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1. Introduction 

Since the mid-1900s firms have acquired many of the innovations for new products and 

manufacturing processes through their own research and development efforts, rather than 

through licensing agreements with independent scientists.  Internalizing the R&D enterprise has 

advantages over acquiring the innovations through arm’s-length transactions because of the 

complementarities between the research conducted and the firm's production function 

knowledge about the production function is costly to transmit to outsidersand because of the 

difficulty of motivating contractors (see Lamoreaux and Sokoloff, 1999).  But innovating in-

house creates a challenge: firms risk their scientists, researchers, and other key personnel leaving 

after a discovery to exploit it on their own.  One way that they can mitigate this risk is by 

patenting innovations as they are developed in the laboratory.  In this paper we examine 

theoretically and empirically how the threat of a scientist leaving affects the firm's patenting and 

R&D decisions. 

Through patenting, an innovating firm can attempt to prevent competitors from imitating 

new products and thus can preserve its market share.  Secrecy offers the firm an alternative 

means of securing the returns to R&D while avoiding both the legal expenses of patent 

application and infringement prosecution, and the potentially much greater losses from 

disclosing sensitive information to competitors (Friedman, Landes and Posner, 1991; Cohen, 

Nelson, and Walsh, 2000).  At the time patents are granted, the USPTO publishes the detailed 

technical information that firms have submitted in support of their patent application.  Rival 

firms may be able to use this information to innovate around the patent.  Nevertheless, in 

practice, firms often do not fully disclose the technical details of an innovation on patent 

applications.   Nor does a secrecy strategy necessarily prevent an innovating firm’s rivals gaining 
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access to its secrets through reverse engineering, espionage, and especially former employees.   

Technological know-how acquired through research experience is embedded in the 

scientist’s human capital.  This knowledge becomes available to a competitor when the employee 

switches jobs.  Economists have long suspected that the inter-firm mobility of scientists transmits 

technological know-how across firms (Arrow, 1962; Stephan, 1996), but evidence is often 

anecdotal and econometric evidence is scarce.  Levin, Klevoric, Nelson, and Winter (1987) 

present survey evidence that firms count the hiring of R&D employees from innovating firms as 

a means of learning about new technologies. Almeida and Kogut (1999) find that skilled 

engineers who hold major semiconductor patents experience high rates of inter-firm mobility.  

They find the scientific references that firms cite in their patent applications reflect the 

employment histories of their scientists, suggesting that ideas in the semiconductor industry are 

spread by the movement of key engineers among firms, especially within a geographical region.  

Articles in the business press suggest high tech firms actively encourage defections among 

competitors’ technological personnel.  Kerstetter (2000) and Hibbard (1998) provide several high 

profile examples of employee raids designed to gain access to competitors’ technologies, 

supporting Kerstetter's claim that Silicon Valley firms live by the philosophy, “If you have 

trouble with the competition, simply raid its talent.”  Recently documented increases in 

scientists’ and engineers’ inter-firm mobility (Bureau of Labor Statistics, 20001) suggest that 

employee misappropriation of technological know-how may be on the rise, especially among 

high-tech firms.  

Trade secret laws and non-compete covenants in employment contracts, which provide 

that a leaving employee will not seek employment with the employer’s competitor or found a 

competing start-up company, do not appear to limit the risk of this kind of misappropriation (see 
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Bongiorno and Marcellino, 1996; Jenero and Schreiber, 1999). Trade secret laws are difficult to 

enforce.  Courts are reluctant to enforce non-compete covenants because of the restrictions they 

place on the worker's ability to secure employment (see Dworkin and Callahan, 1998; Gilson, 

1999; Koh, 1998). 2   Thus, firms and employees cannot easily contract around the 

misappropriation problem. 

The economics literature typically frames the patent as a device to exclude outsiders.  In 

this paper, we emphasize a patent’s role in protecting an innovating firm from insiders.  We 

hypothesize that a firm that risks losing innovations to departing scientists will move quickly to 

patent its scientists’ innovations.  As the likelihood of a quit rises, so should the utility of patent 

protection.  Increases in scientists’ mobility may therefore induce firms to substitute away from 

secrecy toward patenting, leading to an increase in firms’ propensities to patent per R&D dollar 

spent.  As an increase in the potential external return to the acquired knowledge entices them to 

leave innovating firms, scientists become willing to take a salary cut, reducing the wage bill and 

thus the cost of R&D for innovating firms.  This is the main story we investigate in this paper. 

The paper is organized as follows.  Section 2 lays out a formal model of a firm’s R&D 

and patenting decisions in an environment where scientist-employees turn over.  Sections 3 and 4 

respectively describe the data and explain our empirical strategy.  Section 5 describes our results.  

Finally, Section 6 concludes the paper and includes a discussion of the importance of the 

mobility of scientific personnel in explaining observed cross-sectional and intertemporal 

variation in patenting and in explaining variation in patent-R&D ratios by firm size.   

 

2. Model of firm's patenting and R&D decision 

We formalize our ideas along the lines of Pakes and Nitzan (1983), who study how 
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innovating firms contract with their scientific personnel when scientists may leave to set up 

rivals.  We build on their model by allowing a firm to patent its innovations before the scientist 

leaves.  We start with an entrepreneur who wishes to develop an idea into a marketable product.  

The entrepreneur seeks to hire a scientist to develop the idea.  The scientist is the only additional 

input in the development process.  When a scientist is hired, the project’s development, 

production, and marketing take two periods.  In the first period, the scientist develops the idea 

into a viable prototype.  In the second period, the entrepreneur produces and markets the product, 

without the aid of the scientist.  We assume that the product's life on the market ends at the end 

of the second period and that the revenue, ρi (∈R+), is a random variable realized at the 

beginning of the second period with subscript i standing for ‘internal.’  By the end of the first 

period, the scientist possesses knowledge that enables him, if he desires, to market the innovation 

himself.  At the beginning of the second period the entrepreneur and the scientist learn about the 

value of this knowledge to a rival.  We assume that this ‘external’ value is a random variable, ρe 

(∈R), and the joint density for ρe and ρi is f, which is known to the entrepreneur and the scientist 

at the outset.  ρe is the external value of the innovation net of moving costs, which include the 

set-up cost in the event the scientist establishes a start-up, or the search cost of finding a suitable 

rival firm otherwise, and any relocation expenses.  

If the scientist finds the external value of the innovation sufficiently attractive, he sets up 

or joins a rival. The entrepreneur and the rival then proceed to market slightly different but 

highly substitutable products, both with a single period product cycle. The appearance on the 

market of the rival’s product reduces the entrepreneur’s revenue by λρi, where λ ∈ [0,1].  

Alternatively, if the scientist chooses to stay, the entrepreneur markets the product alone.  At the 

beginning of the second period, the entrepreneur decides whether to patent the product, taking 
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into account the effect of patenting on the scientist’s decision to leave.  Should the scientist 

leave, we assume the patent reduces the entrepreneur’s loss from the scientist’s appropriation to 

(1−δ)λρi, δ ∈ [0,1], and the revenues that the rival obtains from the substitutable good by γρi, γ 

∈ [0,1]. δ and γ are parameters that describe how the patent regulates the entrepreneur’s loss and 

the scientist’s gain from his knowledge appropriation.  We denote the patent’s out-of-pocket 

costs and the costs from information disclosure as ν.3  (See Appendix I for a summary of 

notations used in the model.)   

We assume that the scientist like the entrepreneur is risk neutral and therefore maximizes 

his expected income.  The scientist chooses at the beginning of the first period whether to accept 

the entrepreneur’s offer or to work for another firm outside the R&D sector.  To simplify the 

analysis we assume that outside the R&D sector he would acquire no appropriable proprietary 

knowledge but would receive his marginal product, w , in either the first or the second period.4  

The entrepreneur’s offer consists of a guaranteed first period wage, w0, and a second period 

wage, w1, when the scientist remains in the second period.  The entrepreneur specifies the second 

period wage only after ρe and ρi are realized, taking the scientist’s decision in the second period 

as given.  If the scientist accepts the job offer in the first period, at the beginning of the second 

period he chooses among three options based on the realized ρe and ρi.  He may remain with the 

entrepreneur, earning w1 and performing work equal in value to w .  He may set up or join a 

rival, performing work equal in value to w , and, in addition, marketing the entrepreneur’s 

knowledge and receiving its full value, ρe (or ρe−γρi, if the entrepreneur has patented).  Finally, 

he may move to the non-R&D sector and earn w . Table 1 describes the entrepreneur’s profit and 

scientist’s second period wage for each combination of patenting and mobility decisions.  
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Table 1: Payoff to the scientist and profit to the entrepreneur in the second period 

Scientist moves to rival Entrepreneur patents Scientist’s payoff Entrepreneur’s profit 

No  (p=0) w1(p=0) ρi − w1(p=0) + w  No 

Yes (p=1) w1(p=1) ρi − w1(p=1) + w  − ν 

No (p=0) ρe + w  ρi − λρi Yes 

Yes (p=1) ρe − γρi + w  ρi − (1-δ)λρi − ν 

Note:  The scientist either stays with the entrepreneur or moves to a rival. As we explain below, he never moves to 
the non-R&D sector. 

 
The entrepreneur’s objective is to maximize expected profits from the project.  The 

expected profit from hiring a scientist is,  

(1) E(π) = − w0 + ( )[ ] ( ) ie
1pS,

ie1i ρρρ,ρw1pwρ ddf∫∫
=

+=− + ( )[ ] ( )∫∫
=

−−
1pM,

ieieii ρρρ,ρλρδ1ρ ddf  

           − ( )∫∫
=1p

ieie ρρρ,ρ ddvf + ( )[ ] ( ) ie
0pS,

ie1i ρρρ,ρw0pwρ ddf∫∫
=

+=− + [ ] ( )∫∫
=

−
0pM,

ieieii ρρρ,ρλρρ ddf  

            + ( )∫∫
N

ddf ieiei ρρρ,ρρ , 

where the indicator p is 1 if the entrepreneur patents and zero otherwise, S is the set of ρe and ρi 

such that the scientist stays, and M is the set of ρe and ρi such that the scientist moves to a rival.  

We define N as the remaining set of ρe and ρi such that the scientist moves to the non-R&D 

sector.  Moving to the non-R&D sector has no effect on the entrepreneur’s expected profit. Note 

we are ignoring discounting for simplicity.  Note also that the wage w1 in the second period 

depends on the value of ρe and ρi and the entrepreneur’s patenting decision.  The entrepreneur 

hires the scientist if the expected profit is positive.  The scientist accepts the contract in the first 

period if the expected earnings in two periods exceed 2 w :   

(2)  2 w  ≤ w0 + ( ) ( ) ie
1pS,

ie1 ρρρ,ρ1pw ddf∫∫
=

= + ( ) ( )∫∫
=

+
1pM,

ieieie ρρρ,ρwγρ-ρ ddf  
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         + ( ) ( ) ie
0pS,

ie1 ρρρ,ρ0pw ddf∫∫
=

= + ( ) ( )∫∫
=

+
0pM,

ieiee ρρρ,ρwρ ddf + ( )∫∫
N

ddf ieie ρρρ,ρw . 

The entrepreneur’s problem is to choose p, w0, and w1 to maximize (1) subject to the scientist’s 

participation constraint, (2).  The following derivation of the optimal patent and wage policy 

assumes a time-consistent equilibrium in which the entrepreneur and the scientist take the other 

party’s decision in the second period as given.   

In this framework, the scientist correctly anticipates that if he accepts the compensation 

package offer of w0 and w1, when the second period arrives, the entrepreneur will offer the wage 

that maximizes her second period net earnings.  The entrepreneur sets w0 so that the scientist’s 

expected value of the contract equals his reservation earnings in two periods, 2 w .  Thus, to 

derive the firm’s patent and wage policy, we first derive for each realized ρe and ρi the w1 and p 

that maximize the entrepreneur’s second period net revenue.  We then substitute the optimal 

second period policy into (2) with equality to form the scientist’s expected second period payoff 

and solve for w0.  In this derivation, we assume that the entrepreneur’s gain from patenting 

exceeds the rival’s loss, i.e. δλρi > γρi.  This assumption is not crucial to the model and our main 

implications still hold under the alternative assumption.5   

In our model, any exogenous change in the joint distribution of ρe and ρi can affect the 

entrepreneur’s and the scientist’s decisions.  To simplify the analysis, assume that the random 

variable ρe is equal to eρ + εe and that ρi is equal to iρ  + εi, where εe and εi (εe∈R, εi>− iρ ) are 

mean zero random variables with joint density g, and eρ  and iρ  are the constant means of ρe and 

ρi, respectively.   

For any draw of ρe and ρi at the beginning of the second period, one can easily show that 

from the scientist's perspective moving to the non-R&D sector cannot pay more than either 
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staying or moving to a rival pays.  Thus, the only issue to resolve is whether the scientist stays or 

moves to a rival firm.  The entrepreneur’s wage and patent policies and the scientist's mobility 

decision are depicted in Figure 1 on the εi-εe space.  The derivation of the figure is detailed in 

Appendix II.  Intuitively, Figure 1 indicates that a scientist is more likely to move the higher is 

the value of εe, given εi.  Also, a scientist is more likely to stay, the higher is the value of εi, 

given εe.  Regardless of the value of εi, when εe is low enough the entrepreneur has no incentive 

to patent since the threat of the scientist leaving is minimal.  Regardless of the value of εe, when 

εi is low enough the entrepreneur will not patent because the potential loss without patent 

protection is small. 

Substituting the optimal second period wage, patent, and mobility choices, into the 

participation constraint (2) yields w0, the optimal wage in the first period. w0 equates the 

scientist’s expected payoff from accepting the entrepreneur’s offer and his reservation earnings.6  

Substituting the optimal wage for w0 in (1) gives us the following expression for the expected 

profit:  

(1′) E(π) =  −w  + ( )∫∫
S

ddf ieiei ρρρ,ρρ  + ( ) ( )∫∫ −+
M

ieieiei ρρρ,ρλρρρ ddf  

    + ( ) ( )∫∫
=1pM,

ieieii ρρρ,ργρ-δλρ ddf  − ( )∫∫
=1p

ieie ρρρ,ρ ddvf  

This equation shows the cost and benefit of patenting.  The last term on the right hand side of 

(1′) reflects the cost of patenting, which the entrepreneur bears both when the scientist stays and 

moves to a rival.  The fourth term shows that patenting benefits the entrepreneur only when the 

scientist moves to a rival, and then, only to the extent that δλρi−γρi>0.  The benefit from 

patenting is less than δλρi because any reduction in the scientist’s expected gain from moving is 
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anticipated by the scientist in the first period, and therefore must be added to the scientist’s first 

period wage.  The expected profit does not show a benefit for patenting when the scientist stays 

because the patent’s benefit to the entrepreneurthe reduction in w1 by γρirepresents an 

equivalent loss to the scientist, and thus must be added to the scientist’s first period wage offer.  

Thus, patenting in the event that the scientist stays in the second period lowers her total profits, 

owing to the patenting cost ν.   

 The following proposition describes the effect of a change in the mobility of scientists in 

our model. 

 
Proposition 1.  An increase in the mean of ρe, eρ , increases the probability of a scientist moving 

to a rival.  An increase in eρ  also raises the entrepreneur's propensity to patent an innovation. 

 
Figure 2 shows the effect of an increase in eρ  on the boundaries that divide εi-εe space 

into regions of patenting/no patenting and moving/staying.   The dashed boundaries in Figure 2 

result from an increase in eρ .  A scientist’s likelihood of moving rises with the return to moving, 

and an increase in eρ  means that the scientist will depart for lower draws of ε than before, shown 

as the expanding area of mobility in Figure 2 (Regions R1, R2, and R3).  The increase in the 

return to moving raises the likelihood that the entrepreneur patents the innovation and Regions 

R2 and R4 in Figure 2 illustrate her response.  Region R2 reflects an increase in patenting as she 

attempts to reduce the revenue loss from the departing scientist passing on his knowledge to 

rivals.  The increased patenting represented by Region R4 arises even though the entrepreneur 

knows the scientist will stay.  The entrepreneur patents more often to lower the scientist’s second 

period reservation wage, which has risen with eρ .  
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It is not improbable that a shock that raises eρ  affects iρ  simultaneously in the same 

direction.  For example, a demand shock that increases the value of an innovation to the 

entrepreneur may also increase its value to the rival.  Depending on the relative magnitude of a 

rise in eρ  to that in iρ , we can derive three cases.  First, if the value ( eρ −λ iρ ) rises as both 

parameters eρ  and iρ  are increased, we can show that the areas for mobility and for patenting in 

Figure 1 expand and hence the probabilities for both will be raised.  Second, if ( eρ −λ iρ ) falls 

but [ eρ −λ(1−δ) iρ ] rises, only the probability of patenting is raised unambiguously.  Finally, 

suppose the shock raises the value of an innovation much more in the current firm than outside 

of the firm and so both ( eρ −λ iρ ) and [ eρ −λ(1−δ) iρ ] fall.  In this case, we can show that the 

probability that the scientist departs for a rival declines unambiguously while the change in the 

probability that the firm patents is ambiguous.   

 

Proposition 2.  If eρ  and iρ  rise simultaneously either by the same amount or by the same 

proportion, both the probability of a scientist moving to a rival and the entrepreneur's propensity 

to patent an innovation rise. 

 
Equivalent increases in both parameters are a special case of the first case in the 

preceding paragraph since λ < 1.  Figure 3 illustrates the case described in Proposition 2. 

One might imagine that because ν includes the cost of information disclosure, ν rises 

with the value of the project to the firm, ρi.  In the case where ν is proportional to ρi, one can 

easily confirm the finding in proposition 2: simultaneous and equivalent increases in eρ  and iρ  

raise the probability of mobility and the entrepreneur's propensity to patent.  This result also 
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holds when ν = v +ψ, where ψ is a random variable and v  is proportional to iρ .7 

The expected R&D expenditures for a research project, excluding the patenting cost, are 

as follows,  

(3) R&D =  w0 + ( ) ( )∫∫
=

=
1pS,

ieie1 εεε,ε1pw ddg + ( ) ( )∫∫
=

=
0pS,

ieie1 εεε,ε0pw ddg  

                     =  2 w  − ( ) ( ) ( ) ( )∫∫∫∫
==

++ρ−+ρ+ρ
0p,M

ieieee
1p,M

ieieiiee εεε,εwεεεε,εwγε-γ-ε ddgddg , 

where the second equality comes from equation (2).  The effect of an increase in eρ  on the R&D 

expenditures is analyzed in Proposition 3.8 

 

Proposition 3.  An increase in eρ  reduces the expected R&D expenditures of an innovation. 

Proof. Differentiating R&D in (3) with respect to eρ  yields 

 eρD)&R( ∂∂  = ( ) ( )∫ ∫ 







+γ+

∂
∂

−
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where eii
*
e3 ρρλλεε −+= , ( ) ν++λ−ε=ε ii

*
e3

*
e1 ρεδ , and ( ) νγ*

e1
*
e2 −ρ+ε+ε=ε ii .  The bracket 

term in the first term on the right-hand side is ∫
∞

ε*
e1

eie ε)ε,ε(g d  

+ ( )[ ] ),(gwνρ)δλ(λ *
e1i ii εε+++εγ+− , which is positive.  In the same way, we can show that 

other terms in the brackets are positive. ■ 
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A rightward shift in the distribution of ρe, and therefore an increase in the mobility of a 

scientist, implies that the entrepreneur will be better able to exploit the gains to leaving, reducing 

the wage she has to pay the scientist.  In other words, the scientist is willing to accept a lower 

wage when the prospects from leaving improve, which reduces the expected R&D expenditures.9  

For the effect of simultaneous increases in eρ  and iρ  on R&D expenditures, we have the 

following proposition. 

 

Proposition 4.  Simultaneously adding equivalent amounts to eρ  and iρ  reduces the expected 

R&D expenditures of an innovation if γ is small enough relative to δλ.  (The proof can be 

provided upon request.) 

 
 The effect of an increase in eρ  on the profitability of a research project is ambiguous, 

however.  For a given value of εi where ν/(δλ)− iρ ≤ εi < ν/γ− iρ , differentiating the profit with 

respect to eρ  yields 

 ( ) eπE ρ∂∂  = ∫
∞

ε*
e1

eie ε)ε,ε(g d  − ( ) )ε,(gε i
*
e1i ερ+γ i . 

The first term on the right hand side of the equation is positive, reflecting the reduction in the 

scientist's wage following the improvement in his return from moving.10  This effect is opposed 

by the increase in the entrepreneur's patenting expenses that follow from the increased mobility 

caused by the rise in eρ .  This effect is shown in the second term on the right hand side.  

γ(εi+ iρ ) is the profit reduction when the entrepreneur switches from a no-patenting to a 

patenting policy and the scientist goes from staying to moving.  ),(g *
e3 iεε  is the probability of 
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the policy switch (see Region R2 in Figure 2).  In the case where εi ≥ ν/γ− iρ , these opposing 

effects remain and thus the effect of the eρ  on profitability is again ambiguous.  If εi<ν/(δλ)− iρ , 

we can show that an increase in eρ  unambiguously raises the expected profit for the entrepreneur 

since the wage paid to a scientist is made lower without any additional increase in patenting cost.   

 If the entrepreneur’s commitment to a labor contract can be enforced without cost in the 

second period (e.g., through reputation), the equilibrium wage and patent policy will be different 

from those in the equilibrium described in this section since the entrepreneur and the scientist 

can achieve a Pareto improvement by avoiding unnecessary patenting and its attendant costs 

when the scientist stays.  One can show that in the commitment equilibrium, the firm patents less 

frequently, and that propositions 1 and 2 hold (the proof can be provided upon request). 

 

3. Data description 

We test our prediction on the relationship between labor mobility and the patent propensity 

against firm-level panel data. The dependent variable is the firm’s patent count, and the explanatory 

variables are the firm’s R&D expenditures and a measure of the labor mobility of research 

scientists, among others.  

Our labor mobility data for scientists and engineers are taken from the Annual 

Demographic Files (March Supplements) of the Current Population Survey (CPS), conducted by 

the U.S. Census Bureau.  Our labor mobility is measured by the turnover experience of all 

scientists and engineers,11 based on whether a scientist changed employers during the previous 

year of the survey.  The main advantages of using CPS March data are that the mobility can be 

defined consistently in every year since 1975, and that the CPS data represent a national 
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population without the problem of attrition, in contrast to other panel data sources like the PSID. 

(See Stewart, 1998, for more details on the CPS data.)  The March CPS generates on average 

records on 2,600 scientists and engineers annually between 1975 and 1997.  

Our basic measure of job mobility is the share of scientists and engineers in each 

industry and year who changed their employers at least once within the previous year. 12  We 

call this measure the employer change rate (ECR).  We compute separate measures by industry 

because we presume that the likelihood of a scientist leaving is mainly imposed on a firm by 

conditions in the firm’s industry, and that industry-specific capital means scientists are 

significantly more likely to stay in the same industry when they change firms.13  Regardless of 

how broadly we define the labor market in constructing our mobility measure, we may face a 

problem of reverse causality, that is, from patents to mobility.  To minimize the problem, we 

account for possible endogeneity in our mobility measure (see section 5).   

We compute a second measure of job mobility for scientists and engineers by 

geographical region and year (GEO).  This second measure recognizes that for many scientists 

and engineers movement occurs within geographically defined markets, i.e., they may seek 

employment opportunities only within the region that they live.  In this case, the job turnover 

facing a firm will be strongly related to labor mobility within its geographical area.14   

Information on the number of patents, R&D expenditures, and other characteristics of 

each firm by year is taken from the data set recently created by researchers at the National 

Bureau of Economic Research and Case Western Reserve University.  They created this data set 

by matching the patents in the U.S. Patent and Trademark Office (USPTO) to their assignees in 

the Standard and Poor’s Compustat database.  The patent data at the USPTO contain a wealth of 

information on each patent including the name of the assignee, a firm in about 70 percent of 
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cases.  The Compustat database contains extensive data (including R&D expenditures) on all 

publicly traded firms.  To obtain the correct matching of patent to firm, NBER-Case Western 

Reserve University researchers undertook an extensive effort to link subsidiaries listed in the 

USPTO database to their parent companies in the manufacturing sector.  They then matched the 

patents to the parent firms in the Compustat database for the period between 1964 and 1992.15  

While the matching would not be perfectly representative because about 30 percent of patent 

grantees are non-firm organizations and individuals, nevertheless, the patents captured in this 

process would comprise most of the patents originating from firms because most large patenting 

organizations are both in the manufacturing sector and publicly traded. 

The USPTO-Compustat data set contains about 4,800 firms in an unbalanced panel, 

extending from 1957 to 1995.  The average number of firms in the data each year is about 1,700, 

ranging from a low of 691 in 1961 to a high of 2,054 in 1992.  The USPTO granted 3,585 patents 

to the firms in the data set who applied for patent grants in 1961.  The number of patents granted 

reached 16,553 in 1992.  The data indicate a decline in the number of patents granted after 1992 

because of the time lag between application and grant.  Patent applications in the last two years 

of the data set were still under review at the USPTO in 1995.  For this reason, we use only firm 

data prior to 1993.  For reasons we explain below, we use only the years following 1975.   

Table 2 reports summary statistics of mobility measures and other variables used in our 

analysis.  Panel 1 of Table 2 shows the statistics of the sample before we exclude firms with no 

R&D expenditures.  Panel 2 shows the characteristics of the subsample used in the estimation of 

the determinants of patenting.  Because the subsample contains only those firm-years for which 

positive levels of R&D expenditures are reported, it is much smaller.  Note that the firms that 

most often report positive levels of R&D are both large (by the sales measure) and employ high 
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levels of plants and equipment relative to labor.   

 

4. Empirical strategy 

As our starting point, we consider the effect of the mobility of scientists on the firm’s 

patenting decision following the Poisson-based econometric specification of Hausman, Hall, and 

Griliches (1984), and Hall and Ziedonis (2001).  We favor a Poisson-based specification because 

the number of patents granted to a firm in a particular year is a count variable, often taking the 

value of zero or one.  We assume that the expected number of patents granted to a firm, 

conditional on its characteristics, is 

 )exp(),|( ζββαλ ft
R

ftftfftftftft MRXMXPE +++==  

where Pft is the number of patents granted to firm f that were applied for in year t, Xft is a 1xK 

vector of firm f’s characteristics in year t, ftR  is the logarithm of firm f’s year t R&D 

expenditures deflated by the GNP deflator, and Mft measures the level of job mobility among 

scientists and engineers working for firm f in period t.  Properly measured, the variation in Mft 

reflects variation in exogenous determinants of mobility, such as changes in the external net 

value of innovation ρe in our model.  We include R&D expenditures because we wish to test the 

theoretical result that mobility raises the firm’s propensity to patent holding the R&D constant. 

Following Hall and Ziedonis, Xft includes the logarithms of sales (LnSALES), as a measure of 

the size of the firm, to account for scale economies in producing patents, and the capital-labor 

ratio (LnK/L), measured as the deflated plant and equipment over the number of employees.16 

We include the capital labor ratio because given R&D expenditures a highly capitalized firm 

may have stronger incentives to patent than less capitalized firms.  A patent infringement suit 

that leads to court injunction and production stoppage will be more destructive for a firm that has 
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made a large capital investment in a state-of-the-art physical plant.  Such vulnerability may 

encourage the firm to develop a diverse portfolio of patents that it can use as a bargaining chip to 

ward off infringement suits (Cohen et al., 2000; Parr and Sullivan, 1996).  We assume that the 

firm specific constant term, αf, is random and that exp(αf) is distributed gamma.  We obtain 

estimates of β, βR, and ζ, using maximum likelihood estimation techniques for the Poisson-

gamma mixture. 

 

5. Empirical results 

 Table 3 shows our estimation results of the determinants of the firm’s patenting decision, 

employing the random-effects Poisson model as described in section 4.  The dependent variable 

is the firm’s patent applications in year t that were eventually granted. In all panels in the table, 

the explanatory variables include the logarithm of our mobility measure (LnECR or LnGEO)17, 

of sales (LnSALES), of the capital-labor ratio (LnK/L), and of R&D expenditures (LnR&D), all 

measured in year t.18 Note that in relating our mobility measure with the contemporaneous 

patenting count, we are assuming that the threat of a scientists’ departure affects the firm’s 

patenting decision in the same period.  We also include as a regressor the logarithm of the mean 

age of scientists and engineers in each industry by year (LnAGE) because of the link between 

age and turnover (see, for example, Hall, 1982).  Inter-firm mobility is much higher among the 

young, who also have fewer skills and are less productive.  By adding age, we partly control for 

the changing distribution of skills in the labor force that may accompany changes in the mobility, 

and thus we more precisely isolate the effect of mobility on patents.  Note that in the Poisson 

specification the estimated coefficients for the log-transformed regressors have an elasticity 

interpretation.     
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In Panel 1, we find that both R&D expenditures and sales are strongly positively related 

to patenting.  This finding is repeated in the other regressions in Table 3.  We find in this table 

that the estimated effect of LnK/L on patenting is not generally consistent with the theoretical 

prediction and the effect’s estimated sign varies across specifications.  The estimated effect of 

LnAGE suggests that more experienced researchers are more productive in generating patents. 

Holding constant the mean age of scientists in the relevant year and industry and the firm’s R&D 

expenditures, the estimated effect of mobility on patenting is positive and significant.  This is 

consistent with our story: the increased likelihood of a scientist departing the firm increases the 

employer's incentive to patent an innovation.   

The key variables in our estimation may be time trended, in which case the estimated 

effect of LnECR on patenting could be spurious.  To test the sensitivity of our result to a time 

trend effect, we introduce the time trend, T, as an additional right-hand side variable.  The results 

reported in Panel 2 show that the effect of LnECR is still positive and significant with T 

included.  Panel 3 adds to the base specification the square of the log of R&D expenditures to 

test whether elasticity of patenting with respect to R&D changes with the size of the R&D 

operation.  The coefficient corresponding to (LnR&D)2 is positive but insignificant.  

Panels 4 and 5 respectively show the results from re-estimating the Panels 1 and 2 

specifications using the geographical measure for mobility (GEO).19   The age variable (AGE) 

used in this table is defined for the firm’s region and year. We find the effect of mobility on 

patenting is significantly positive and the magnitude of the effect is greater than that found using 

ECR.20  The estimates of the coefficients corresponding to LnSALES and LnR&D in Panels 4 

and 5 are similar to their counterparts in Panels 1 and 2. 

Note that our theoretical analysis implies a relationship between ρe and patenting, not 
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between mobility and patenting.  We use mobility as a proxy for ρe because ρe cannot directly be 

observed.  We argue that because mobility is a monotonic function of ρe, say M(ρe), a positive 

relationship found between mobility and patenting implies a positive relationship between ρe and 

patenting.  We recognize that this approach is loose but it yields a simple way to estimate an 

approximate size and direction of the effect of ρe on patenting.  If we take our model seriously, 

however, the appropriate regressor is not M, but the inverse function of M whose functional form 

is unknown.  Olley and Pakes (2000) suggest that in situations like this the function can be 

approximated non-parametrically, say by a polynomial expansion.  

Panel 6 shows the results of a Poisson regression, with a sixth order polynomial 

expansion of ECR used in place of LnECR. 21   Only the estimates of the coefficients 

corresponding to the first three terms are reported; the z scores for the coefficient estimates 

corresponding to the higher order terms were quite small.  In this specification, the test of our 

model is whether any coefficient estimates corresponding to the polynomial terms are 

significant.  We take the fact that the coefficient estimates for the first, second, and third order 

terms are significant as evidence that ρe affects patenting. 

In addition to the random effects specifications, we estimated fixed-effects Poisson 

models (results not shown), which show qualitatively and quantitatively similar impacts of labor 

mobility on patenting.  We also tested the sensitivity of our estimates to the distributional 

assumption for the random effect.  The estimated effect of mobility was as pronounced whether 

we assumed its distribution normal or gamma. 

Table 4 reports the results of additional sensitivity analyses of mobility’s effect on 

patenting propensity.  To control for the potential endogeneity of R&D expenditures and our 

measures of mobility, we use generalized method of moments (GMM) to estimate the patent-
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mobility relationship with the mobility measures and R&D treated as endogenous variables.22  

Recall that the model says that while changes in mobility may lead firms to patent more often, by 

patenting more often a firm may induce some of its scientists to move.  Our model thus predicts 

that higher patenting leads to more mobility.  This direction of causality should be more 

important the more narrowly we define the firm’s labor market.  In the limiting case, where we 

define the firm’s labor market as the pool of worker’s working at the firm, the endogeneity of the 

mobility estimate is obvious.  Our model also says that firms jointly determine whether to patent 

and how much to spend on R&D.  

We begin with the assumption that the random variable Pft is related to the explanatory 

variables according to  
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where µft=exp(Xftβ+RftβR+ Mftζ), αf is now the firm-specific fixed effect, qf =exp(αf), and uft is 

the error term.  Rft and Mft are assumed endogenous, that is, E(Rft uft) ≠ 0 and E(Mft uft) ≠ 0.  We 

use Wooldridge’s quasi-differencing transformation to remove the fixed effects (see Wooldridge, 

1991, 1997 and Windmeijer, 2000), which leads to the following moment conditions: 
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where s ≥ 2 for Zft= Rft, Mft and s ≥ 0 when Zft includes Xft and additional instruments (described 

below).   

In our empirical work, the instruments and lags we use produce more moment conditions 

than the number of parameters we wish to estimate.  Our estimates of the parameters minimize a 

quadratic function formed by the weighted sample moment conditions corresponding to (4) and 
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the data.  The GMM model adds generality by allowing the regressor ftM and ftR  to be 

correlated with the contemporaneous and past realizations of the residual.  In this way, we allow 

patenting to “cause” mobility and R&D expenditure decisions.23  

The specifications in Panels 1 and 2 of Table 4 are identical to the specifications in 

Panels 1 and 4 of Table 3, respectively.  We use lagged mobility and the logarithms of the 

fractions of scientists who are white (LnWHITE) and who are male (LnMALE) as instruments 

for mobility in all panels of the table.  We use the latter two variables as instruments because of 

the well-known finding in the empirical literature that non-whites and women have higher rates 

of turnover (see Mincer and Jovanovic, 1981).24  We instrument R&D expenditures with lagged 

R&D.25   

Like the Poisson estimation, the GMM estimation generates statistically significant and 

positive estimates of the effect of labor mobility on patenting propensity.  Interestingly, the 

coefficient estimates on both measures of mobility estimated by the GMM are quantitatively 

smaller than those from the Poisson estimation.  This finding is consistent with our theoretical 

story that reverses the causality: by patenting more often the firm induces some of its scientists to 

move.  By controlling for this direction of causality, the GMM estimation shows a smaller effect 

of the mobility measure on patenting propensity. 

The mobility of scientific personnel within an R&D-doing firm’s geographical area 

shows a pronounced, statistically significant, positive effect on the firm’s patents.  This finding 

has an implication for the literature on spillovers.  Jaffe, Trajtenberg, and Henderson (1993) 

report that in their patent applications, firms often cite the work of external scientists, but that 

these scientists tend to work locally.  Their findings suggest that geographical proximity is 

necessary for a technological spillover to take place.  Our finding that geographical mobility has 
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a strong effect on patenting propensity suggests that the movement of researchers among firms 

(and between academia and firms) may be an important mechanism for the transmission of these 

spillovers. 

Panel 3 includes calendar year dummies as additional regressors instead of a time trend as 

in Panel 2 of Table 3.  Note that in this specification the estimated coefficient associated with 

LnECR captures only cross-industry variation in LnECR.  The coefficient estimate associated 

with LnECR is positive and significant.  When we include as regressors industry dummies in 

Panel 4 so that we have only within-industry variation in LnECR, the coefficient estimate 

associated with LnECR is significant and slightly greater than the coefficient estimate associated 

with calendar year dummies.  This result indicates that variation in patenting propensity is not 

only driven by cross-industry variation but also by time series variation in our ECR mobility 

measure.  

In Panels 5 and 6, we repeat the same specifications in Panels 3 and 4 with LnGEO in 

place of LnECR.  Unlike ECR, variations in patenting can be mostly accounted for by within-

region, time-series variation of our geographical mobility measure GEO, but not by its cross-

region variation.  One explanation for this is that the number of regions is significantly fewer 

than the number of industries in our data.   

Past researchers (e.g., Kortum and Lerner, Hall and Ziedonis) have isolated for study 

industries in the so-called high technology sector.  Panels 7-10 show the results from splitting the 

sample into a high-tech and non high-tech subsamples.  Following Chandler (Business History 

Review, Summer 1994), we define high-tech industries to include computers and computing 

equipment, electrical machinery, electronic instruments and communication equipment, 

transportation equipment, optical and medical instruments, and pharmaceuticals.  Panels 7 and 8 
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include LnECR while Panels 9 and 10 include LnGEO.  The estimates of the elasticity of 

patenting with respect to our mobility measures are in general statistically significant for both 

regressions.  However, the estimate is about five times larger for the high-tech industry sample in 

case of LnECR and about two times larger in case of LnGEO.  

 

6. Concluding remarks 

In the first half of the paper, we developed a model for understanding the effect of the 

threat of a scientist’s technology transfer to a rival on his employer’s R&D and patenting 

decisions.  In our model, while working in the employer’s laboratory, scientists develop technical 

knowledge that in later periods they can exploit at a rival firm.  Because this technological 

knowledge has value with other employers, it is general human capital for which the scientist is 

willing to pay.   Like Pakes and Nitzan, we show that when the return to leaving rises, the wages 

a firm pays for the scientist’s services drop, and so do the R&D expenditures. We also show that 

when patenting reduces the firm’s loss when the scientist leaves or his wage when he stays by 

more than the patenting cost, the firm patents.  

Our regression results show that a firm's patenting propensity and mobility rates for 

scientists and engineers are positively correlated, consistent with our hypothesis that firms use 

patenting to minimize the harm caused by departing scientists.  Our finding that mobility of 

scientists and engineers within geographical regions has a pronounced effect on patenting is 

consistent with evidence elsewhere of localized technological spillover effects.  Our findings are 

robust to various sensitivity analyses we conduct, including models that take into account the 

potential endogeneity of our labor mobility measures.   

Our results are not only statistically significant, but economically significant as well.  The 
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average number of patents per real R&D dollar in our data varies by industry and region.  The 

mean patent-R&D ratiowhere R&D is measured in millions of 1982-84 dollarsranges from 

0.62 to 3.13 across the 15 industries we study, and from 1.29 to 4.54 across the 9 geographical 

regions.  Our empirical estimates suggest that a reduction in the industry-specific measure of 

mobility (ECR) by one half would lower a typical firm's patent-R&D ratio by 2 percent; a 

reduction in the geographic-specific measure of mobility (GEO) by one half would lower this 

ratio by 9 percent.26  Moreover, our estimation results can explain some of the increase in the 

economy-wide patent-R&D ratio since the mid-1980s (see Kortum and Lerner, 1998).  Our 

mobility measure increases from 0.125 in 1984 to 0.156 in 1997, a 25 percent increase.27  This 

change accounts for 0.7 to 3 points (or 4 to 17 percent) of the 18 percent increase in the patent-

R&D ratio over the period 1984-97.28  

Our results may help explain the substantial variation that we observe in patent-R&D 

ratios across firms of different size.  Griliches (1990) attributes the higher patent-R&D ratios in 

small firms to selection bias and the differential role of formal R&D for small and large firms.  

Our data show researchers working in firms whose employment levels range from 0 to 499, from 

500 to 999, and above 1000 have employer change rates of 0.20, 0.16, and 0.11, respectively.29  

This is consistent with the finding in the labor literature that the job turnover rate is significantly 

higher among workers in small firms (see Oi, 1983).  Our data show that the patent-R&D ratio of 

the smallest group divided by the ratio of the largest group is 0.433/0.371 = 1.17.  Of this 17 

percent difference between the patent-R&D ratios of small versus large firms, our estimates can 

explain 2 to 8 points, or 12 to 47 percent.   

While the empirical results generally support the implications of our theoretical model, 

we have left a number of issues unaddressed.  First, our paper ignores the effect of a departing 



 25

scientist on the receiving firm’s or rival’s patenting decision. Suppose the incoming scientist 

brought to his new employer an idea that could be used to develop a “spillover” good.  As the 

scientist is brought on board, or shortly afterwards, the new employer might patent some part of 

the technology underlying the spillover good.  However, at the same time, the firm’s R&D 

expenditure would rise, as the firm must compensate the scientist.  Depending on the size of the 

compensation and what fraction of it appears in the firm’s R&D budget, the firm’s patent-R&D 

ratio may rise or fall upon hiring the scientist.   

Second, we have not addressed a number of issues behind the increase in mobility.  For 

instance, we have not dealt with the effect of labor mobility on the organization of R&D 

activities in firms.  Nor have we investigated more fundamental forces behind the labor mobility 

change of scientists such as changes in R&D spillovers and other labor market factors.  We leave 

these issues to future work. 
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Figure 1 

Patent Decision and Mobility 
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Figure 2 

Effect of eρ  on Mobility and Patenting 
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Figure 3 

Effect of simultaneous and equivalent increases in eρ  and iρ  
on Mobility and Patenting  
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Table 2  Sample Statistics 
 

 (1) (2) 
 Full Sample (31503 obs) R&D Sample (21030 obs) 

Variables Mean Std. Dev. 10th 
percentile 

90th 
percentile 

Mean Std. Dev. 10th 
percentile 

90th 
percentile 

Patents 7.89 40.41 0 10 11.50 48.98 0 20 

R&D (million $ 1982-84) 19.08 122.91 0 22.26 28.58 149.53 0.17 41.04 

ECR 0.12 0.04 0.07 0.18 0.12 0.04 0.06 0.17 

GEO 0.13 0.02 0.10 0.16 0.13 0.02 0.10 0.16 

SALES (million $ 1982-84) 863.1 4099.7 6.44 1560.6 1034.6 4705.7 5.72 1984.9 

K/L 2006.7 47546.6 0.83 795.0 2645.2 58034.2 0.69 937.9 

AGE_ECR 38.32 1.81 35.89 40.47 38.28 1.81 35.88 40.47 

AGE_GEO 37.75 0.77 36.97 38.61 37.75 0.78 36.81 38.56 

MALE 0.83 0.10 0.69 0.95 0.84 0.10 0.70 0.95 

WHITE 0.92 0.04 0.87 0.97 0.92 0.04 0.86 0.97 

Notes:   (1) R&D sample contains only firms that report positive R&D expenditures 
(2) ECR = share of scientists and engineers who changed their employers at least once within the one-year period, by industry and year 

 (3) GEO = share of scientists and engineers who changed their employers at least once within the one-year period, by location and year 
 (4) K/L = Plants and equipments (mil. 1982-84$)/employment (1000s) 
 (5) AGE_ECR (AGE_GEO) = average age of scientists and engineers by industry and year (by location and year) 
 (6) MALE (WHITE) = fractions of scientists and engineers who are male (white) 

  
 
 



  

Table 3  Patenting Regressions 
 

Dependent Variable: Patents                     Random Effects Poisson Model 
 (1) (2) (3) (4) (5) (6) 

 Coef. z Coef. z Coef. z Coef. z Coef. z Coef. z 

             
LnECR 0.0287 5.23 0.0255 4.63 0.0257 4.66       

LnGEO       0.1303 7.03 0.0596 3.11   

LnSALES 0.4128 43.43 0.3971 41.04 0.3962 40.93 0.3469 28.71 0.3649 30.08 0.3917 40.38 

LnK/L -0.0077 -7.16 -0.0034 -2.98 -0.0036 -3.05 0.0334 16.18 0.0381 18.22 -0.0037 -3.16 

LnR&D 0.3090 38.53 0.3474 38.15 0.3320 25.43 0.4041 38.15 0.3396 29.53 0.3492 38.29 

(LnR&D)2     0.0022 1.64       

LnAGE 0.9580 17.72 1.0217 8.74 1.0236 18.77 3.2061 17.19 2.2144 11.15 1.0026 18.15 

T   -0.0053 -8.92 -0.0057 -8.93   0.0124 14.40 -0.0040 -6.67 

ECR           90.0545 6.34 

ECR2           -2377.06 -6.80 

ECR3           30405.25 7.14 

Constant -4.9248 -24.12 -5.1075 24.91 -5.1023 -24.87 -12.8184 -19.25 -9.5180 -13.54 -6.4013 -20.97 

Observations 

Log Like. 

Wald χ2 

p value 

21030 (2740 firms) 

-44599 

11837.5 

0.00 

21030 (2740 firms)

-44423  

12217.0 

0.00 

21030 (2740 firms)

-44422 

12234.6 

0.00 

14385 (1894 firms)

-29286 

9295.3 

0.00 

14385 (1894 firms) 

-29182 

9607.2 

0.00 

21030 (2740 firms)

-44300 

12474.8 

0.00 

Note:  The z columns report the ratios of the coefficient to its standard error.  The p value reported is of the test that the population coefficients are jointly zero.  The 
random effects follow a gamma distribution.  The last row reports a Wald chi-square statistic for testing the specification in the column.  Column 6 reports the results from 
of an estimation that contains a sixth order polynomial expansion of ECR.  The coefficient estimates for fourth order terms and higher are omitted from the table due to 
space considerations. 



  

Table 4  Patent Regressions: Sensitivity Analyses 
 

Dependent Variable: Patents 
 (1) (2) (3) (4) (5) (6) 

 GMM GMM Poisson  

w/ year dummies 

Poisson  

w/ industry 
dummies 

Poisson  

w/ year dummies 

Poisson  

w/ industry 
dummies 

 Coef. z Coef. z Coef. z Coef. z Coef. z Coef. z 

             
LnECR 0.0081 6.34   0.0256 4.36 0.0292 5.31     

LnGEO   0.0471 4.17     0.0157 0.47 0.1264 6.82 

LnSALES 0.2810 26.95 0.1746 19.07 0.3420 34.37 0.4324 43.98 0.3198 25.92 0.3662 29.23 

LnK/L 0.0025 1.29 0.0407 10.34 0.0334 21.34 -0.0076 -7.13 0.0382 18.29 0.0337 16.32 

LnR&D 0.1066 16.82 0.1629 18.39 0.3630 39.47 0.3001 36.86 0.3713 31.92 0.3975 36.91 

LnAGE 0.2239 4.21 1.0844 9.71 0.2886 4.90 0.9534 17.62 0.6484 2.45 3.1653 16.96 

             

Observations 
Sargan  χ2 
d.f. 
Log Like. 
Wald χ2 
p value 

19368 (1982 firms) 
495.25 

480 
 
 

0.306 

7747 (904 firms) 
311.02 

315 
 
 

0.553 

21030 (2740 firms) 
 
 

-43394 
14562.9 

0.00 

21030 (2740 firms) 
 
 

-44374 
12492.5 

0.00 

14385 (1894 firms) 
 
 

-29008 
10101.1 

0.00 

14385 (1894 firms)
 
 

-29223 
9522.1 
0.00 

Note:  The z columns report the ratios of the coefficient to its standard error. The p values given in columns 1 and 2 are for the test of the null hypothesis that the 
moment conditions hold for all instruments. The p values in columns 3-6 are of the test that the population coefficients are jointly zero. Columns 1 and 2 are the results 
of the Generalized Method of Moments while the rest of the table is based on random-effects Poisson estimation. The random effects are assumed to follow a gamma 
distribution.  Estimated coefficients for calendar year dummies and industry dummies in columns 3-6 are not reported to save space. 



  

Table 4  Patent Regressions: Sensitivity Analyses (continued) 
 
Dependent Variable: Patents  

 (7) (8) (9) (10) 

 Poisson 

High tech firms 

Poisson 

Non high tech firms 

Poisson 

High tech firms 

Poisson 

Non high tech firms 
 Coef. z Coef. z Coef. z Coef. z 

         
LnECR 0.0154 9.11 0.0032 1.46     

LnGEO     0.1637 6.33 0.0878 3.29 

LnSALES 0.4195 29.65 0.3953 29.76 0.4078 22.96 0.2872 16.46 

LnK/L 0.0071 4.43 -0.0166 -11.34 0.0283 8.42 0.0356 13.48 

LnR&D 0.2985 25.41 0.3108 27.78 0.3563 23.86 0.4390 28.00 

LnAGE 1.9293 25.34 0.2368 3.08 5.1963 21.26 0.2688 0.92 

Constant -8.4566 -30.05 -2.3169 -7.93 -20.0725 -23.09 -2.0734 -1.99 

         

Observations 
Log Like. 
Wald χ2 
p value 

11012 (1490 firms) 
-22369 
8679.4 
0.00 

10545 (1255 firms) 
-22951 
4024.5 
0.00 

8072 (1125 firms) 
-15636 
6320.7 
0.00 

6313 (771 firms) 
-13545 
3119.6 
0.00 

Note:  The z columns report the ratios of the coefficient to its standard error.  The p values are of the test that the population coefficients are jointly zero.  The 
results in all columns are based on random-effects Poisson estimation.  The random effects follow a gamma distribution.  High tech industries include Computers 
& computing equipment (industry 8), Electrical machinery (9), Electronic instruments & communication equipment (10), Transportation equipment (11), Optical 
& medical instruments (13) and Pharmaceuticals (14).  This grouping follows Chandler (Business History Review, Summer 1994). 

 
 
 



  

 
Appendix I:  Notations Used in the Theoretical Model 

ρi Internal revenue generated by innovation for entrepreneur in the second period (marketing 
phase); a random variable that is realized at the beginning of the second period 

ρe External value of innovation in second period to entrepreneur’s rival, net of scientist-
worker’s moving cost (includes a random variable that is realized at the beginning of the 
second period) 

f Joint density of ρe and ρi 
λ A rival using the innovation in the second period, markets product that reduces the 

entrepreneur’s revenue received by λρi, where λ ∈ [0,1] 
δ A patent reduces the entrepreneur’s loss from the rival’s appropriation to (1-δ)λρi, δ ∈ [0,1] 
γ A patent reduces the rival’s gain from its appropriation by γρi, γ ∈ [0,1].   
ν The cost to the entrepreneur of patenting; it includes out-of-pocket costs and the costs from 

information disclosure 
w  The marginal product of the scientist who has no experience at the firm 
w0 The entrepreneur’s first period (developmental phase) wage offer to the scientist 
w1 The entrepreneur’s second period (marketing phase) wage offer to the scientist 
p An indicator variable, equal to one if the entrepreneur patents in the second period and zero, 

otherwise 
S The set of ρe and ρi such that the scientist remains with the entrepreneur in the 2nd period 
M The set of ρe and ρi such that the scientist moves to a rival in the second period 
N The set of ρe and ρi such that the scientist moves to the non-R&D sector in the 2nd period 

eρ  The expected value of ρe 

εe A noise term; ρe = eρ + εe 

iρ  The expected value of ρi 
εi A noise term; ρi = iρ  + εi 
g Joint density of εe and εi 
 

Appendix II:  Decisions on Mobility and Patenting 

We first suppose ρe > λρi, or εe > λη+λ iρ − eρ .  The scientist’s gain from establishing or 

joining a rival exceeds the firm’s loss (= λρi − δλρi + w ), whether the firm patents or not.  Thus, the 

scientist leaves the entrepreneur for the rival and earns ρe − γρi + w  if the entrepreneur patents, and ρe 

+ w  otherwise.  She patents only if the gain to patenting exceeds its cost, i.e. ν ≤ δλρi.  This first case 

corresponds to the area above line A in Figure 1. 

Suppose, instead, λρi − (δλρi −γρi) < ρe ≤ λρi.  In the absence of patenting, the establishment 

of a rival would cost the entrepreneur more than it would benefit the scientist.  In this case, the 

entrepreneur offers the scientist w1 = ρe + w , the smallest wage that the scientist would accept to stay.  

In this range of ρe, patenting causes the benefit to the scientist from leaving to exceed its cost to the 

entrepreneur.  Thus, when the entrepreneur patents the innovation, the scientist leaves to form a rival.  

The entrepreneur patents if her second period earnings after patenting are greater than they would be 

otherwise.  That is, the entrepreneur patents if ν ≤ ρe – (1−δ)λρi.  This threshold between patenting 



  

and non-patenting is illustrated in Figure 1 as the solid line in the range εi1 < εi ≤ εi2 connecting the two 

lines A and B.   

Consider now the entrepreneur’s optimal strategy when γρi < ρe ≤ λρi − (δλρi −γρi).  In this 

case, ρe is low enough that whether the firm patents or not, the loss to the entrepreneur if the scientist 

sets up a rival exceeds the scientist’s gain.  Thus, the entrepreneur always offers the scientist the 

minimum w1 to induce him to stay, which is ρe + w  if she does not patent, and ρe − γρi + w  otherwise.  

By reducing the return to the scientist in his best alternative employment, patenting reduces the wage 

offer necessary to retain him.  Thus, the entrepreneur patents only if ν ≤ γρi.  This third case 

corresponds to the area between lines B and C in Figure 1. 

ρe may also fall between 0 and γρi.  If the entrepreneur chooses not to patent, the gain to the 

scientist in forming a rival would exceed the loss to the entrepreneur.  Thus, if she does not patent she 

would offer a wage equal to ρe+ w  to retain the scientist.  If she were to patent and if the scientist were 

to leave, he would choose not to exploit his knowledge since marketing a similar product would earn 

him ρe − γρi < 0.  By patenting, she reduces the wage necessary to retain the scientist by ρe, and thus 

patents only if ν ≤ ρe.  If she patents, she offers the scientist w  to stay and earns nothing from the 

scientist’s services.  This fourth case corresponds to the area between lines C and D in Figure 1. 

Finally, suppose ρe < 0.  In this case, the entrepreneur does not patent, and offers w  to the 

scientist, who stays in the second period and produces w  (the area below line D in Figure 1).   

 

Appendix III:  Industry Classification and Geographical Region Code 

Industry 1: Food & tobacco  
Industry 2: Paper & paper products  
Industry 3 Chemical products  
Industry 4 Plastics & rubber products  
Industry 5: Primary metal products  
Industry 6: Fabricated metal products  
Industry 7: Machinery & engines  
Industry 8: Computers & computing equipment  
Industry 9: Electrical machinery  
Industry 10: Electronic instruments & communication equipment 
Industry 11: Transportation equipment  
Industry 12: Motor vehicles  
Industry 13: Optical & medical instruments  
Industry 14: Pharmaceuticals  
Industry 15: Misc. manufacturing  
 



  

Region 1: New England 
Region 2: Middle Atlantic 
Region 3: Northeast Central 
Region 4: Northwest Central 
Region 5: South Atlantic 
Region 6: Southeast Central 
Region 7: Southwest Central 
Region 8: Mountain 
Region 9: Pacific 



  

Endnote 

 
1 The Bureau of Labor Statistics (see the BLS document, Labor Force Statistics from the Current 
Population Survey, online at http://stats.bls.gov/cps_over.htm) reports that the median years of tenure 
with the current employer for engineers fell from 6.3 in 1983 to 4.8 in 2000, a drop of 24 percent. 
2 Gilson has argued that the rise of Silicon Valley is due in large part to the California courts’ refusal 
to enforce non-compete clauses in employment contracts.  Gilson suggests the courts’ refusal to 
enforce these clauses coupled with the natural mobility of scientists and managers resulted in the 
diffusion of technological innovation. (See also Saxenian, 1994).  
3 The entrepreneur risks a competitor discovering the entrepreneur’s idea independently or through 
reverse engineering, without the aid of entrepreneur’s former worker.  One can show that allowing 
competitors to imitate and the entrepreneur to combat it through patenting does not qualitatively 
change our theoretical results below. 
4 In the second period he earns w* if he stays at the same non-R&D firm, or w  if he moves.  We 
assume that w* ≥ w  since the scientist accumulates firm specific human capital.  For simplicity we let 
w* = w  in the following exposition, which does not change our main findings. 
5 When the entrepreneur designs a patent application to establish a monopoly in a certain technological 
area, she will be more likely to tailor the patent to enlarge its immediate benefit δλρi, while, as we 
show below, minimizing γρi.  Thus, the tendency is for larger δλρi relative to γρi. 
6 We are assuming there is no minimum wage, i.e. w0 can be negative. 
7 The proofs can be provided upon request. 
8 Note that we have excluded the scientist’s earnings at a rival from the calculation of a project’s 
R&D.  This is appropriate in the event the scientist only leaves to set up a new firm, where he is 
unlikely to report his activities as R&D.  If, on the other hand, the scientist moves to an established 
firm, w will almost surely be counted as R&D, if not ρe, too.  In this case, (3) should include on the 
right hand side ( ) ( ) ( ) ( )∫∫∫∫

==
+−+ρ+++ρ

1PM,
ieieiee

0PM,
ieieee εεε,εwγρεεεε,εwε ddgddg . 

9  The assumption that the wages paid to the defecting scientist are not counted in the R&D 
expenditures is crucial to the comparative statics we do with R&D.  Alternatively, if we assume that 
both ρe (or ρe −γρi if the innovation is patented) and w  paid by the receiving firm are counted in its 
R&D expenditures, then we can show that mobility has no effect on R&D because an increase in eρ  
reduces the wage paid by the entrepreneur by the same amount it increases the expenditures at the 
rival. 
10 Pakes and Nitzan also find that improvements in the scientist’s outside opportunities cause the wage 
paid to fall commensurately. Technical knowledge acquired by the scientist is a form of general 
human capital, so this result is not surprising (see Becker, 1964). Moen (2000) provides empirical 
support for this result. Using Norwegian matched employer-employee data, he finds that technical 
workers in R&D intensive firms accept lower wages early in their career in exchange for higher wages 
later.   
11 We include the following occupation categories for scientists and engineers (the three-digit 1980 
standard occupational classifications are in parentheses):  Engineers (044-059), Mathematical and 
computer scientists (064-068), Natural scientists (069-083), Clinical laboratory technologists and 
technicians (203), Engineering and related technologists and technicians (213-216), Science 
technicians (223-225), and Computer programmers (229).   
12 See the industry classification in Appendix III. 
13 According to the CPS data, the average of ECR over the period 1975 to 1992 is 0.11. This is lower 
than the average job turnover rate for all workers during 1975-95, at 0.28 (Stewart, 1998). Turnover 
 



  

 
rates may be lower for scientists and engineers because they are more highly educated, more often 
male, and older than the average worker.  In general workers with these traits have lower job turnover 
rates.  
14 Ideally, we would like measures of mobility for each industry in each geographical area.  Because 
the size of the sample is too small to estimate separate industry measures by region, we construct 
mobility estimates for scientists and engineers aggregating across industries in 9 regions (see 
Appendix II), and then match these measures to firms by their region of incorporation. 
15 Details of the matching process and the resulting data file can be found in Hall and Ziedonis, Hall, 
Jaffe, and Trajtenberg (1999), and Hall (1990).   
16 Hall and Ziedonis, inspired by Merges and Nelson (1990), also include a dummy variable capturing 
whether the firm owned and operated its own manufacturer or specialized in product design alone.  
The authors reason that manufacturing firms may be more likely to patent because they may require 
access to a larger set of process and product technologies than design firms, making them vulnerable 
to a patent infringement lawsuit.  We have not included this variable in our analysis since collecting 
information on firm type is prohibitively costly for our much larger sample, and the random or fixed 
effects we use in our estimation models will pick this up. 
17 A Box-Cox test shows that the logarithmic form of the mobility variable produces a better fit than 
the linear form.  Moreover, when run with the linear form of the mobility variable, our model 
generally produces results that are qualitatively and quantitatively similar to the results produced with 
the log form. 
18 Our use of contemporaneous R&D, as opposed to lagged R&D, follows the extensive literature 
estimating patent production functions (e.g., Hall, Grilliches, and Hausman, 1986).  Evidence suggests 
that R&D activities and innovations occur somewhat simultaneously.  Moreover, if a firm attempts to 
patent an innovation, it files the application while the innovation is being developed or very shortly 
afterwards (Hall et al.).   
19 The sample used in Panel 4 is smaller than in Panel 1 because some firms in the Compustat data do 
not report a location.  
20 The reader should note the following caveat for the GEO measure: The geographical measure of 
mobility is based on the state of the firm's incorporation. For many large firms, only a portion (or 
perhaps none) of their R&D operations are located in the state of their incorporation.   
21 We added polynomial terms until the change in log-likelihood ceased to be statistically significant. 
We report the results from a sixth order polynomial expansion of ECR because we found no statistical 
difference in the log-likelihood when we went from a sixth order to a seventh order expansion. 
22 We thank Frank Windmeijer for providing his Gauss program, EXPEND, used to estimate these 
models (see Windmeijer, 2002). 
23 The propensity to patent and mobility may be related through other shared factors.  For example, the 
advent of a new technology may lead both to more patenting and increase the re-shuffling of workers 
among firms.  Suppose there are two industries employing biochemists.  In industry A, biochemists 
develop drugs to fight disease and in industry B they are employed for another purpose.  Suppose in 
industry A, a new technology is developed that lowers the costs of drug discovery, raising the 
marginal product of biochemists working there.  We would then expect that firms in industry B would 
lure biochemists from industry A, raising mobility, until the marginal products are equal across 
industries.  Simultaneously, the new drugs enabled by the technological shock would generate new 
patents.  By using the GMM, we can isolate the effect of mobility on patenting from those of other 
factors which simultaneously influence mobility and patenting.   
24 A Basmann’s test applied to the linear regression specification indicates these variables can be 
excluded from the estimated regressions and used as instruments. The mean age of scientists is used as 
 



  

 
a regressor instead of an instrument since the Basmann’s test rejects the hypothesis that it is 
excludable from the reduced-form model. 
25 We use as instruments the second through fourth lags of the mobility and R&D measures, and the 
contemporaneous through fourth lags of the remaining variables. 
26 These calculations are based on the estimated coefficients associated with LnECR and LnGEO in 
panels 1 and 4 of Table 3, assuming that R&D expenditures are not affected by changes in these 
mobility measures. The predicted reductions of the patent-R&D ratio are derived as exp(.0287*ln2) = 
1.02 and exp(0.1303*ln2) = 1.09. The other calculations described below are derived similarly. 
27 Among engineers, the median tenure with the current employer experienced a similar decline over 
that period. See endnote 1. 
28  Science and Engineering Indicators (National Science Foundation, 1998) reports that average 
annual domestic patents granted per billion research dollars in the U.S. (expressed in 1982-84 dollars) 
rose from 401 in 1984 to 475 in 1997. 
29 These calculations are based on post-1986 data only because 1987 is the first year in which the CPS 
contains the size of workers’ employers by number of employees. 


