Remark 2 is especially important when

one considers actual voter data. Even more important, the set of valence parameters

(and thus the LNE) ruled out by the quadratic speci�cation contain many plausible

equilibria. For instance, when voter density is f3(x; 1) we are immediately ruling out

any LNE where the high valence candidate receives a vote share less than 3
4
.

In case (d), to calculate the equilibrium locations in analytical form, we need a

cumulative density in analytical form.10 Then, one can identify the set of valence
10Thus, under the Gaussian density one cannot calculate the equilibrium locations analytically,
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di¤erences that give rise to a non-zero vote share LNE as well: �3 > L(
Log[25=8]

�
) for

f2(x;�), and L((2 �
p
2)b) < �3 < L(b) for f3(x; b). Unlike (b) and (c), in case

(d) the boundaries of the LNE locations does not depend on the curvature of the

loss function and are solely determined by the valence di¤erences. In other words,

independent of L(:), p�1 = p
�
2 is in (

1
�
(Log[1

2
(1� 8

25

q
(25
8
)2 � 50

8
)]); 0) for f2(x;�), and

in ( b(2
p
2�3)
3

; 0) for f3(x; b).

After identifying the LNE, now we can study the PSNE.

Proposition 3 The PSNE exists only in cases (c) and (d).

Proof. To see why there is no PSNE in (b), assume that an LNE with p�2 < 0 is

PSNE (one can use symmetric arguments to show that an LNE with p�2 > 0 can

not be a PSNE either). Then, by Proposition 1, we have jp�1 � p�2j < jp�3 � p�2j with

V �1 = V
�
3 = F (p

�
1). But, if Candidate 1 deviates to p

0
1 = p

�
3, then all the voters located

at the right side of p�3 vote for him, since v1 > v3. In addition to these voters, some

of the voters located at the immediate left of p�3 also vote for him. That is because

now there is a candidate with higher valence located at p�3, thus the voter who is

indi¤erent between Candidate 2 and the candidate at p�3 is located somewhere at the

left of p�3. Then the symmetry of density implies V1(p
�
3; p

�
2; p

�
3) > V1(p

�
1; p

�
2; p

�
3) = F (p

�
1),

contradicting that the LNE was a PSNE. To show PSNE exists in cases (c) and (d),

we provide examples: Consider f3(x; 1). Using simulations one can show that in case

(c), when L(x) = x4, for any valence di¤erence, �1, in [0:012; 1] the PSNE exists, and

when L(x) = x2 all LNE is PSNE, i.e., there is a PSNE under any 1
4
< �1 < 1. In

case (d), under both quartic and quadratic loss functions, any LNE is PSNE.

Although in two-candidate competition the PSNE does not exist when one can-

didate has valence advantage, in three-candidate competition, the PSNE exist when

only one candidate has a valence advantage (or, a valence �disadvantage�), i.e., cases

but z = 1
� (Log[

1
2 (1 � e

��L�1(�3)
p
e2�L�1(�3) � 2e�L�1(�3))]) when the voter density is f2(x;�), and

z = 1
3

�
�b� L�1(�3) +

p
�2b2 + 8bL�1(�3)� 2(L�1(�3))2

�
for f3(x; b).
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(c) and (d). Furthermore, the size of the valence di¤erence between this candidate

and the other two candidates must be larger than a threshold that depends on, among

other things, the density of voters and the curvature of the loss function. Since the

PSNE is a subset of the LNE, PSNE is unique modulo symmetry, and can be char-

acterized analytically.

The method by which we calculate the equilibrium has restrictions on the analysis.

We can characterize equilibrium locations analytically, but we cannot analytically

check which ones are PSNE. For this, we use numerical simulations.11 With this

method we can provide examples of PSNE under many speci�c densities, however,

unlike the LNE, we are unable to provide su¢ cient conditions for the existence of

PSNE that would apply to any density that satis�es A2 (i)-(v). Neither can we

show that the PSNE exists for any such density. Such conditions are provided in

Hug (1995) for a special case of this model, however, there are problems with these

conditions.

Hug (1995) does not address competition with valence di¤erences, however, the

mathematical structure of the model studied there is isomorphic to a special case

of the base model in this paper. He examines the PSNE of unidimensional political

competition among three parties when there is uncertainty about the policy platforms

of parties, �an extension of Enelow and Hinich (1984, section 7.4) to three parties. In

that model, the platform chosen by party k is perceived with the same noise by all

the voters. More formally, when party k locates on �k 2 R, each voter expects party

k to implement the lottery �k + "k, where "k is an independent random variable with

zero mean and standard deviation �k. As Enelow and Hinich (1984), Hug (1995) also

assumes that the voter whose most preferred policy platform, or bliss point, is i 2 R

has a quadratic loss utility function, Ui(�k) = �(i� �k)2. Then, the expected utility

of voter i from party k located at �k is �(xi � �k)2 � �2k: when the loss function

is quadratic, the e¤ect of uncertainty is reduced to one parameter, the variance. In

11For all simulations, Mathematica notebooks with calculations are available from the author.
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Hug (1995), the density of voters, f(xi), is twice di¤erentiable, continuous, symmetric

around zero, strictly increasing on (�1; 0). Thus, his model of policy uncertainty

is isomorphic to a model of political competition with valence di¤erences, where

L(x) = x2, I = R, and f(:) twice di¤erentiable everywhere.

In Propositions 1 and 2, Hug (1995) claims to �nd su¢ cient conditions for PSNE

in all cases of present interest: (b), (c), and (d). As the proof of Proposition 2 should

make clear, the claim about case (b) is incorrect: the author does not check for the

global deviation by the candidate with the second highest valence, that is, p01 = p
�
3.

The claim about PSNE in case (c) must also be corrected: as we show the PSNE exists,

but the conditions that the author claims as su¢ cient for PSNE are not su¢ cient

even for an LNE. This is because, the second-order condition (the last equation on

page 179) is incorrect. For the correct su¢ cient conditions for LNE, note that the

condition in Remark 1 would translate as
f 0(�
p
�22��21)

f 0(�
p
�22��21)

> 2
4(�22��21)

into the setup the

author studies. Similar to case (b), the author claims that when other candidates are

located at their equilibrium platforms, for any f(i), one can analytically show that

the vote share of the high-valence candidate is maximized in his policy platform at

the relevant region, i.e., p02 2 (p�2; p�2 + L�1(�3)). However, for neither (c) nor (d),

could we prove this.12

The model we use is a variant of the Hotelling-Downs model and it, too, is stylized.

In the unique equilibrium of the Hotelling-Downs model, both candidates choose the

same policy and each receives exactly the same vote share. The PSNE of the model

we study has two non-plausible features as well. First, the PSNE does not exist for the

most likely case, (b). Second, in the PSNE of case (c), the highest valence candidate

always receives a majority of votes (V �2 >
1
2
).13 To see why, note that in any LNE in

12For instance, in the proof of Proposition 2, Hug (1995, p. 177), the argument for the existence of
equilibrium in (d) is that, using our notation, for any p02 2 (p�2; p�2+L�1(�3)), the function V2(p2; p��2)
has at most one critical value. This, we could not prove or disprove for the case he studies. We can
show, on the other hand, that when the loss function is quadratic as in Hug (1995), the density is
given by f2(x; 1), and the valence/variance di¤erence is equal to Log[ 258 ]

2 (or slightly larger than
this), the vote share function has two critical points.
13The PSNE of other three-candidate competition models with non-stochastic voting has similar
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(c), the high valence candidate is located at the origin and the two other low valence

candidates are located equidistantly on both sides. Suppose that we have a PSNE

where the high valence candidate does not receive a majority of votes, then he could

simply deviate to the location of one of the low valence candidates and receive a vote

share that is strictly larger than one half. As we discuss in the next section, under

alternative assumptions these features disappear.

3 Discussion and Conclusion

In this section, we brie�y discuss three related issues. First, we examine the role of

the assumptions A1, A2 and A3 in establishing the equilibrium. Second, we consider

if (and how) these assumptions could be relaxed or altered without eliminating the

equilibrium. And, third, we identify how the PSNE of the modi�ed model di¤ers from

the PSNE of the base model. Here, we consider only the alternative assumptions

under which the LNE of the model is a superset of the LNE of the base model. Then,

we conclude.

We assume that the voter preferences are strictly concave (the loss function is

strictly convex), A1. With a linear loss function, even an LNE does not exist in any

of the cases.14 Under a strictly concave loss function, even if it exists, the equilibrium

is supported by an unusual pattern of voting: both the center voters and the voters

located around the supremum and in�mum of I, i.e., the far-right and the far-left

voters, always vote for the center candidate.

We impose several conditions on the voter density. These assumptions are suf-

�cient, not necessary, and sometimes are just convenient. Consider the assumption

strong conclusions. For instance, in Chisik and Lemke (2006) in every equilibrium, one candidate
receives more than a majority of votes. For other examples see Adams (2001, p.39-40)
14The reason is as follows. With a linear loss function, the low-valence candidates still choose the

locations of indi¤erence, i.e., Lemma 2 applies. However, if a high valence candidate moves slightly
towards the low-valence candidate, then all the voters who voted for the latter will switch to the
former. Since by moving slightly towards a low-valence candidate, the high-valence candidate�s loss
of vote share from the voters on the other side is in�nitesimal, such a deviation always increases his
vote share, and thus an LNE does not exist.
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that the voter density is unimodal, A2 (v). While this assumption is not neces-

sary, it is not as strong as what one needs for PSNE in standard Downsian spatial

multi-candidate competition: �..the number of �rms does not exceed twice the num-

ber of nodes,� (Eaton and Lipsey 1974, p.35). To see how unimodality simpli�es

the condition for the existence of LNE, note that using (3), the su¢ cient condition

in Proposition 1 can be written as 2f 0(p�2�L�1(�1))
f(p�2�L�1(�1))

> L00(0)
[L0(L�1(�3))]2

+ L00(0)
[L0(L�1(�1))]2

. The

right-hand side cannot be negative. Thus, if we want to construct a density where

these su¢ cient conditions hold generically, then f 0(x) should decrease around p�3, and

should increase around p�1. The density need not to be strictly decreasing on each

side of the mean. For example, both LNE and PSNE would exist under a density

�rst decreasing on each side of the mean, then having a su¢ ciently small local mode

su¢ ciently far from the mean. However, with such densities, there will be �holes�in

the set of valence di¤erences that gives rise to the LNE, making the characterization

of LNE (and, for instance, the discussion of the impact of a quadratic loss function

on LNE) especially cumbersome.

We also assume that voters are distributed symmetrically around the mean, A2

(iii). The symmetric density, however, has strong implications on both the existence

of PSNE and the structure of equilibrium platforms: Under symmetry, a PSNE ex-

ists only when the vector of candidate valences has a certain kind of symmetry and

a certain degree of asymmetry. Unlike cases (c) and (d) where two of the three can-

didates have the same valence, there is no symmetry in candidate valences (and thus

no PSNE) in case (b).15 Since (b) is the most likely case, the PSNE under asym-

metric densities must be considered. The analysis of equilibrium under a general

asymmetric density is di¢ cult: to study PSNE under an asymmetric density, one has

to impose more structure on the density.16 Through examples we are able to show
15Note that the important step in the proof of Proposition 3 uses the fact that both lower-valence

candidates receive the same vote share in equilibrium, an implication of symmetric density, (see (3)).
However, also note that the symmetry of voter density does not require full symmetry in candidate
valences, as in case (a), either. Furthermore, under any valence distribution that is close to full
symmetry there is no PSNE either, cf. the examples in the proof of Proposition 3.
16The symmetric structure is analytically convenient because it imposes a structure. Asymmetry,
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that the PSNE in case (b) exists under asymmetric voter densities: assume that (i)

f(x) = 1+2x for �1
2
� x � 0 and f(x) = 1� 2

3
x for �0 � x � 3

2
, (ii) the loss function

is quadratic, (iii)
p
�3 =

4
3

p
�1. Then one can show that for any

p
�1 2 [ 410 ;

48
100
] a

unique, not modulo symmetry, PSNE exists at (7
4

p
�1;

3
4

p
�1;

�7
12

p
�1). Asymmetric

density is not the only solution; another way to restore the equilibrium in case (b) is

to consider alternative candidate motivations.

We assume that candidates are vote-maximizing, A3. Although A3 is the most

commonly used objective function in models of multi-candidate competition, it may

imply paradoxical behavior: �when there are more [than two] candidates: a candidate

who wins outright may, if she moves her position closer to that of a neighbor, increase

the number of votes that she receives but at the same time increase the number

of voters received by her other neighbor enough that she is no longer the outright

winner�, (Osborne 1995, p. 278). To check if the equilibrium we �nd is supported

by this kind of behavior, we calculate both the LNE and PSNE of the model under

the assumption that each candidate j maximizes his plurality,17 PLUj(p1; p2; p3) =

Vj(p1; p2; p3)�maxk 6=jfVk(p1; p2; p3)g. We �nd that such a paradoxical behavior does

not occur in the LNE we �nd. Further, we �nd that

Proposition 4 Under plurality maximization, (i) the policy platforms in Proposi-

tions 1 and 2 are still LNE, and (ii) now PSNE exists in every case except (a).

Proposition 4 is proved in the Appendix. We do not provide a full characterization

of Nash equilibrium under plurality maximization here, as our purpose is to note that

the equilibria we �nd in Section 2 are robust. It is worth noting that when each

candidate maximizes his plurality, there exists a PSNE in the most likely case, (b).

This is because, a high(er)-valence candidate, such as Candidate 1 in case (b), could

however, simply implies a lack of structure. Then, to study the model with an asymmetric density,
the researcher needs to impose some structure. For example, studying the equilibrium under a
certain asymmetric Triangular distribution is relatively straightforward, but studying it under any
asymmetric distribution is di¢ cult.
17The following discussion would apply under the assumption of complete plurality maximization,

CPM, as well. For a de�nition of CPM, see Cox (1987).
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increase his vote share by deviating to the position of a low-valence candidate, however

such a move would reduce his plurality. For this reason, the LNE for smaller valence

di¤erences in cases (c) and (d), along with many of the LNE for case (b), survives

the test for PSNE.

In this paper, we study both the local and the global Nash Equilibrium of three-

candidate competition in standard Downsian model with exogenous candidate va-

lence. We show that, for a large set of valence di¤erences, a modulo symmetry unique

LNE with an analytical characterization exists. We also show that the commonly used

quadratic loss speci�cation signi�cantly restricts the set of parameters under which

an LNE exists. For a PSNE to exist, the valence di¤erences need more structure. The

PSNE of the base model does not exists in case (b), however, this feature disappears

when one considers either asymmetric voter density, or plurality maximizing candi-

dates. In PSNE of case (c), Candidate 2 receives a majority of votes. Under plurality

maximization, this feature also disappears; when candidates are plurality maximizing

in (still modulo symmetry unique) PSNE, the center candidate does not necessarily

receive a majority of the votes. Interestingly, this PSNE in which V �2 <
1
2
is sup-

ported by another type of paradoxical behavior: in such an equilibrium, Candidate

2 does not move towards a low valence candidate as this would reduce his plurality,

even though the move would secure him a majority. It is possible to impose other

assumptions such as probabilistic voting where both features disappears. A detailed

analysis of these cases is left for future research.

4 Appendix

Proof of Proposition 1. To prove Proposition 1, we need the following three

Lemmas. Consider competition between two candidates, j and k, where vj > vk. Let

I(pj; pk) 2 R denote a location of indi¤erence, i.e., L(jI(pj; pk)� pjj)�L(jI(pj; pk)� pkj) =

vj � vk. Obviously when pj = pk all voters prefer candidate j, thus I(pj; pk) does not
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exist. However,

Lemma 1 Whenever candidates choose non-identical policy platforms, (i) there al-

ways exists a unique location of indi¤erence (Groseclose 2005, Appendix III), and (ii)

I(pj; pk) is closer to the candidate with lower valence.

Proof. For (ii) note that vj � vk > 0 implies that L(jI(pj; pk)� pjj) >

L(jI(pj; pk)� pkj). Since L0(x) > 0, we have jI(pj; pk)� pjj > jI(pj; pk)� pkj.

The location of indi¤erence determines the equilibrium locations of candidates

with relatively lower valences. Let Pk(pj) denote the best response correspondence

for candidate k. Then, if k receives a non-zero vote share in his best response, then

we have I(pj; pk) 2 Pk(pj) (with equality if pj 6= 0). To see this, note that,

@I(pj; pk)

@pk
=

sgn(�k)L
0(j�kj)

sgn(�j)L0(j�jj)� sgn(�k)L0(j�kj)
; (2)

where �j = I(pj; pk)� pj, �k = I(pj; pk)� pk, and sgn(:) denotes the sign function.

Lemma 2 Candidate k�s best response correspondence always includes a location of

indi¤erence. Furthermore, if Candidate k receives any votes in that location, then

jpj � Pk(pj)j = L�1(�k), and, unless pj = 0, the best response correspondence is

single valued (where Pk(0) = fL�1(�k);�L�1(�k)g).

Proof. Let us �x pj 6= 0. Now consider Candidate k�s �conditional�best response,

P+k (pj) = fpk > pj : Vk(pj; pk) � Vk(pj; p0k) 8p0k > pjg. For any pk > pj, Lemma 1.(ii)

implies I(pj; pk) > pj, and jI(pj; pk)� pjj > jI(pj; pk)� pkj. Thus, the denominator

of @I(pj ;pk)
@pk

is positive, and the sign of @I(pj ;pk)
@pk

is determined by the sign of I(pj; pk)�

pk. Note that for pk > pj, we have Vk(pj; pk) = 1 � F (I(pj; pk)), so @Vk(pj ;pk)

@pk
=

�f(I(pj; pk))@I(pj ;pk)@pk
. Now, if I = R, then for pk > I(pj; pk), we have dVkdpk

< 0, and for

pk < I(pj; pk), we have
dVk
dpk

> 0. But, by A1 (ii), the only stable location for Candidate

k is that of the indi¤erent voter, i.e., for pk = I(pj; pk) we have
dVk
dpk

= 0. Then I(pj; pk)

is located L�1(�k) o¤of the high-valence candidate. Thus, f(pj+L�1(�k)) > 0 implies
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P+k (pj) = pj + L
�1(�k). If I 6= R, and f(pj + L�1(�k)) = 0, then we still have

pj +L
�1(�k) 2 P+k (pj), as in this case any pk > pj results in Vk(pj; pk) = 0. Similarly,

maximizing Vk(pj; pk) conditional on pk < pj, implies that pj � L�1(�k) 2 P�k (pj)

(again with equality if f(pj � L�1(�k)) > 0). Now, let us assume that Candidate

k receives a non-zero vote share, maxff(pj � L�1(�k)); f(pj + L�1(�k))g > 0. By

A2 (iii), we have Vk(pj; P�k (pj)) <(>)Vk(pj; P
+
k (pj)) if and only if pj <(>)0. The

same assumption also implies that Vk(0; L�1(�k)) = Vk(0;�L�1(�k)).

Hug (1995) derives the following result for L(x) = x2.

Lemma 3 When v2 > v1, in any LNE Candidate 2 should locate strictly between the

other two candidates.

Proof. Assume otherwise, i.e., that we have an LNE with non-zero vote shares

where both low valence candidates are located, say, at the right side of Candidate

2. By Lemma 1.(ii), p2 < I(p2; pj) for j 2 f1; 3g. Then by (2), @I(p2;pj)

@p2
> 0 for

j 2 f1; 3g, i.e., by converging towards the others, Candidate 2 can increase his vote

share. Contradicting this was an LNE. Also note that if Candidate 2 shares his

location with the other candidate(s), then these candidate(s) would get zero votes,

again contradicting that these candidate(s) were receiving non-zero vote shares.

Now, without loss of generality, assume that in the equilibrium, Candidate 3 is

on the right side of Candidate 2. Then, if an LNE exists, we have p�2 2 (p�1; p�3). Note

that at the policy platforms in Proposition 1, the low-valence candidates are not

competing with each other. That is because for any voter i, high-valence Candidate

2�s policy platform is closer than at least one low-valence candidate, so Candidate

2, when located between the other two candidates, ranks at worst as the second

candidate in any voter�s preference ordering. This observation implies that as long

as it is on the other side of Candidate 2, the location of the third candidate does

not have any e¤ect on Candidate 1�s vote share, and thus Lemma 2 applies, i.e., the

location of indi¤erence between a low valence and a high valence candidate is still the
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best response for the former. Thus we have p�1 = p
�
2�L�1(�1), and p�3 = p�2+L�1(�3).

We also need to show that Candidate 2 does not have any incentive to deviate from

p�2. His vote share is F (I(p
�
2; p

�
3))�F (I(p�2; p�1)), and the f.o.c. is f(I(p�2; p�3))

@I(p�2;p
�
3)

@p2
�

f(I(p�2; p
�
1))

@I(p�2;p
�
1)

@p2
= 0. Using (2) and A1, we have @I(p�2;p

�
3)

@p2
=

@I(p�2;p
�
1)

@p2
= 1. Then,

the symmetry of f(:) implies that the f.o.c. will hold if and only if,

I(p�2; p
�
1) = �I(p�2; p�3): (3)

Equation 3 implies that p�1 = �p�3. Using this with Lemma 2, we have the LNE

platform in Proposition 1 as the only candidate for LNE. A su¢ cient condition for

(3) to characterize a local maximum is the s.o.c., d
2V2(p�1;p

�
2;p

�
3)

(dp2)2
< 0, or

f 0(I�3 )(
@I�3
@p2

)2 + f(I�3 )
@2I�3
(@p2)2

< f 0(I�1 )(
@I�1
@p2

)2 + f(I�1 )
@2I�1
(@p2)2

; (4)

where I�3 = I(p
�
2; p

�
3), and I

�
1 = I(p

�
2; p

�
1). We assumed that L(:) 2 C2, then by implicit

function theorem, whenever it exists, I(p2; pj) is also locally C2. One can show that,

when p1 < p2 < p3, we have

@2I(p2; p1)

(@p2)2
=
L00(p2 � I(p2; p1))(@I(p2;p1))@p1

)2 � L00(I(p2; p1)� p1)(@I(p2;p1))@p2
)2

[L0(p2 � I(p2; p1)) + L0(I(p2; p1)� p1)]2
;

@2I(p2; p3)

(@p2)2
=
L00(I(p2; p3)� p3)(@I(p2;p3))@p2

)2 � L00(�p2 + I(p2; p3))(@I(p2;p3))@p3
)2

[L0(�p2 + I(p2; p3))� L0(I(p2; p3)� p3)]2
:

Hence, evaluating the second derivatives at p�1 = p
�
2�L�1(�1); and p�3 = p�2+L�1(�3),

we �nd @2I(p�2;p
�
1)

(@p2)2
= � L00(0)

[L0(L�1(�1))]2
, and @2I(p�2;p

�
3)

(@p2)2
= L00(0)

[L0(L�1(�3))]2
. Then, (4) becomes

f 0(I�3 ) + f(I
�
3 )

L00(0)

[L0(L�1(�3))]2
< f 0(I�1 )� f(I�1 )

L00(0)

[L0(L�1(�1))]2
; (5)

establishing the su¢ cient condition in Proposition 1, and completing the Proof of

Proposition 1.
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Proof of Proposition 2 In case (d), an LNE exists only when Candidates 1

and 2 share the same location, otherwise at least one of them has the incentive to

move towards the other one. Also note that the location Candidates 1 and 2 share

should be the mean point of the voters who vote for one of these strong candidates,

otherwise one of the high-valence candidates would move slightly to the side with

more voters and increase his vote share. By Lemma 2, Candidate 3�s platform (the

location of indi¤erence) is a best response to the other candidates�platform; having

two candidates with the same valence at the same location does not change the result

of Lemma 2. Thus, we have (i) p�1 = p
�
2, and, under the assumption that

18 p�3 > p
�
2, (ii)

F (p�1) =
F (p�3)
2
. None of the high-valence candidates has any incentive to move to the

left of z, as this would reduce that candidate�s vote share below F (z). The su¢ cient

condition guarantees that moving in�nitesimally to the right does not increase a high-

valence candidate�s vote share either, i.e., limdp!0+ V2(z; z + dp; z + L
�1(�3)) < 0.

To obtain the su¢ cient condition from this inequality, note that evaluating (2) at

equilibrium locations in Proposition 2, we have @I(p�2;p
�
1))

@p2
= 1

2
, and @I(p�2;p

�
3))

@p2
= 1.

Proof of Proposition 4 Note that by Propositions 1, 2, and 3 we know p�j

maximizes Vj(pj; p��j) locally for LNE and globally for PSNE. Here we need to show

that it maximizes Vj(pj; p��j)�maxk 6=jfVk(pj; p��j)g as well.

For part (i), consider the cases of (b) and (c) �rst. We need to show that a local

deviation by a candidate does not increase his plurality when the rest are located

at their LNE policy platforms. Let us consider a low valence candidate j who is

maximizing his plurality Vj(pj; p��j) � Vk(pj; p��j). In his LNE location, his plurality

is either negative, i.e., k = 2, or equal to zero. Note, once more, that at his current

location this low-valence candidate is competing only against Candidate 2. Therefore

by a local deviation his plurality cannot increase. To see why, note that with any

such deviation Vj(pj; p��j) decreases (by the argument in the proof of Lemma 2, any

local deviations would decrease his vote share) and Vk(pj; p��j) either does not change,

18Of course, by symmetry, one could assume p�3 � p�2, then (ii) would read 1� F (p�1) =
1�F (p�3)

2 .
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i.e., k 6= 2 , or increases, i.e., k = 2. So, a plurality-maximizing low-valence candidate

has no incentive to locally deviate from his LNE location in Proposition 1. Now

let us check if the high-valence candidate has any incentive to locally deviate from

his LNE platform when he maximizes his plurality. Indeed, he has no incentive to

deviate either. To see why, assume without loss of generality that he deviates to

the right. Then his plurality is equal to V2(p2; p��2) � V1(p2; p��2). We know that

V2(p
�
2; p

�
�2) � V2(p2; p

�
�2) for any p2 � p�2. By (2), we also know that

@I(p1;p2)
@p2

> 0,

thus @V1(p�1;p2;p
�
3)

@p2
> 0.

Now, let us prove (i) for case (d). Again, consider the low-valence candidate �rst.

Both high-valence candidates locate at the same platform and thus they share the

voters who do not vote for the low valence candidate. So, it is as if the low-valence

candidate is competing against one high valence candidate. Thus, when the formers

vote share decreases, so does his plurality. Then his LNE policy platform locally

maximizes his plurality. When we consider either of the high-valence candidates,

each has a plurality of zero in the equilibrium. If one of them moves to the left,

his vote share will decrease and the vote share of the other high-valence candidate

increases. But, the vote share of low-valence candidate will remain the same. Thus,

a local deviation to the left by a high-valence candidate, say, Candidate 2, decreases

his plurality. To see that a local deviation to the right by Candidate 2 is also

plurality-decreasing, note that, again, as we are considering an LNE platform, by

deviating, Candidate 2 cannot increase his vote share. Further, when Candidate 2

deviates to the right, the vote share of Candidate 1 increases. Thus, the plurality of

Candidate 2 decreases. Hence, for all possible valences, if (p�1; p
�
2; p

�
3) is an LNE under

vote-maximization, then it is an LNE under plurality-maximization.

For part (ii), we again use numerical simulations to show the existence of PSNE.
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